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Abstract 
 
 
In attempting to align divergent homologs of a conserved developmental enhancer,  

a flaw in the homology concept embedded in gapped alignment (GA) was discovered. To 

correct this flaw, we developed a methodological approach called maximal homology 

alignment (MHA). The goal of MHA is to rescue internal microparalogy of biological 

sequences rather than to insert a pattern of gaps (null characters), which transform 

homologous sequences into strings of uniform size (1-dimensional lengths). The core 

operation in MHA is the “cinch”, whereby inferred tandem microparalogy is represented in 

multiple rows across the same span of alignment columns. Thus, MHAs have a second 

(vertical) paralogy dimension, which re-categorizes most indel mutations as replication 

slippage and attenuates the indel problem. Furthermore, internally-cinched, inferred 

microparalogy in a self-MHA can later be relaxed to restore uniformity to 2-dimensional 

widths in a multiple sequence alignment. This de-cinching operation is used as a first 

resort before artificial null characters are used. We implement MHA in a program called 

maximal, which is composed of a series of modules for cinching and cyclelizing divergent 

tandem repeats. In conclusion, we find that the MHA approach is of higher utility than GA 

in non-protein-coding regulatory sequences, which are unconstrained by codon-based 

reading frames and are enriched in dense microparalogical content.  
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Introduction 
 
We describe a new approach to biological sequence alignment following attempts to 

perform gapped alignment (GA) starting at the poorly-conserved edge of a conserved 

developmental transcriptional enhancer. This new approach is based on a re-evaluation of 

evolutionary homology at small length-scales (“site positional homology”) and how it is or is 

not encapsulated in the GA approach. We find that the modeling of homology in the GA 

approach is an approximation that works best in protein domain-encoding sequences, 

which are doubly constrained by a codon-triplet reading frame and their encoding of 

secondary structural elements. In contrast, the modeling of homology in the GA approach 

is a poor approximation in cis-regulatory sequences, which are not so constrained (e.g., 

see Brittain et al., 2014). 

In evolutionary genetics, sequence homology at a single site refers to identity of 

both position and symbol (letter). Two unlinked nucleotide sites located in two related 

sequences are considered to be homologous to each other based on (i) a globally-

influenced inference of homology of position, and then (ii) a confirmatory inference of 

symbol identity at that homologous position. Thus, non-identical letters in a single 

alignment column of a gapped alignment still retain homology of position.  

GA is based on a simplification of the homology concept as strict 1-to-1 orthology or 

lack thereof. If a sequence in an alignment is found to lack a symbol at an inferred 

alignment position, GA algorithms insert a null symbol represented by the dash character 

(“-”). The dash symbol does not carry information about its temporal polarization, i.e., 

whether it represents an insertion or a deletion in one sequence relative to another. The 
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null symbol thus serves to adjust the non-uniform lengths of sequences or windows of 

sequence. With maximal homology alignment (MHA), a method introduced here, we use a 

robust and theoretically-correct alternative to the non-uniform length problem solved by 

GA’s null character insertions. 

In the formalism of evolutionary genetics, homology is composed of two 

complementary categories known as orthology and paralogy. The orthology concept is 

meant to describe relationships connected through a single common ancestor, while the 

paralogy concept is meant to compartmentalize relationships complicated by duplications 

in one or more lineages of interest. In the current comparative genomics era, where the 

ancestry of gene families can be more comprehensively evaluated, the definitions of 

orthology and paralogy have been adjusted to maintain clade-level utility. For example, two 

related organisms can be defined to have orthologous genes if these genes are 

descended from a single gene present in their common ancestor, regardless of lineage-

specific duplications since this common ancestor (Remm et al., 2001; Hubbard et al., 

2007). This particular definition is computationally-compatible with the need to distinguish 

ancient duplications preceding the common ancestor (the “out-paralogs” that define large 

gene super families) from recent lineage-specific duplications (“in-paralogs”), which are 

often found in one lineage or another (Remm et al., 2001). We now illustrate a 

fundamental flaw of GA by analogy to the phylogenetic analysis of gene families with their 

many gene duplications. 

If gene A from organism “X” is being aligned to a duplicated pair of genes A1 and 

A2 from organism “Y”, this alignment will by composed of three rows of gene sequences 
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(A, A1, and A2) and n alignment columns, as determined by the lengths of the sequences 

and the number of dashes invoked by the chosen GA method. For multiple sequence 

alignment (MSA) of the gene family repertoires from different genomes, incorporation of 

paralogous genes from the same genome is readily permissible, and is informative for 

distinguishing the ancient paralogy groups (i.e., ancient duplications) of a large superfamily 

from the lineage-specific duplications within one paralogy group. In fact, MSA can proceed 

as if all the ancestral and lineage-specific gene duplications present in any one genome 

came from different genomes. Thus, most phylogenetic analyses treat the set of genes AX, 

A1Y, and A2Y from two different organisms in the same way as a set of three orthologous 

genes AX, AY, AZ from three different organisms. 

In GA, the categorical partition of homology into orthology and paralogy is not 

incorporated in the sense that it does not include “microparalogy” of position, by which we 

mean internal tandem duplications typical of replication slippage (<< 100 bp) (Strand et al., 

1993). There are likely several reasons for why GA has not been built to handle 

microparalogy. First, while paralogous gene duplications are discrete and more easily 

recognized as separate entities, with small internal tandem repeats, and much more so 

with small unstable repeats of repeats, this useful discreteness of duplicated segments is 

more ambiguous. Second, microparalogical duplications are more numerous and present 

in a more uniform distribution. Third, it is not necessarily predetermined that the different 

lengths of homologous segments will often be due to replication slippage (Strand et al., 

1993; Haber and Louis, 1998), and in fact other complex mechanisms have been 

proposed (e.g., Amos, 2010). Fourth, GA methodology has matured over the decades on 
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an example corpus enriched in the amino acid sequences of protein-coding domains with 

well-defined secondary and tertiary structures, as well as the nucleotide sequences 

encoding them.  

With GA, if replication slippage produces a repetition of the heptamer 5´-CAGGTAG 

into 5´-CAGGTAGCAGGTAG, one of the two halves of the 14 bp sequence will be aligned to 

dashes inserted in other sequences. Nonetheless, positions 1 and 8 in the duplicated 

sequence are homologous to each other via local microparalogy, and furthermore both 

positions 1 and 8 are equally homologous to position 1 in the unduplicated homologs. 

Thus, any single multiple sequence alignment (MSA) produced by GA disperses a great 

deal of local microparalogy into separate alignment columns, causing the need to insert 

null characters in other sequences. This is an issue exacerbated by the immense force of 

replication slippage in sequence evolution particularly in cis-regulatory sequences (Crocker 

et al., 2010; Gemayel et al., 2010; Kelkar et al., 2011; Ananda, et al., 2013; Duitama et al., 

2014; Brittain, et al., 2014).  

Under GA, the magnitude of the so-called “indel problem” has propelled an almost 

50 year-long search for a “master equation” solution, which would provide an efficient and 

satisfactory mitigation of indels by dictating an optimal pattern of gap insertions (for 

example treatments spanning this time frame, see Sankoff, 1972, and Holmes, 2017). 

Even probabilistic approaches, which are amenable to relaxing the assumption of a single 

optimal or perfect gapped alignment and dealing with probability distributions of 

alignments, are nonetheless built on a GA framework (e.g., Satija et al., 2008). All of GA 

features a deeply-embedded world model involving computational decisions to match, 
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mismatch, insert, and/or delete in order to restore a non-biological 1-to-1 versus 1-to-none 

concept of homology that is really positional orthology sensu stricto (see Table 1). 

Here, we define maximal homology alignment (MHA) as any method that models 

DNA sequence as a two-dimensional string of symbols according to a homology formalism 

that includes microparalogy (1-to-many and many-to-many correspondences, see Table 

1). We first describe how the MHA method facilitates alignment of a highly-conserved 

transcriptional enhancer and compare these results with alignment of a protein coding 

sequence. We find that any GA approach is intractable in ways that are not an issue to 

MHA. We then implement a computational solution to MHA and demonstrate its utility. We 

distinguish between MHA as a general goal from our specific implementation in a program 

called maximal. The maximal implementation may represent one of several ways to 

achieving MHA and so we refrain from making statements about its relative computational 

efficiency in the space of MHA solutions. Nonetheless, in our sparse matrix 

implementation, the initial MHA preparation of a single sequence of length n has a time 

complexity that is linear in n, i.e., with a run-time of O(n), and produces strings with a 

radically diminished need for computationally-intense gap solutions during MSA. In 

addition to the attenuation of length non-uniformity of homologs, a multiple MHA aligner 

can draw upon internally cinched characters as a first resort and null (gap) characters as a 

last resort. Thus, MHA has a more powerful and biologically-relevant basis for the 

restoration of length uniformity to a set of homologs in a multiple sequence alignment.  
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Results 
 
Alignment at the edge of a transcriptional enhancer   
We demonstrate the need for the MHA approach with an example sequence beginning at 

the poorly-conserved edge of a highly-conserved intronic transcriptional enhancer (Erives 

and Levine, 2004; Crocker and Erives, 2013). This enhancer occupies the second intron of 

the Drosophila gene ventral nervous system defective (vnd), which is homologous to the 

vertebrate NKX2-2 and NKX2-8 genes. The vnd intron harboring its neurogenic ectoderm 

enhancer (NEE) does not contain any other enhancer activity or detectable sequence 

conservation besides the regulatory belt of peaks constituting the binding sites within the 

enhancer (Fig. 1a). In previous studies, we have documented the evolutionary role 

replication slippage plays in shaping these enhancers (Crocker et al., 2010; Brittain, et al., 

2014), similar to processes shaping the human genome (Gemayel et al., 2010; Kelkar et 

al., 2011; Ananda, et al., 2013; Duitama et al., 2014).  

To perform a fine-grained sequence alignment of the vnd NEE,  we segmented this 

enhancer into 20 lettered sections, beginning with the 51 bp segment of Block A (see Fig. 

1b, and Fig. 2a). Figure 2b shows a state-of-the-art Multiz Alignment based on the 

sequences from 27 insects (Blanchette et al., 2004). Although this example highlights the 

specific output from Multiz, the points that we will make are general to gapped alignment. 

In this alignment we highlight several problems relative the maximal homology alignment. 

For now, we merely point out that not all of these 9 shown species begin with sequence as 

three species begin with dashes (“-“) and another begins with unalignable sequence (“=”). 

As we shall see, both of these issues can be corrected with MHA. 
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 In general, gapped alignment includes many dashes (Fig. 2a). These null 

characters represent that there are either insertions or deletions relative to one another. 

However, as to whether insertions or deletions predominate is not immediately clear. 

Additional sequences are present in one sequence that are not alignable to others. 

 The heptapeptide sequence 5′-TCACACC is present in each of the Drosophila 

species (highlighted in magenta in Fig. 2), but the gapped alignment splits this sequence to 

match various sub-strings present within the a large gap (compare Fig. 2b to Fig. 2c). 

Some of these fragmentary alignments, such as the central 5′-CA (nucleotides 4 and 5) 

occurs due to a gap parsimony-constraint in the MSA (highlighted gap).  

 Fig. 2c shows the hand-aligned MHA version of the multiple sequence alignment of 

the first block, Block A, of the vnd NEE. In stark contrast to the many dashes in the gapped 

MSA, we find that there are only three nucleotides of unpolarized indels (highlighted dots) 

in the two outgroups sequences (red, yellow highlight). In addition, we infer that there has 

occurred at most two high-confidence deletions: a single nucleotide contraction of the a 

run of 4 C’s in the ancestor of the melanogaster group, and potentially a second single 

letter contraction of a run of three A’s in Drosophila ananassae. Last, the vast majority of 

indels marked in the gapped 27-Multiz alignment is explained by replication slippage. 

Furthermore, we identify that the central problem of all regulatory alignment is the 

evolution of private, which is to say lineage-specific, microfoam sequence. This microfoam 

sequence can be explained as divergent replication-slippage involving repeats of repeats.  

To demonstrate the appeal of a possible MHA strategy, we look at the first ~50 bp 

of block-A for just a pair of flies. An example of pair-wise GA (Needleman-Wunsch) for this 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/299867doi: bioRxiv preprint 

https://doi.org/10.1101/299867
http://creativecommons.org/licenses/by/4.0/


2-D genetic sequence (Erives, 2018)  
 

 
 
 

10 

example non-coding sequence is shown in Fig. 3a. These poorly conserved sequences 

are 46 bp long in Drosophila melanogaster and 51 bp long in Drosophila erecta and have 

been diverging for at least 10 million years. This sequence is the first detectable window of 

alignable sequence on the edge of this enhancer and can be truncated without loss of 

correct spatial patterning of a reporter gene. Because the sequences are of different 

lengths, gaps are inferred in multiple places (Fig. 3a). 

In a genome-browser graphical representation of the same pair of aligned 

sequences, an additional constraint on displaying sequence homology can be 

demonstrated (Fig. 3b). In a genome browser view of the same pair of sequences, one 

displays homologous sequences only if they have been inferred to have a 1-to-1 GA 

relationship to the reference genome positions. Thus, extra sequences in other related 

genomes are typically hidden, at least at the level of a zoomed-in genome browser-like 

display (tick marks in Fig. 3b). This design choice is a necessary constraint imposed by GA 

in general because different related genomic sequences will have private insertions in 

different places, thus making visual display to the reference unwieldy. 

In contrast to GA, MHA allows one to include microparalogy in the alignment (Fig. 

3c) that is otherwise hidden either by obscurity (Fig. 3a) or by constraint of design (Fig. 

3b). Remarkably, this pair-wise MHA reveals that self-MHA preparation has done most of 

the alignment work without any direct pair-wise comparisons. Furthermore, MHA also 

allows the inference of polarity in this pair-wise alignment without the use of a third 

sequence in a known outgroup relationship. Indeed, with multiple repeats, polarity can be 

inferred with only a single sequence.  
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This work was heuristically guided by the complete hand-MHA version of the vnd 

NEE and vnd exon 3 for comparison (Supporting File S1). Example blocks from this MHA 

are shown in Figures 4 and 5, which demonstrate the utility of MHA for both cis-regulatory 

and protein-coding sequences. We thus decided to explore this method further by 

developing software tools to conduct MHA. Before describing the specific software 

programs we have produced, we first address some questions about how MHA would work 

in comparison to GA.  

 

 
How MHA works in comparison to GA 
 
One important question concerning MHA is how one should evaluate whether a genetic 

sequence is cinched-well or even how much one should cinch internal homology. In 

principle, some cinched sequence will represent true-positive microparalogy that has been 

restored to co-occupy a set of alignment columns. However, some cinched sequence may 

represent false-positive microparalogy of adjacent sequences that have become similar via 

mutational drift. Thus, the more aggressive one cinches microparalogy, for example by 

including the capacity for modeling repeat divergence, the likelier it is that false-positive 

microparalogy will be cinched. 

 False-positive microparalogy is not likely to be an issue to MHA from the following 

rationale confirmed by our initial exploration of the method. We can describe gapped 

alignment as the process by which artificial null characters are distributed into a set of 

homologous sequences in order to restore sequence alignment and to effectively make 

them of uniform lengths as part of a multiple sequence alignment (MSA) (Fig. 6a). In a 
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similar way, we can envision MHA as producing an MSA that is composed of homologs of 

uniform 2-D widths (Fig. 6b), but with several key differences. 

 MHA can be conceptually broken into two separate procedures involving a self-

MHA preparation module and a multiple-MHA aligner. Because the multiple-MHA aligner is 

designed to produce a minimally-gapped MSA we refer to it as minimally-gapped MHA 

aligner (MGMA). Thus, the first key difference between GA and MHA is that the former 

aligns 1-D sequences and the latter aligns 2-D sequences that were prepared by self-

MHA. The former GA method produces MSAs of uniform 1-D lengths and the latter MHA 

method produces MSAs of uniform 2-D widths. 

 A second important difference is that GA works only to restore alignment via 

insertion of null characters (dashes). In contrast, MHA can draw upon the internal cinched 

characters present in the self-MHA to restore alignment. This powerful capacity to avoid 

using null (gap) characters is a fundamental departure from GA. Furthermore, the need to 

draw upon internal cinched sequences to restore homolog alignment is most likely to occur 

with false-positive microparalogy. To summarize, overcinched false-positive microparalogy 

is used as the first resort by the MGMA module rather than null characters from the void. 

This makes MHA a much more powerful approach for restoring uniform lengths to 

divergent homologs. 

 

 
Implementation of MHA in the maximal program of cinching modules 

Path traversion: The maximal implementation of MHA begins similarly to the dynamic 

programming strategy used in global (e.g., Needleman and Wunsch, 1970) and local (e.g., 
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Smith and Waterman, 1981) alignment with the construction of a path box, which when 

traversed according to the algorithm describes the cinching required to produce local self-

alignment (Fig. 7a). The path box is filled with scoring values according to a substitution 

matrix. However, as substitution matrices are themselves based on MSA, the robustness 

of MHA over GA motivates a re-assessment of nucleotide and perhaps even amino acid 

substitution matrices. For example, in our initial explorations of MHA, we find there is a 

higher transition to transversion ratio for non-protein-coding regulatory sequences than has 

been previously reported, and this value is more in line with the higher ratios seen in 

protein-coding sequences (a more comprehensive assessment of this is being reserved for 

a later study).  

In our maximal MHA implementation, we use a nucleotide substitution matrix that 

gives ½ the maximum identity score to transition substitutions. We also use a sparse 

matrix approach for efficiency and in particular find that we only need to fill in values in a 

hemi-diagonal band. A bandwidth of ~200 bp is sufficient due to the known higher 

frequencies of tandem repeats (TRs) at increasingly lower k-mer sizes and their repeat 

number. Furthermore, the maximal preparation of sequences for MHA first involves 

construction of a self-MHA path box (Fig. 6b). In other words, the first part of alignment of 

sequences is to themselves. In various contexts, we refer to this procedure as MHA-

preparation, self-MHA, and the “cinching” of 1-D lengths and/or 2-D widths into narrower 2-

D widths. 

In maximal, an initial computational module called cinch-t (t = tandem repeats) 

traverses a path unlike that of the trace-back strategies used in traditional GA. First, the 
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maximal implementation of MHA completely dispenses with the need to evaluate at each 

intersection whether to do diagonal matching or horizontal or vertical path translations for 

insertions and deletions. Instead, the cinch-t module uses a cinch-path finding strategy that 

begins in the upper left-hand corner and proceeds column by column from left to right, and 

from top to bottom in each column never passing the diagonal (hence the efficiency of a 

hemi-diagonal sparse matrix, see Fig. 7a). This path will define the initial 2-D alignment. At 

column positions less than the bandwidth (the bandwidth defines the sparse matrix version 

of the path box), one begins at the first (top) row of each column, but after these initial 

columns one simply begins at the first intersection further below that is within the 

bandwidth. At each intersection with score S(m, n) > 0 for n > m, one evaluates whether 

the sum score of the diagonal beginning at that intersection and of length k = n – m 

surpasses a score threshold, which in our implementation is based on a k-mer dependent 

fraction of allowed transitions. We currently discard diagonals if they have a single non-

transition mismatch, but different substitution strategies can be used.  

 

Width cinching: If a k-mer diagonal is found to surpass threshold, it is “cinched”, by which 

we mean that the line is terminated with an inferred replication slip character represented 

by the forward slash (“/”). Then the second or more repeats are placed under the first 

repeat unit block in a series of rows, one per additional TR unit, as microparalogical 

alignment (see examples in Fig. 7b–d or previous figures). The slip character has no 

bearing on sequence length and is not meant to adjust spacing as the gap character does 

in GA. Instead the slip character merely conveys that the biological sequence continues on 
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the next row below (see Fig. 7 b–d). Similarly, tick marks can be used to populate the 

upstream parts of rows that do not contain sequence merely as a visual guide for columnar 

alignment. These tick marks also do not have any bearing on alignment lengths. 

In the end, the cinch-t module cinches the first tandem repeats of smallest k-mer 

size even if they are constituents of a larger unit TR block of length l > k but then only 

cinches the larger l-mer TR blocks after that and so on (compare the Fig. 7a path box to 

the cinch-t output in Fig. 7b). In a subsequent maximal module, called cinch-k, small TRs 

within the bigger l-mer repeats after the first unit l-mer block are then cinched like they 

were in the initial l-mer block (Fig. 7c). During the initial cinch-t pass, a modest amount of 

computation is also expended in considering slips located in the slip shadow represented 

by the window from m+1 to n–1 within the first unit block. We implement additional non-

obvious modules made possible by this general strategy and describe these below (for one 

example, see Fig. 7d). 

Implementation of MHA in the maximal program reveals key aspects of the nature 

of genetic sequence. Foremost is that such sequences are delocalized in two dimensions 

and are inherently non-monotonic. GA essentially is based on the assumption of intrinsic 

monotonicity of sequence. By monotonicity of a genetic sequence we mean that its 

positional homology has a 1-to-1 linear relationship with successive nucleotide subunits 

indexed in the 5´ to 3´ direction. For example, in a 1-D model of sequence, there is no 

ambiguity as to positional order. In a 2-D model of sequence, one index is required to 

specify column position n along a consensus sequence, while a second index is required 

to specify which specific paralogy block (row m) of a TR series.  
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If m and n are two positions in a 1-D string such that m is upstream of n, in a 2-D 

sequence n might well be located upstream of m due to its location in the upstream half of 

a downstream block of microparalogy. This is not meant as a superficial observation based 

only on the 2-D self-alignment, because this delocalization may really apply to ancestral 

positional homology and/or to different MHA-based cyclelizable “cinching” as explained 

below (also see Fig. 8). Delocalization is a natural consequence of allowing one-to-many 

microparalogy. 

Replication slippage generates repetition that is increasingly unstable, leading to the 

generation of “micro-foam” microparalogy. Micro-foam sequence can be described as a 

complex pattern of repeats of repeats leading to private (lineage-specific), complexly 

homologous microparalogy. In a micro-foam model of sequence the concept of monotonic 

sequence position is untenable. For example, practical MHA display (i.e., capable of being 

graphed and represented 2-D dimensionally) must be able to “cyclelize” repeats. 

Cyclelizable tandem repeats must be “re-cinched” in a different repeat frame, say by first 

cinching 5´-TGATTGATTGATTTACGATTTAC into 5´-(TGAT)3TTACGATTTAC and then 

cyclelizing the initial repeat to allow cinching of an adjacent TR that overlaps with the last 

unit of the previous TR: 5´-T(GATT)3(GATTTAC)2 with the underlined sequence 

representing overlap with the third repeat of the tetramer. (This particular example 

sequence has an overall “width cinch ratio” of 8/23 or ~ 0.35, for example. Width cinch 

ratios [WCR] are likely to be characteristic of genomes in much the same way as indel 

rates and microsatellite repeat content can be rapidly divergent.) Whether the ancestral 

sequence contained the tetramer repeat starting with a T as in 5´-TGAT or with a G as in 5´-
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GATT, is not clear as it is unlikely for the edges of unstable TR repeats to have been 

perfectly conserved. Its instability during lineage divergence will have repeatedly 

scrambled the monotonicity over this sequence. Thus, 2-D MHA is more accepting of the 

non-monotonicity of biological sequences, which evolve in part by replication slippage, 

which is exacerbated in unconstrained microfoam. 

In the maximal program, cyclelizing is handled by a cyclelize module and an 

example output is shown in Fig. 8. The current maximal version does true cyclelizing for  

k = 2, and “fudge-cyclelizing” for k > 2. Fudge-cyclelizing is an approximate solution to a 

cyclelizeable-resolvable microfoam knot, whereby maximal simply pushes the non-

consensus rows to the right. We estimate that k = 2 cyclelizable knots are of comparable 

number to all other cyclelizable knots, but again cyclelizing is only required when resolving 

conflict between non-compatible overlapping TR patterns. 

In implementing our particular approach to MHA, we found that the cinching of small  

k-mers after the cinch-t à cinch-k passes, and in particular of homopolynucleotide (k = 1) 

runs, allows recognition of differently-sized tandem repeats in the consensus row. For 

example, imperfect repeats differing by expansions and contractions of an internal 

homopolymeric run in the repeat unit are perfect repeats in the consensus row. Because 

the blocks differ in length, they are not seen by the initial cinch-t, cinch-k, and cinch-s 

modules. In the maximal program, these TRs of non-uniform size are self-aligned by a 

cinch-d module, which thereby effectively cinches de novo (newer) inter-TR repeats of 

repeats (Fig. 7d). Different maximal modules can be evaluated as to their effectiveness in 

cinching by their before-and-after WCR ratios. We find that cinch-d provides one of the 
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lowest (most effective) cinching ratios after cinch-t and is consistent with a known role of 

repeat slippage engendering further instability. 

Our MHA program called maximal (https://github.com/microfoam/maximal) was 

written in C to explore MHA preparation and alignment under different parameters and 

recognizes DNA, RNA, protein, and alphabetical strings. With DNA sequence detection, 

transition matching is allowed and N’s (and other IUPAC DNA consensus characters) are 

rendered as non-cinchable lower-case ‘n’ characters. With protein sequence detection, N’s 

(asparagine’s) can be cinched and this is important because N’s are secondary structure 

breakers enriched in intrisically-disordered protein domains characterized by microfoam 

enrichment at the nucleotide-level (Fuxreiter et al., 2008; Tóth-Ptróczy et. al., 2008).  

As maximal is the first implementation of MHA preparation, we make no claims 

concerning MHA efficiency. We do claim however, that formally-correct MSA for biological 

sequences subject to replication slippage must be of the MHA-type and not of the GA-type 

as they have been. MHA-approaches will be essential for functional sequence alignment in 

regions that are not constrained by codon-based open reading frames, which make it more 

likely that a replication slippage mutation is deleterious. MHA may also prove essential to 

resolving genome misassembly and mapping artifact (Ananda et al., 2013; Rice et al., 

2015). 

Our complete release 1.0 version of maximal (development version v2.74) is 

composed of a series of modules in the following order: cinch-t à cinch-l à cinch-k à 

cyclelize à cinch-s à cinch-d à relax-2D à recover-1D (available at: 

github.com/microfoam/maximal). The cinch-l module handles long homopolymeric repeats 
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(k = 1) of length 2m or more, where m is a mononucleotide wrap length (m = 10), for a 

proportioned graphical aesthetic. In earlier versions of maximal the initial cinch-t was 

allowed to optionally proceed all the way down to k = n–m = 1, but we found that it is 

easier to allow cinch-k to cinch mononucleotide runs (and these only if they were smaller 

than the long runs handled by cinch-l, which wraps them in sets of 10 bp or at an optioned 

wrap length). Every module after the cinch-t module operates on the 2-D MHA rather than 

on the scoring path box, which is used only by cinch-t. The cinch-k module loops down to k 

= 1 after starting from the largest possible k-mer, which is the minimum of either k = w/2, 

where w is the band width of the sparse matrix, or else k = r/2, where r is the distance 

remaining to the end of the row (i.e., the next recorded slip). Within each k-mer loop of the 

algorithm, cinch-k proceeds row by row cinching k-mers as they are found left to right, and 

skipping rows immediately when the line is too short to harbor one. The cinch-d also loops 

from large to small k, but this module only consults the self-consensus row, and upon 

finding a TR there checks for microfoam conflict were it to be cinched. The cinch-s module 

cinches single-line TRs that do not affect global MHA alignment and which were invisible 

to cinch-k. The optional relax-2D module relaxes homopolymeric runs that did not aid in 

the cinching of repeats in the previous cinch-d runs and provides for a more aesthetically-

pleasing MHA that has fewer rows. However, relax-2D is optimally dispensed for the 

purposes of MSA. Last, the recover-1D module recovers a 1-D dimensional string from the 

last 2-D cinching module and aligns it to the original 1-D string as a check to make sure a 

sequence is not scrambled unintentionally during cinching.  
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The program maximal was developed with an internal randomly-seeded Fisher-

Yates randomization option (Fisher and Yates, 1938, 1948). During code development, we 

used this option to run tens of thousands of scrambled sequences from an enhancer (vnd 

NEE), from a protein-coding exon (CDS portion of vnd exon 3), and these from several 

divergent species of Drosophila. This procedure aided in the identification of “tricksy” 

strings harboring non-obvious, extra-tricky, microfoam knots, whose solution guided 

program development (tricksy strings are available with the code base). For example, we 

discovered a need to record TR cinching patterns in the initial cinch-t pass for checking 

potential slip conflict in the k-mer TR shadow, defined as the region of the first unit repeat, 

which may have been cinched inopportunely by cinch-t before the second unit has been 

identified (see Fig. 9). We thus devised a storage array that records slip locations by their 

number of repeats (sliploc[ i ]) and by their k-mer size (sliploc_nmer[ i ]). For compactly 

visualizing the number of repeats and their unit k-mer sizes, we use a single character 

base 62 system. This base 62 system uses the digits 0–9, the uppercase letters (A–Z), 

and the lowercase letters (a–z) to represent numbers 0 to 61, much as the hexadecimal 

system uses 0–9 and A–F to represent 0 to 15 (see example in Fig. 4 b). (For the rare 

occurrences where the number of TR blocks or the k-mer size is > 62, we use the “!” 

exclamation mark). This is also coupled with a single character display row 

(sliploc_echoes[ i ]) that is modified in regions of overlapping TRs and is used to store 

record of reversed slips (see Fig. 4b). The maximal program can thus display 1-D slip 

distribution patterns graphically using this MHA base 62 system and this is an informative 

aid for interpreting maximal 2-D cinching at regions of intense microfoam (see Fig. 4).  
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Discussion 
 

Conclusion and significance. We conclude by addressing one possible 

misunderstanding about MHA relative to GA. It might be concluded that, like GA, the 

output of MHA is similarly fixated on an optimal alignment even if the MHA approach 

involved modeling a probabilistic distribution of such alignments. This is not exactly the 

case from the following thermodynamic perspective. MHA results in many fewer alignment 

columns than GA for the reason that microparalogy is rescued (see Table 1). In contrast, 

GA produces MSA’s with “width cinch ratios” > 1 because null characters are being 

inserted. In other words, with MHA there are many more ways to be homologously placed 

into the same column for the different letters of one sequence. The significance of this key 

difference between MHA and GA means that one can be homologous in many different 

ways inside an MHA alignment column. It is even possible for different (non-identical) 

versions of MHA-self alignment to be produced that are identical in their consensus 

sequence (and hence also their WCR). These nearly-identical MHAs would differ in the 

manner in which microparalogy is stacked in a subset of columns. By virtue of this fact, 

MHA relaxes the difficulty of placing characters into the correct alignment column because 

there are now more ways of being incorporated into that column. Thus, many different 

MHAs of the same sequence or set of sequences, all with identical consensus sequences, 

can be optimally and identically correct at the level of microhomology sensu lato. 
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Furthermore, any one of these different MHAs are equally correct at the level of 

microhomology sensu lato. 
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Table 1. Summary comparison of MHA versus GA for MSA. 
 

 MHA GA 
Types of positional 

homology: 
1-to-1 

1-to-many 
Many-to-many 

1-to-none 

1-to-1 
- 
- 

1-to-none 
Width cinch ratios 

(WCR):  
<< 1.0  

(~0.4 to 0.8 depending on constraints) 
>> 1.0  

(or at least >= 1.0) 
Reason for WCR 

trend: 
Microparalogy is rescued and self-aligned 
attenuating the need for gaps.  

Null characters (gaps) 
are artificially inserted. 

Difficulty of placing 
characters into correct 

alignment columns 
and the reason: 

Easier than GA because there are fewer 
columns from which to choose (i.e., there 
are many more ways to be inserted into a 
column.) 

Harder than MHA 
because there are many 
more columns from 
which to choose. 

How homologs of 
different lengths are 

made of uniform size 
in the MSA: 

Cinching of true-positive microparalogy, 
relaxing of false-positive microparalogy, 
and as a last resort the insertion of null 
characters are all used in this order to 
normalize 2-D widths.  

Null characters are used 
exclusively to normalize 
1-D lengths. 

Mutational model: Replication slippage >> substitutions Substitutions 
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Fig. 1. The full-length vnd neurogenic ectoderm enhancer (NEE) of Drosophila works as a 
unit for correct spatial and temporal patterning. This study introduces maximal homology alignment 
(MHA) to study and compare the evolution of an enhancer DNA sequence and an adjacent protein-coding 
sequence from the Drosophila locus ventral nervous system defective (vnd), a highly conserved homolog of 
vertebrate NKX2.2/2.8. (a) Depicted is the 20 kb vnd locus from Drosophila melanogaster showing the 27 
insect phastCons conservation score (bottom track in green and magenta). Two 1.2 kb regions containing 
the neurogenic ectoderm enhancer (NEE) and the exon 3 protein-coding DNA sequence (CDS) are both 
sites of microfoam evolution, which occurs in the interstices between adjacent conserved elements. (b) The 
1.2 kb NEE was divided into 20 blocks that are alignable in closely related species (blocks lettered A–T). 
This region encompasses the 300 bp minimalized NEE, which recapitulates the neuroectodermal expression 
at embryonic Stage 5 of both the endogenous locus and the longer NEE reporter. (c) The 1.2 kb region of 
the terminal exon, which contains both the 180 bp homeobox (X7 segment) and the 66 bp encoding the NK-
specific domain (X9 segment), was divided into 13 alignable segments numbered X1–X13 as shown. (d) 
Shown are transgenic embryos stained with an anti-sense RNA lacZ probe to detect robust lateral 
neuroectodermal (black arrows) and ectopic mesodermal (red arrows) beginning at embryonic stage 6 and 
continuing until the long germ-band extended stage 9 embryo (rightmost panel). (e) Shown are embryos 
matched by stage and orientation to those immediately above in panel D. Unlike transgenic embryos carrying 
the minimalized 300 bp NEE, the ~1 kb NEE reporter drives limited expression (fewer embryos and less 
robust expression) in embryonic stages after stage 5, likely due to conserved arrays of homeodomain 
binding sites (see text and SI).   
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In MHA, 2-D sequences are read left to right, then top to bottom. 

 
Fig. 2. Maximal homology alignment (MHA) rescues orphaned microparalogy. Depicted is the 
alignment of block A of the vnd NEE region in a standard genome browser view (a), and expanded multiple 
sequence alignment (MSA) based on the 27 insect Multiz pipeline (b), and MHA (C). Block A is the beginning 
of detectable homology at the edge of a highly conserved developmental enhancer. (a) Genome browser 
views are necessarily relative to the assembly of a reference genome, which is likely to have sequences 
missing relative to related genomes. These are known as gaps in the alignment and can be graphically 
annotated as shown without disrupting the intactness of the reference sequence. (b) The expanded 27 insect 
Multiz alignment is typical grossly distorted by the inclusion of many gaps. (c) MHA rescues the vast majority 
of insertions in specific lineages as microparalogy. This type of MSA makes it easier to read and detect intact 
TFBS-like sequences that are conserved in each sequence. In gapped alignment these conserved TFBS-like 
sequences are mistakenly aligned to specific duplicated fragments in an attempt to minimize the insertions of 
gaps. Gapped MSA is thus fatally flawed by not incorporating microparalogy. Cladogram is intended only to 
show species relationships.  
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a  Needleman-Wunsch (gapped) alignment (GA) 
  

 D. mel.  1 AG--CCATACTTTGCAATTGCCTTCGCCTAAGCTCCG---ACTTAAAATCA 46 
              **     ***      *                  ***   * 
 D. ere.  1 AGGCCCATATCCTGCAATCGCCTTCGCCTAAGCTCCGCCAACTCAAAATCA 51 
 
b  Genome browser reference-based display of GA 

 

 D. mel.  ...AG CCATACTTTGCAATTGCCTTCGCCTAAGCTCCG ACTTAAAATCA... 
 D. ere.     AG|CCATATCCTGCAATCGCCTTCGCCTAAGCTCCG|ACTCAAAATCA 
 
c  Maximal homology alignment (MHA)  

 

 D. melanogaster  >AGC/ 
                   ..CAT/ 
                   ...ACTTTGCAATTGCCT/ 
                   .........:..TCGCCTAAGCTCCGACTTA/  
                   .........:.........:.........:A/ 
                   .........:.........:.........:A/ 
                   .........:.........:.........:A/ 
                   .........:.........:........TCA> 46 
 D. erecta        >AG/......:.........:.........:. 
                   .GC/.....:.........:.........:. 
                   ..C/.....:.........:.........:. 
                   ..CAT/...:.........:.........:. 
                   ...ATCCTGCAATCGCCT/:.........:. 
                   .........:..TCGCCTAAGCTCCG/..:. 
                   .........:.........:...CCAACTCA/  
                   .........:.........:.........:A/ 
                   .........:.........:.........:A/ 
                   .........:.........:.........:A/ 
                   .........:.........:........TCA> 51 
  MHA CONSENSUS    AGCAYYYTGCAATYGCCTAAGCTCCRACTYA 
 
Fig. 3. Self-MHA at the edge of a transcriptional enhancer can produce automatic alignment.  
MHA dispenses with the need to solve an artifactual indel problem that is magnified in GA. (a) Example of 
GA using the global alignment method of Needleman-Wunsch. Shown are just the first ~50 bp of the window 
of sequence shown in Fig. 2 for only a pair of Drosophila species. The differences are all highlighted in 
magenta to represent that these are unpolarized in the absence of outgroup sequences, which would help 
determine the ancestral characters. (b) Example of the same window of sequence in a genome browser view 
from the perspective of the reference species Drosophila melanogaster. Sequences present only in D. erecta 
are hidden. (c) Self-MHA preparation of the pair of enhancer edges is sufficient to bring the divergent 
sequences into alignment. The cyan highlighted sites are polarized substitutions based on the pair-wise 
alignment and later confirmed by consulting outgroups. The sequences proceed left to right, top to bottom 
and forward slashes (“/”) are used to indicate inferred replication slips. The “>” symbol is used to mark the 
start and end of each species’ sequence. Two regions representing an ancestral k = 6 TR and a more recent 
lineage-specific k = 3 TR are highlighted (yellow). These replication slips are not immediately obvious in GA 
representations. Remarkably, each highlighted region allows polarization of one substitution each 
(highlighted in cyan) without the use of a third outgroup sequence. Tighter cinching of the pyrimidines at 
positions 5–7 could have also have been conducted but is not shown here for clarity. 
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a  Captured microparalogy adjacent to TF binding sites 

 
 

b  Captured microparalogy in a protein-coding sequence  

 
 
Fig. 4. Microparalogy accumulates in cis-regulatory and protein-coding sequences.  Gapped 
alignment (GA) (a) Example of imperfect microparology adjacent to and within a cluster of Dip-3 sites in the 
vnd NEE. Also note that the array of Dip3 sites also constitute a type of imperfect tandem repeat that is 
evolving. (b) For comparison is shown some protein-coding sequence from the same locus. This region 
occurs upstream of the adjacent homeodomain (HD) and NK-2 specific domain, which do not allow local 
microparalogy to accumulate. The first gray-shaded column on the left marks the third position of the first 
codon but due to the MHA, it does not always coincide with the third position after certain slips. This 
demonstrates that indels in protein-coding sequence are sometimes compensated by in frame indels 
elsewhere.  
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a  Captured microparalogy at Zelda-binding sites 

 
b  Captured microparalogy at Dorsal-binding sites  

 
Fig. 5. TF binding site turnover via microparalogy.  (a) Example of the hand-aligned MHA at a Zelda 
site. This region is chopy but most of the alignment can be accomplished with just a few deletion characters 
(en dashes). This MHA can thus be accomplished without null character being inserted. (b) Microparalogy of 
a Dorsal binding site in the MHA shown is consistent with our previous conclusion that many of the Dorsal 
binding sites are relics produced by selection for alternative spacer lengths relative to the coordinating 
Twi:Da E-box binding site (shaded site on the right). In the D. suzukii sequence (bottom-most sequence) the 
pentameric sequence 5´-(AACTC) repeats twice with the initial A’s and final C of the first unit continuing 
longer homolomeric runs.   
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Fig. 6. MHA has a more powerful capacity to adjust the non-uniform lengths of homologs 
than GA.  Gapped alignment (GA) (a) and maximal homology alignment (MHA) (b) are contrasted by how 
they transform homologous sequences into aligned strings of uniform length. In both approaches, 
unspecified database retrieval methods identify homologs for phylogenetic analysis. (a) In GA, null 
characters represented by the dash character are distributed into the homologous sequences in order to 
restore columnar alignment in a multiple sequence alignment (MSA). (b) In contrast to GA, MHA first 
transforms homologs via self-MHA preparation (first gold box on the left). This process results in cinched 
homologous sequences whose internal microparalogy is self-aligned in a 2-D MHA and attenuates a major 
component of the indel problem. Cinched homologs are composed of correctly cinched true positive 
microparalogy and “over-cinched” non-paralogous sequence, which does not pose an issue to MHA. In the 
next step, cinched homologs are fed into an MHA aligner that works with 2-D self-MHAs to produce a 
minimally-gapped MSA of MHAs. If character insertions are required to restore sequence alignment, the 
MGMA module first attempts to use local cinched characters. If this is not possible, MGMA uses other 
characters. Unlike GA, the MHA approach can infer true deletions in regions of internal microparalogy. In this 
case, a deletion character is used in the specific sequence (the en-dash “–”). In other cases, and as a last 
resort when one of the homologs contains un-cinchable inserted sub-sequence, the null character, now 
represented by the hyphen (“-”) is used to restore alignment of all homologs lacking the inserted sub-
sequence.  
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a Path box traversion via the maximal cinch-t module   
         A B A B C D A B A B C D A B A B A B C D E 
   1. A  8 0 8 0 0 0 8 0 8 0 0 0 8 0 8 0 8 0 . . . 
   2. B .. 8 0 8 0 0 0 8 0 8 0 0 0 8 0 8 0 8 0 . . 
   3. A .... 8 0 0 0 8 0 8 0 0 0 8 0 8 0 8 0 0 0 . 
   4. B ...... 8 0 0 0 8 0 8 0 0 0 8 0 8 0 8 0 0 0 
   5. C ........ 8 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 
   6. D .......... 8 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0 
   7. A ............ 8 0 8 0 0 0 8 0 8 0 8 0 0 0 0 
   8. B .............. 8 0 8 0 0 0 8 0 8 0 8 0 0 0 
   9. A ................ 8 0 0 0 8 0 8 0 8 0 0 0 0 
  10. B .................. 8 0 0 0 8 0 8 0 8 0 0 0 
  11. C .................... 8 0 0 0 0 0 0 0 8 0 0 
  12. D ...................... 8 0 0 0 0 0 0 0 8 0 
  13. A ........................ 8 0 8 0 8 0 0 0 0 
  14. B .......................... 8 0 8 0 8 0 0 0 
  15. A ............................ 8 0 8 0 0 0 0 
  16. B .............................. 8 0 8 0 0 0 
  17. A ................................ 8 0 0 0 0 
  18. B .................................. 8 0 0 0 
  19. C .................................... 8 0 0 
  20. D ...................................... 8 0 
  21. E ........................................ 8  
b cinch-t   à    c cinch-k  à     d cinch-d     
 
 1 >AB/               1 >AB/             1 >AB/   
    ABCD/                ABCD/              ABCD/ 
    ABABCDAB/            AB/..              AB/..    
    ......AB/            ABCDAB/            ABCD/     
    ......ABCDE> 21      ....AB/            AB/..   
    ...........          ....ABCDE> 21      AB/.. 
    ...........          .........          ABCDE> 21  
 

    ABCDCDABCDE          ABCDABCDE          ABCDE  
    ..AB.......          .........          ..... 
 

   In MHA, 2-D sequences are read left to right, then top to bottom.  
   
Fig. 7. MHA is implemented in maximal via a series of cinching modules.  (a) The maximal 
implementation of MHA begins with traversion of a hemi-diagonal sparse m x n matrix filled according to a 
substitution model in a self by self comparison. In this alpha-string example, the substitution model gives 8 
points for a perfect match and 0 otherwise. Proceeding column by column left to right, positive scores in 
earlier rows are evaluated to see if they complete a diagonal of size k = n – m with a score above threshold. 
Identification of above-threshold diagonals constitute the initial path and are highlighted in cyan. Two 
diagonals highlighted in yellow are example diagonals that were disqualified for containing mismatches 
(underlined 0’s) before reaching the required k-mer length. (b) An initial cinch-t module produces a 2-D self-
alignment based on the stipulated traversion of the pathbox that cinches tandem repeats (TRs). Below the 2-
D alignment (underneath the underlining) is a self-consensus and some expected conflicts (non-consensus) 
highlighted in yellow. (c) A subsequent cinch-k module cinches intra-TR k-mers as shown. In the consensus 
row, a new TR repeat pattern is revealed. (d) A later cinch-d module cinches the de novo or inter-TR repeats 
revealed previously in the consensus row.  Other important component serial modules of maximal, such as 
the critical cyclelize module, are described in the text and other figures (Fig. 6).   
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a  post cinch-k (maximal pass #4, width = 35 bp) 
 
     >T/    1 
      TG/    3 
      TGT/    6 
      ..TGCTG/   11 
      .....TG/   13 
      .....TGA/   16 
      ....GTGAG/   21 
      ........GTCG/   25 
      .........:.GATCGCTATG/   35 
      .........:.........:G/   36 
      .........:.........:G/   37 
      .........:.........:G/   38 
      .........:.........:GAC/   41 
      .........:.........:..CG/   43 
      .........:.........:...GCTGACGAGCTA>   55 
      _________|_________|_________|_____ 
               10        20        30         
      TGTGSTGAGTCGATCGCTATGACGCTGACGAGCTA = consensus 
 

b  post cyclelize (maximal pass #5, width = 37 bp) 
 
     >T/    1 
      TG/    3 
      TGT/    6 
      ..TGCTGT/   12 
      ......GTGA/   16 
      ......GTGAG/   21 
      .........:GTCG/   25 
      .........:...GATCGCTATG/   35 
      .........:.........:..G/   36 
      .........:.........:..G/   37 
      .........:.........:..G/   38 
      .........:.........:..GAC/   41 
      .........:.........:....CG/   43 
      .........:.........:.....GCTGACGAGCTA>   55 
      _________|_________|_________|_______ 
               10        20        30         
      TGTGCTGTGAGTCGATCGCTATGACGCTGACGAGCTA = consensus 
 
Fig. 8. Cyclelizing overlapping and conflicting TRs.  Shown are consecutive passes of a 2-D 
alignment by the maximal program in which a “cyclelizing” operation of a cycle sequence is required. Cycle 
sequences are defined as TRs that can be cinched in more than one frame. (a) Shown is a post cinch-k 
(pass #4) output revealing conflicting consensus (yellow highlighted column with red letters) due to the 
presence of overlapping repeats and because the cycling-frame of the first k = 2 repeat 5´-(TG)3 (highlighted 
in green) conflicts with the k = 4 repeat 5´-(GTAG)2. (b) This conflict is handled by the cyclelize module, which 
cycles the heptamer 5´-TGTGTG into 5´-T(GT)2G thereby rescuing the two repeats of the k = 4 TR 
(underlined). This resolves the previous non-consensus conflict, which was present in alignment column 5 
(yellow column). 
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a Original string (sequence i, length = 55): 
   "TTGTGTTGCTGTGTGAGTGAGGTCGGATCGCTATGGGGGACCGGCTGACGAGCTA*" 
 
   2-mer cycle sequence of length  5 starting at    2: TGTGT. 
   2-mer cycle sequence of length  6 starting at   10: TGTGTG. 
   4-mer cycle sequence of length  9 starting at   13: GTGAGTGAG. 
 
1-D sequence: 
 1. >TTGTGTTGCTGTGTGAGTGAGGTCGGATCGCTATGGGGGACCGGCTGACGAGCTA>   55 
     ...1.......2....1...................................... <==== # of TRs > 1 (base 62) 
     ...2.......2....4...................................... <==== TR unit size (base 62) 
     .(XXX)...(XXXXXXXX))).................................. <==== (((( {  REVERB  } )))) 
     _________|_________|_________|_________|_________|_____ 

b 
 7. AGCAAACTTGCGCCAACATGTGGCACGACCTGTTTCGACCCGTAAAGAGTCCCTGCTGACCTGTGCTGACCTGCACTGAC 560 
    ...........1........1..........................1.......1.......1................ 
    ...........2........2..........................2.......3.......A................ 
    XXXX)))..()().....()().......................()()...(()o.)....)(........)..((((X 
    _________|_________|_________|_________|_________|_________|_________|_________| 

 
 
Fig. 9. The program maximal displays 1-D slip location patterns compactly in base 62.  
(a) The use of a base 62 single character system (plus ‘!’ for n > 62) allows for compact display of the 
number of repeats in addition to the first unit block and the repeat’s k-mer size. A third row labeled 
“REVERB” marks the full extent of a cyclelizable sequence (see text for definition). Various characters are 
used for representing different types of overlap in the reverb or slip echoes row. For example, an ‘X’ marks 
that this location is simultaneously the beginning and end of a different TRs. In the first upstream example for 
the 5´-TGTGT sequence, this is due to the cyclelizable nature of the sequence. In other cases, it is due to 
separate overlapping repeats. This example fits in a single block so it begins and ends with the “>” symbol 
(block #1 of 1). (b) In this example of the cinch-t slip distribution in a window (block # 7 of 13 blocks) of the D. 
melanogaster NEE, we can see an example of the utility of the base 62 system at a TR of unit size k = A (10 
in base 62). The ‘o’ character in the reverb line in the k = A slip shadow (the region of the first A-mer unit) 
marks a k = 3 TR that was dampened (reversed and subsequently ignored by other maximal modules) 
because its slip edge would have produced consensus conflict with the larger k = A repeat, which is a more 
productive cinch because it rescues a greater amount of microparalogy. 
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Fig. 10. The microfoam model of sequence evolution.  Shown is a model of the evolution of genetic 
modules encoding either cis-regulatory enhancer modules or protein-coding exons. In each such module, 
there is a finer sub-structure of elements (colored boxes). In a transcriptional enhancer, the sub-elements 
correspond to transcription factor binding sites. In a protein-coding exon, the sub-elements correspond to 
sequences typically encoding protein second-structural elements and other structural motifs additionally 
constrained by a translational reading frame (a-helices, b-strands, b-turns, and protein-folding hydrophobic 
patches). As genetic sequences are prone to mutational changes related to the nature of the replication 
process, repeats produced by replication slippage (elongated dotted boxes) tends to accumulate with a bias 
in the spaces between the functional elements. This occasionally occurs on the edges of functional elements 
in which case the process can be described as echo sequences emanating from the functional elements. 
Furthermore, as the sub-elements are more resistant to evolutionary change, it is these sequences that 
frequently seed repeats into the spacer regions. Some of these repeats may evolve as tracts of perfect 
repeats known as microsatellite repeats (MSR) or tandem repeats (TR). However, this evolutionary model is 
envisioned as involving a great deal of imperfect repeats. Both perfect and imperfect repeats are increasingly 
unstable with increasing repeat number leading to a greater amount of repeat content. After much time, the 
less functional spacer sequences tend to resemble the functional elements via complex microparology, we 
refer to as microfoam (colored elongated ovals). Microfoam sequence delocalizes positional homology (the 
color of the ovals matching that of the adjacent rectangle elements represent paralogical relationship).  
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