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Adaptation in extended populations often occurs through multiple independent muta-
tions responding in parallel to a common selection pressure. As the mutations spread
concurrently through the population, they leave behind characteristic patterns of poly-
morphism near selected loci—so-called soft sweeps—which remain visible after adap-
tation is complete. These patterns are well-understood in two limits of the spreading
dynamics of beneficial mutations: the panmictic case with complete absence of spatial
structure, and spreading via short-ranged or diffusive dispersal events, which tessellates
space into distinct compact regions each descended from a unique mutation. However,
spreading behaviour in most natural populations is not exclusively panmictic or diffusive,
but incorporates both short-range and long-range dispersal events. Here, we character-
ize the spatial patterns of soft sweeps driven by dispersal events whose jump distances
are broadly distributed, using lattice-based simulations and scaling arguments. We find
that mutant clones adopt a distinctive structure consisting of compact cores surrounded
by fragmented “haloes” which mingle with haloes from other clones. As long-range dis-
persal becomes more prominent, the progression from diffusive to panmictic behaviour
is marked by two transitions separating regimes with differing relative sizes of halo to
core. We analyze the implications of the core-halo structure for the statistics of soft
sweep detection in small genomic samples from the population, and find opposing ef-
fects of long-range dispersal on the expected diversity in global samples compared to
local samples from geographic subregions of the range. We also discuss consequences
of the standing genetic variation induced by the soft sweep on future adaptation and
mixing.

I. INTRODUCTION

Rare beneficial alleles can rapidly increase their fre-
quency in a population in response to a new selective
pressure. When adaptation is limited by the availabil-
ity of mutations, a single beneficial mutation may sweep
through the entire population in the classical scenario
of a “hard sweep”. However, populations may exploit
a high availability of beneficial mutations due to stand-
ing variation, recurrent new mutation, or recurrent mi-
gration [1, 2, 3, 4, 5] to respond quickly to new selec-
tion pressures. As a result, multiple adaptive alleles may
sweep through the population concurrently, leaving ge-
nealogical signatures that distinguish them from hard
sweeps. Such events are termed soft sweeps. Soft sweeps
are now known to be frequent and perhaps dominant in
many species [6, 7]. Well-studied examples in humans in-
clude multiple origins for the sickle cell trait which con-
fers resistance to malaria [8], and of lactose tolerance
within and among geographically separated human pop-
ulations [9, 10].

Soft sweeps rely on a supply of beneficial mutations
on distinct genetic backgrounds, which has two main ori-

gins. One is when selection acts on an allele which has
multiple copies in the population due to standing genetic
variation—a likely source of soft sweeps when the poten-
tially beneficial alleles were neutral or only mildly delete-
rious before the appearance of the selective pressure [3].
In this work, we focus on the other important scenario of
soft sweeps due to recurrent new mutations which arise
after the onset of the selection pressure. Soft sweeps be-
come likely when the time taken for an established mu-
tation to fix in the entire population is long compared to
the expected time for additional new mutations to arise
and establish. In a panmictic population, the relative
rate of the two processes is set primarily by the rate at
which new mutations enter the population as a whole [5].

Most examples of soft sweeps in nature, however, show
patterns consistent with arising in a geographically struc-
tured rather than a panmictic population [7]. Spatial
structure promotes soft sweeps [11]: when lineages spread
diffusively (i.e. when offspring travel a restricted distance
between local fixation events), a beneficial mutation ad-
vances as a constant-speed wave expanding outward from
the point of origin, much slower than the logistic growth
expected in a well-mixed population. Therefore, fixation
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is slowed down by the time taken for genetic information
to spread through the range, making multi-origin sweeps
more likely. However, the detection of such a spatial soft
sweep crucially depends on the sampling strategy: the
wavelike advance of distinct alleles divides up the range
into regions within which a single allele is predominant.
If genetic samples are only taken from a small region
within the species’ range, the sweep may appear hard in
the local sample even if it was soft in the global range.

Between the two limits of wavelike spreading and pan-
mictic adaptation lies a broad range of spreading be-
haviour driven by dispersal events that are neither local
nor global. Many organisms spread through long-range
jumps drawn from a probability distribution of disper-
sal distances (dispersal kernel) that does not have a hard
cutoff in distance but instead allows large, albeit rare,
dispersal events that may span a significant fraction of
the population range [12, 13]. A recent compilation of
plant dispersal studies showed that such so-called “fat-
tailed” kernels provided a good statistical description for
a majority of data sets surveyed [14]. Fat-tailed disper-
sal kernels accelerate the growth of mutant clones, whose
sizes grow faster-than-linearly with time and ultimately
overtake growth driven by a constant-speed wave [12, 15].
Besides changing the rate at which beneficial alleles take
over the population, long-range dispersal also breaks up
the wave of advance [16]: the original clone produces ge-
ographically separated satellites which strongly influence
the spatial structure of regions taken over by distinct al-
leles.

Despite its prominence in empirically measured dis-
persal behaviour and its strong effects on mutant clone
structure and dynamics, the impact of long-range dis-
persal on soft sweeps is poorly understood. Past work
incorporating fat-tailed dispersal kernels in spatial soft
sweeps [11] relied on deterministic approximations of the
jump-driven spreading behaviour of a single beneficial
allele [12]. However, recent analysis has shown that de-
terministic approaches are accurate only in the two ex-
treme limits of local (i.e. wavelike) and global (i.e. pan-
mictic) spreading, and break down over the entire regime
of intermediate long-range dispersal [17]. Away from the
limiting cases, the correct long-time spreading dynamics
is obtained only by explicitly including rare stochastic
events which drive the population growth. Determinis-
tic approaches also do not account for the disconnected
satellite structure, which has consequences for soft sweep
detection in local samples.

Here, we study soft sweeps driven by the stochastic
spreading of alleles via long-range dispersal. We perform
simulations of spatial soft sweeps in which beneficial al-
leles spread via fat-tailed dispersal kernels which fall off
as a power law with distance, focusing on the regime in
which multiple alleles arise concurrently. We find that
long-range dispersal gives rise to distinctive spatial pat-
terns in the distribution of mutant clones. In partic-

ular, when dispersal is sufficiently long-ranged, mutant
clones are discontiguous in space, in contrast to the com-
pact clones expected from wavelike spreading models.
We identify qualitatively different regimes for spatial soft
sweep patterns depending on the tail of the jump distri-
bution. We show that analytical results for the stochas-
tic jump-driven growth of a solitary allele [17], combined
with a mutation-expansion balance relevant for spatial
soft sweeps [11], allow us to predict the range sizes be-
yond which soft sweeps become likely. We also analyze
how stochastic aspects of growth of independent alleles,
particularly the establishment of satellites disconnected
from the initial expanding clone, influence the statistics
of observing soft sweeps in a small sample from the large
population. We find that long-range dispersal has con-
trasting effects on the likelihood of soft sweep detection,
depending on whether the population is sampled locally
or globally.

II. RESULTS

A. Model of spatial soft sweeps

We consider a haploid population that lives in a d-
dimensional habitat consisting of demes that are ar-
ranged on an integer lattice (e.g. square lattice in d = 2).
Local resource limitation constrains the deme popula-
tion to a fixed size n̂, assumed to be the same for all
demes. Denoting the linear dimension of the lattice as
L, the total population size is N = Ldn̂. The popu-
lation is panmictic within each deme. With a rate m
per generation, individuals migrate from one deme to an-
other. For each dispersal event, the distance r to the tar-
get deme is chosen from a probability distribution with
weight J(r), appropriately discretized, with the normal-
ization

∫∞
1
J(r) dr = 1. The function J(r) is called the

jump kernel. The dispersal direction is chosen uniformly
at random from the unit sphere in d dimensions. New
mutations arise in all demes at a constant rate u per
individual per generation. Each new mutation is distin-
guishable from previous mutations (e.g. due to different
genomic backgrounds), but all mutations confer the same
selective advantage s. Back mutations are ignored. To
minimize the effect of the specific boundary geometry,
periodic boundary conditions are assumed.

To focus on the effects of long-range dispersal over lo-
cal dynamics, we now impose a set of bounds on the
individual-based parameters following Ref. 11. In partic-
ular, we consider only situations where sn̂� 1; un̂� 1;
mn̂� 1 (strong selection, and low mutation and migra-
tion rates at the deme level). Mutations are also assumed
to be fully redundant, i.e. a second mutation confers no
additional advantage. The strong selection condition im-
plies that genetic drift within a deme is irrelevant relative
to selection: a new mutation, upon surviving stochas-
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tic drift and fixing within a deme (which happens with
probability 2s) cannot be subsequently lost due to ge-
netic drift. The bounds on mutation and migration rates
meanwhile imply that the fixation dynamics of a benefi-
cial mutation within a deme is fast compared to the dy-
namics of mutation within a deme or of migration among
demes. The time to fixation of a beneficial allele from a
single mutant individual in the deme, log(n̂s)/s, is a few
times 1/s. When un̂� 1 and mn̂� 1, the fixation time
scale is much shorter than the establishment time scales
of new alleles arising due to mutation or migration, which
are (2smn̂)−1 and (2sun̂)−1 respectively. Therefore, the
first beneficial allele that establishes in a deme, whether
through mutation or migration, fixes in that deme with-
out interference from other alleles. Furthermore, the as-
sumption of mutual redundancy means that subsequent
mutations that arrive after the first fixation event also
have no effect. As a result, the first beneficial allele that
establishes in a deme excludes any subsequent ones—a
situation termed allelic exclusion [11].

Taken together, these assumptions lead to a simplified
model that ignores the microscopic dynamics of muta-
tions within demes. For each deme, we keep track of a
single quantity: the allelic identity (whether wildtype or
one of the unique mutants that has arisen) that has fixed
in the deme. At the deme level, new mutations fix within
wildtype demes at the rate 2sn̂u, and each mutated deme
sends out migrants at rate 2sn̂m with the target deme
selected according to the dispersal kernel J(r) (the rates
explicitly include the fixation probability 2s of a single
mutant in a wildtype deme). The first successful mutant
to arrive at a wildtype deme, whether through mutation
or migration, immediately fixes within that deme. The
state of the deme thereafter is left unchanged by muta-
tion or migration events, because of allelic excusion.

When time is measured in units of the expected in-
terval (2sn̂m)−1 between successive dispersal events per
deme, the reduced model is characterized by just three
quantities: L; J(r); and the per-deme rate of mutations
per dispersal attempt ũ ≡ 2sn̂u/(2sn̂m) = u/m, which
we call the rescaled mutation rate of our model. Simu-
lations are begun with a lattice of demes of size Ld all
occupied by the wildtype. Each discrete simulation step
is either a mutation or an attempted migration event,
with the relative rates determined by ũ and the fraction
of wildtype sites at that step. Mutation events flip a
randomly-selected wildtype deme into a new allelic iden-
tity. Migration events first pick a mutated origin and
then pick a target deme according to the jump kernel.
If the target site is wildtype, it acquires the allelic iden-
tity of the origin; otherwise the migration is unsuccessful.
Simulations are run until all demes have been taken over
by mutants.

The fat-tailed jump kernels we use are of the form
J(r) = µr−(1+µ), with µ > 0 to ensure that the kernel is
normalizable. The exponent µ characterizes the “heav-

iness” of the tail of the distribution. We have chosen
power-law kernels because they span a dramatic range of
outcomes that connect the limiting cases of well-mixed
and wavelike growth upon varying a single parameter.
The growth dynamics of more general fat-tailed kernels
in the stochastic regime of interest (i.e. driven by rare
long jumps) are largely determined by the power-law
falloff of the tail, and details of the dispersal kernel at
shorter length scales are less consequential. Therefore,
our qualitative results should extend to kernels sharing
the same power law behaviour of the tail, provided the
typical clones are large enough so that rare jumps picked
from the tail of the distribution become relevant. The
underlying analysis leading to the results is even more
general, and can be applied to any jump kernel that leads
to faster-than-linear growth in the extent of an individual
clone with time.

The output of a simulation at a given set of L, µ and ũ
values is the final configuration of mutants, which can be
grouped into distinct clones of the same allelic identity.
Note that we have ignored the post-sweep mixing of alle-
les which are now relatively neutral to each other due to
migration; this is justified by the separation of time scales
between fast fixation and slow neutral migration [11]. In
addition, although we restrict ourselves to weak mutation
and migration at the deme level, the population-level mu-
tation and migration rates Nu, Nm are typically large
which allows for soft sweeps with strong migration effects.

While our theoretical results are valid for all dimen-
sions, computational limitations prevented us from run-
ning extensive simulations in dimensions higher than one.
Therefore, we primarily report simulations of linear habi-
tats (d = 1) in the main text. Preliminary results from
planar simulations (d = 2) are reported in Appendix B
and are consistent with our theoretical arguments, al-
though quantitative comparisons are limited by finite-size
effects.

B. Jump-driven growth and the core-halo structure of
mutant clones

Some typical outcomes of the simulation model are
shown in Fig. 1 for both two-dimensional (2D) and one-
dimensional (1D) ranges. To emphasize variations in the
spatial patterns for the same average clone size, simu-
lations were chosen in which the final state has exactly
ten unique alleles; this required varying the rescaled mu-
tation rate as µ was increased. This feature, which is
tied to the slower growth of individual clones apparent
in the space-time plots of Fig. 1(b), is explored in depth
in Section II.C.

In both 2D and 1D, the spatial soft sweep patterns of
Fig. 1 display systematic differences as the kernel expo-
nent is varied. Clones are increasingly fragmented as the
kernel exponent is reduced; i.e. as long-range dispersal
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FIG. 1 Spatial soft sweep patterns with the same number of distinct alleles vary strongly with jump kernel.
(a) Final states of 2D simulations on a lattice of size 512 × 512, for a range of values of the kernel exponent µ. Each pixel
corresponds to a deme, and is coloured according to the identity of the allele occupying that deme; demes belonging to the
same mutant clone share the same colour. Simulations were chosen to have ten unique alleles in the final state; colours reflect
the temporal order of the originating mutations as labeled in the lower right panel. Rescaled mutation rates are 3 × 10−6,
10−6, 10−6, and 10−7 for kernel exponents 0.4, 1.5, 2.5, and 3.5 respectively. The solid and dotted circles in the second panel
indicate the extent of the core and the halo respectively for the light green clone, as quantified by the measures req and rmax

respectively (see Table II). The subrange highlighted by a dashed box contains six distinct alleles for µ = 1.5 but only one
allele for µ = 3.5. (b) Full time-evolution of 1D simulations with L = 16384 for three kernel exponents, chosen so that the final
state has ten unique alleles. Each vertical slice displays the lattice state at a particular time (measured in generations), starting
from an empty lattice (white) and continuing until all sites are filled and the sweep is completed. The rescaled mutation rates
are 3× 10−5, 7× 10−6, and 7× 10−7 respectively from left to right. In the last panel, the colours are labelled according to the
order of appearance of the originating mutation; the same order is shared among all panels in the figure.

becomes more prominent. At the highest value of µ in
each dimension, the range is divided into compact, essen-
tially contiguous domains each of which shares a unique
mutational origin. As the kernel exponent µ is reduced,
the contiguous structure of clones is lost as they break
up into disconnected clusters of demes. For most clones,
however, a compact region can still be identified in the
range which is dominated by that clone (i.e. the par-
ticular allele reaches a high occupancy that is roughly
uniform within the region but begins to fall with dis-
tance outside it) and in turn contains a significant frac-
tion of the clone. We call this region the core of the clone.
The remainder of the clone is distributed among many
satellite clusters which produce local regions of high oc-
cupancy for a particular clone. The satellites become
increasingly sparse and smaller in size as we move away
from the core. For the broadest kernels (µ = 0.5 in 2D
and µ = 0.7 in 1D), most clones also include isolated
demes which do not form a cluster but are embedded

within cores and satellite clusters of a different allele.
We term the collection of satellites and isolated demes
the halo region surrounding the core of the clone. The
circles in the second panel of Fig. 1(a) illustrate the ex-
tent of core and halo, quantified via distance measures
which we introduce later on (see Table II) for a particu-
lar clone (the fifth clone entering the population, colored
light green). The spatial extent of the clone including
the halo can be many times the extent of the core alone,
and increases relative to the core extent as µ is reduced.
(We will use “extent” to refer to linear dimensions, and
“mass” or “size” to refer to the number of demes.)

The space-time evolution displayed in Fig. 1(b) for lin-
ear simulations reveals the role of jump-driven growth in
producing the observed spatial structures. At µ = 2.5,
the growth of clones appears nearly deterministic, with
fronts separating mutant from wildtype advancing out-
wards from the originating mutations at near-constant
velocity. These fronts are arrested when they encounter
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advancing fronts of other clones, leaving behind a tessel-
lation of the range into contiguous clones. By contrast, at
the lower values µ = 1.3 and 0.7, the stochastic nature of
jump-driven growth becomes apparent. Clones advance
through long-distance dispersal events, which seed satel-
lite clusters that may merge with each other before the
sweep is complete. For all except the smallest clones, the
originating mutation is surrounded by a region which is
dominated by that particular allele—these form the core
regions defined above. Satellites are seeded by stochastic
jumps that extend over regions which either were occu-
pied by a different allele already, or get filled in by a
different allele before the satellite has a chance to merge
with the core. For µ = 1.3, haloes extend only a short
distance out from the core, whereas at µ = 0.7 the haloes
often extend over a distance many times the core extent.

The increased fragmentation of clones with broader
dispersal kernels has a marked impact on local diversity
in sub-regions of the range. Haloes belonging to differ-
ent alleles overlap to produce regions of high diversity, as
exemplified by the dashed box in Fig. 1(a) for µ = 1.5,
which contains demes belonging to six of the 10 unique
alleles despite being a small fraction of the total range
area. By contrast, the same region contains only one al-
lele at µ = 3.5 for which clones form contiguous domains.
Other effects of broadening the dispersal kernel are also
visible in Fig. 1: the spread in clone sizes becomes larger,
and individual clones take many more generations to at-
tain a given size.

To build a quantitative understanding of these varia-
tions, we begin by noting that at early times in Fig. 1(b),
each clone grow largely unencumbered by other clones.
We can therefore gain insight from existing results on
the jump-driven growth of a solitary advantageous clone
expanding into a wildtype background [17]. The key fea-
tures are summarized here and illustrated for the blue
clone in Fig. 2. Consider a clone that grows from a mu-
tation that originated at time t = 0 at the origin. At
times longer than a short transient, the clone fills most
sites out to some distance from the origin. In line with
the terminology established above, we call this region of
high occupancy the core of the growing clone. Its typical
extent over time (i.e. the average radius of a core that has
grown for time t) is quantified by a function `(t) which
itself depends on the dispersal kernel (a precise definition
is given at the end of this section). As sites in the core
get filled, they send out offspring through long-range dis-
persal events drawn from the specified kernel, which then
grow into independent satellite clusters. As a result, at
any time t there are also demes outside the core which
are occupied by the mutant. However, the occupancy of
sites outside the core decays as r−(d+µ) with distance r
from the originating mutation [17], fast enough that the
total mass of the clone at time t is proportional to `d(t).

As sketched in Fig. 2, the core grows through mergers
of satellite clusters that grew out of rare but consequen-

tial “key jumps” out of the core at earlier times (solid
arrows in Fig. 2). Ref. 17 identified qualitative differ-
ences in the behaviour of key jumps and the resulting
functional forms of `(t) as the kernel exponent is varied.
When µ > d+ 1, the extent of typical key jumps remains
constant over time, which implies that they must origi-
nate and land within a fixed distance from the boundary
of the high-occupancy region at all times. As a result,
clones advance via a constant-speed front similar to the
case of wavelike growth; i.e. `(t) ∝ t. Furthermore, the
separation between the core and satellites is insignificant
at long times, giving rise to essentially contiguous clones.
By contrast, for µ < d+ 1, growth is increasingly driven
by jumps that originated in the interior of the core at ear-
lier times, and key jumps become longer with time. The
resulting growth of `(t) is faster-than-linear with time.
The value µ = d is an important marginal case which
separates two distinct types of long-time asymptotic be-
haviour for `(t): power-law growth for d < µ < d + 1
and stretched-exponential growth for 0 < µ < d (see
the second column of Table I for the asymptotic growth
forms in all regimes). As µ → 0, spatial structure be-
comes increasingly irrelevant and the growth dynamics
approaches the exponential growth of a well-mixed pop-
ulation.

These features of solitary-clone growth can be directly
connected to the spatial patterns in Fig. 1 when recur-
rent mutations are allowed. The tessellation of the range
into contiguous domains for the highest values of µ is
exactly as expected from the wavelike growth situation
when µ > d + 1. When µ < d + 1, by contrast, each
clone consists of a growing core and well-separated satel-
lite clusters at any time. Unlike the solitary-mutant case,
satellites belonging to a particular clone are no longer
guaranteed to merge with the core or with each other
at later times: due to allelic exclusion, mergers are ob-
structed by cores and satellites with a different allelic
identity, as shown schematically in Fig. 2. The final pat-
tern of frozen-in satellite clusters comprises the previ-
ously identified halo structure around each core when
µ < d+ 1.

Notation and definitions: Before we proceed, we sum-
marize the various quantities in our analysis, and the
conventions used in representing them. (A complete list
of variables and definitions is provided in Table II.) One
set of physical quantities, represented as Latin symbols
without a time argument, measures properties of indi-
vidual clones after the soft sweep has been completed;
i.e. quantities measured from the final simulation out-
puts such as those displayed in Fig. 1. (These quantities
could also, in principle, be measurable from a real spa-
tial population that has recently experienced a sweep.)
Of these, quantities that have dimensions of length are
the mass-equivalent clone radius req and the clone ex-
tent rmax (defined in Table II). The solid and dotted
circles in Fig. 1(a) illustrate these quantities for a spec-
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FIG. 2 Marginal dynamics of jump-driven soft sweeps. When long-range dispersal is significant, clones of different allelic
identity (distinguished by colors) grow out of their originating mutations (stars) by accumulating satellite clusters (translucent
cones). If only a single mutation were present, the extent `(t) of the high-occupancy core (consisting of satellite clusters which
have merged with the cluster growing out of the originating mutation) would, on average, follow a faster-than-linear growth
rule, depicted schematically by the border of the opaque regions. For a wide range of kernels in the vicinity of µ = d, the
growth rule arises from a hierarchy of length and time scales related by doublings in time: the satellite that merges with the
core at time t would typically originate from a key jump out of the core at time t/2, that extended over a length of order `(t)
(solid arrows out of blue region). Looking forward in time, a clone whose core has grown for time t without being obstructed
will have likely seeded satellites out to a distance of order `(2t). In the presence of recurrent mutations, these satellites may
be obstructed from merging with the core due to intervening cores and satellites of different mutational origin (green and
red regions). For very broad dispersal kernels, the halo also includes rarer jumps out of the core (dashed arrow) that land in
regions that are being taken over by other alleles, but establish themselves in stochastic gaps in those regions. The disconnected
satellite clusters and isolated demes comprise the halo region of the mutant clone.

Kernel exponent Asymptotic `(t) behaviour χas

µ < d exp(Bµt
η) [ξ/W (ξ)]

1
η , ξ ≡ Bµηd(ũωd)

−η

µ = d exp(c log2 t) (ũωd)
−1e

2
(
log 2−

√
log 2 log(2/ũωd)

)
d < µ < d+ 1 t1/(µ−d) (ũωd)

−1/µ

µ = d+ 1 t log t (1D) 1
2

√
W (2/ũ)

2ũ

µ > d+ 1 t (ũωd)
−1/(d+1)

TABLE I Core growth asymptotics and characteristic core sizes. The table catalogues the asymptotic behaviour of
`(t) (from Ref. 17) along with the expected scaling of the characteristic clone size χas, omitting distance and time scales for `
and t respectively. W is the Lambert W -function, Bµ ≈ 2d log(2)/(µ − d)2, and η = log[2d/(d + µ)]/ log 2. The subscript in
χas indicates that the asymptotic `(t) was used as opposed to the more accurate functions listed in Appendix A . Note that for
values of µ near d, the asymptotic growth forms are of limited value since the time befor the asymptotics is reached becomes
very large. In this situation, χ must be computed using the more accurate scaling forms, see Appendix A for more details.

imen clone. The final clone mass is designated by the
symbol X. Ensemble averages of these quantities for a
given set of model parameter values, obtained by aver-
aging first over all clones within a single simulation and
then across many independent simulations, are denoted
by 〈...〉.

Our analysis connects these properties of the final,
static soft sweep pattern to the dynamic growth be-
haviour of a solitary clone under the same dispersal ker-
nel, in the absence of interference from other clones. For
a given dispersal kernel, the typical growth behaviour is
captured by the core growth function `(t) which we in-
troduced previously. A precise definition of `(t) requires
making a choice about how to identify the core region. In
contrast to the case of wavelike growth, there is no sharp
advancing front which separates the high-occupancy re-

gion of a growing clone from its surroundings; the average
radial occupancy profile at time t (defined as the proba-
bility that a deme at distance r from its point of origin
is occupied by the clone) is close to one out to some dis-
tance from the origin, beyond which it crosses over to a
profile that decays as a power law with increasing dis-
tance. One possibility, proposed in Ref. 11, is to define
`(t) as the distance at which the average occupancy pro-
file falls below some low threshold probability ε. Here,
we make a different choice motivated by the property,
proved in Ref. 17, that the total mass of the clone (which
we call M(t)) is proportional to `d(t). We define `(t) as
the expected mass-equivalent radius of the clone at time
t: `(t) ≡ E[(M(t)/ωd)

1/d], where ωd is the volume of the
d-sphere of radius 1 (ω1 = 2, ω2 = π). For a particular
solitary-clone growth simulation, M(t) is straightforward
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Symbol Description Definition

Measures of individual clones in final state of spatial sweep

X Final clone mass Number of demes belonging to clone

req Mass-equivalent clone radius (X/ωd)
1/d

rmax Clone extent Half the separation of pair of demes in
clone that are furthest apart (1D)

r8max = eighth central moment of clone
(2D)

Averages of final-state quantities

〈q〉 Ensemble average of quantity q A range average of q is obtained by av-
eraging over all clones in an individual
simulation; the range average is itself av-
eraged over multiple independent simula-
tions to obtain 〈q〉.

qave Expected value of q under mutation-
expansion balance

E[q] in the limit L� χ

Measures of growth of solitary clones

M(t) Time evolution of clone mass Number of demes colonized at time t
starting from a single deme at time 0.

`(t) Expected core radius at time t E[(M(t)/ωd)
1/d]

Characteristic lengths from mutation-selection balance

χ Characteristic core extent `(t∗)

ψ Characteristic extent of satellite clusters `(2t∗)

ζ Characteristic outer limit of rare jumps ũ−1/µ

λas Asymptotic estimate of length scale λ Characteristic length computed using
asymptotic forms for `(t) from Table I.

TABLE II Glossary of length and size scales. Table summarizes the various characteristic lengths (denoted by Greek
letters) and measured quantities (masses in capital Roman letters and lengths in small Roman letters). The characteristic time
t∗ is implicitly defined in Eq. 1. Except where explicitly noted, the definitions are valid in all dimensions.

to measure since the clone mass is readily accessible. For
a particular value of µ, `(t) is then estimated using an
ensemble average over many independent solitary-clone
simulations (see Appendix A for details). Our choice of
`(t) is proportional to `(t) defined using an occupancy
threshold, provided ε is small enough. We expect that
using other definitions of `(t) which scale proportionately
with the core region will not significantly change our re-
sults, at most shifting the magnitude of reported quanti-
ties by constant factors of order unity as long as we are
sufficiently far from the well-mixed limit µ→ 0.

Finally, the interplay between the expansion of individ-
ual clones and the introduction of new mutations is used
to derive various time-independent characteristic lengths,
which are represented as Greek symbols. These length
scales depend on the dispersal kernel via the functional
form of `(t), and the rescaled mutation rate ũ. Precise
definitions of the characteristic length scales are provided
in Table II and in the forthcoming sections.

1. Marginal dynamics and the relative sizes of core and halo

We can quantify the expected spatial extent of entire
clones (including haloes) relative to cores by considering
the dynamics in the vicinity of the marginal value µ = d.
Although the long-time asymptotic dynamics are quali-
tatively different above and below this value (power-law
in t for d < µ < d + 1, and stretched-exponential for
0 < µ < d), the approach to the asymptotic behaviour
is extremely slow for values of µ close to d, with the
intermediate-time evolution controlled by the marginal
dynamics at µ = d. As a result, the marginal dynamics is
important for a wide range of values of µ at biologically-
relevant time scales [17].

In the marginal regime, the scaling behaviour of key
jumps follows a particularly simple pattern, illustrated
schematically in Fig. 2: satellite clusters which merge
with the core at time t are seeded by key jumps that
typically happened around time t/2 and covered a dis-
tance of order `(t) � `(t/2). Therefore, a core that has
grown up to some extent of order `(t) has likely already
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seeded satellites out to a distance of order `(2t), some of
which will have reached an appreciable size as illustrated
in Fig. 2. If the core has grown to some linear size l, we
then expect satellites that have reached a significant size
to extend to a distance l′ ≡ `(2`−1(l)), which may be con-
sidered to be a lower bound on the expected extent of the
halo. When isolated demes embedded within cores and
satellites belonging to other clones are included, the full
spatial extent of the clone is even larger, because there
remains a finite probability of rare jumps from the core
out to distances farther than l′ (dotted arrow in Fig. 2).

The above estimate for l′, when approximated using
the long-time asymptotic growth rules for different jump
kernels, reveals qualitatively different scaling behaviours
for the clone extent on either side of the critical point µ =
d. For power-law growth, `(t) ∼ t1/(µ−d), we find l′/l ∼
21/(µ−d); i.e. the ratio of halo size to core size is a constant
that grows as µ→ d but is independent of the size of the
clone. By contrast, in the stretched-exponential regime,
with `(t) ∼ exp(Btη) where B and η depend on µ, we
find l′/l ∼ l(2η−1); i.e. the ratio of halo to core depends on
the core size as well as on the kernel exponent. Since η =
log[2d/(d+ µ)]/ log 2 > 1, the halo becomes increasingly
prominent as µ→ 0. These scaling estimates break down
as µ approaches d—for instance, the ratio l′/l diverges
in the power-law growth regime—mirroring the limited
utility of the approximate asymptotic forms for `(t) near
µ = d. Instead, we must use the more accurate forms
for `(t) (Appendix A) to evaluate l and l′. However,
upon using these forms with fitted magnitude and time
scales, the qualitative picture is largely unchanged: the
ratio l′/l becomes very weakly dependent on the core size
as µ ↘ d, but the dependence is much stronger when
µ drops below d. For instance, at µ = 1.2 in 1D, the
predicted ratio l′/l merely doubles from 4 to 8 as l spans
four orders of magnitude from l = 10 to l = 105; by
contrast, at µ = 0.8 the ratio changes by an order of
magnitude (from roughly 5 to 70) over the same range of
core sizes.

In summary, the growth dynamics for solitary clones
at different kernel exponents predicts the following struc-
ture for large mutant clones: contiguous, compact clones
for µ > d+ 1; a high-occupancy core with a halo of well-
developed satellite clusters that extends out to a size-
independent (but kernel-dependent) multiple of the core
radius for d < µ < d+1; and a sparse halo which is signif-
icantly larger in extent than the core and becomes more
prominent with increasing clone size for µ < d. We now
assume that these conclusions, and the associated scaling
relations for the linear extent of the core and halo, also
apply to the spatial structure of mutant clones that have
grown during soft sweeps and have been frozen in due
to interference with clones of differing mutational origin.
This key assumption is tested in the following section.

2. Occupancy profiles

To verify the structural features outlined above, we
measured average occupancy profiles of distinct clones in
the final states of 1D soft sweep simulations (Fig. A1).
Occupancy profiles from clones of different sizes are com-
bined by scaling the distance coordinate of each profile
by the mass-equivalent radius req, derived from the total
mass X of that clone via req ≡ (X/ωd)

1/d, and perform-
ing an ensemble average as described in Table II. The
choice of distance scale is motivated by our definition of
` in terms of the clone mass, and justified by the observa-
tion that averaged occupancy profiles for a given kernel
with vastly different average clone sizes collapse onto a
single curve when the distance coordinate is rescaled by
the size, consistent with the core radius being propor-
tional to req, see Supplementary Fig. A1.

Ensemble-averaged occupancy profiles for different
jump kernels are shown in Fig. 3(a) with ũ = 10−5.
We observe that when µ > d + 1, the averaged occu-
pancy is negligible for r/req > 2, and the curve has a
point of symmetry at (r/req, 〈ρ〉) = (1, 1/2), such that
〈ρ〉(r/req) = 1 − 〈ρ〉(2 − r/req) for 1 < r/req < 2. This
form is consistent with the entire clone being contained
in a single domain, which grows to different lengths on
either side of the originating mutation, as illustrated in
the inset.

The predicted breakup of clones due to long-range
dispersal is reflected in the overall broadening of occu-
pancy profiles as the kernel exponent µ is reduced below
the critical value d + 1. In this range, an appreciable
portion of the clone lies outside the maximal distance
from the origin (r/req = 2) that could be measured for
a contiguous domain in a linear habitat. (This upper
limit would correspond to a clone that was obstructed
by an occupied deme adjacent to its mutational origin
on one side, and attained its final mass by expanding
only in the other direction.) The dropoff in occupancy
becomes increasingly steep at low values of r/req as µ
is reduced, but more gradual at larger distances, consis-
tent with a narrowing high-occupancy region balanced
by a halo of increasing prominence. At large distances,
the falloff in occupancy is consistent with the power-law
behaviour expected from the solitary-clone growth dy-
namics, 〈ρ〉 ∝ r−(µ+d) [dashed lines in Fig. 3(b)], which
supports our assumption that the final structure of a mu-
tant clone in a spatial soft sweep is similar to that of a
solitary clone expanding without interference.

To quantify the relative prominence of the halo to
the core across all growth regimes, we define the core
occupancy as the fraction of the total occupancy con-
tained within the maximal range of distances that could
be measured for contiguous domains, 0 < r/req < 2.
We find that the core occupancy is close to 100% for
µ > d + 1 (= 2 in 1D), consistent with the contigu-
ous clones and insignificant haloes expected for wavelike
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FIG. 3 Occupancy profiles of clones show the reduced prominence of the core with increased long-range dis-
persal. (a) Ensemble-averaged occupancy profiles of mutant clones in 1D, with L = 106 and ũ = 10−5. The occupancy profile
of a particular clone is defined as the probability ρ(r) that a deme at distance r from its point of origin is occupied by that
clone. Colours signify different dispersal kernels, with exponents µ = {0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 3} in order of
increasing occupancy at the origin. Curves are obtained by averaging individual occupancy profiles from all clones with total
mass X > 100 to obtain a range-averaged occupancy profile 〈ρ〉 for each of 100 independent simulations for each dispersal
kernel; these were then averaged to obtain the ensemble-averaged profile 〈ρ̄〉. Inset illustrates the origin of the variation in
occupancy for r/req < 2 in the wavelike growth regime: the mutational origin need not be positioned at the centre of mass of
the contiguous domain, giving rise to a single-clone occupancy profile ρ(r) = {1, 0 < r ≤ r1; 1/2, r1 < r ≤ r2; 0, r > r2}.
(b) Same data as in (a) on logarithmic scales. The dashed lines show the power-law dependence 〈ρ〉 ∝ r−(µ+d). (c) Core
occupancy, defined as the fraction of the ensemble-averaged occupancy that lies within 0 < r/req < 2, as a function of kernel
exponent µ.

growth [Fig. 3(c)]. For broader kernels, the core occu-
pancy falls with µ, reflecting the increasing prominence
of the halo as µ approaches zero. However, the core still
contains an appreciable fraction of the total occupancy
for all values of µ that we have simulated. This obser-
vation further supports our approach of connecting the
geometric extent of cores to the total mass of their cor-
responding clones, as we do in the following section.

C. Characteristic scales via mutation-expansion balance

So far, we have focused on the spatial structure of in-
dividual clones within a soft sweep, and have shown that
many aspects of this structure can be understood from
the theory of growth of a solitary clone under the same
dispersal kernel. To address questions of global and local
allelic diversity, however, we need to explicitly consider
the concurrent growth of multiple clones. We now show
how the balance between jump-driven growth and the dy-
namics of introduction of new mutations sets the typical
size and spatial extent of clones.

1. Size of a “typical” clone

In an infinitely large range, a solitary clone could grow
without bound, but in the presence of recurrent muta-
tions, the growth of any one clone is obstructed by other
clones. Balancing mutation and growth gives rise to a
characteristic time scale t∗, and associated characteristic
linear extent χ, for mutant clones in multi-origin spatial
sweeps [11]. These scales determine whether a sweep will
be “hard” or “soft” within a finite range of given size.

When clones grow as compact, connected domains,
growth is interrupted when the advancing sharp bound-
ary of the clone encounters a different allele. However, for
clones growing via long-range dispersal events, a sharp
boundary no longer exists, and small obstacles can be
traversed by jumps. The picture of jump-driven growth
that we have developed suggests that haloes belonging to
different clones can freely overlap, whereas core regions
cannot. Therefore, new mutations arising within the halo
region of a growing clone do not significantly impede its
growth. Instead, the crucial factor restricting the growth
of a clone is when its high-occupancy core encounters a
different clone, as depicted schematically in Fig. 2. Since
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`(t) defines precisely the time-evolution of the core ex-
tent of a solitary clone, we define t∗ as the time interval
for which exactly one mutation is expected to occur in
the space-time region swept out by the growing core:

ũt∗ωd`
d(t∗) = 1. (1)

The corresponding characteristic extent, χ ≡ `(t∗),
matches the length scale introduced in Ref. 11 to char-
acterize spatial soft sweeps.

Rough estimates for t∗ and χ can be obtained by using
the long-time asymptotic forms for `(t) in the different
growth regimes, see Table I. These estimates highlight
the vastly different functional dependences of the charac-
teristic scales on the rescaled mutation rate as the kernel
exponent is varied. For quantitative tests, we use scaling
forms for `(t) derived in Ref. 17, which are much more ac-
curate at short times when µ is close to d. All theoretical
forms for `(t) include unspecified multiplicative factors A
and B for the length and time variables, which are fixed
by fitting the functional forms to the growth of isolated
clones starting from a solitary seed, see Appendix A for
details.

The scales χ and t∗ provide the appropriate rescaling
of space and time to compare two sweeps with different
mutation rates but the same growth rule `(t), and there-
fore capture the dependence of many soft sweep features
on the mutation rate. Most significantly, they set the
expected number of independent mutational origins in a
range of a given size. When both sides of Eq. 1 are mul-
tiplied by the total number of demes Ld, it equates to a
condition for the range to be completely filled by muta-
tions accumulated at a rate Ldũ over a time t∗ without
interference, each of which grows to the characteristic
size `(t∗). The expected number of mutational origins
in the range therefore scales as Ldũt∗ = Ld/(ωdχ

d). If
Ldũt∗ � 1, or equivalently L � χ, it is unlikely that
many independent mutations will arise: the sweep is
likely to be hard. By contrast, if the range is large com-
pared to the characteristic length χ, the number of in-
dependent origins grows in proportion to the range area.
Consequently, the total number of demes in the range
divided by the expected number of origins converges to
a well-defined value as L increases, which we call the ex-
pected clone mass Xave. For a given dispersal kernel,
the mutation-rate dependence of Xave is captured by the
variation of χ with ũ: Xave ∝ χd, with a ũ-independent
factor of proportionality that dependes on the details of
the growth dynamics.

To test whether the characteristic length scale quan-
tifies the number of mutational origins in a range, we
compare the ensemble-averaged clone mass measured in
simulations, 〈X〉, to χd(ũ) computed using the theoreti-
cal forms for `(t). Results for 1D simulations are shown
in Fig. 4. (Definitions of measured quantities and av-
erages are provided in Table II.) For clarity, the ex-
pected scaling with mutation rate in the wavelike spread-
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FIG. 4 Average clone mass is set by mutation-
expansion balance. The ensemble-averaged final mass of
mutant clones 〈X〉 as measured from 1D simulations as a
function of rescaled mutation rate, scaled by the expected
dependence (∝

√
ũ) for wavelike growth of clones. Results

from different system sizes (symbols) are presented for each
dispersal kernel quantified by µ (colours); the values are (from
top to bottom) µ = {0.2, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 3}.
Each point represents an average over 20 or more independent
simulations. Error bars denote measured standard deviation
across repetitions. Dashed lines show the theoretical predic-
tions for χ(ũ) for each dispersal kernel (see Appendix A for
details), multiplied by a µ-dependent magnitude factor whose
value is 1.5 for 1 ≤ µ < 2, 1.6 for µ > 2, and 1.65 for all other
values.

ing limit, χ ∝ 1/
√
ũ, is divided out. We find that the

average clone sizes for different system sizes coincide at
ũ = 10−6, consistent with 〈X〉 being an estimate of an
underlying expected clone mass, Xave, that is determined
by the mutation-expansion balance and is independent
of system size. For each value of µ, the computed χ(ũ)
quantitatively captures the dependence of 〈X〉 on ũ over
many orders of magnitude, up to a ũ-independent con-
stant factor (the factor depends on model details and is
treated as a fitting parameter, but it turns out to not
vary significantly with µ). These results confirm that
the mutation-expansion balance captured in Eq. 1, first
identified in Ref. 11, remains relevant for characterizing
the compact core regions of clones in when long-range
dispersal is prominent.
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2. Characteristic extent of clones

The analysis of the spatial structure of individual
clones (Section II.B) showed that the extent of clones
(i.e. the portion of the range over which demes belong-
ing to the clone can be found) can be many times larger
than the expected extent for a compact clone, especially
for broad dispersal kernels. Therefore, the average clone
size may not be representative of the spatial extent of
typical clones over the range, pointing to the potential
relevance of additional length scales when characterizing
jump-driven spatial soft sweeps. To quantify this effect,
we measure the extent, rmax, of a clone in our 1D sim-
ulations as half the largest distance between any pair of
individuals belonging to that clone. The disparity be-
tween the true extent of clones and the extent expected
from the average clone mass can be evaluated by compar-
ing the ensemble-averaged extent 〈rmax〉 to the average
mass-equivalent radius 〈req〉. If all clones were perfectly
contiguous and compact, we would expect 〈rmax〉 = 〈req〉.

Figure 5 shows the ratio of average clone extent to aver-
age mass-equivalent radius for different dispersal kernels
and mutation rates. The ratio is unity when µ > d + 1,
which is the expected regime of compact clones. For
broader kernels, we find that the average spatial extent
is larger than the mass-equivalent radius, consistent with
our expectation from jump-driven growth. Two separate
behaviours can be identified in this regime. In the range
d < µ < d+1, the ratio 〈rmax〉/〈req〉 is independent of the
rescaled mutation rate. By contrast, for µ ≤ d, the ratio
of lengths shows a mutation-rate dependence, and grows
dramatically in magnitude. At the smallest values of µ,
the measured extent of the largest clones becomes limited
by the system size (the maximum measurable extent un-
der periodic boundary conditions is L/2). This finite-size
effect artificially suppresses the ratio 〈rmax〉/〈req〉, as is
apparent upon comparing the measurements at L = 106

and L = 107. (Note that the measurement of 〈req〉 does
not suffer from finite-size effects, which was verified in
Fig. 4, since the core extent remains much smaller than
the system size for these parameters.)

To explain these features, we return to the core-halo
picture of clone structures. We had previously identified
two contributions to the halo region of a clone (Fig. 2).
One contribution comes from satellite clusters which are
established with high probability during the growth pro-
cess, but are obstructed from merging with the core by
clusters belonging to other clones. In addition, the heavy-
tailed jump kernel could populate demes arbitrarily far
from the growing core. These would form isolated demes
or small clusters embedded within other clones, without
any related clusters in the neighbourhood. These two
mechanisms lead to different characteristic length scales
which we now analyze in detail.

We first quantify the extent of the region in which
satellite clusters are established. We had argued that, in
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FIG. 5 The spatial extent of clones can be much larger
than the expectation derived from the average mass.
Ensemble-averaged spatial extent of clones 〈rmax〉, where rmax

is defined as half the distance between leftmost and rightmost
demes belonging to a particular clone. Values are normal-
ized by the ensemble-averaged mass-equivalent radius 〈req〉
in 1D simulations. Each point is an average over values from
20 independent simulations. Dotted lines connect simulation
data points. Dashed lines show the theoretical expectations
ζ/χ (with ũ = 10−3) and ψas/χas in the ranges µ < 1 and
1 < µ < 2 respectively, multiplied by model-dependent nu-
merical factors. For µ < 1, χµ(ũ = 10−3) is evaluated as
described in Appendix A; for 1 < µ < 2, the ratio ψas/χas

is independent of ũ. The fall in the measured ratio at low
values of ũ for µ < 1 is due to finite-size effects, as seen by
comparing the two system sizes: the measured values of rmax

in this range are below the values that would be measured in
an infinitely large system.

the vicinity of the critical value µ = d, a clone whose core
has grown to some size `(t) will have likely established
satellites of a significant size out to a distance `(2t). Hav-
ing derived a characteristic time scale t∗ (defined in Eq. 1)
for the growth of a typical clone restricted by mutation-
expansion balance, a rough estimate for the extent of its
halo is provided by the quantity

ψ ≡ `(2t∗), (2)

which quantifies the extent of established satellites of the
typical clone. Although this estimate ignores interference
among haloes of different clones, we note that the ex-
pected number of new mutational origins encountered by
each satellite cluster is less than one since the satellites
are smaller than `(t∗), which limits the amount of in-
terference. An alternative argument, which balances the
rate of key jumps out of the core with the expected rate
of mutations arising in the target region of the jumps and
therefore incorporates some interference effects, produces
a similar estimate for the typical extent of the satellite
cluster region (see Appendix C).

Since the existence of satellite clusters is closely tied
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to the growth process of the core, we expect the typical
halo extent to be at least of order ψ. In this part of
the halo, the distribution of satellite clusters of the same
identity as the core is relatively dense: in the absence of
interference with other clones, the maximum separation
between satellite clusters would be of order `(t∗) = χ.
However, the halo also includes contributions from rare
long-distance dispersal events which land well outside the
dense region of satellite clusters. Due to the heavy tail
of the dispersal kernel, the growing core could send out
offspring to arbitrarily large distances, which are not re-
stricted by the length scale ψ. If these rare jumps land on
unoccupied demes, they would establish isolated demes
or small clusters. Unlike the satellite clusters, these iso-
lated clusters would be very sparsely distributed, being
separated from their relatives by distances much larger
than χ. However, they would still count as part of the
discontiguous halo of their parent core. In particular, the
extremal measure rmax is sensitive to isolated offspring
even if they do not belong to satellite clusters of signifi-
cant size.

The outer limit of jumps made by the core during the
sweep can be estimated using prior scaling arguments.
Since our time units are set by the migration rate, the
net number of jumps out of a typical clone which grows
over a time t∗ is roughly ωdt

∗`d(t∗), which equates to
1/ũ by the definition of t∗. The fraction of these jumps
which end up beyond a distance l is

∫∞
l
J(r) dr = l−µ. A

crude estimate for the outer limit ζ of these rare events
is obtained by requiring the net number of jumps from
the core to distances ζ or greater to be equal to 1:

ζ−µ/ũ = 1⇒ ζ = ũ−1/µ. (3)

Unlike the extent of the satellite cluster region, ζ does
not depend explicitly on the core growth function `(t).
However, the scaling for ζ does not account for the fact
that many of the long-distance rare jumps would fail to
establish because they land on the high-occupancy cores
of competing clones, which fill up the range over the same
time scale t∗. Therefore, ζ is likely to be relevant when
the sparse halo regions become dominant over the cores,
i.e. for µ < d.

To test whether ψ or ζ determines the average clone
extent in the different growth regimes, we also need to
fix an overall magnitude factor, which is not predicted
by the scaling arguments. The most general behaviour
would be for these magnitude factors to themselves de-
pend on µ. However, our measurements of the clone mass
(Fig. 4) showed that the magnitude factors only vary
slightly over the range of values of µ. Therefore, we eval-
uate the effectiveness of the theoretical length scales by
testing whether they reproduce the simulation data up
to a µ-independent magnitude factor, which we treat as
a fit parameter.

The asymptotic growth forms for `(t) from Table I can
be used to obtain the qualitative behaviour of the char-

acteristic satellite cluster extent; we term the resulting
estimate ψas. (We expect asymptotic estimates to be-
come inaccurate as µ approaches d.) In the region of
power-law growth, d < µ < d + 1, we find that ψas and
ζ both have the same mutation-rate dependence for a
given dispersal kernel, ∝ ũ−1/µ. However, the ratios of
the length scales to the characteristic core size χas show
different behaviour as µ is varied: ψas/χas = 21/(µ−d)

has no remaining dependence on χas or `(t), whereas

ζ/χas = A
1−1/µ
µ ω

−1/µ
d depends on the magnitude param-

eter Aµ which characterized the solitary-clone growth.
The measured ratio of average clone extent to average
mass-equivalent radius agrees well with the theoretical
prediction for ψas/χas for µ ≥ 1.4 (red dashed line in
Fig. 5; the overall magnitude factor was chosen to match
the value at µ = 2). By contrast, the prediction ζ/χ
(cyan dashed line) deviates by factors of order one from
the measured ratio due to the residual dependence on Aµ,
although it agrees with the overall trend. As expected,
the asymptotic estimates become increasingly inaccurate
as µ→ 1 which reflects the breakdown of the asymptotic
growth form.

At the marginal value µ = d, the asymptotic form pre-
dicts ψas ∝ ũ−1/de−cd

√
− log ũ for ũ � 1, where cd is a

numeric constant of order one. In 1D, the very weak
additional dependence on log ũ is not sufficient to distin-
guish this form from the alternative length scale ζ = ũ−1

for µ = 1. However, the differences in ψ and ζ become
significant in the region of stretched-exponential growth,
µ < d. As µ approaches zero, the strong divergence in
Eq. 3 for rescaled mutation rates below one induces ζ to
grow much faster than ψas. For our 1D simulations, the
ratio ψ/χ only varies by about an order of magnitude,
regardless of whether the asymptotic forms or the more
accurate scaling forms from Appendix A are used. There-
fore, the satellite cluster region cannot account for the
dramatic increase in average clone extent observed at low
values of µ in Fig. 5. By contrast, ζ grows rapidly over
many orders of magnitude over the same range. Upon
fitting an overall magnitude factor, the ratio ζ/χµ suc-
cessfully captures the variation in 〈rmax〉/〈req〉 for the
largest rescaled mutation rate ũ = 10−3 (cyan dashed
line in Fig. 5).

To summarize, we have identified two characteristic
scales, ψ and ζ (defined in Eqs. 2 and 3 respectively),
that could set the average halo extent in our spatial soft
sweeps. Differences between ψ and ζ are small when
d ≤ µ < d + 1, but become significant for µ < d. Com-
parisons with the measurements of clone extent in sim-
ulations (Fig. 5) support the hypothesis that ζ sets the
halo extent for the highly sparse clones that arise when
µ < d, while ψ sets the halo extent for the more compact
but still discontiguous clones when µ ≤ d < d+ 1.
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D. Clone size distributions vary with dispersal kernel and
influence global sampling statistics

Unlike our simulations, studies of real populations do
not have access to complete allelic information over the
entire range. Instead, the allelic identity of a small num-
ber of individuals is sampled from the population. The
likelihood of detecting a soft sweep in such a random
sample is determined not only by the total number of
distinct clones in the range, but also by their size dis-
tribution: if the range contains many clones, but all but
one are at extremely small frequency (defined as the frac-
tion of demes in the range that belong to that clone),
the sweep is likely to appear “hard” in a small random
sample which would with high probability contain only
the majority allele. Long-range dispersal can therefore
influence soft sweep detection not only by setting the av-
erage clone size, but also by modifying the distribution
of clone sizes around the average. Having already estab-
lished that the dispersal kernel has a significant effect on
the average clone size (Fig. 4), we now analyze its effects
on the clone size distribution and the consequences for
soft sweep detection.

Clone size distributions were quantified by comput-
ing the allele frequency spectrum f(x), defined such that
f(x) δx is the expected number of alleles which have at-
tained frequencies between x and x + δx in the popu-
lation [18]. The allele frequency spectrum is related to
the average probability distribution of clone sizes, but

has a different normalization
∫ 1

1/N
xf(x) dx = 1 which

allows sampling statistics to be expressed as integrals in-
volving f(x) (we will exploit this fact in Section II.D.1
below). Analytical results for f(x) can be derived for
the deterministic wavelike growth limit µ� d+ 1 in 1D
by mapping the spatial soft sweep on to a grain growth
model [19], and for the panmictic limit µ → 0 in any
dimension via a different mapping to an urn model [20].
The resulting functions, termed fw and f∞ for the two
limits respectively, provide bounds on the expected fre-
quency spectra at intermediate µ. Details of the map-
pings and complete forms for the functions fw and f∞
are provided in Appendix D.

Fig. 6(a) shows allele frequency spectra computed from
the outcomes of 1D soft sweep simulations for system size
L = 107 and mutation rate ũ = 10−4. We find that the
frequency spectra vary strongly with the dispersal ker-
nel, and approach the exact forms f∞ and fw for small
and large µ respectively. Generically, spectra become
broader as the kernel exponent is reduced: as µ → 0,
more high-frequency clones are observed. Although this
broadening is partly explained by the increase in the aver-
age clone size due to accelerated expansion, which would
lead to more high-frequency alleles, there are also system-
atic changes in the overall shapes of the distribution as
the dispersal kernel is varied. Upon reducing the rescaled
mutation rate to ũ = 10−6 [Fig. 6(b)], all frequency spec-

tra broaden due to the increase in the average clone size,
but the variations in shapes of the f(x) curves with µ
remain consistent across the two mutation rates. These
observations suggest that spatial soft sweep patterns with
similar numbers of distinct alleles in a range might nev-
ertheless have vastly different clone size distributions due
to different dispersal kernels, with implications for sam-
pling statistics.

To uncover variations due to long-range dispersal be-
yond changes in the average clone size, we rescaled the
frequency spectra by the expected dependence on Xave,
which we have already established as being set by the
mutation-expansion balance via the characteristic size χ.
To establish the form of this rescaling, we assume that
for a given dispersal kernel, soft sweep patterns at dif-
ferent mutation rates are self-similar when distances are
rescaled by the characteristic length χ. Under this as-
sumption, the probability distribution of clone sizes in
an infinitely large range is a function only of the rescaled
clone mass s ≡ X/Xave; i.e. the probability of finding a
clone between s and s+ δs is Pµ(s) δs, where the density
function Pµ depends only on the dispersal kernel and not
on the rescaled mutation rate.

For finite ranges of extent L much larger than χ, we
can now express the average allele frequency spectrum in
terms of Pµ. The expected number of unique alleles in the
range is Ld/Xave. Within these alleles, the probability
of finding an allele in the frequency range (x, x + δx)
is Pµ(Ldx/Xave) × Ldδx/Xave. Therefore, the expected
number of alleles with frequencies between x and x+ δx
is (

Ld

Xave

)2

Pµ

(
Ldx

Xave

)
δx.

Upon comparing this expression the definition of the al-
lele frequency spectrum for the finite range, we arrive
at

f(x) =

(
Ld

Xave

)2

Pµ

(
Ldx

Xave

)
, (4)

Eq. 4 implies that for a given dispersal kernel, the
dependence of the allele frequency spectrum on muta-
tion rate and range size is completely captured by the
ratio Ld/Xave. In particular, when f(x) is multiplied
by (Xave/L

d)2 and the frequency by Ld/Xave, frequency
spectra for different values of ũ ought to collapse onto
a single curve for each µ. Fig. 6(c) shows that upon
such a rescaling (with 〈X〉 used as a simulation-derived
estimate of Xave), curves for the same value of µ from
panels (a) and (b) largely coincide, confirming that most
of the dependence of the frequency spectrum on mu-
tation rate is captured by the variation of the single
length scale χ and, through it, the expected clone mass
Xave. Note that we can use the fact that Xave ∝ χd

with a kernel-independent prefactor to rewrite Eq. 4 as
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FIG. 6 Variation of allele frequency spectra with mutation rate and dispersal kernel. (a) Allele frequency spectra
f(x) estimated from 1D simulations with L = 107 and ũ = 1e − 4. Each curve is the average of frequencies measured from
20 independent simulations. Curves are coloured by dispersal kernel according to the legend in (c). The uptick for the lowest
bin is an artifact of the logarithmic bin sizes together with the hard lower cutoff in allele frequency at x = 1/L. Black dotted
and dash-dotted lines show the analytical distributions for wavelike spreading and panmictic limits respectively. (b) Same
as in (a) except with ũ = 1e − 6. (c) Frequency spectra from (a) and (b), rescaled to remove the expected variation due to
changes in average clone size. Inset, dependence of the cut-off frequency xc on the exponent p when frequency spectra are
approximated by a power law f(x) ∝ xp for x ≤ xc and f(x) = 0 for x > xc. Dots show the cutoff estimated numerically as
the value for which the second derivative of the rescaled curves first drops below −4, plotted against the observed exponents
p ≈ {−0.9,−0.72,−0.47, 0, 1} for the small-frequency behaviour.

f(x) = (L/χ)2dGµ(Ldx/χd), where Gµ is independent of
ũ, which explicitly shows the role of χ in scaling the allele
frequency spectrum.

The arguments leading to Eq. 4 relied on the assump-
tion that only one characteristic scale exists for the soft
sweep patterns. For our class of kernels, this assump-
tion is only exact in the regime of power-law growth, for
which the halo extent scale ψ is proportional to χ. In
the stretched-exponential and marginal growth cases, by
contrast, ψ acts as an independent length scale from χ
with its own mutation-rate dependence. In Appendix E,
we show that the consequent corrections to Eq. 4 are
weak (logarithmic in mutation rate and system size) and
are strongest when µ approaches 0, validating the effec-
tiveness of the proposed rescaling over all regimes away
from the well-mixed limit.

The scaled frequency spectra show that broader disper-
sal kernels favour broader allele frequency spectra even
after accounting for changes in the average clone size.
At µ = 4, the steep decline in the frequency spectrum
occurs near the frequency expected of an average clone,
x ≈ 〈X〉/L. As µ is reduced, the falloff occurs at higher
frequencies; at µ = 0.4, for instance, clones with fre-
quencies an order of magnitude higher than the average

clone are still likely. Qualitatively, this trend is a result
of the increased nonlinearity of the growth functions `(t)
for broader dispersal. If we assume no interference among
distinct clones until the time t∗, the size of an allele which
arrives at time ti is proportional to `d(t∗ − ti). For a
given spread of arrival times of mutations, the spread of
final clone sizes is significantly enhanced by nonlinearity
in `(t). Therefore, the increased departure from linear
growth in `(t) as µ → 0 gives rise to broader clone size
distributions. Deterministic approximations to the clone
size distributions expected for the asymptotic `(t) forms
in 1D, described in Appendix E, support this heuristic
picture.

Although we do not have analytical expressions for the
frequency spectra at intermediate µ, the measured curves
and deterministic calculations suggest a simple approx-
imate form for the allele frequency spectra: extend the
power-law behaviour observed at intermediate frequen-
cies [straight parts of the curves in Fig. 6(a)–(b)] from
x = 0 up to a cutoff frequency corresponding to the lo-
cation of the sharp dropoff in f(x). Quantitatively, we
consider an ansatz for the frequency spectra with two
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parameters:

f(x) =


p+ 2

xp+2
c

xp, x < xc

0, x > xc,

(5)

i.e. a power-law behaviour characterized by exponent p,
up to some maximal frequency xc, with the constant of
proportionality determined by the normalization. The
values p and xc are determined from the numerical data,
but are also consistent with theoretical arguments (Ap-
pendix E). The small-x behaviour of the two limiting
spectra, f∞(x) ∼ x−1 and fw(x) ∼ x as x → 0, imply
that p is restricted to vary from −1 to 1 as µ increases
from zero. Despite its simplicity, this approximation can
be used to quantify the relationships among various fea-
tures of the clone size distributions as we show in Ap-
pendix F. For instance, the power-law ansatz predicts
a relation between the average clone size and the cut-
off frequency, Lxc/Xave = (p+1)/(p+2), which matches
the trends observed in the rescaled frequency spectra, see
inset to Fig. 6(c).

1. Global sampling statistics

The utility of f(x) in the context of soft sweep de-
tection is made apparent by noting that the probability
Phard(j) of finding only one unique allele in a sample of
size j ≥ 2 drawn randomly from the population (i.e. de-
tecting a hard sweep) is [18]

Phard(j) =

∫ 1

0

xjf(x) dx. (6)

The probability of observing a soft sweep in a sample
of size j is simply Psoft = 1 − Phard(j). (Although
Psoft might be more relevant to soft sweeps, we deal
with Phard(j) in the following sections because it is more
straightforward to compute and manipulate mathemat-
ically.) Since xf(x) does not diverge as x → 0 for all
observed frequency spectra, the integral in Eq. 6 is dom-
inated by contributions from the high-frequency region
of f(x) and is therefore highly sensitive to the breadth of
the frequency spectrum. Using the power-law ansatz for
the frequency spectrum, Eq. 5, gives Phard(j) ∝ xj−1c /j
for large j (see Appendix F): the dominant behaviour
is an exponential decay with sample size, with the de-
cay scale set by the high-frequency cutoff xc. At a given
rescaled mutation rate, this cutoff falls by many orders of
magnitude as µ is increased, as we saw in Fig. 6(a)–(b).
As a consequence, the probability of finding a monoal-
lelic sample also falls dramatically with increasing µ, see
Fig. 7(a). Analytical calculations of Phard using f∞(x)
and fw(x) in the µ → 0 and µ � d + 1 limits (dashed
and dash-dotted lines) provide bounds on the variation
(see Appendix G for explicit forms of Phard(j) in these
limits).

We have seen that increased long-range dispersal
broadens the frequency spectrum both by increasing the
average clone size, and by enhancing the spread of clone
sizes around the average. In the hypothetical case of all
clones having the same size Xave, a monoallelic sample
of size j is obtained by having the last j − 1 samples
drawn from the same clone as the first sample, which oc-
curs with probability (Xave/L

d)j−1 ∝ (χ/L)d(j−1). To
distinguish the effect of the shape of f(x) from that of
the average size of clones, we scale Phard(j) in 1D sim-
ulations by (〈X〉/L)j−1 for a range of rescaled muta-
tion rates, see Fig. 7(b). (As before, we use 〈X〉 for
a simulation-derived estimate of Xave.) If the sampling
statistics were determined primarily by the average clone
size (which in turn is set by χ) and the effect of varia-
tions in the shape of f(x) were insignificant, we would
expect the rescaled Phard(j) for different kernels to all
collapse on the same curve. Instead, we find that the
sampling statistics vary significantly with µ even when
accounting for differences in average clone size. Whereas
the rescaling captures a significant amount of the varia-
tion in Phard(j) within each value of µ (with a residual
ũ-dependence that differs for the different regimes of `(t),
and is due to the relevance of the additional length scales
outside the power-law growth region), the rescaled curves
vary widely among the different dispersal kernels.

Fig. 7(b) quantifies the influence of long-range disper-
sal on soft sweep detection beyond merely setting the
average size of clones: if mutation rates are adjusted
so that the characteristic length scales χ and hence the
average clone sizes are comparable for different disper-
sal kernels, soft sweeps continue to be less likely to be
detected for broader kernels (smaller µ). This happens
because the range has a larger contribution from high-
frequency clones with x > (χ/L)d for broader disper-
sal kernels, making monoallelic sampling more likely. In
summary, not only does broadening the dispersal kernel
make sweeps harder, it also makes their detection less
likely. Since a wide range of possible outcomes sepa-
rates the two limits of panmictic (µ → 0) and wavelike
spreading (µ � d + 1), predictions based on these ex-
tremes might perform poorly in making inferences from
sampling statistics in populations with intermediate long-
range dispersal.

E. Local sampling protocols are highly sensitive to the
core-halo structure

Population genomic studies are often limited not only
in the number of independent samples available, but in
their geographic distribution as well. Samples tend to be
clustered in regions chosen for a variety of reasons such
as anthropological or ecological significance, or practical
limitations. The analysis of the last section would apply
to comparing samples across different regions, provided
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FIG. 7 Probability of observing only one allele in a finite sample. (a) The probability Phard(j) of observing a hard (i.e.
monoallelic) sweep in a sample of size j chosen at random from the range, computed from simulated clone size distributions for
different dispersal kernels (colours, labeled) with L = 106 and ũ = 10−6 in 1D. Three analytical forms are shown as dotted lines
(from top to bottom): the Ewens’ sampling result for the panmictic case, the approximate form derived using a hard-cutoff
ansatz for the allele frequency spectrum for µ = 1 (Eq. F3), and Phard calculated from the exact f(x) for the wavelike spreading
limit (Appendix G). (b) The same quantity computed across a range of rescaled mutation rates (symbols), and scaled by the
expectation for a range with all clones having the same size and hence the same frequency Xave/L.

that these are relatively well spread out in the range.
Here we focus on the variation within local samples from
a subrange of the entire population. As illustrated by the
wide variation in local diversity within the highlighted
subranges (dashed boxes) in Fig. 1(a), inferences based
on local sampling can be significantly different from in-
ferences based on global information, and may be very
sensitive to modes of long-range dispersal.

Long-range dispersal enhances local diversity. When
clones extend over a much wider spatial range than re-
quired by their mass (Fig. 5), local subranges contain al-
leles whose origins lie far away from the subrange, and are
consequently more diverse than expected from the diver-
sity of the range as a whole. To quantitatively illustrate
this effect, we compute sampling statistics for different
dispersal kernels and subrange sizes from 1D simulations
with a global range size much larger than the character-
istic length scale χ (Fig. 8). (Subrange size, denoted by
Ls, and extent are equivalent in our 1D simulations.) We
observe that the smaller clones expected at higher values
of µ favour the detection of soft sweeps globally (Fig. 8a),
but the diversity is less detectable in samples from sub-
ranges that are smaller than the characteristic size shared
by the compact domains at µ = 4. By contrast, samples
from smaller subranges continue to show signatures of
soft sweeps for broader dispersal kernels (Fig. 8b–c).

To compare the sensitivity of soft sweep detection to
subrange size across different dispersal kernels and mu-
tation rates, we focus on the probability of detecting the
same allele in a pair of individuals randomly sampled
from a subrange, Phard,s(2) (also called the species ho-

moallelicity of the subrange). This probability is high
only when the subrange is mostly occupied by the core
of a single clone; it is low if the subrange contains cores
belonging to different clones, or a combination of cores
and haloes. Therefore, we expect χ (or equivalently the
average mass-equivalent radius 〈req〉, which we may use
as a simulation-derived estimate for χ in 1D) to also be
the relevant scale to compare Ls values across different
situations. Fig. 9(a) shows the dependence of Phard,s(2)
on Ls/〈req〉 for different dispersal kernels and mutation
rates in the χ � L limit. As with the global sam-
pling probabilities reported in Fig. 7(b), we find that the
rescaling of subrange size with 〈req〉 captures much of
the variation among different mutation rates (symbols)
for a given dispersal kernel. In contrast with the global
sampling statistics, however, hard sweep detection prob-
abilities are suppressed (or equivalently, soft sweeps are
easier to detect for the same rescaled subrange size) as
the jump kernel is broadened. At high values of µ in
the wavelike expansion limit, the shape of the curves is
well-approximated by the null expectation for an ideal-
ized clone size distribution where all clones are perfectly
contiguous segments of equal size Xave. As µ falls below
d+1, the prevalence of overlapping haloes increases local
diversity at the scale of satellite clusters, much smaller
than the typical clone size would dictate. The effect is es-
pecially strong in the marginal and stretched-exponential
growth regimes (µ ≤ d), which was associated with the
halo dominating over the core (Figs. 3 and 5).

A different measure of subrange diversity is the to-
tal number of distinct alleles present in a subrange on
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mutation rate ũ = 10−6. At the same mutation rate, broader dispersal kernels lead to a larger average clone size (〈X〉 ≈ 980,
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sweeps become increasingly likely for the broader dispersal kernels; the broken-up structure of clones compensates for their
smaller overall number. For small enough subranges, the order of values of Phard(j) with increasing µ is inverted compared to
the values at Ls = L.
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FIG. 9 Different measures of diversity within a subrange are sensitive to different characteristic scales. (a)
Probability Phard,s(2) of observing a single allele in a pair drawn from a subrange of size Ls for different dispersal kernels
(colours, labeled) and mutation rates [symbols, see legend in panel (b)], for 1D simulations with L = 106, as a function of
the ratio Ls/Xave. In all cases, the population range was chosen to be many times larger than the characteristic size χ and
harbours many distinct alleles. The dashed line is the prediction if all clones are of the same size Xave, in which case geometry
dictates that Phard,s(2) = {1 − x/3, x < 1; 1/x − 1/(3x2), x ≥ 1}. The inset shows data for µ = {0.6, 1.0, 3.0} on log axes.
(b) Number of distinct alleles nc,s observed in a subrange of size Ls, shown as a function of the ratio Ls/〈rmax〉. Values are
scaled by 〈rmax〉/〈req〉, the expected number of clones in the area occupied by the average halo. The solid line corresponds to
nc,s〈req〉/〈rmax〉 = Ls/(2〈rmax〉), or equivalently nc,s = Ls/(2〈req〉).

average, which we call nc,s. Unlike the subrange ho-
moallelicity, which was dominated by the most prevalent
clone in the subrange, this measure gives equal weight
to all clones, and is sensitive to haloes that overlap with
the subrange. The expected number of distinct cores
in the subrange is Ls/(2〈req〉); in the absence of haloes,
we would expect nc,s to be equal to this value. How-

ever, haloes of clones whose cores are outside the sub-
range would cause nc,s to exceed the number of cores in
the subrange. This enhancement in diversity due to en-
croaching haloes would be expected to occur only when
the subrange is smaller than the average clone extent in-
cluding the halo, i.e., when Ls < 2〈rmax〉. When the
subrange is larger than the typical halo extent, the cores
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of clones whose haloes contribute to nc,s are also ex-
pected to lie within the subrange, and are accounted for
in Ls/(2〈req〉). This expectation is confirmed in Fig. 9(b).
When the subrange size is rescaled by the extent of the
clone including the halo, the average number of distinct
alleles in the subrange follows nc,s = Ls/(2〈req〉) (solid
line) in all cases, provided Ls/〈rmax〉 > 2. For smaller
subrange sizes, nc,s lies above this estimate, reflecting
the enhancement of local diversity due to encroaching
haloes.

III. DISCUSSION

Adaptation in a spatially extended population often
uses different alleles in different geographic regions, even
if the selection pressure is homogeneous across the entire
range. The probability of such convergent adaptation [21]
and the patterns of spatial soft sweeps that result de-
pend on two factors: the potential for the population to
recruit adaptive variants from either new mutations or
from the standing genetic variation, and the mode of dis-
persal. Previous work has focused on the two extremes
of dispersal phenomena: panmictic populations without
spatial structure [3, 4, 5] or wavelike spreading due to
local diffusion of organisms [11, 21]. However, gene flow
in many natural populations does not conform strictly to
either limit. Many species experience some long-distance
dispersal either through active transport or through pas-
sive hitchhiking on wind, water, or migrating animals
including humans [12, 13, 14]. The dynamics of adap-
tation of populations with a large range can be strongly
influenced by long-distance dispersal even when dispersal
events are rare [22].

We have described spatial patterns of convergent adap-
tation for a general dispersal model, with jump rates
taken from a kernel that falls off as a power-law with
distance. Although the underlying analysis is applicable
to more general dispersal kernels, our specific choice of
kernel allows us to span a wide range of outcomes using
a single parameter. We have shown that long-range dis-
persal tends to break up mutant clones into a core region
dominated by the clone, surrounded by a disconnected
halo of satellite clusters and isolated demes which mingle
with other alleles. A key result of our analysis is that al-
though the total mass of a clone is well-captured by the
extent of the core region, the sparse halo can extend out
to distances that are significantly larger than the core,
sometimes by orders of magnitude. Therefore, under-
standing clone masses alone provides incomplete infor-
mation about spatial soft sweep patterns, and can vastly
underestimate the true extent of mutant clones.

By analyzing the balance between the jump-driven ex-
pansion of solitary clones and the introduction of new
mutations, we have identified three characteristic length
scales that quantify the spatial relationships between core

and halo: the characteristic core extent χ, which sets the
average clone mass; the radial extent ψ within which well-
developed satellite clusters are expected; and the outer
limit ζ within which both satellite clusters and isolated
demes are typically found. As the kernel exponent µ
is varied, these length scales demarcate three regimes
with qualitatively different core-halo relationships: com-
pact cores with insignificant haloes, similar to the case
of wavelike growth, for µ > d + 1; a dominant high-
occupancy core surrounded by a halo of well-developed
satellite clusters which extend to a size-independent mul-
tiple of the core radius (ζ ∼ ψ ∝ χ) when d < µ < d+ 1;
and a halo including a significant number of isolated
demes in addition to satellite clusters, which may extend
over a region orders of magnitude larger than the core
(ζ � ψ � χ) when µ < d.

We have also studied the signatures left behind by
these patterns on population samples that are taken ei-
ther from a local region, or globally from the entire range.
Under which conditions, and for which types of samples,
can we expect to observe a soft sweep? We have found
that when ranges with similar overall diversity (as judged
by the number of distinct clones in the entire range) are
compared, broadening the dispersal kernel has opposing
effects on soft sweep detection at global and local scales:
soft sweeps become harder to detect in a global random
sample, but easier to detect in samples from smaller sub-
ranges.

Besides having consequences for detecting and inter-
preting evidence for spatial soft sweeps, the breakup of
mutant clones by long-range dispersal also impacts future
evolution after the soft sweep has completed. Our anal-
ysis describes the spatial patterns arising in the regime
of strong selection, where the large advantage of benefi-
cial mutants over the wildtype dominates the evolution-
ary dynamics. Once the entire population has adapted
to the driving selection pressure, smaller fitness differ-
ences among the distinct alleles will become significant,
and modify the spatial patterns on longer time scales.
Selection is most sensitive to these fitness differences at
the boundaries separating demes belonging to different
clones. For the same global diversity, the total length
of these boundaries is strongly influenced by the con-
nectivity of clones, and grows significantly as the kernel
exponent is reduced, thereby modifying the post-sweep
evolution of the population. The post-sweep evolution
could also favour well-developed satellite clusters over
isolated demes of one allele within a region dominated
by another: isolated demes are likely to be taken over by
their surrounding allele through local diffusion of individ-
uals. Therefore, the characteristic length ψ may prove to
be a relevant spatial scale for the post-sweep evolution,
even in the regime µ < d where ζ sets the extent of the
halo in the sweep patterns.

Although a quantitative evaluation of our model us-
ing real-world genomic data is beyond the scope of this
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work, some qualitative features of long-range dispersal
can be identified in previous studies of spatial soft sweeps.
The evolution of resistance to widely-adopted drugs in
the malarial parasite Plasmodium falciparium is a well-
studied example of a soft sweep arising in response to a
broadly applied selective pressure. While multiple mu-
tant haplotypes conferring resistance to pyrimethamine-
based drugs have been observed across Africa and South-
east Asia, the number of distinct haplotypes is smaller
than would have been expected if resistance-granting mu-
tations were confined to their area of origin [23]; this fea-
ture has been linked to long-distance migration of para-
sites through their human hosts, which allowed individual
haplotypes to quickly spread across disconnected parts of
the globe [24]. Within the same soft sweep, high levels
of spatial mixing of distinct resistant lineages was also
observed in some sub-regions [25]. These observations
are consistent with the contrasting effects of long-range
dispersal we have quantified in our model: at a given
rescaled mutation rate, dispersal reduces diversity glob-
ally, but increases the mixing of alleles locally. Advances
in sequencing technology have driven rapid improvements
in the spatiotemporal resolution of drug-resistance evolu-
tion studies [26], making them a promising candidate for
quantitative analysis of the spatial soft sweep patterns
we have described.

Many interesting questions remain to be explored. Our
simulation studies in d = 2 could be significantly ex-
panded. We have also focused on the limit in which the
average clone size is many times smaller than the entire
range. It would also be interesting to study the statistics
of soft sweeps when the extent of the range is compa-
rable to the characteristic length scale χ, making a soft
sweep an event of low but significant probability which
may vary significantly with the dispersal kernel.

The applicability of our results to continuous popula-
tions without an imposed deme structure is an open prob-
lem. In our model, the deme structure is used to impose
a local population density and allows us to separate the
local dynamics of fixation from the large-scale behaviour
driven by rare but consequential jumps. However, the
theoretical picture of growth via the merger of satellite
outbreaks with an expanding core does not rely on the
deme structure. Therefore, we expect aspects of our re-
sults to also hold in continuous populations under cer-
tain parameter regimes. However, explicitly translating
the parameters and defining the correct continuum limit
of deme-based models is known to be challenging [27],
and presents an interesting avenue for future work. Our
simulations could also be modified to exploit advances in
computational modeling of continuum populations [28].

The model can also be extended to include additional
mechanisms involved in parallel adaptation. Besides re-
curring mutations, standing genetic variation (SGV) in
the population is a important source of diversity for soft
sweeps [3]. Long-range dispersal could impact both the

spatial distribution of SGV before selection begins to act,
and the spreading of alleles from distinct variational ori-
gins during the sweep [21]; both situations can be ex-
plored through extensions of our model. In the latter
case, we expect the distinct regimes of core-halo patterns
for different jump kernels to persist, but with the char-
acteristic core size set by the initial distribution of vari-
ational origins rather than mutation-expansion balance.

The necessity of including heterogeneity motivates a
natural set of extensions of the model. When soft sweeps
arise due to mutations at different loci producing sim-
ilar phenotypic effects, some variation in fitness among
the distinct variants is inevitable. In panmictic models,
fitness variations do not significantly affect the probabil-
ity of observing a soft sweep, provided that the varia-
tions are small relative to the absolute fitness advantage
of mutants over the wildtype [5]. Since spatial struc-
ture restricts competition to the geographic neighbour-
hood of a clone, we expect the effect of fitness variation
to be even weaker than for panmictic populations, and
our results should be robust to a small amount of vari-
ation in fitness effects. However, when fitness variations
among mutations are large enough to be significant, the
impact of the variations could depend on the dispersal
kernel, and show qualitatively different behaviours in the
distinct regimes of power-law and stretched-exponential
growth. Similarly, spatial heterogeneities in the selec-
tion pressures could lead to so-called “patchy” landscapes
which lead to certain mutations being highly beneficial
in some patches but neutral or even deleterious in oth-
ers [29]. Convergent adaptation on patchy landscapes is
likely to be significantly impacted by long-range disper-
sal which would allow mutations to spread efficiently to
geographically separated patches.

Finally, the assumptions of strong selection and weak
mutation/migration allowed us to ignore the dynamics of
introduction of beneficial mutations within a deme. Re-
laxing these assumptions would lead us to a more general
model with an additional time scale characterizing the lo-
cal well-mixed dynamics at the deme level. The interplay
between this time scale and the time scales governing the
large-scale dynamics driven by long-range dispersal could
lead to new patterns of genetic variation during conver-
gent adaptation.

IV. MATERIALS & METHODS

A. Simulation methods

Simulations were written in the C++ programming lan-
guage, and utilized the standard Mersenne Twister en-
gine to generate pseudorandom numbers. A simulation
of linear size L in d dimensions is begun by initializing
an array of integers of size Ld. Each array position corre-
sponds to a single deme, and the associated integer value
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stores the allelic type. The array is initialized with all
demes bearing the value 0 signifying the wildtype (WT).

As described in the text, the simulations only need to
incorporate the two types of events which could poten-
tially change the identity of a deme: a mutation of a WT
deme, or an attempted migration from a mutant deme.
To accomplish this, each deme is assigned a weight of ũ if
WT, and 1 if a mutant deme. At each discrete simulation
step, a deme is picked at random with probability pro-
portional to its weight. If the deme chosen is WT, it is
assigned a unique integer that was not previously present
in the array. If the deme chosen contains a mutant allele,
a jump is attempted. The jump distance r is obtained by
drawing a random number X evenly distributed between
0 and 1, and computing the variable r = X−1/µ; this
produces a variable with normalized probability density
function P (r) = µr−(1+µ) for kernel exponent µ. The
distance is then multiplied with a random d-dimensional
unit vector (simply ±1 in d = 1, and evenly distributed
on the unit circle in d = 2). Each vector component
is rounded to the nearest integer to obtain a jump vec-
tor on the lattice. The target position for the migration
attempt is obtained by adding this jump vector to the
source position, and wrapping the result into the range
of size Ld assuming periodic boundary conditions.

If the target deme is WT, its value is updated with
the allelic identity of the source; otherwise the migra-
tion attempt is unsuccessful. If the simulation step ends
in a mutation or a successful migration, the probability
weights associated with the demes are updated and the
next step is executed. The simulation continues until all
Ld array positions contain nonzero integers signifying the
completion of the sweep. The final array of Ld integers
constitutes the simulation output.

A single simulation took between a few minutes and
24h of CPU time depending on the parameter values.
Simulation results were processed using scripts written in
the Python programming language. All reported results
were obtained by averaging over 20-100 independent sim-
ulations for each set of parameters, depending on system
size.
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Appendix A: Forms for `(t) and χ

Here we describe the analytical forms for `(t) used
to compute the predictions for the characteristic length
scale χ in main text Fig. 4. Ref. 17 derived asymptotic
growth forms for the long-time limit of the domain core
`(t) (i.e. the region within which the occupancy of the
range by an isolated domain is of order 1) for dispersal
kernels with tails that fall off as r−(µ+d):

A exp(Btη), 0 < µ < d,

A exp

[
log2(Bt)

4d log 2

]
, µ = d,

At1/(µ−d), d < µ < d+ 1,

At log(Bt), µ = d+ 1,

At, µ > d.

(A1)

Here, η = log2[2d/(d+ µ)], and A and B are magnitude
scales for ` and t that depend on µ and on details of the
dispersal kernel. (In the wavelike growth regime, µ >
d, A is the front velocity of the growing domain.) The
logarithmic correction to linear growth for µ = d + 1 is
a conjecture for d = 2, which is supported by simulation
data.

To extract A and B for the specific kernels used here,
we performed separate simulations in which domains
were grown from a single seed at the origin at t = 0.
The domains were grown up to final masses of order 108

for µ ≤ 1 and 105 for µ > 1 in 1D, and of order 107 in
2D, with the background mutation rate turned off. For
each value of µ, 20 independent simulations were per-
formed and the mass evolution over time, averaged over
the independent runs, was equated to ωd`

d(t) following
our definition of `(t) in the main text. The `(t) thus
extracted was fit to the growth forms to obtain A and
B. (Given that the growth of ` with t can be extremely
fast for µ < d + 1, in practice we fit the functional de-
pendence of log `(t) against log t, with logA and logB
as free parameters.) Using the total mass as a proxy for
`(t) leads to an overestimate of the true size of the core,
because it also counts individuals in the inevitable “halo”
that exists due to jumps from the core to regions outside
it during the stochastic growth process. The halo con-
tains a fraction of the individuals in the core, which falls
as µ increases. This correction is expected to provide a
multiplicative constant of order 1 to `(t), which is incon-
sequential to the prediction of Xave which itself equals χ
only up to an overall constant for each µ.

The asymptotic forms only agree with the measured
single-allele growth profiles when `(t) has grown beyond
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FIG. A1 Occupancy profiles for different mutation rates collapse when the radial coordinate is rescaled by
clone size. Averaged occupancy profiles 〈ρ〉(r/req) measured from the final states of 1D simulations with L = 106. Panels
correspond to different dispersal kernels quantified by µ = 0.4 (a), µ = 1 (b), and µ = 1.6 (c). Colors indicate different rescaled
mutation rates. Each curve is itself an average over clones of different sizes, and the average clone sizes vary by orders of
magnitude among the different values of ũ. Despite this variation, the profiles for a given dispersal kernel collapse onto a single
curve, confirming the validity of the rescaling of the distance variable r with the mass-equivalent clone radius req. The smallest
and largest average clone sizes (at ũ = 1e − 3 and ũ = 1e − 6 respectively) are (130, 5.8 × 104) for µ = 0.4; (84, 1.6 × 104) for
µ = 1.0; and (56, 4100) for µ = 1.6.

a certain size. However, this threshold size becomes ex-
tremely large (i.e. order of the simulation range or larger)
for values of µ close to d [17], making the asymptotic
forms of limited utility to predict χ. Ref. 17 also derives
an analytical scaling form for the behaviour of log2 `(t)
over a much broader range of times for µ close to d, which
reads

log2 `(t) ≈ logA+
2d

δ2
[
(Bt)ζ − ζ log(Bt)− 1

]
, (A2)

where δ = µ− d and

ζ = − δ

2d log 2
, δ > 0,

ζ = − log (1 + δ/2d)

log 2
, δ < 0.

As before, we used fits of log `(t) against log t to ob-
tain the parameter values logA and logB. From our
fits to the single-allele growth simulations, we found that
the scaling form is significantly more accurate than the
asymptotic forms of Eq. A1 for µ ≤ 1.4 in 1D, and
µ ≤ 2.6 in 2D (except fo the marginal value µ = d in
each case). As a result, we use the scaling form for our
predictions of χ for these values of µ. Table III summa-
rizes the values of logA and logB extracted from fits to
the theoretical forms in Eqs. A1 and A2 as appropriate.

In all cases, the forms for log `(t) with fitted values for
A and B are accurate to within a few percent for `(t) of
order 20 and larger. The inaccuracy of `(t) for smaller
domains leads to discrepancies between the measured av-
erage clone size and the prediction based on χd for large
µ and high rescaled mutation rates, which drive down the
average clone extent into the regime of inaccurate `(t).

1D simulations

µ logA logB

0.2* 0.122 0.270

0.4* −0.146 0.509

0.6* 0.274 0.671

0.8* 0.417 0.861

1.0 0.0246 1.23

1.2* −0.242 1.40

1.4* 0.302 1.32

1.6 −0.841 na

1.8 0.558 na

2.0 0.0253 0.00

3.0 0.00 na

4.0 −0.271 na

2D simulations

µ logA logB

0.5* −0.333 0.403

1.5* −0.788 1.31

2.0 −1.26 2.22

2.2* −1.76 2.72

2.4* −2.17 3.32

2.5* −3.17 4.23

2.6* −4.09 5.21

2.8 −0.489 na

3.0 −1.10 0.142

3.5 0.271 na

4.5 −0.002 96 na

5.5 −0.105 na

TABLE III Values of parameters A and B from fits. Es-
timates of logA and logB obtained by fitting the growth dy-
namics of single clones as described in the text. The asterisk
denotes use of the scaling form (Eq. A2) over the asymptotic
form (Eq. A1).

Once A and B are determined from the fit either to
Eq. A1 or Eq. A2, the relation defining the characteristic
length, Eq. 1 (main text), is solved to obtain t∗(u) and
χµ(u) = `µ(t∗). Table 1 in the main text reports the
functional forms for χ derived upon assuming that `(t)
follows the asymptotic forms. When the more complex
scaling form is used for `(t), Eq. 1 in the main text can
still be solved to obtain an analytical solution for χ(u) in
terms of Lambert W -functions. For each dispersal kernel,
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the solution χµ(u) is analytically determined taking only
µ, and the values of A and B estimated from fits (as
reported in Table III) as inputs.

The characteristic length scale χ quantifies the bal-
ance between domain growth and mutations that sets
the average domain size via Xave ∝ χd up to a mul-
tiplicative constant of order 1; the precise relationship
between χd and Xave is determined by the distribution
of domain sizes about the characteristic size, which is
in turn established by the complete growth dynamics.
We have an explicit form for the domain size distribu-
tion in the constant-velocity wavelike growth regime in
1D, µ > 2 (Eqs. D2 and D3), which allows us to de-
rive Xave = 2

√
2/πχ ≈ 1.6χ in this regime. For the 1D

results in Fig. 4, we find that multiplicative constants
close to 1.6 also lead to agreement between Xave(u) and
χ(u) for other values of µ, over many orders of magni-
tude of u. The agreement is weakest for high u which
corresponds to small domains (average clone sizes of 100
or smaller); here the functional forms of `(t) are least
accurate and stochastic effects begin to dominate the de-
terministic growth implied by `(t).

Appendix B: Simulation results in 2D

Here, we describe preliminary results for average clone
mass, clone extent, and frequency spectra as measured
from 2D simulations. Simulating large ranges is a chal-
lenge in two dimensions: effectively simulating a system
in which key jumps are of order l in length requires a
range with over l2 demes (in contrast to l demes in 1D).
We have succeeded in simulating ranges of linear size
L = 4096 (hence 40962 ≈ 1.6×107 demes), and restricted
ourselves to a range of mutation rates for which the total
range mass is many times the average clone mass, so that
we are in the regime of multiple-origin sweeps. However,
we still expect finite-size effects to be significant for mea-
sures that depend on the spatial extent of the halo, which
can stretch out to many times the mass-equivalent radius
for small µ.

Fig. A2 compares the average clone size to the the-
oretical expectation πχ2, where the functions χµ(ũ) are
described in Appendix A. As with the 1D results, we find
quantitative agreement with the theory lines upon using
a single additional parameter — an overall magnitude
scale which varies between 0.75 and 0.8.

Fig. A3 reports the spatial extent of the clones from
the two largest mutation rates, for which finite size ef-
fects are smallest. In 2D, we define the extent in terms of
the eighth central moment: r8max ≡

∑X
i=1 |ri − rcm|8/X,

where i indexes the demes belonging to that clone, ri is
the position vector of deme i (computed modulo L/2 for
each component to account for periodic boundary con-
ditions), and rcm ≡ (

∑X
i=1 ri)/X is the clone center of

mass. The use of a high moment in the definition of rmax

10-8 10-7 10-6 10-5

ũ
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FIG. A2 Average clone mass and mutation-expansion
balance in 2D simulations. The average clone mass mea-
sured from 2D simulations as a function of rescaled mutation
rate, scaled by the expected dependence (∝ ũ2/3) for wavelike
growth. Each point represents an average over 48 indepen-
dent simulations and error bars denote measured standard
deviations across repetitions. Dashed lines show the theoret-
ical prediction πχ2, using χ = χµ(ũ) functions described in
Appendix A. Each theory line is multiplied by a µ-dependent
magnitude factor whose value is 0.8 for µ < 3, 0.75 for µ = 3,
and 0.73 for µ > 3.

ensures that the farthest demes from the centre of mass
contribute strongly to rmax even if they are rare. The
specific choice of the eighth moment balances the need
to emphasize the farthest demes (which favours a high
moment) with the necessity of preventing loss of floating-
point precision in the computation (which requires that
the moment not be too high). Using the sixth moment
leads to similar results. By contrast, using too low a mo-
ment (such as the second moment, which provides the
radius of gyration of the clone) gives values of rmax that
are very close to req since the core provides the major
contribution.

We find that the dependence of the ensemble-averaged
extent on the dispersal kernel is well captured by the
length scale ψ in the regime of power-law growth in 2D,
2 < µ < 3, with a single additional parameter setting the
overall magnitude scale. We note that the asymptotic
ratio ψas/χas, which was successful in reproducing rmax

for the 1D data, does not agree with the 2D simulation
data for the current parameter range. This is because
the typical sizes of clones in the 2D simulations is too
small for the asymptotic growth rule (`(t) ∼ t1/(µ−d)) to
be accurate. Instead, the scaling solution from Appendix
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FIG. A3 Spatial extent of clones in 2D simulations.
Ensemble-averaged spatial extent of clones in 2D, normalized
by the ensemble-averaged mass-equivalent radius. See text for
definition of rmax in 2D. Dashed lines show theoretical expec-
tations ζ/χ and ψ/χ for ũ = 1e − 6, computed as described
in Appendix A. The prefactor was chosen so that the lines
coincide with the simulation data point at µ = 3. Finite size
effects are more severe in 2D, and the measured values for
µ < 2 underestimate the true values that would be measured
in an infinitely large range.

A, which accurately captures the growth of single clones
at the relevant size scales, must be used.

As was seen with the 1D data, the extent starts to
depart from ψ as µ → d, consistent with an increased
prominence of rare jumps out of the core region that land
beyond well-established satellite clusters. However, the
measured extent remains far below the theoretical bound
ζ/χ, which grows extremely fast as µ falls below 2. We
hypothesize that the ensemble averages are severely lim-
ited by finite-size effects; to attempt to match the the-
oretical expectation for µ = 1, for instance, we would
require range sizes over an order of magniture larger in
linear size, beyond our current capabilities for 2D sim-
ulations. Nevertheless, our limited simulations confirm
that clones can attain a spatial extent many times larger
than their mass-equivalent radius as the dispersal kernel
is broadened.

To summarize, the results from preliminary 2D sim-
ulations show quantitative evidence for the relevance of
the length scale χ, when combined with theoretical pre-
dictions for `(t) from Ref. 17. The simulations also show
that the halo can extend over much longer distances than
expected for compact clone, with evidence for the rele-
vance of the length scale ψ obtained from the core-halo
picture in the power-law growth regime d < µ < d + 1.
However, more extensive simulations with much larger
range sizes are needed to quantitatively test the relevance
of the second scale ζ.

Appendix C: Alternative derivation of secondary length
scale ψ

Here, we provide an alternative estimate for the length
scale ψ that sets the extent of the halo of a “typical”
clone, which agrees with the estimate ψ = `(2t∗) pro-
posed in the main text. The iterative scaling picture of
Ref. 17 argues that, for growth in the marginal regime
near µ = d, key jumps that land at a distance `(t) from
the mutational origin typically occurred around time t/2
and spanned a distance of roughly `(t) connecting source
and target regions each of size ∼ `d(t/2) (Fig. 2b). The
core extent at a given time constrains the expected num-
ber of these key jumps that have contributed to the core
boundary by that time: they can be neither too rare (in
which case the core would not have reached the purported
boundary) nor too common (which would imply that the
region should have been filled much earlier). Since the
number of key jumps is itself set by the extent of the
core (the source for the jumps) together with the jump
kernel, the above constraint equates to a self-consistency
requirement on `(t) [17]:

t `2d(t/2)G[`(t)] ∼ 1,

where G(r) = J(r)r1−d/ωd is the rate of jumps per unit
area of source and target regions when both are separated
by a distance r. In the soft-sweep model, key jumps
compete with new mutations in the target region, which
occur at a rate of order ũ`d(t/2). The growth of the halo
is obstructed by new clones when the rate of mutations
arising in the target region becomes comparable to the
rate of key jumps into it from the expanding core. This
requires

ũ`d(t/2) ∼ G[`(t)]`2d(t/2) ∼ 1/t⇒ t`d(t/2) ∼ 1/ũ.
(C1)

Up to factors of order unity, the above scaling relation is
satisfied by t = 2t∗, where t∗ was the solution to Eq. 1.
Therefore, we arrive at the same expression, ψ ≡ `(2t∗),
for the characteristic halo extent as we had derived in the
main text from considerations of the jump-driven growth
of unobstructed clones.

Appendix D: Exact allele frequency spectra in the
panmictic and 1D wavelike spreading limits

1. Panmictic limit

The panmictic limit in our lattice model would corre-
spond to jumps being attempted from the source deme
to a randomly chosen deme in the entire range. The
allele frequency spectrum and related sampling probabil-
ities can be computed exactly in this limit by mapping
to an urn process. To see this, consider the evolution of
allele frequencies in our lattice model when the fraction
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of wildtype sites is w and mutants occupy the lattice with
individual fraction fi for mutant i. At the next time step,
the probability weight associated with picking a wildtype
site to introduce a new mutation is ũ×Nw = θw, where
θ = ũN is the initial mutation rate for the empty lat-
tice. By contrast, the probability weight associated with
picking a site of mutant type i for an attempted dispersal
event is Nfi, but only a fraction w of these attempted
dispersal events is successful since the mutant only fixes
in the target deme if it contains the wildtype. There-
fore the probability weight of a successful reproduction
of mutant i is Nwfi. The final statistics of clone sizes
is determined by the relative rate of mutation to repro-
duction at each time step [5] (unlike the times for the
appearance of new clones which depends on the absolute
rates), which is θ versus ni = Nfi at all times since the
wildtype fraction drops out.

The genealogy of new mutants in this model is identi-
cal to that of a stochastic process called Hoppe’s urn [20],
which begins with an urn containing a single black ball
with an assigned probability weight θ. At any time step,
a ball is picked from the urn with probability propor-
tional to its weight. If the black ball is chosen, it is
returned along with a ball with a new colour and prob-
ability weight 1 (a new mutant). If a coloured ball is
chosen, it is returned along with one copy of itself. The
relative rate of mutation to the duplication of a ball with
colour i is θ versus ni at each turn, thus establishing
the equivalence to our lattice model. The distributions
of mutant frequencies in this urn model are the same as
those for the infinite allele model at equilibrium [18]. In
particular, the allele frequency spectrum is

f∞(x) =
θ

x
(1− x)θ−1. (D1)

Fig. 6 shows that panmictic simulations reproduce the
theoretical limit, which also persists for µ ≈ 0.5 in two
dimensions.

The average clone size in the panmictic limit can be ob-
tained from the allele frequency spectrum by computing
the expected number of distinct clones nc. The smallest
possible clone frequency is 1/N . Therefore, the expected
number of distinct clones, nc, is the sum of all allowed

allele frequencies, i.e. nc =
∫ 1

1/N
f(x) dx, which can be

evaluated exactly using f(x) from Eq. D1. For large N ,
we have nc ≈ ũ[−1+θ+N logN−N(γ+ψ0(θ)], where γ
is the Euler-Mascheroni constant and ψ0 is the digamma
function. A further simplification, valid for θ � 1, is
nc ≈ θ log(1/ũ) [30]. Once nc is computed, the average
clone size is N/nc.

Note that a mapping of the parallel adaptation model
to an urn process was also identified in preprint [31].

2. Wavelike spreading limit in 1D

For µ > d+1, domains are predicted to grow in radially
expanding waves, whose speed depends on the details of
the dispersal kernel. The statistics of soft sweeps in this
limit was previously explored by Ralph and Coop [11],
who observed the equivalence of the process in the wave-
like limit to Kolmogorov-Johnson-Mehl-Avrami (KJMA)
models of grain growth. KJMA models track the evolu-
tion of isotropic domains which nucleate at random po-
sitions in space at a constant rate. Nucleated domains
grow isotropically at a constant front velocity until they
run into other domains, leaving a boundary separating
domains that nucleated at different origins. The final
pattern of domains matches the spatial pattern of clones
in the mutation-expansion model, where individual do-
mains correspond to distinct mutants.

In one dimension, the final grain size distribution for
a KJMA process in which each nucleation gives rise to
a unique domain is known exactly [19]. Using this re-
sult, we obtain the allele frequency spectrum for wavelike
growth in 1D (µ > 2) as

fw(x) =

(
L√
2χ

)2

p

(
Lx√
2χ

)
, (D2)

where χ =
√
v/2u is the characteristic length scale for

domains growing with front speed v, and

p(s) =

√
π

4
(1−erf(s))

[√
2πe

s2

2

(
s2 + 1

)
erf

(
s√
2

)
+ 2s

]
,

(D3)
where erf is the error function. The result is valid as long
as the domain sizes are not limited by the range size, i.e.
L� χ.

The front velocity for arbitrary µ > d+1 is not known
analytically, but its limiting value for very large µ in the
lattice model is known. In the limit µ � d + 1, prac-
tically all attempted jumps land exactly one lattice site
away from the source (this is the lower cutoff for allowed
jump distances). Isolated domains grow via jumps from
the demes situated at the edges, only half of which are
successful in advancing the front (the other half land on
the occupied side of the front and have no effect). There-
fore, the front velocity is 1/2 a lattice site per generation
in the large-µ limit. The frequency spectra for µ > d+ 1
approach this limit as µ increases, see Fig. 6. We can also
extract the µ-dependent front speed by a one-parameter
fit of Eq. D2 to the observed frequency spectra, and ob-
tain consistent results when performing fits at different
values of the mutation rate for any given µ, as shown in
Fig. A4.
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FIG. A4 Fits to the exact frequency spectrum in the wavelike growth limit. The measured allele frequency spectra
from 1D simulations in the wavelike growth regime (µ > d+1) are shown along with the theoretical form from Eqs. D2–D3. The
unknown front speed v is extracted using a one-parameter nonlinear fit, and reported in units of lattice steps per generation.
The fit values are consistent with v being determined by µ and independent of ũ. The front speed approaches the limit of 1/2
lattice steps per generation as µ increases.

Appendix E: Deterministic approximation to allele
frequency spectra in 1D

The analysis of the panmictic limit in the main text
revealed that the distribution of alleles as µ → 0 was
identical to that of Hoppe’s urn process. The continuous-
time analogue of Hoppe’s urn is the Yule process with
immigration, in which new alleles enter the population
as a Poisson process with rate θ, and already-present
individuals give birth to offspring at rate 1 without death.
Yule’s process generates the same distribution of allele
sizes as Hoppe’s urn, but the continuous-time description
has the advantage that the dynamics of different alleles
are independent: the population of allele i at time t is
proportional to et−ti where ti was the time at which it
entered the population. Statistical properties of the allele
frequencies, such as the frequency spectrum f∞(x), can
be derived efficiently within this viewpoint.

In our simulations, the growth rate of alleles is not con-
stant over time even if we assume panmictic migration;
the success of each birth event is proportional to the wild-
type fraction w which falls as the simulation progresses.
However, as we saw in the main text, the mapping to
Hoppe’s urn/Yule process remains exact because the rate
of generation of new alleles is also proportional to w and
the relative rates of birth and migration remain constant
throughout the duration of the simulation in the panmic-
tic limit. This is no longer true for µ > 0 when domains
grow somewhat contiguously, because the likely targets
for migrants become correlated with the occupancy of the
lattice and the reduction in growth rate may not simply
be given by the fraction w. If we ignore these correlations,
we arrive at the following approximate continuous-time
model for the establishment and growth of mutant clones:
new alleles enter the population at a constant rate θ, and
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grow according to the growth rule `(t) for the particular
dispersal kernel, without interference from other clones.

We can make analytical headway if we further assume
that the arrival of new alleles is deterministic rather than
Poisson: the kth allele enters the population at time tk =
k/θ, and hence the size of the kth clone is nk = `(t−k/θ).
The total number of alleles, K, is fixed by the range
size: N =

∑K
k=1 nk. In this deterministic model, the

strict time ordering of alleles implies that there are k
alleles with size greater than or equal to nk; i.e. if we can
invert the nk relation to get k(nk), this is the survival
function associated with the probability distribution of
nk and hence x = nk/N . The probability distribution
of x is precisely the allele frequency spectrum up to a
normalization.

Below, we summarize the outcome of computing f(x)
according to this deterministic approximation upon using
the asymptotic functional forms for `(t) in the different
regimes in 1D, summarized in Table I.

1. Power-law growth

The deterministic approach can be used to compute
an approximate frequency spectrum for the growth form
`(t) = At1/(µ−1), which is the asymptotic growth rule for
1 < µ < 2. In this case, we have a frequency spec-
trum that decays as a power law: f(x) ∼ xµ−2, up
to a hard cutoff at a maximal value determined by the
value of K that fills the entire range. Furthermore, the
form admits a rescaling that ought to collapse frequency
spectra across different system sizes and mutation rates:
f(x) = (L/Xave)

2F (Lx/Xave), where F (y) = yµ−2 up
to the cutoff ymax = µ/(µ − 1), which is the same as
Eq. 4 in the main text. Fig. A5 shows that the collapse
works very well across different mutation rates and two
system sizes. The predicted power law for f(x) is near-
quantitative for all µ except µ = 1.2, which is too close to
the marginal case µ = 1 for the asymptotic growth rule to
be relevant. The predicted cutoff frequency captures the
rough location of the dropoff in f(x), but the determin-
istic approximation fails to capture the “soft shoulder”
or the clones at very large frequency, which may have an
outsize influence on sampling statistics.

Note that the deterministic approximation predicts a
flat frequency spectrum f(x) = const. for linear growth
`(t) = vt, whereas the exact result for wavelike growth
in 1D from the Axe and Yamada results, which we have
seen to be quantitatively accurate for µ � 2, predict
a linear increase in the power spectrum f(x) ∝ x for
small x. The difference is due to the fact that the de-
terministic approximation assumes that growth happens
symmetrically toward both the left and the right at all
times, whereas the wavelike growth limit is characterized
by the left and right edges of the domain being inter-
rupted independently as they run into other domains, so

that one edge always advances for longer than the other.
We can also explicitly include the log t correction to lin-
ear growth exactly at µ = 2, and we find that the low-x
behaviour is unaffected (i.e. f(x) ∼ const. as x→ 0) but
there are contributions at higher x. These arise in the
“shoulder” region of the spectrum, which is not captured
by the deterministic analysis.

2. Marginal growth

If we use the growth form for µ = 1 in the deter-
ministic calculation, we no longer get a simple power
law for f(x); the functional form is instead f(x) ∼
exp(
√
a+ b log x/

√
a+ b log x/x) where a and b depend

on the prefactors associated with `(t) and on θ and K.
This form is not a strict power law in x. However, when
the various coefficients are computed using the full ex-
pression for `(t) measured from the growth of single do-
mains (Appendix A), we find that f(x) behaves similar
to a power law over a wide range of nk, with an effective
exponent between -0.65 and -0.85. Using the same rescal-
ing as for the power-law growth for the measured f(x)
gives reasonable collapse over a range of values of u and
L (Fig. A6) with a power law decay f(x) ∼ x−0.72. We
note that f(x) measured from simulations appears closer
to a power-law form for x → 0 than the deterministic
approximation.

3. Stretched exponential growth

In the stretched-exponential growth regime µ < d, the
rescaling of the frequency spectra for a specific kernel pro-
posed in Equation 4 is no longer exact. The rescaling as-
sumed that χ set all length scales in the problem; this was
true for power-law growth because the halo-dependent
scales ψ and ζ were proportional to χ (with proportion-
ality factors that depended only on µ and not on χ). By
contrast, for stretched-exponential growth the additional
length scales depend on the average clone sizes and hence
on ũ. However, Fig. 6 showed that the rescaling captured
much of the variation in f(x) across two well-separated
mutation rates, down to µ = 0.4.

Although we could compute approximate frequency
spectra using the deterministic calculation outlined
above, they are less revealing in this regime. Instead,
we gauge the inaccuracy of the proposed scaling in the
panmictic limit µ → 0 where we know the exact fre-
quency spectrum f∞. When Nũ = θ � 1, we have
Xave ≈ −1/(ũ log ũ) in the panmictic limit. Using this
result and the form for f∞ in Eq. 4, we find that

F∞(y) =
−1

y log ũ

(
1 +

y

θ log ũ

)θ−1
≈ −1

y log ũ

(
1 +

y

log ũ

)
,

(E1)
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FIG. A5 Deterministic approximation to allele frequency spectra. Allele frequency spectra in the power-law growth
regime for different mutation rates and system sizes. The rescaling is suggested by the deterministic calculation, it corresponds
to a clone size distribution whose only scale is the characteristic length scale χ or equivalently the average clone size Xave. The
solid line is the prediction f(y) = yµ−2 and the vertical dashed line indicates the maximal rescaled allele frequency µ/(µ− 1)
from the deterministic approximation.
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FIG. A6 Comparison of allele frequency spectra over a
range of system sizes for µ = 1. Allele frequency spectra
for µ = 1 over different values of L and u, rescaled according
to the assumption that the only length scale for the domains
is χ. The low-frequency behaviour is consistent with a power-
law decay that goes as x−0.72 (straight line).

where y = Nx/Xave and we have used θ � 1 in the sec-
ond step. We find that the function after rescaling has
a residual dependence on log ũ, both in the overall mag-
nitude and in the value yc ∼ log ũ of the dropoff in f .
The gentle logarithmic correction implies that the pro-
posed rescaling still captures much of the variation with
mutation rates for a given kernel, even if ũ is varied by
orders of magnitude, thus explaining the decent collapse
of curves at different mutation rates in Fig. 6 even for
µ < d.

Appendix F: Allele frequency spectra with a hard cutoff

The measured allele frequency spectra display a power-
law behaviour f(x) ∼ xp, p > −1 for small values of
x. For cores growing as contiguous domains, balancing
growth and mutation rates gives rise to a characteristic
linear domain size χ (and corresponding clone size χd)
for domain growth before a cone encounters a new mu-
tation. In a finite range of size Ld, such growth would
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imply an upper bound on the allowed allele frequency at
some value xc ∼ (χ/L)d. These observations suggest the
ansatz for the allele frequency spectra introduced in the
main text:

f(x) =


p+ 2

xp+2
c

xp, x < xc

0, x > xc,

(F1)

where the prefactor is determined by the normalization

condition
∫ 1

0
x f(x)dx = 1.

This ansatz ignores contributions from higher-
frequency clones, which are clearly significant especially
for small values of µ. We can evaluate the significance of
these contributions by comparing measured quantities to
expectations from the hard-cutoff ansatz below.

The average clone size Xave ≡ N/nc = N/
∫
f(x)dx

can be evaluated for all p > −1 as

Xave =
p+ 1

p+ 2
Nxc. (F2)

The sampling probability of observing only one allele
in a sample of size j evaluates to

Phard =

∫ 1

0

xjf(x)dx =
p+ 2

p+ j + 1
xj−1c (F3)

which deviates weakly from the exponential falloff
Phard = x∗j−1 expected if all clones are of the same size
and hence the same frequency x∗.

Appendix G: Sampling statistics in panmictic and 1D
wavelike growth limits

In the panmictic limit, µ → 0, sampling probabilities
are known analytically for all sample sizes [18]. Using
f∞(x) in Eq. 6 gives Phard = θ(j − 1)!Γ(θ)/Γ(j + θ) [5,
18] (where Γ denotes the gamma function). The result
has two distinct behaviours depending on the value of
θ = Nũ. When θ � 1, an exponential falloff Phard ∼
(1/θ)jθΓ(θ) is recovered for large j, whereas for θ � 1,
Phard(j) falls slower than 1− θ log j.

For 1D wavelike growth with constant front velocity,
Ref. [19] provides the exact form for the allele frequency
spectrum, Eqs. D2–D3. The probability of observing
only one allele in a random sample of size j is then

Phard =
∫ 1

0
xjf(x) dx = (

√
2χ/L)j−1

∫ L/(√2χ)

0
sjp(s) ds.

The latter integral cannot be evaluated in a closed form,
even when we consider L/χ� 1 so that the upper limit
can be replaced by s =∞. However, by tracking the posi-
tion of the maximum value of the integrand which occurs
at s ≈ √j, and using Laplace’s method to approximate
the integral, we arrive at

∫∞
0
sjp(s) ds ≈ 2jj/2p(

√
j),

which provides a correction to the leading contribution
(
√

2χ/L)j−1 to Phard. The resulting approximate expres-
sion,

Phard ≈ 2(
√

2χ/L)j−1jj/2p(
√
j),

is used in the dash-dotted line in Fig 7 of the main text.
Note that the approximation is only valid when the maxi-
mum value of the integrand lies below the upper integra-
tion limit; i.e. for j < L2/(2χ2). For larger values of
j, Phard is dominated by the upper limit, and scales as
(
√

2χ/L)j−1× (L/(
√

2χ))jp(L/(
√

2χ)) which is indepen-
dent of j; i.e. the probability of detecting a hard sweep
ultimately levels off for sufficiently large j.
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Hooftman, Journal of Ecology 105, 6 (2017).

[15] D. Mollison, in Proceedings of the Sixth Berkeley Sympo-
sium on Mathematical Statistics and Probability, Volume
3: Probability Theory (The Regents of the University of
California, 1972).

[16] M. A. Lewis and S. Pacala, Journal of Mathematical Bi-
ology 41, 387 (2000).

[17] O. Hallatschek and D. S. Fisher, Proceedings of the
National Academy of Sciences 111, E4911 (2014),
arXiv:arXiv:1403.4639v1.

[18] W. J. Ewens, Theoretical Population Biology 3, 87
(1972).

[19] J. D. Axe and Y. Yamada, Physical Review B 34, 1599
(1986).

[20] F. M. Hoppe, Journal of Mathematical Biology 20, 91
(1984).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/299453doi: bioRxiv preprint 

https://doi.org/10.1101/299453


29

[21] P. L. Ralph and G. Coop, The American Naturalist 186,
S5 (2015), arXiv:/dx.doi.org/10.1101/009803 [http:].

[22] R. Nathan, Science 313, 786 (2006).
[23] C. Roper, R. Pearce, B. Bredenkamp, J. Gumede,

C. Drakeley, F. Mosha, D. Chandramohan, and
B. Sharp, Lancet 361, 1174 (2003).

[24] C. Roper, R. Pearce, S. Nair, B. Sharp, F. Nosten, and
T. Anderson, Science 305, 1124 (2004).

[25] R. J. Pearce, H. Pota, M.-S. B. Evehe, E.-H. Bâ,
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