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Adaptation in extended populations often occurs through multiple independent muta-
tions responding in parallel to a common selection pressure. As the mutations spread
concurrently through the population, they leave behind characteristic patterns of poly-
morphism near selected loci—so-called soft sweeps—which remain visible after adap-
tation is complete. These patterns are well-understood in two limits of the spreading
dynamics of beneficial mutations: the panmictic case with complete absence of spatial
structure, and spreading via short-ranged or diffusive dispersal events, which tessellates
space into distinct compact regions each descended from a unique mutation. However,
spreading behaviour in most natural populations is not exclusively panmictic or diffusive,
but incorporates both short-range and long-range dispersal events. Here, we character-
ize the spatial patterns of soft sweeps driven by dispersal events whose jump distances
are broadly distributed, using lattice-based simulations and scaling arguments. We find
that mutant clones adopt a distinctive structure consisting of compact cores surrounded
by fragmented “haloes” which mingle with haloes from other clones. As long-range dis-
persal becomes more prominent, the progression from diffusive to panmictic behaviour
is marked by two transitions separating regimes with differing relative sizes of halo to
core. We analyze the implications of the core-halo structure for the statistics of soft
sweep detection in small genomic samples from the population, and find opposing ef-
fects of long-range dispersal on the expected diversity in global samples compared to
local samples from geographic subregions of the range. We also discuss consequences
of the standing genetic variation induced by the soft sweep on future adaptation and
mixing.

I. INTRODUCTION

Rare beneficial alleles can rapidly increase their fre-
quency in a population in response to a new selective
pressure. When adaptation is limited by the availabil-
ity of mutations, a single beneficial mutation may sweep
through the entire population in the classical scenario
of a “hard sweep”. However, populations may exploit
a high availability of beneficial mutations due to stand-
ing variation, recurrent new mutation, or recurrent mi-
gration [1, 2, 3, 4, 5] to respond quickly to new selec-
tion pressures. As a result, multiple adaptive alleles may
sweep through the population concurrently, leaving ge-
nealogical signatures that distinguish them from hard
sweeps. Such events are are termed soft sweeps. Soft
sweeps are now known to be frequent and perhaps dom-
inant in many species [6, 7]. Well-studied examples in
humans include multiple origins for the sickle cell trait
which confers resistance to malaria [8], and of lactose
tolerance within and among geographically separated hu-
man populations [9, 10].

Soft sweeps rely on a supply of beneficial mutations
on distinct genetic backgrounds, which has two main ori-
gins. One is when selection acts on an allele which has
multiple copies in the population due to standing genetic
variation—a likely source of soft sweeps when the poten-

tially beneficial alleles were neutral or only mildly delete-
rious before the appearance of the selective pressure [3].
In this work, we consider the other important scenario of
soft sweeps due to recurrent new mutations which arise
after the onset of the selection pressure. Soft sweeps be-
come likely when the time taken for an established mu-
tation to fix in the entire population is long compared to
the expected time for additional new mutations to arise
and establish. In a panmictic population, the relative
rate of the two processes is set primarily by the rate at
which new mutations enter the population as a whole [5].

Most examples of soft sweeps in nature, however, show
patterns consistent with arising in a geographically struc-
tured rather than a panmictic population [7]. Spatial
structure promotes soft sweeps [11]: when lineages spread
diffusively (i.e. when offspring travel a restricted distance
between local fixation events), a beneficial mutation ad-
vances as a constant-speed wave expanding outward from
the point of origin, much slower than the logistic growth
expected in a well-mixed population. Therefore, fixation
is slowed down by the time taken for genetic information
to spread through the range, making multi-origin sweeps
more likely. However, the detection of such a spatial soft
sweep crucially depends on the sampling strategy: the
wavelike advance of distinct alleles divides up the range
into regions within which a single allele is predominant.
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If genetic samples are only taken from a small region
within the species’ range, the sweep may appear hard in
the local sample even if it was soft in the global range.

Between the two limits of wavelike spreading and pan-
mictic adaptation lies a broad range of spreading be-
haviour driven by dispersal events that are neither local
nor global. Many organisms spread through long-range
jumps drawn from a probability distribution of disper-
sal distances (dispersal kernel) that does not have a hard
cutoff in distance but instead allows large, albeit rare,
dispersal events that may span a significant fraction of
the population range [12, 13]. A recent compilation of
plant dispersal studies showed that such so-called “fat-
tailed” kernels provided a good statistical description for
a majority of data sets surveyed [14]. Fat-tailed disper-
sal kernels accelerate the growth of mutant clones, whose
sizes grow faster-than-linearly with time and ultimately
overtake growth driven by a constant-speed wave [12, 15].
Besides changing the rate at which beneficial alleles take
over the population, long-range dispersal also breaks up
the wave of advance [16]: the original clone produces ge-
ographically separated satellites which strongly influence
the spatial structure of regions taken over by distinct al-
leles.

Despite its prominence in empirically measured dis-
persal behaviour and its strong effects on mutant clone
structure and dynamics, the impact of long-range dis-
persal on soft sweeps is poorly understood. Past work
incorporating fat-tailed dispersal kernels in spatial soft
sweeps [11] relied on deterministic approximations of the
jump-driven spreading behaviour of a single beneficial
allele [12]. However, recent analysis has shown that de-
terministic approaches are accurate only in the two ex-
treme limits of local (i.e. wavelike) and global (i.e. pan-
mictic) spreading, and break down over the entire regime
of intermediate long-range dispersal [17]. Away from the
limiting cases, the correct long-time spreading dynamics
is obtained only by explicitly including rare stochastic
events which drive the population growth. Determinis-
tic approaches also do not account for the disconnected
satellite structure, which has consequences for soft sweep
detection in local samples.

Here, we study soft sweeps driven by the stochastic
spreading of alleles via long-range dispersal. We perform
simulations of spatial soft sweeps in which beneficial al-
leles spread via fat-tailed dispersal kernels which fall off
as a power law with distance, focusing on the regime in
which multiple alleles arise concurrently. We find that
long-range dispersal gives rise to distinctive spatial pat-
terns in the distribution of mutant clones. In partic-
ular, when dispersal is sufficiently long-ranged, mutant
clones are discontiguous in space, in contrast to the com-
pact clones expected from wavelike spreading models.
We identify qualitatively different regimes for spatial soft
sweep patterns depending on the tail of the jump distri-
bution. We show that analytical results for the stochas-

tic jump-driven growth of a single allele [17], combined
with a mutation-growth balance relevant for spatial soft
sweeps [11], allow us to predict the range sizes beyond
which soft sweeps become likely. We also analyze how
stochastic aspects of growth of independent alleles, par-
ticularly the establishment of satellites disconnected from
the initial expanding clone, influence the statistics of ob-
serving soft sweeps in a small sample from the large pop-
ulation. We find that long-range dispersal has contrast-
ing effects on the likelihood of soft sweep detection, de-
pending on whether the population is sampled locally or
globally.

II. MODEL

We consider a haploid population that lives in a d-
dimensional habitat consisting of demes that are ar-
ranged on a square lattice. Local resource limitation con-
strains the deme population to a fixed size n̂, assumed to
be the same for all demes. Denoting the linear dimension
of the lattice as L, the total population size is N = Ldn̂.
The population is panmictic within each deme. With a
ratem per generation, individuals migrate from one deme
to another. For each dispersal event, the distance r to
the target deme is chosen from a probability distribution
with weight J(r), appropriately discretized, with the nor-
malization

∫∞
1
J(r) ddr = 1. The function J(r) is called

the jump kernel. New mutations arise in all demes at a
constant rate u per individual per generation. Each new
mutation is distinguishable from previous mutations (e.g.
due to different genomic backgrounds), but all mutations
confer the same selective advantage s. Back mutations
are ignored.

To focus on the effects of long-range dispersal over lo-
cal dynamics, we now impose a set of bounds on the
individual-based parameters following Ref. 11. In partic-
ular, we consider only situations where sn̂� 1; un̂� 1;
mn̂� 1 (strong selection, and low mutation and migra-
tion rates at the deme level). Mutations are also assumed
to be fully redundant, i.e. a second mutation confers no
additional advantage. The strong selection condition im-
plies that genetic drift within a deme is irrelevant relative
to selection: a new mutation, upon surviving stochas-
tic drift and fixing within a deme (which happens with
probability 2s) cannot be subsequently lost due to ge-
netic drift. The bounds on mutation and migration rates
meanwhile imply that the fixation dynamics of a benefi-
cial mutation within a deme is fast compared to the dy-
namics of mutation within a deme or of migration among
demes. The time to fixation of a beneficial allele from a
single mutant individual in the deme, log(n̂s)/s, is a few
times 1/s. When un̂� 1 and mn̂� 1, the fixation time
scale is much shorter than the establishment time scales
of new alleles arising due to mutation or migration, which
are (2smn̂)−1 and (2sun̂)−1 respectively. Therefore, the
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FIG. 1 Spatial soft sweep patterns with the same number of distinct alleles vary strongly with jump kernel.
a, Final states of 2D simulations on a lattice of size 512 × 512, for a range of values of the kernel exponent µ. Each pixel
corresponds to a deme, and is coloured according to the identity of the allele occupying that deme; demes belonging to the same
mutant clone share the same colour. Simulations were chosen which have ten unique alleles in the final state; colours reflect the
temporal order of the originating mutations as labeled in the lower right panel. Rescaled mutation rates are 3 × 10−6, 10−6,
10−6, and 10−7 for kernel exponents 0.4, 1.5, 2.5, and 3.5 respectively. The subrange highlighted by a dashed line contains
six distinct alleles for µ = 1.5 but only one allele for µ = 3.5. b, Full time-evolution of 1D simulations with L = 16384 for
three kernel exponents, chosen so that the final state has ten unique alleles. Each vertical slice displays the lattice state at a
particular time (measured in generations), starting from an empty lattice (white) and continuing until all sites are filled and
the sweep is completed. The rescaled mutation rates are 3× 10−5, 7× 10−6, and 7× 10−7 respectively from left to right. In the
last panel, the colours are labelled according to the order of appearance of the originating mutation; the same order is shared
among all panels in the figure.

first beneficial allele that establishes in a deme, whether
through mutation or migration, fixes in that deme with-
out interference from other alleles. Furthermore, the as-
sumption of mutual redundancy means that subsequent
mutations that arrive after the first fixation event also
have no effect. As a result, the first beneficial allele that
establishes in a deme excludes any subsequent ones—a
situation termed allelic exclusion [11].

Taken together, these assumptions lead to a simplified
model that ignores the microscopic dynamics of muta-
tions within demes. For each deme, we keep track of a
single quantity: the allelic identity (whether wildtype or
one of the unique mutants that has arisen) that has fixed
in the deme. At the deme level, new mutations fix within
wildtype demes at the rate 2sn̂u, and each mutated deme
sends out migrants at rate 2sn̂m with the target deme
selected according to the dispersal kernel J(r) (the rates
explicitly include the fixation probability 2s of a single
mutant in a wildtype deme). The first successful mutant
to arrive at a wildtype deme, whether through mutation

or migration, immediately fixes within that deme. The
state of the deme thereafter is left unchanged by muta-
tion or migration events, because of allelic excusion.

When time is measured in units of the expected in-
terval (2sn̂m)−1 between successive dispersal events per
deme, the reduced model is characterized by just three
quantities: L; J(r); and the per-deme rate of mutations
per dispersal attempt ũ ≡ 2sn̂u/(2sn̂m) = u/m, which
we call the rescaled mutation rate of our model. Simu-
lations are begun with a lattice of demes of size Ld all
occupied by the wildtype. Each discrete simulation step
is either a mutation or an attempted migration event,
with the relative rates determined by ũ and the fraction
of wildtype sites at that step. Mutation events flip a
randomly-selected wildtype deme into a new allelic iden-
tity. Migration events first pick a mutated origin and
then pick a target deme according to the jump kernel.
If the target site is wildtype, it acquires the allelic iden-
tity of the origin; otherwise the migration is unsuccessful.
Simulations are run until all demes have been taken over
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by mutants.

The fat-tailed jump kernels we use are of the form
J(r) = µr−(d+µ). The exponent µ characterizes the
“heaviness” of the tail of the distribution. We have
chosen power-law kernels because they span a dramatic
range of outcomes that connect the limiting cases of well-
mixed and wavelike growth upon varying a single param-
eter. The growth dynamics of more general fat-tailed
kernels in the stochastic regime of interest (i.e. driven by
rare long jumps) are largely determined by the power-
law falloff of the tail, and details of the dispersal kernel
at shorter length scales are less consequential. Therefore,
our qualitative results should extend to kernels sharing
the same power law behaviour of the tail, provided the
typical clones are large enough so that rare jumps picked
from the tail of the distribution become relevant. The
underlying analysis leading to the results is even more
general, and can be applied to any jump kernel that leads
to faster-than-linear growth in the extent of an individual
clone with time.

The output of a simulation at a given set of L, µ and ũ
values is the final configuration of mutants, which can be
grouped into distinct clones of the same allelic identity.
Note that we have ignored the post-sweep mixing of alle-
les which are now relatively neutral to each other due to
migration; this is justified by the separation of time scales
between fast fixation and slow neutral migration [11]. In
addition, although we restrict ourselves to weak mutation
and migration at the deme level, the population-level mu-
tation and migration rates Nu, Nm are typically large
which allows for soft sweeps with strong migration effects.

III. RESULTS

A. Jump-driven growth and the core-halo structure of
mutant clones

Some typical outcomes of the simulation model are
shown in Fig. 1 for both two-dimensional (2D) and one-
dimensional (1D) ranges. To emphasize variations in the
spatial patterns for the same average clone size, simu-
lations were chosen in which the final state has exactly
ten unique alleles; this required varying the rescaled mu-
tation rate as µ was increased. This feature, which is
tied to the slower growth of individual clones apparent
in the space-time plots of Fig. 1(b), is explored in depth
in Section III.B.

In both 2D and 1D, the spatial soft sweep patterns of
Fig. 1 display systematic differences as the kernel expo-
nent is varied. Clones are increasingly fragmented as the
kernel exponent is reduced; i.e. as long-range dispersal
becomes more prominent. At the highest value of µ in
each dimension, the range is divided into compact, essen-
tially contiguous domains each of which shares a unique
mutational origin. As the kernel exponent µ is reduced,

the contiguous structure of clones is lost as they break
up into disconnected clusters of demes. For most clones,
however, a compact region can still be identified in the
range which is dominated by that clone (i.e. the par-
ticular allele reaches a high occupancy that is roughly
uniform within the region but begins to fall with dis-
tance outside it) and in turn contains a significant frac-
tion of the clone. We call this region the core of the clone.
The remainder of the clone is distributed among many
satellite clusters which produce local regions of high oc-
cupancy for a particular clone. The satellites become
increasingly sparse and smaller in size as we move away
from the core. For the broadest kernels (µ = 0.5 in 2D
and µ = 0.7 in 1D), the clone also includes isolated demes
which do not form a cluster but are embedded within
cores and satellite clusters of a different allele. We term
the collection of satellites and isolated demes the halo re-
gion surroundng the core of the clone. The spatial extent
of the clone including the halo (i.e. the diameter of the
region which encompasses the entire clone) can be many
times the extent of the core alone, and increases relative
to the core extent as µ is reduced. (We will use “extent”
to refer to linear dimensions, and “mass” or “size” to
refer to the number of demes.)

The space-time evolution displayed in 1D reveals the
role of jump-driven growth in producing the observed
spatial structures. At µ = 2.5, the growth of clones ap-
pears nearly deterministic, with fronts separating mutant
from wildtype advancing outwards from the originating
mutations at near-constant velocity. These fronts are
arrested when they encounter advancing fronts of other
clones, leaving behind a tessellation of the range into con-
tiguous clones. By contrast, at the lower values µ = 1.3
and 0.7, the stochastic nature of jump-driven growth be-
comes apparent. Clones advance through long-distance
dispersal events, which seed satellite clusters that may
merge with each other before the sweep is complete. For
all except the smallest clones, the originating mutation is
surrounded by a region which is dominated by that par-
ticular allele—these form the core regions defined above.
Satellites are seeded by stochastic jumps that extend over
regions which either were occupied by a different allele al-
ready, or get filled in by a different allele before the satel-
lite has a chance to merge with the core. For µ = 1.3,
haloes extend only a short distance out from the core,
whereas at µ = 0.7 the haloes often extend over a dis-
tance many times the core extent.

The increased fragmentation of clones with broader
dispersal kernels has a marked impact on local diversity
in sub-regions of the range. Haloes belonging to differ-
ent alleles overlap to produce regions of high diversity, as
exemplified by the dashed box in Fig. 1(a) for µ = 1.5,
which contains demes belonging to six of the 10 unique
alleles despite being a small fraction of the total range
area. By contrast, the same region contains only one al-
lele at µ = 3.5 for which clones form contiguous domains.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/299453doi: bioRxiv preprint 

https://doi.org/10.1101/299453


5

FIG. 2 Marginal dynamics of jump-driven soft sweeps. When long-range dispersal is significant, clones of different allelic
identity (distinguished by colors) grow out of their originating mutations (stars) by accumulating satellite clusters (translucent
cones). If only a single mutation were present, the extent `(t) of the high-occupancy core (consisting of satellite clusters which
have merged with the cluster growing out of the originating mutation) would, on average, follow a faster-than-linear growth
rule, depicted schematically by the border of the opaque regions. For a wide range of kernels in the vicinity of µ = d, the
growth rule arises from a hierarchy of length and time scales related by doublings in time: the satellite that merges with the
core at time t would typically originate from a key jump out of the core at time t/2, that extended over a length `(t) (solid
arrows out of blue region). Looking forward in time, a clone whose core has grown for time t without being obstructed will have
likely seeded satellites out to a distance `(2t). In the presence of recurrent mutations, these satellites may be obstructed from
merging with the core due to intervening cores and satellites of different mutational origin (green and red regions). For very
broad dispersal kernels, the halo also includes rarer jumps out of the core (dashed arrow) that land in regions that are being
taken over by other alleles, but establish themselves in stochastic gaps in those regions. The disconnected satellite clusters and
isolated demes comprise the halo region of the mutant clone.

Other effects of broadening the dispersal kernel are also
visible in Fig. 1: the spread in clone sizes becomes larger,
and individual clones take many more generations to at-
tain a given size.

To build a quantitative understanding of these varia-
tions, we begin by noting that at early times in Fig. 1(b),
single clones grow largely unencumbered by other clones.
We can therefore gain insight from existing results on
the jump-driven growth of a single advantageous clone
expanding into a wildtype background [17]. The key fea-
tures are summarized here and illustrated for the blue
clone in Fig. 2. Consider a clone that grows from a mu-
tation that originated at time t0 = 0 at the origin. At
times longer than a short transient, the clone fills most
sites out to some distance from the origin. In line with
the terminology established above, we call this region of
high occupancy the core of the growing clone. Its typical
extent over time (i.e. the average radius of a core that has
grown for time t) is quantified by a function `(t) which
itself depends on the dispersal kernel. As sites in the core
get filled, they send out offspring through long-range dis-
persal events drawn from the specified kernel, which then
grow into independent satellite clusters. As a result, at
any time t there are also demes outside the core which
are occupied by the mutant. However, the occupancy of
sites outside the core decays as r−(d+µ) with distance r
from the originating mutation [17], fast enough that the
total mass of the clone at time t is proportional to `d(t).

As sketched in Fig. 2, the core grows through the
merger of satellite clusters that grew out of rare but con-
sequential “key jumps” out of the core at earlier times

(solid arrows in Fig. 2). Ref. 17 identified qualitative dif-
ferences in the behaviour of key jumps and the resulting
functional forms of `(t) as the kernel exponent is varied.
When µ > d+ 1, the extent of typical key jumps remains
constant over time, which implies that they must origi-
nate and land within a fixed distance from the boundary
of the high-occupancy region at all times. As a result,
clones advance via a constant-speed front similar to the
case of wavelike growth; i.e. `(t) ∝ t. Furthermore, the
separation between the core and satellites is insignificant
at long times, giving rise to essentially contiguous clones.
By contrast, for µ < d+ 1, growth is increasingly driven
by jumps that originated in the interior of the core at ear-
lier times, and key jumps become longer with time. The
resulting growth of `(t) is faster-than-linear with time.
The value µ = d is an important marginal case which
separates two distinct types of long-time asymptotic be-
haviour for `(t): power-law growth for d < µ < d + 1
and stretched-exponential growth for 0 < µ < d (see
the second column of Table I for the asymptotic growth
forms in all regimes). As µ → 0, spatial structure be-
comes increasingly irrelevant and the growth dynamics
approaches the exponential growth of a well-mixed pop-
ulation.

These features of single-clone growth can be directly
connected to the spatial patterns in Fig. 1 when recur-
rent mutations are allowed. The tessellation of the range
into contiguous domains for the highest values of µ is
exactly as expected from the wavelike growth situation
when µ > d + 1. When µ < d + 1, by contrast, each
clone consists of a growing core and well-separated satel-
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Kernel exponent Asymptotic `(t) χ

µ < d exp(Bµt
η) [ξ/W (ξ)]

1
η , ξ ≡ Bµηd(ũωd)

−η

µ = d exp(c log2 t) (ũωd)
−1e

2
(
log 2−

√
log 2 log(2/ũωd)

)
d < µ < d+ 1 t1/(µ−d) ũ−1/µ

µ = d+ 1 t log t (1D) 1
2

√
W (1/ũ)

ũ

µ > d+ 1 t ũ−1/(d+1)

TABLE I Core growth asymptotics and characteristic core sizes. The table catalogues the asymptotic behaviour of
`(t) (from Ref. 17) along with the expected scaling of the characteristic clone size χ, omitting distance and time scales for `
and t respectively. W is the Lambert W -function, Bµ ≈ 2d log(2)/(µ− d)2, and η = log[2d/(d+µ)]/ log 2. Note that for values
of µ near d, the asymptotic growth forms are of limited value since the time befor the asymptotics is reached becomes very
large. In this situation, more accurate values of χ are obtained using a scaling form for `(t), see Appendix B for more details.

lite clusters at any time. Unlike the single-mutant case,
satellites belonging to a particular clone are no longer
guaranteed to merge with the core or with each other
at later times: due to allelic exclusion, mergers are ob-
structed by cores and satellites with a different allelic
identity, as shown schematically in Fig. 2. The final pat-
tern of frozen-in satellite clusters comprises the previ-
ously identified halo structure around each core when
µ < d+ 1.

1. Marginal dynamics and the relative sizes of core and halo

We can quantify the expected spatial extent of entire
clones (including haloes) relative to cores by consider-
ing the dynamics in the vicinity of the marginal value
µ = d. Although the long-time asymptotic dynamics are
qualitatively different above and below this value (power-
law in t for d < µ < d + 1, and stretched-exponential
for 0 < µ < d), the approach to asymptotic behaviour
is extremely slow for values of µ close to d, with the
intermediate-time evolution controlled by the marginal
dynamics at µ = d. As a result, the marginal dynamics is
important for a wide range of values of µ at biologically-
relevant time scales [17].

In the marginal regime, the scaling behaviour of key
jumps follows a particularly simple pattern, illustrated
schematically in Fig. 2: satellite clusters which merge
with the core at time t are seeded by key jumps that typ-
ically happened around time t/2 and covered a distance
of order `(t)� `(t/2). Therefore, a core that has grown
up to some extent `(t) has likely already seeded satellites
out to a distance of order `(2t), some of which will have
reached an appreciable size as illustrated in Fig. 2. If the
core has grown to some linear size X ′, we then expect
satellites that have reached a significant size to extend
to a distance Y ′ ≡ `(2`−1(X ′)), which may be consid-
ered to be a lower bound on the expected extent of the
halo. When isolated demes embedded within cores and
satellites belonging to other clones are included, the full
spatial extent of the clone is even larger, because there
remains a finite probability of rare jumps from the core

out to distances farther than Y ′ (dotted arrow in Fig. 2).

The above estimate for Y ′, when approximated using
the long-time asymptotic growth rules for different jump
kernels, reveals qualitatively different scaling behaviours
for the clone extent on either side of the critical point
µ = d. For power-law growth, `(t) ∼ t1/(µ−d), we find
Y ′/X ′ ∼ 21/(µ−d); i.e. the ratio of halo size to core size
is a constant that grows as µ → d but is independent
of the size of the clone. By contrast, in the stretched-
exponential regime, with `(t) ∼ exp(Btη) where B and η

depend on µ, we find Y ′/X ′ ∼ X ′
(2η−1)

; i.e. the ratio of
halo to core depends on the core size as well as on the ker-
nel exponent. Since η = log[2d/(d + µ)]/ log 2 > 1, the
halo becomes increasingly prominent as µ → 0. These
scaling estimates break down as µ approaches d—for in-
stance, the ratio Y ′/X ′ diverges in the power-law growth
regime—mirroring the limited utility of the approximate
asymptotic forms for `(t) near µ = d. Instead, we must
use the more accurate forms for `(t) (Appendix B) to
evaluate X ′ and Y ′. However, upon using these forms
with fitted magnitude and time scales for 1D clones,
the qualitative picture is largely unchanged: the ratio
Y ′/X ′ becomes very weakly dependent on the core size
as µ↘ d = 1, but the dependence is much stronger when
µ drops below 1. For instance, at µ = 1.2, the predicted
ratio Y ′/X ′ merely doubles from 4 to 8 as X ′ spans four
orders of magnitude from X ′ = 10 to X ′ = 105; by con-
trast, at µ = 0.8 the ratio changes by an order of magni-
tude (from roughly 5 to 70) over the same range of core
sizes.

In summary, the growth dynamics for single clones at
different kernel exponents predicts the following struc-
ture for large mutant clones: contiguous, compact clones
for µ > d+ 1; a high-occupancy core with a halo of well-
developed satellite clusters that extends out to a size-
independent (but kernel-dependent) multiple of the core
radius for d < µ < d+1; and a sparse halo which is signif-
icantly larger in extent than the core and becomes more
prominent with increasing clone size for µ < d. We now
assume that these conclusions, and the associated scaling
relations for the linear extent of the core and halo, also
apply to the spatial structure of mutant clones that have
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grown during soft sweeps and have been frozen in due
to interference with clones of differing mutational origin.
This key assumption is tested in the following section.

2. Occupancy profiles

To verify the structural features outlined above, we
measured average occupancy profiles of distinct clones in
1D soft sweep simulations. The occupancy profile of a
particular clone is defined as the probability ρ(r) that a
deme at distance r from its point of origin is occupied by
that clone. Occupancy profiles from clones of different
sizes are averaged by scaling the distance coordinate of
each profile by the total mass X of that clone, to obtain
an averaged profile ρ̄(r/X) for each kernel and rescaled
mutation rate. This choice of distance scale is justified
by the observation that averaged occupancy profiles for
a given kernel with vastly different average clone sizes
collapse onto a single curve when the distance coordinate
is rescaled by the size, consistent with the core radius
being proportional to X, see Supplementary Fig. A1.

Averaged occupancy profiles for different jump kernels
are shown in Fig. 3(a) with ũ = 10−5. We observe that
when µ > d + 1, the averaged occupancy is negligible
for r/X > 1, and has a profile symmetric about r/X =
1/2 for lower values. This form is consistent with the
entire clone being contained in a single domain, which
grows to different lengths on either side of the originating
mutation, as illustrated in the inset.

The predicted breakup of clones due to long-range dis-
persal is reflected in the overall broadening of occupancy
profiles as the kernel exponent µ is reduced below the
critical value d+ 1. In this range, an appreciable portion
of the clone lies outside the maximal distance from the
origin (r/X = 1) that would be allowed for a contiguous
domain. The dropoff in occupancy becomes increasingly
steep at low values of r/X as µ is reduced, but more
gradual at larger distances, consistent with a narrow-
ing high-occupancy core balanced by a halo of increasing
prominence. At large distances, the falloff in occupancy
is consistent with the power-law behaviour expected from
the single-clone growth dynamics, ρ̄ ∝ r−(µ+d) [dashed
lines in Fig. 3(b)], which supports our assumption that
the final structure of a mutant clone in a spatial soft
sweep is similar to that of a single clone expanding with-
out interference.

To quantify the relative prominence of the halo to the
core across all growth regimes, we define the rescaled
average core radius, r̃c, as the value of r/X at which
the averaged occupancy drops below 1/2. We also de-
fine the core occupancy as the fraction of the total oc-
cupancy contained within 0 < r < 2r̃c. Although the
precise values of these thresholds are not important, our
definitions are chosen so that the core radius for contigu-
ous domains is half the clone size, and the entire clone

mass is contained within twice the core radius, matching
our intuition for clones with no halo. Deviations from
the values for contiguous domains are only seen when
µ < d + 1 [Fig. 3(c)], consistent with the expectation
from the growth dynamics of single clones. We find that
both quantities approach zero as µ→ 0, confirming that
the core becomes irrelevant in the panmictic limit. How-
ever, the core contains an appreciable fraction of the to-
tal occupancy for all values of µ that we have simulated.
This observation, together with the fact that the absolute
core size scales with the clone mass, implies that insights
about the geometric extent of cores can be connected to
the total mass of their respective clones, as we do in the
following section.

B. Characteristic scales via mutation-expansion balance

So far, we have focused on the spatial structure of in-
dividual clones within a soft sweep, and have shown that
many aspects of this structure can be understood from
the theory of growth of a single clone under the same
dispersal kernel. To address questions of global and local
allelic diversity, however, we need to explicitly consider
the concurrent growth of multiple clones. We now show
how the balance between jump-driven growth and the dy-
namics of introduction of new mutations sets the typical
size and spatial extent of clones.

1. Size of a “typical” clone

In an infinitely large range, a single clone could grow
without bound, but in the presence of recurrent muta-
tions, the growth of any one clone is obstructed by other
clones. Balancing mutation and growth gives rise to a
characteristic time scale t∗, and associated characteristic
linear extent χ, for mutant clones in multi-origin spatial
sweeps [11]. These scales determine whether a sweep will
be “hard” or “soft” within a finite range of given size.

When clones grow as compact, connected domains,
growth is interrupted when the advancing sharp bound-
ary of the clone encounters a different allele. However, for
clones growing via long-range dispersal events, a sharp
boundary no longer exists, and small obstacles can be
traversed by jumps. The picture of jump-driven growth
that we have developed suggests that haloes belonging to
different clones can freely overlap, whereas core regions
cannot. Therefore, new mutations arising within the halo
region of a growing clone do not significantly impede its
growth. Instead, the crucial factor restricting the growth
of a clone is when its high-occupancy core encounters a
different clone, as depicted schematically in Fig. 2. Since
`(t) defines precisely the time-evolution of the core ex-
tent of a single clone, we define t∗ as the time interval for
which exactly one mutation is expected to occur in the
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FIG. 3 Occupancy profiles of clones show the reduced prominence of the core with increased long-range dis-
persal. (a) Averaged occupancy profiles of mutant clones in 1D, with L = 106 and ũ = 10−5. Colours signify different
dispersal kernels, with exponents µ = {0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 3} in order of increasing occupancy at the ori-
gin. Curves are obtained by averaging over all clones with total mass X > 100 from 100 independent simulations for each
dispersal kernel. Inset illustrates the origin of the variation in occupancy for r/X < 1 in the wavelike growth regime: the
mutational origin need not be positioned at the centre of mass of the contiguous domain, giving rise to an occupancy profile
ρ(r) = {1, 0 < r ≤ r1; 1/2, r1 < r ≤ r2; 0, r > r2}. (b) Same data as in (a) on logarithmic scales. The dashed lines show

the power-law dependence ρ̄ ∝ r−(µ+d). (c) Rescaled average core radius, r̃c, defined as the value of r/X at which the profile
in (a) drops below 1/2. The core occupancy, defined as the fraction of the averaged occupancy that lies within 0 < r < 2r̃c, is
also shown.

space-time region swept out by the growing core:

ũt∗ωd`
d(t∗) = 1, (1)

where ωd is the volume of the d-sphere of radius 1 (ω1 =
2, ω2 = π). The corresponding characteristic extent,
χ ≡ `(t∗), matches the length scale introduced in Ref. 11
to characterize spatial soft sweeps.

Rough estimates for t∗ and χ can be obtained by using
the long-time asymptotic forms for `(t) in the different
growth regimes, see Table I. These estimates highlight
the vastly different functional dependences of the charac-
teristic scales on the rescaled mutation rate as the kernel
exponent is varied. For quantitative tests, we use scal-
ing forms for `(t) derived in Ref. 17, which are much
more accurate at short times when µ is close to d. All
theoretical forms for `(t) include unspecified multiplica-
tive factors A and B for the length and time variables,
which are determined by fitting the functional forms to
the growth of isolated clones starting from a single seed,
see Appendix B for details.

Fig. 4 compares the measured average clone sizes from
1D simulations with χ(ũ) computed using the theoret-
ical forms for `(t) for different system sizes and muta-
tion rates. For clarity, the expected scaling with mu-
tation rate in the wavelike spreading limit, χ ∝ 1/

√
ũ,

is divided out. At each value of µ, the computed χ(ũ)
quantitatively captures the dependence of Xave on ũ over
many orders of magnitude, up to a ũ-independent con-
stant factor (the factor depends on model details and
is treated as a fitting parameter, but it turns out to not
vary significantly with µ). These results confirm that the
mutation-growth balance captured in Eq. 1, first identi-
fied in Ref. 11, remains relevant for characterizing spatial
soft sweeps when long-range dispersal is prominent.

Many features of spatial soft sweeps are captured in
the characteristic scales defined above. The length scale
χ provides the appropriate rescaling of space to compare
two sweeps with different mutation rates but the same
growth rule `(t). The precise definition, Eq. 1, also sug-
gests that χ is the size attained by the core of a typi-
cal clone under mutation-expansion balance. This inter-
pretation must be used with care, because we will see
that the actual size distribution of clones in a spatial soft
sweep is often very broad so that no one size dominates.
However, it is very unlikely that the core region will grow
to a radius much greater than χ, so that the largest clones
in the range—which dominate the sampling statistics for
random samples from the range—are of order χ. Ranges
that are much larger than χ will display multiple clones
with high probability, whereas ranges much smaller than
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FIG. 4 Average clone size is set by mutation-
expansion balance. The average size of mutant clones as
measured from simulations in 1D as a function of rescaled
mutation rate, scaled by the expected dependence (∝

√
ũ)

for wavelike growth of clones. Results from different system
sizes (symbols) are presented for each dispersal kernel quan-
tified by µ (colours); the values are (from top to bottom) µ =
{0.2, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 3}. Each point rep-
resents an average over 20 or more independent simulations.
Error bars denote measured standard deviation across repeti-
tions. Dashed lines show the theoretical predictions for χ(ũ)
for each dispersal kernel (see Appendix B), multiplied by a µ-
dependent magnitude factor whose value is 1.5 for 1 ≤ µ < 2,
1.6 for µ > 2, and 1.65 for all other values.

χ will likely be dominated by one clone.

Similarly, t∗ sets the time scale for the sweep to be
completed, independently of the range size: if both sides
of Eq. 1 are multiplied by the range size N , it equates to
a condition for the range to be completely filled by mu-
tations accumulated at a rate Nũ over a time t∗ without
interference, each of which grows to the characteristic size
`(t∗). The expected number of mutational origins scales
as Nũt∗ = N/ωdχ

d, which implies that the average clone
size must be proportional to χd.

2. Characteristic extent of clones

The analysis of the spatial structure of individual
clones (Section III.A) showed that the extent of clones
(i.e. the portion of the range over which demes belong-
ing to the clone can be found) can be many times larger
than the expected extent for a compact clone, especially
for broad dispersal kernels. Therefore, the average clone
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FIG. 5 The spatial extent of clones deviates strongly
from the average size. Spatial extent of clones, defined as
the distance between leftmost and rightmost demes belonging
to a particular clone, averaged over all clones and normalized
by the average clone size Xave. Each point is an average over
values from 20 independent simulations. Dotted lines connect
simulation data points. Dashed lines show the theoretical
expectations for rmax/χ (with ũ = 10−3) and ψ/χ in the
ranges µ < 1 and 1 < µ < 2 respectively, multiplied by
model-dependent numerical factors. For µ < 1, the fall in the
measured ratio at low values of ũ is due to finite-size effects,
as seen by comparing the two system sizes: the measured
values of ∆r in this range are below the values that would be
measured in an infinitely large system.

size may not be representative of the spatial extent of
typical clones over the range, pointing to the potential
relevance of additional length scales when characteriz-
ing jump-driven spatial soft sweeps. To quantify this
effect, we measure the extent, ∆r, of a clone in our 1D
simulations as the largest distance between any pair of
individuals belonging to that clone. Fig. 5 shows the
ratio between 〈∆r〉 (brackets denote averaging over all
clones in the range) and the average clone size Xave. We
find that the average spatial extent is much larger than
the average clone size, except in the regime of compact
clones (µ > d + 1). Their ratio appears independent of
the rescaled mutation rate for kernels narrower than the
marginal value µ = d, whereas it appears ũ-dependent,
and grows dramatically in magnitude, for µ < d. At the
smallest values of µ, the measured extent becomes limited
by the system size (the maximum allowed extent is L/2
due to periodic boundary conditions), which artificially
suppresses the ratio 〈∆r〉/Xave as seen by comparing the
measurements at L = 106 and L = 107.

To explain these features, we return to the core-halo
picture of clone structures. We had argued that, in the
vicinity of the critical value µ = d, a clone whose core has
grown to some size `(t) will have likely established satel-
lites of a significant size out to a distance `(2t). Having
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derived a characteristic time scale t∗ for the growth of a
typical clone restricted by mutation-expansion balance,
a rough estimate for the extent of its halo is provided by
the quantity ψ ≡ `(2t∗), which quantifies the extent of
established satellites of the typical clone (at the cost of
ignoring interference among haloes of different clones).
An alternative argument, which balances the rate of key
jumps out of the core with the expected rate of muta-
tions arising in the target region of the jumps, produces
a similar estimate for the typical halo extent (see Ap-
pendix C).

The length scale ψ is a lower bound to the spatial
extent of clones, since the growing core at time t also
sends out offspring far beyond the range of the key jumps,
which would not become part of the core at a future time
2t. Since our time units are set by the migration rate,
the net number of jumps out of a typical clone which
grows over a time t∗ is roughly t∗`d(t∗), which scales as
1/ũ by the definition of t∗. The fraction of these jumps
which end up beyond a distance l is

∫∞
l
J(r) ddr = l−µ.

A crude estimate for the outer limit rmax of these rare
events is obtained by requiring the net number of jumps
from the core to distances rmax or greater to be equal to
1:

r−µmax/ũ = 1⇒ rmax = ũ−1/µ. (2)

The extremal measure ∆r is sensitive to these isolated
offspring, even if they do not form satellite clusters of
significant size. However, the scaling for rmax does not
account for the fact that many of the long-distance rare
jumps would fail to establish because they land on the
high-occupancy cores of competing clones, which fill up
the range over the same time scale t∗. Therefore, rmax

is likely to be relevant only when the sparse halo regions
become dominant over the cores, i.e. for µ < d.

We now use the asymptotic growth rules (Table I) to
gauge the qualitative behaviour of the candidate length
scales ψ and rmax for the typical spatial extent of clones.
For power-law growth in 1D (1 < µ < 2), ψ and
rmax show the same scaling behaviour as a function of
the rescaled mutation rate, making the distinction be-
tween the two length scales irrelevant. The asymptotic
growth rule `(t) ∝ t1/(µ−1) predicts the mutation-rate-
independent ratio ψapp/χ ∼ 21/(µ−1), an approximation
that becomes increasingly inaccurate as µ → 1. Having
already established that Xave ∝ χ, we therefore expect
the ratio 〈∆r〉/Xave to follow this functional form. The
simulation results are consistent with this behaviour for
µ > 1.2, up to an overall proportionality constant that is
not captured by the scaling arguments (red dashed line
in Fig. 5). The divergence of the approximation ψapp as
µ → 1 reflects the inaccuracy of the long-time asymp-
totic form for `(t) as the marginal kernel exponent is
approached.

For µ ≤ 1, rmax quickly dominates ψ in magnitude
due to the strong divergence in Eq. 2 as µ → 0 for

ũ < 1. Upon using the more accurate forms for `(t)
from Appendix B to compute ψ and χ (see Appendix C
for details), we find that the ratio ψ/χ underestimates
the measured values in Fig. 5 by many orders of mag-
nitude. By contrast, the alternative length scale rmax

(Eq. 2) successfully captures the variation in 〈∆r〉/Xave

for the largest rescaled mutation rate ũ = 10−3 (cyan
dashed line in Fig. 5). These results confirm that the
spatial structures associated with soft sweeps are quali-
tatively different in the stretched-exponential and power-
law regimes, and provide quantitative predictions for the
scaling of the typical extent of clones in both regimes.
For the lower mutation rates, the predicted rmax values
are larger than the largest system size L = 107, pointing
to the need for significantly larger-scale simulations to
avoid finite-size effects.

C. Clone size distributions vary with dispersal kernel and
influence global sampling statistics

Unlike our simulations, studies of real populations do
not have access to complete allelic information over the
entire range. Instead, the allelic identity of a small num-
ber of individuals is sampled from the population. The
likelihood of detecting a soft sweep in such a random sam-
ple is determined not only by the total number of distinct
clones in the range, but also by their size distribution: if
the range contains many clones, but all but one are at
extremely small frequency, the sweep is likely to appear
“hard” in a small random sample which would with high
probability contain only the majority allele. Long-range
dispersal can therefore influence soft sweep detection not
only by setting the average clone size, but also by mod-
ifying the distribution of clone sizes around the average.
Having already established that the dispersal kernel has
a significant effect on the average clone size (Fig. 4), we
now analyze its effects on the clone size distribution and
the consequences for soft sweep detection.

Clone size distributions were quantified by comput-
ing the allele frequency spectrum f(x), defined such that
f(x) δx is the expected number of alleles which have at-
tained frequencies between x and x + δx in the popu-
lation [18]. The allele frequency spectrum is related to
the average probability distribution of clone sizes, but

has a different normalization
∫ 1

1/N
xf(x) dx = 1 which

allows sampling statistics to be expressed as integrals in-
volving f(x) (we will exploit this fact in Section III.C.1
below). Analytical results for f(x) can be derived for
the deterministic wavelike growth limit µ� d+ 1 in 1D
by mapping the spatial soft sweep on to a grain growth
model [19], and for the panmictic limit µ → 0 in any
dimension via a different mapping to an urn model [20].
The resulting functions, termed fw and f∞ for the two
limits respectively, provide bounds on the expected fre-
quency spectra at intermediate µ. Details of the map-
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pings and complete forms for the functions fw and f∞
are provided in Appendix D.

Fig. 6(a) shows allele frequency spectra computed from
the outcomes of 1D soft sweep simulations for system size
L = 107 and mutation rate ũ = 10−4. We find that the
frequency spectra vary strongly with the dispersal ker-
nel, and approach the exact forms f∞ and fw for small
and large µ respectively. Generically, spectra become
broader as the kernel exponent is reduced: as µ → 0,
more high-frequency clones are observed. Although this
broadening is partly explained by the increase in the aver-
age clone size due to accelerated expansion, which would
lead to more high-frequency alleles, there are also system-
atic changes in the overall shapes of the distribution as
the dispersal kernel is varied. Upon reducing the rescaled
mutation rate to ũ = 10−6 [Fig. 6(b)], all frequency spec-
tra broaden due to the increase in the average clone size,
but the variations in shapes of the f(x) curves with µ
remain consistent across the two mutation rates. These
observations suggest that spatial soft sweep patterns with
similar numbers of distinct alleles in a range might nev-
ertheless have vastly different clone size distributions due
to different dispersal kernels, with implications for sam-
pling statistics.

To uncover variations due to long-range dispersal be-
yond changes in the average clone size, we rescaled the
frequency spectra by the expected dependence on Xave,
which we have already established as being set by the
mutation-expansion balance. Under the assumption that
modifying the mutation rate for a given dispersal kernel
only affects the characteristic length scale χ ∝ Xave, we
expect that

f(x) = (N/Xave)
2Fµ(Nx/Xave), (3)

where Fµ depends only on the dispersal kernel and not
the rescaled mutation rate. Although this is only exact
in the regime of power-law growth (for which ψ is pro-
portional to χ, so that the entire spatial pattern is de-
termined by one length scale), we find that the rescaling
suggested by Eq. 3 leads to a decent collapse of frequency
spectra for the two mutation rates across all regimes, see
Fig. 6(c). The existence of the additional length scale ψ,
which is not merely proportional to χ in the stretched-
exponential and marginal cases, introduces weak correc-
tions that are logarithmic in mutation rate and system
size and become strongest as µ→ 0, see Appendix E.

The scaled frequency spectra show that broader disper-
sal kernels favour broader allele frequency spectra even
after accounting for changes in the average clone size.
At µ = 4, the steep decline in the frequency spectrum
occurs near the frequency expected of an average clone,
x ≈ Xave/L. As µ is reduced, the falloff occurs at higher
frequencies; at µ = 0.4, for instance, clones with fre-
quencies an order of magnitude higher than the average
clone are still likely. Qualitatively, this trend is a result
of the increased nonlinearity of the growth functions `(t)

for broader dispersal. If we assume no interference among
distinct clones until the time t∗, the size of an allele which
arrives at time ti is proportional to `d(t∗ − ti). For a
given spread of arrival times of mutations, the spread of
final clone sizes is significantly enhanced by nonlinearity
in `(t). Therefore, the increased departure from linear
growth in `(t) as µ → 0 gives rise to broader clone size
distributions. Deterministic approximations to the clone
size distributions expected for a given `(t), described in
Appendix E, support this heuristic picture.

Although we do not have analytical expressions for the
frequency spectra at intermediate µ, the measured curves
and deterministic calculations suggest a simple approxi-
mate form with two parameters:

f(x) =


p+ 2

xp+2
c

xp, x < xc

0, x > xc,

(4)

i.e. a power-law behaviour characterized by exponent p,
up to some maximal frequency xc, with the constant of
proportionality determined by the normalization. The
values p and xc are determined from the numerical data,
but are also consistent with theoretical arguments (Ap-
pendix E). The small-x behaviour of the two limiting
spectra, f∞(x) ∼ x−1 and fw(x) ∼ x as x → 0, imply
that p is restricted to vary from −1 to 1 as µ increases
from zero. Despite its simplicity, this approximation can
be used to quantify the relationships among various fea-
tures of the clone size distributions as we show in Ap-
pendix F. For instance, the power-law ansatz predicts
a relation between the average clone size and the cut-
off frequency, Lxc/Xave = (p+1)/(p+2), which matches
the trends observed in the rescaled frequency spectra, see
inset to Fig. 6(c).

1. Sampling statistics

The utility of f(x) in the context of soft sweep de-
tection is made apparent by noting that the probability
Phard(j) of finding only one unique allele in a sample of
size j ≥ 2 drawn randomly from the population (i.e. de-
tecting a hard sweep) is [18]

Phard(j) =

∫ 1

0

xjf(x) dx. (5)

The probability of observing a soft sweep in a sample of
size j is simply Psoft = 1 − Phard(j) 1. Since xf(x) does
not diverge as x → 0 for all observed frequency spectra,
the integral in Eq. 5 is dominated by contributions from

1 Although Psoft might be more relevant to soft sweeps, we deal
with Phard(j) in the following sections because it is more straight-
forward to compute and manipulate mathematically.
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forms are shown as dotted lines (from top to bottom): the Ewens’ sampling result for the panmictic case, the approximate
form derived using a hard-cutoff ansatz for the allele frequency spectrum for µ = 1 (Eq. F3), and Phard calculated from the
exact f(x) for the wavelike spreading limit (Appendix G). (b) The same quantity computed across a range of rescaled mutation
rates (symbols), and scaled by the expectation for a range with all clones having the same size and hence the same frequency
Xave/L.
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the high-frequency region of f(x) and is therefore highly
sensitive to the breadth of the frequency spectrum. Using
the power-law ansatz for the frequency spectrum, Eq. 4,
gives Phard(j) ∝ xj−1c /j for large j (see Appendix F): the
dominant behaviour is an exponential decay with sample
size, with the decay scale set by the high-frequency cutoff
xc. At a given rescaled mutation rate, this cutoff falls by
many orders of magnitude as µ is increased, as we saw
in Fig. 6(a)–(b). As a consequence, the probability of
finding a monoallelic sample also falls dramatically with
increasing µ, see Fig. 7(a). Analytical calculations of
Phard using f∞(x) and fw(x) in the µ→ 0 and µ� d+
1 limits (dashed and dash-dotted lines) provide bounds
on the variation (see Appendix G for explicit forms of
Phard(j) in these limits).

We have seen that increased long-range dispersal
broadens the frequency spectrum both by increasing the
average clone size, and by enhancing the spread of clone
sizes around the average. To distinguish the effect of the
shape of f(x) from that of the overall size of clones, we
scale Phard(j) by the idealized expectation (χ/L)j−1 ∝
(Xave/L)j−1 for a range of rescaled mutation rates, see
Fig. 7(b). If the sampling statistics were determined pri-
marily by the average clone size (which in turn is set
by χ) and the effect of variations in the shape of f(x)
were insignificant, we would expect the rescaled Phard(j)
for different kernels to all collapse on the same curve.
Instead, we find that the sampling statistics vary signif-
icantly with µ even when accounting for differences in
average clone size. Whereas the rescaling captures a sig-
nificant amount of the variation in Phard(j) within each
value of µ (with a residual ũ-dependence that differs for
the different regimes of `(t), and is due to the relevance of
the additional length scales outside the power-law growth
region), the rescaled curves vary widely among the dif-
ferent dispersal kernels.

Fig. 7(b) quantifies the influence of long-range disper-
sal on soft sweep detection beyond merely setting the
average size of clones: if mutation rates are adjusted
so that the characteristic length scales χ and hence the
average clone sizes are comparable for different disper-
sal kernels, soft sweeps continue to be less likely to be
detected for broader kernels (smaller µ). This happens
because the range has a larger contribution from high-
frequency clones with x > χ/L (or (χ/L)d in general) for
broader dispersal kernels, making monoallelic sampling
more likely. Therefore, when ranges with similar overall
diversity (as evaluated by the total number of unique alle-
les in the range) are compared, long-range dispersal skews
the distribution of clone sizes in a way that disfavours soft
sweep detection in small samples. Since a wide range of
possible outcomes separates the two limits of panmictic
(µ → 0) and wavelike spreading (µ � d + 1), predic-
tions based on these extremes might perform poorly in
making inferences from sampling statistics in populations
with intermediate long-range dispersal.

D. Local sampling protocols are highly sensitive to the
core-halo structure

Population genomic studies are often limited not only
in the number of independent samples available, but in
their geographic distribution as well. Samples tend to be
clustered in regions chosen for a variety of reasons such
as anthropological or ecological significance, or practical
limitations. The analysis of the last section would apply
to comparing samples across different regions, provided
that these relatively well spread out in the range. Here
we focus on the variation within local samples from a
subrange of the entire population. As illustrated by the
wide variation in local diversity within the highlighted
subranges (dashed boxes) in Fig. 1(a), inferences based
on local sampling can be significantly different from in-
ferences based on global information, and may be very
sensitive to modes of long-range dispersal.

Long-range dispersal enhances local diversity. When
clones extend over a much wider spatial range than re-
quired by their mass (Fig. 5), local subranges contain
alleles whose origins lie far away from the subrange, and
are consequently more diverse than expected from the
diversity of the range as a whole. To quantitatively il-
lustrate this effect, we compute sampling statistics for
different dispersal kernels and subrange sizes from 1D
simulations with a global range size much larger than
the characteristic length scale χ (Fig. 8). (Subrange size
and extent are equivalent in our 1D simulations.) We ob-
serve that the smaller clones expected at higher values of
µ favour the detection of soft sweeps globally (Fig. 8a),
but the diversity is less detectable in samples from sub-
ranges that are smaller than the characteristic size shared
by the compact domains at µ = 4. By contrast, samples
from smaller subranges continue to show signatures of
soft sweeps for broader dispersal kernels (Fig. 8b–c).

To compare the sensitivity of soft sweep detection to
subrange size across different dispersal kernels and mu-
tation rates, we focus on the probability of detecting the
same allele in a pair of individuals randomly sampled
from a subrange, Phard,s(2) (also called the species ho-
moallelicity of the subrange). This probability is high
only when the subrange is mostly occupied by the core
of a single clone; it is low if the subrange contains cores
belonging to different clones, or a combination of cores
and haloes. Therefore, we expect χ (or equivalently the
average clone sizeXave, which we may use as a proxy for χ
in 1D) to also be the relevant scale to compare Ls values
across different situations. Fig. 9(a) shows the depen-
dence of Phard,s(2) on Ls/Xave for different dispersal ker-
nels and mutation rates in the Xave � L limit. As with
the global sampling probabilities reported in Fig. 7(b), we
find that the rescaling of subrange size withXave captures
much of the variation among different mutation rates
(symbols) for a given dispersal kernel. In contrast with
the global sampling statistics, however, hard sweep de-
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FIG. 8 Dispersal promotes soft sweep detection in small subranges. (a)–(c) Probability of observing a hard sweep in j
samples randomly chosen from contiguous subranges of different sizes Ls in simulated 1D ranges of size L = 106, with rescaled
mutation rate ũ = 10−6. At the same mutation rate, broader dispersal kernels lead to a larger average clone size (Xave ≈ 980,
1.6× 104, 4× 104 for µ = {4, 1, 0.6} respectively), which reduces the total number of alleles and favours hard sweep signatures
when the sampling is done over the entire range [L = Ls, (a)]. However, when Ls is reduced [(b)–(c)], the detection of soft
sweeps become increasingly likely for the broader dispersal kernels; the broken-up structure of clones compensates for their
smaller overall number. For small enough subranges, the order of values of Phard(j) with increasing µ is inverted compared to
the values at Ls = L.
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FIG. 9 Different measures of diversity within a subrange are sensitive to different characteristic scales. (a)
Probability Phard,s(2) of observing a single allele in a pair drawn from a subrange of size Ls for different dispersal kernels
(colours, labeled) and mutation rates [symbols, see legend in panel (b)], for 1D simulations with L = 106, as a function of
the ratio Ls/Xave. In all cases, the population range was chosen to be many times larger than the characteristic size χ and
harbours many distinct alleles. The dashed line is the prediction if all clones are of the same size Xave, in which case geometry
dictates that Phard,s(2) = {1 − x/3, x < 1; 1/x − 1/(3x2), x ≥ 1}. The inset shows data for µ = {0.6, 1.0, 3.0} on log axes.
(b) Number of distinct alleles nc,s observed in a subrange of size Ls, shown as a function of the ratio Ls/〈∆r〉. Values are
scaled by 〈∆r〉/Xave, the expected number of clones in the area occupied by the average halo. The solid line corresponds to
nc,sXave/〈∆r〉 = Ls/〈∆r〉, or equivalently nc,s = Ls/Xave.

tection probabilities are suppressed (or equivalently, soft
sweeps are easier to detect for the same rescaled subrange
size) as the jump kernel is broadened. At high values of
µ in the wavelike expansion limit, the shape of the curves
is well-approximated by the null expectation for an ideal-
ized clone size distribution where all clones are perfectly
contiguous segments of equal size Xave. As µ falls below

d+1, the prevalence of overlapping haloes increases local
diversity at the scale of satellite clusters, much smaller
than the typical clone size would dictate. The effect is es-
pecially strong in the marginal and stretched-exponential
growth regimes (µ ≤ d), which was associated with the
halo dominating over the core (Figs. 3 and 5).

A different measure of subrange diversity is the total
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number of distinct alleles present in a subrange on aver-
age, which we call nc,s. Unlike the subrange homoallelic-
ity, which was dominated by the most prevalent clone
in the subrange, this measure gives equal weight to all
clones, and is sensitive to haloes that overlap with the
subrange. The expected number of distinct cores in the
subrange is Ls/Xave; in the absence of haloes, we would
expect nc,s to be equal to this value. However, haloes
of clones whose cores are outside the subrange would
cause nc,s to exceed the number of cores in the subrange.
This enhancement in diversity due to encroaching haloes
would be expected to occur only when Ls is smaller than
the average clone extent 〈∆r〉: when Ls > 〈∆r〉, the
cores of clones whose haloes contribute to nc,s also lie
within the subrange, and are accounted for in Ls/Xave.
This expectation is confirmed in Fig. 9(b). When the
subrange size is rescaled by the extent of the clone in-
cluding the halo, the average number of distinct alleles
in the subrange follows nc,s = Ls/Xave (solid line) in all
cases, provided Ls/〈∆r〉 > 1. For smaller subrange sizes,
nc,s lies above this estimate, reflecting the enhancement
of local diversity due to encroaching haloes.

IV. DISCUSSION

Adaptation in a spatially extended population often
uses different alleles in different geographic regions, even
if the selection pressure is homogeneous across the entire
range. The probability of such convergent adaptation [21]
and the patterns of spatial soft sweeps that result de-
pend on two factors: the potential for the population to
recruit adaptive variants from either new mutations or
from the standing genetic variation, and the mode of dis-
persal. Previous work has focused on the two extremes
of dispersal phenomena: panmictic populations without
spatial structure [3, 4, 5] or wavelike spreading due to
local diffusion of organisms [11, 21]. However, gene flow
in many natural populations does not conform strictly to
either limit. Many species experience some long-distance
dispersal either through active transport or through pas-
sive hitchhiking on wind, water, or migrating animals in-
cluding humans [12, 13, 14]. For populations with a large
range, even rare long-distance dispersal can strongly in-
fluence the adaptive dynamics [22].

We have described spatial patterns of convergent adap-
tation for a general dispersal model, with jump rates
taken from a kernel that falls of as a power-law with
distance. Although the underlying analysis is applicable
to more general dispersal kernels, our specific choice of
kernel allows us to span a wide range of outcomes using
a single parameter. We have shown that long-range dis-
persal tends to break up mutant clones into a core region
dominated by the clone, surrounded by a disconnected
halo of satellite clusters and isolated demes which mingle
with other alleles. A key result of our analysis is that al-

though the total mass of a clone is well-captured by the
extent of the core region, the sparse halo can extend out
to distances that are significantly larger than the core,
sometimes by orders of magnitude. Therefore, under-
standing clone masses alone provides incomplete infor-
mation about spatial soft sweep patterns, and can vastly
underestimate the true extent of mutant clones.

By analyzing the balance between the jump-driven
expansion of single clones and the introduction of new
mutations, we have identified three characteristic length
scales that quantify the spatial relationships between
core and halo: the characteristic core extent χ, which
sets the average clone mass; the radial extent ψ within
which well-developed satellite clusters are expected; and
the outer limit rmax within which both satellite clus-
ters and isolated demes are typically found. As the ker-
nel exponent µ is varied, these length scales demarcate
three regimes with qualitatively different core-halo rela-
tionships: compact cores with insignificant haloes, sim-
ilar to the case of wavelike growth, for µ > d + 1; a
dominant high-occupancy core surrounded by a halo of
well-developed satellite clusters which extend to a size-
independent multiple of the core radius (rmax ∼ ψ ∝ χ)
when d < µ < d + 1; and a halo including a significant
number of isolated demes in addition to satellite clus-
ters, which may extend over a region orders of magnitude
larger than the core (rmax � ψ � χ) when µ < d.

We have also studied the signatures left behind by
these patterns on population samples that are taken ei-
ther from a local region, or globally from the entire range.
Under which conditions, and for which types of samples,
can we expect to observe a “soft sweep” with more than a
single adaptive variant? We have found that when ranges
with similar overall diversity (as judged by the number of
distinct clones in the entire range) are compared, broad-
ening the dispersal kernel has opposing effects on soft
sweep detection at global and local scales: soft sweeps
become harder to detect in a global random sample, but
easier to detect in samples from smaller subranges.

Besides having consequences for detecting and inter-
preting evidence for spatial soft sweeps, the breakup of
mutant clones by long-range dispersal also impacts future
evolution after the soft sweep has completed. Our anal-
ysis describes the spatial patterns arising in the regime
of strong selection, where the large advantage of benefi-
cial mutants over the wildtype dominates the evolution-
ary dynamics. Once the entire population has adapted
to the driving selection pressure, smaller fitness differ-
ences among the distinct alleles will become significant,
and modify the spatial patterns on longer time scales.
Selection is most sensitive to these fitness differences at
the boundaries separating demes belonging to different
clones. For the same global diversity, the total length
of these boundaries is strongly influenced by the con-
nectivity of clones, and grows significantly as the kernel
exponent is reduced, thereby modifying the post-sweep
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evolution of the population. The post-sweep evolution
could also favour well-developed satellite clusters over
isolated demes of one allele within a region dominated
by another: isolated demes are likely to be taken over by
their surrounding allele through local diffusion of individ-
uals. Therefore, the characteristic length ψ may prove to
be a relevant spatial scale for the post-sweep evolution,
even in the regime µ < d where rmax sets the extent of
the halo in the sweep patterns.

Although a quantitative evaluation of our model us-
ing real-world genomic data is beyond the scope of this
work, some qualitative features of long-range dispersal
can be identified in previous studies of spatial soft sweeps.
The evolution of resistance to widely-adopted drugs in
the malarial parasite Plasmodium falciparium is a well-
studied example of a soft sweep arising in response to a
broadly applied selective pressure. While multiple mu-
tant haplotypes conferring resistance to pyrimethamine-
based drugs have been observed across Africa and South-
east Asia, the number of distinct haplotypes is smaller
than would have been expected if resistance-granting mu-
tations were confined to their area of origin [23]; this fea-
ture has been linked to long-distance migration of para-
sites through their human hosts, which allowed individual
haplotypes to quickly spread across disconnected parts of
the globe [24]. Within the same soft sweep, high levels
of spatial mixing of distinct resistant lineages was also
observed in some sub-regions [25]. These observations
are consistent with the contrasting effects of long-range
dispersal we have quantified in our model: at a given
rescaled mutation rate, dispersal reduces diversity glob-
ally, but increases the mixing of alleles locally. Advances
in sequencing technology have driven rapid improvements
in the spatiotemporal resolution of drug-resistance evolu-
tion studies [26], making them a promising candidate for
quantitative analysis of the spatial soft sweep patterns
we have described.

Many interesting questions remain to be explored, even
within the confines of our lattice-based model. We re-
port simulation results primarily in d = 1, although we
expect the differences among the various growth regimes
to also hold in higher dimensions. We have also focused
on the limit in which the average clone size is many times
smaller than the entire range. It would also be interest-
ing to study the statistics of soft sweeps when the extent
of the range is comparable to the characteristic length
scale χ, making a soft sweep an event of low but signif-
icant probability which may vary significantly with the
dispersal kernel.

The model can also be extended to include additional
mechanisms involved in parallel adaptation. Besides re-
curring mutations, standing genetic variation (SGV) in
the population is a important source of diversity for soft
sweeps [3]. Long-range dispersal could impact both the
spatial distribution of SGV before selection begins to act,
and the spreading of alleles from distinct variational ori-

gins during the sweep [21]; both situations can be ex-
plored through extensions of our model. In the latter
case, we expect the distinct regimes of core-halo patterns
for different jump kernels to persist, but with the char-
acteristic core size set by the initial distribution of vari-
ational origins rather than mutation-expansion balance.

The necessity of including heterogeneity motivates a
natural set of extensions of the model. When soft sweeps
arise due to mutations at different loci producing similar
phenotypic effects, some variation in fitness among the
distinct variants is inevitable. In panmictic models, fit-
ness variations do not significantly affect the probability
of observing a soft sweep, provided that the variations
are small relative to the absolute fitness advantage of
mutants over the wildtype [5]. Since spatial structure re-
stricts competition to the geographic neighbourhood of
a clone, we expect the effect of fitness variation to be
even weaker than for panmictic populations, and our re-
sults should be robust to a small amount of variation
in fitness effects. However, more significant variations
could have differing impacts in the distinct regimes of
spatial patterns. Similarly, spatial heterogeneities in the
environment could lead to so-called “patchy” landscapes
which lead to certain mutations being highly beneficial
in some patches but neutral or even deleterious in oth-
ers [27]. Convergent adaptation on patchy landscapes is
likely to be significantly impacted by long-range disper-
sal which would allow mutations to spread efficiently to
geographically separated patches.

Finally, the assumptions of strong selection and weak
mutation/migration allowed us to ignore the dynamics of
introduction of beneficial mutations within a deme. Re-
laxing these assumptions would lead us to a more general
model with an additional time scale characterizing the lo-
cal well-mixed dynamics at the deme level. The interplay
between this time scale and the time scales governing the
large-scale dynamics driven by long-range dispersal could
lead to new patterns of genetic variation during conver-
gent adaptation.
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Appendix A: When are rare LRD events significant?

For most species, even those that primarily spread
through short-range spreading events, rare LRD events
cannot be excluded. For instance, plants may deposit
most of their seeds locally, but some seeds might be trans-
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planted over many miles by animals. The effect of such
rare events on genetic diversity can only be ignored if
the typical waiting time between LRD events is longer
than the time taken for the wavelike advance of ben-
eficial mutations due to the short-range spreading dy-
namics to sweep through the population range. In the
simplest case of species in a 1D range of linear size L
with two dispersal modes — short-ranged, giving rise
to a wavelike spreading at a speed v, and long-ranged
jumps at a uniform rate j per unit length of the origin
and of the target — the LRD events can be ignored pro-

vided
∫ L/v
0

j(vt)(d − vt) dt � 1 ⇒ jL3/(6v) � 1. For
expansions in d dimensions, the generalized criterion is
jL2d � v/L up to a dimensionless constant of order 1.

Appendix B: Forms for `(t) and χ in 1D

Here we describe the analytical forms for `(t) used
to compute the predictions for the characteristic length
scale χ in main text Fig. 4. Ref. 17 derived asymptotic
growth forms for the long-time limit of the domain core
`(t) (i.e. the region within which the occupancy of the
range by an isolated domain is of order 1) for dispersal
kernels with tails that fall off as r−(µ+d). The forms for
d = 1 are:

A exp(Btη), η = log[2/(1 + µ)]/ log 2, 0 < µ < 1,

(B1)

A exp

[
log2(Bt)

4 log 2

]
, µ = 1, (B2)

At1/(µ−1), 1 < µ < 2, (B3)

At log(Bt), µ = 2, (B4)

At, µ > 2. (B5)

Here, A and B are magnitude scales for ` and t that
depend on µ and on details of the dispersal kernel. (In the
wavelike growth regime, µ > 2, A is the front velocity of
the growin domain.) To extract A and B for the specific
kernels used here, we performed separate simulations in
which domains were grown from a single seed at the origin
at t = 0 up to a size of order 108 for µ ≤ 1 and 105

for µ > 1, with the background mutation rate turned
off. For each value of µ, 20 independent simulations were
performed and the mass evolution over time, averaged
over the independent runs, was equated to 2`(t). The
measured `(t) was fit to the growth forms to obtain A
and B. Using the total mass as a proxy for `(t) leads to
an overestimate of the true size of the core, because it also
counts individuals in the inevitable “halo” that exists due
to jumps from the core to regions outside it during the
stochastic growth process. The halo contains a fraction
of the individuals in the core, which falls as µ increases.
This correction is expected to provide a multiplicative
constant of order 1 to `(t), which is inconsequential to

the prediction of Xave which itself equals χ only up to an
overall constant for each µ.

The asymptotic forms only agree with the measured
single-allele growth profiles when `(t) has grown beyond
a certain size. However, this threshold size becomes ex-
tremely large (i.e. order of the simulation range or larger)
for values of µ close to 1 [17], making the asymptotic
forms of limited utility to predict χ. Ref. 17 also derives
an analytical scaling form for the behaviour of log2 `(t)
over a much broader range of times for µ close to d, which
reads

log2 `(t) ≈ logA+
2d

δ2
[
(Bt)ζ − ζ log(Bt)− 1

]
, (B6)

where δ = µ− d and

ζ = − δ

2d log 2
, δ > 0, (B7)

ζ = − log (1 + δ/2d)

log 2
, δ < 0. (B8)

From our fits to the single allele growth forms, we find
that the scaling form is significantly more accurate than
the asymptotic forms for µ ≤ 1.4 (except µ = 1) and use
it for our predictions of χ. In all cases, the forms for `(t)
with fitted values for A and B are accurate to within a
few percent for `(t) of order 20 and larger.

Once A and B are determined from the fit either to
Eq. B1 or Eq. B6, the relation defining the characteristic
length, Eq. 1 (main text), is solved to obtain t∗(u) and
χµ(u) = `µ(t∗). The functional forms for χ derived as-
suming that `(t) follows the asymptotic forms is provided
in Table 1. For the more complex scaling form, Eq. B6, a
functional form of χ(u) can be derived in terms of Lam-
bert W -functions. For each dispersal kernel, the solution
χµ(u) is analytically determined taking only µ, A and B
as inputs.

The characteristic length scale χ quantifies the bal-
ance between domain growth and mutations that sets
the average domain size Xave up to a multiplicative con-
stant of order 1; the precise relationship between χ and
Xave is determined by the distribution of domain sizes
about the characteristic size which is in turn established
by the complete growth dynamics. We have an explicit
form for the domain size distribution in the constant-
velocity wavelike growth regime, µ > 2 (Eqs. D2 and
D3), which allows us to derive Xave = 2

√
2/πχ ≈ 1.6χ

in this regime. In Fig. 4, we find that multiplicative
constants close to 1.6 also lead to agreement between
Xave(u) and χ(u) for other values of µ, over many orders
of magnitude of u. The agreement is weakest for high u
which corresponds to small domains (average clone sizes
of 100 or smaller); here the functional forms of `(t) are
least accurate and stochastic effects begin to dominate
the deterministic growth implied by `(t).
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ũ = 1e−3

10−2 10−1 100 101

r/X

10−3

10−2

10−1

100

(b) µ = 1.0

10−2 10−1 100 101

r/X

10−4

10−3

10−2

10−1

100

(c) µ = 1.6

FIG. A1 Occupancy profiles for different mutation rates collapse when the radial coordinate is rescaled by clone
size. Each panel shows the averaged occupancy profile, ρ̄(r/X) for a given dispersal kernel at different rescaled mutation rates.
Each curve is itself an average over clones of different sizes, and the average clone sizes vary by orders of magnitude among the
different values of ũ. Despite this variation, the profiles for a given dispersal kernel collapse onto a single curve, confirming the
validity of the rescaling of the distance variable r with the total clone mass X. The smallest and largest average clone sizes (at
ũ = 1e− 3 and ũ = 1e− 6 respectively) are (130, 5.8× 104) for µ = 0.4; (84, 1.6× 104) for µ = 1.0; and (56, 4100) for µ = 1.6.

Appendix C: Secondary length scales ψ and rmax in 1D

Here, we provide an alternative estimate for the length
scale ψ that sets the extent of the halo of a “typical”
clone, which agrees with the estimate proposed in the
main text. The iterative scaling picture of Ref. 17 argues
that, for growth in the marginal regime near µ = d, key
jumps that land at a distance `(t) from the mutational
origin typically occurred around time t/2 and spanned
a distance of roughly `(t) connecting source and target
regions each of size ∼ `d(t/2) (Fig. 2b). The core extent
at a given time constrains the expected number of these
key jumps that have contributed to the core boundary
by that time: they can be neither too rare (in which case
the core would not have reached the purported bound-
ary) nor too common (which would imply that the re-
gion should have been filled much earlier). Since the
number of key jumps is itself set by the extent of the
core (the source for the jumps) together with the jump
kernel, the above constraint equates to a self-consistency
requirement on `(t) [17]:

t `2d(t/2) J [`(t)] ∼ 1.

In the soft-sweep model, key jumps compete with new
mutations in the target region, which occur at a rate of
order ũ`d(t/2). The growth of the halo is obstructed by
new clones when the rate of mutations arising in the tar-
get region becomes comparable to the rate of key jumps
into it from the expanding core. This requires

ũ`d(t/2) ∼ J [`(t)]`2d(t/2) ∼ 1/t⇒ t`d(t/2) ∼ 1/ũ.
(C1)

Up to factors of order unity, the above scaling relation is
satisfied by t = 2t∗, where t∗ was the solution to Eq. 1.

Appendix D: Exact allele frequency spectra in the
panmictic and wavelike spreading limits

a. Panmictic limit

The panmictic limit in our lattice model would corre-
spond to jumps being attempted from the source deme
to a randomly chosen deme in the entire range. The
allele frequency spectrum and related sampling probabil-
ities can be computed exactly in this limit by mapping
to an urn process. To see this, consider the evolution of
allele frequencies in our lattice model when the fraction
of wildtype sites is w and mutants occupy the lattice with
individual fraction fi for mutant i. At the next time step,
the probability weight associated with picking a wildtype
site to introduce a new mutation is ũ×Nw = θw, where
θ = ũN is the initial mutation rate for the empty lat-
tice. By contrast, the probability weight associated with
picking a site of mutant type i for an attempted dispersal
event is Nfi, but only a fraction w of these attempted
dispersal events is successful since the mutant only fixes
in the target deme if it contains the wildtype. There-
fore the probability weight of a successful reproduction
of mutant i is Nwfi. The final statistics of clone sizes
is determined by the relative rate of mutation to repro-
duction at each time step [5] (unlike the times for the
appearance of new clones which depends on the absolute
rates), which is θ versus ni = Nfi at all times since the
wildtype fraction drops out.

The genealogy of new mutants in this model is identi-
cal to that of a stochastic process called Hoppe’s urn [20],
which begins with an urn containing a single black ball
with an assigned probability weight θ. At any time step,
a ball is picked from the urn with probability propor-
tional to its weight. If the black ball is chosen, it is
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returned along with a ball with a new colour and prob-
ability weight 1 (a new mutant). If a coloured ball is
chosen, it is returned along with one copy of itself. The
relative rate of mutation to the duplication of a ball with
colour i is θ versus ni at each turn, thus establishing
the equivalence to our lattice model. The distributions
of mutant frequencies in this urn model are the same as
those for the infinite allele model at equilibrium [18]. In
particular, the allele frequency spectrum is

f∞(x) =
θ

x
(1− x)θ−1. (D1)

Fig. 6 shows that panmictic simulations reproduce the
theoretical limit, which also persists for µ ≈ 0.5 in two
dimensions.

The average clone size in the panmictic limit can be ob-
tained from the allele frequency spectrum by computing
the expected number of distinct clones nc. The smallest
possible clone frequency is 1/N . Therefore, the expected
number of distinct clones, nc, is the sum of all allowed

allele frequencies, i.e. nc =
∫ 1

1/N
f(x) dx, which can be

evaluated exactly using f(x) from Eq. D1. For large N ,
we have nc ≈ ũ[−1+θ+N logN−N(γ+ψ0(θ)], where γ
is the Euler-Mascheroni constant and ψ0 is the digamma
function. A further simplification, valid for θ � 1, is
nc ≈ θ log(1/ũ) [28]. Once nc is computed, the average
clone size is N/nc.

b. Wavelike spreading limit

For µ > d+1, domains are predicted to grow in radially
expanding waves, whose speed depends on the details of
the dispersal kernel. The statistics of soft sweeps in this
limit was previously explored by Ralph and Coop [11],
who observed the equivalence of the process in the wave-
like limit to Kolmogorov-Johnson-Mehl-Avrami (KJMA)
models of grain growth. KJMA models track the evolu-
tion of isotropic domains which nucleate at random po-
sitions in space at a constant rate. Nucleated domains
grow isotropically at a constant front velocity until they
run into other domains, leaving a boundary separating
domains that nucleated at different origins. The final
pattern of domains matches the spatial pattern of clones
in the mutation-expansion model, where individual do-
mains correspond to distinct mutants.

In one dimension, the final grain size distribution for
a KJMA process in which each nucleation gives rise to
a unique domain is known exactly [19]. Using this re-
sult, we obtain the allele frequency spectrum for wavelike
growth in 1D (µ > 2) as

fw(x) =

(
L√
2χ

)2

p

(
Lx√
2χ

)
, (D2)

where χ =
√
v/2u is the characteristic length scale for

domains growing with front speed v, and

p(s) =

√
π

4
(1−erf(s))

[√
2πe

s2

2

(
s2 + 1

)
erf

(
s√
2

)
+ 2s

]
,

(D3)
where erf is the error function. The result is valid as long
as the domain sizes are not limited by the range size, i.e.
L� χ.

The front velocity for arbitrary µ > d+1 is not known
analytically, but its limiting value for very large µ in the
lattice model is known. In the limit µ � d + 1, prac-
tically all attempted jumps land exactly one lattice site
away from the source (this is the lower cutoff for allowed
jump distances). Isolated domains grow via jumps from
the demes situated at the edges, only half of which are
successful in advancing the front (the other half land on
the occupied side of the front and have no effect). There-
fore, the front velocity is 1/2 a lattice site per generation
in the large-µ limit. The frequency spectra for µ > d+ 1
approach this limit as µ increases, see Fig. 6. We can also
extract the µ-dependent front speed by a one-parameter
fit of Eq. D2 to the observed frequency spectra, and ob-
tain consistent results when performing fits at different
values of the mutation rate for any given µ, as shown in
Fig. A2.

Appendix E: Deterministic approximation to allele
frequency spectra

The analysis of the panmictic limit in the main text
revealed that the distribution of alleles as µ → 0 was
identical to that of Hoppe’s urn process. The continuous-
time analogue of Hoppe’s urn is the Yule process with
immigration, in which new alleles enter the population
as a Poisson process with rate θ, and already-present
individuals give birth to offspring at rate 1 without death.
Yule’s process generates the same distribution of allele
sizes as Hoppe’s urn, but the continuous-time description
has the advantage that the dynamics of different alleles
are independent: the population of allele i at time t is
proportional to et−ti where ti was the time at which it
entered the population. Statistical properties of the allele
frequencies, such as the frequency spectrum f∞(x), can
be derived efficiently within this viewpoint.

In our simulations, the growth rate of alleles is not con-
stant over time even if we assume panmictic migration;
the success of each birth event is proportional to the wild-
type fraction w which falls as the simulation progresses.
However, as we saw in the main text, the mapping to
Hoppe’s urn/Yule process remains exact because the rate
of generation of new alleles is also proportional to w and
the relative rates of birth and migration remain constant
throughout the duration of the simulation in the panmic-
tic limit. This is no longer true for µ > 0 when domains
grow somewhat contiguously, because the likely targets
for migrants become correlated with the occupancy of the
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FIG. A2 Fits to the exact frequency spectrum in the wavelike growth limit. The measured allele frequency spectra
from 1D simulations in the wavelike growth regime (µ > d+1) are shown along with the theoretical form from Eqs. D2–D3. The
unknown front speed v is extracted using a one-parameter nonlinear fit, and reported in units of lattice steps per generation.
The fit values are consistent with v being determined by µ and independent of ũ. The front speed approaches the limit of 1/2
lattice steps per generation as µ increases.

lattice and the reduction in growth rate may not simply
be given by the fraction w. If we ignore these correlations,
we arrive at the following approximate continuous-time
model for the allele frequency spectra: process, new al-
leles enter the population at a constant rate θ, and grow
according to the growth rule `(t) for the particular dis-
persal kernel.

We can make analytical headway if we further assume
that the arrival of new alleles is deterministic rather than
Poisson: the kth allele enters the population at time tk =
k/θ, and hence the size of the kth clone is nk = `(t−k/θ).
The total number of alleles, K, is fixed by the range
size: N =

∑K
k=1 nk. In this deterministic model, the

strict time ordering of alleles implies that there are k
alleles with size greater than or equal to nk; i.e. if we can
invert the nk relation to get k(nk), this is the survival
function associated with the probability distribution of

nk and hence x = nk/N . The probability distribution
of x is precisely the allele frequency spectrum up to a
normalization.

Below, we summarize the outcome of computing f(x)
according to this deterministic approximation upon using
the asymptotic functional forms for `(t) in the different
regimes in 1D, summarized in Table I.

1. Power-law growth

The deterministic approach can be used to compute
an approximate frequency spectrum for the growth form
`(t) = At1/(µ−1), which is the asymptotic growth rule for
1 < µ < 2. In this case, we have a frequency spec-
trum that decays as a power law: f(x) ∼ xµ−2, up
to a hard cutoff at a maximal value determined by the
value of K that fills the entire range. Furthermore, the
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FIG. A3 Deterministic approximation to allele frequency spectra. Allele frequency spectra in the power-law growth
regime for different mutation rates and system sizes. The rescaling is suggested by the deterministic calculation, it corresponds
to a clone size distribution whose only scale is the characteristic length scale χ or equivalently the average clone size Xave. The
solid line is the prediction f(y) = yµ−2 and the vertical dashed line indicates the maximal rescaled allele frequency µ/(µ− 1)
from the deterministic approximation.

form admits a rescaling that ought to collapse frequency
spectra across different system sizes and mutation rates:
f(x) = (L/Xave)

2F (Lx/Xave), where F (y) = yµ−2 up
to the cutoff ymax = µ/(µ − 1), which is the same as
Eq. 3 in the main text. Fig. A3 shows that the collapse
works very well across different mutation rates and two
system sizes. The predicted power law for f(x) is near-
quantitative for all µ except µ = 1.2, which is too close to
the marginal case µ = 1 for the asymptotic growth rule to
be relevant. The predicted cutoff frequency captures the
rough location of the dropoff in f(x), but the determin-
istic approximation fails to capture the “soft shoulder”
or the clones at very large frequency, which may have an
outsize influence on sampling statistics.

Note that the deterministic approximation predicts a
flat frequency spectrum f(x) = const. for linear growth
`(t) = vt, whereas the exact result for wavelike growth
in 1D from the Axe and Yamada results, which we have
seen to be quantitatively accurate for µ � 2, predict
a linear increase in the power spectrum f(x) ∝ x for
small x. The difference is due to the fact that the de-

terministic approximation assumes that growth happens
symmetrically toward both the left and the right at all
times, whereas the wavelike growth limit is characterized
by the left and right edges of the domain being inter-
rupted independently as they run into other domains, so
that one edge always advances for longer than the other.
We can also explicitly include the log t correction to lin-
ear growth exactly at µ = 2, and we find that the low-x
behaviour is unaffected (i.e. f(x) ∼ const. as x→ 0) but
there are contributions at higher x. These arise in the
“shoulder” region of the spectrum, which is not captured
by the deterministic analysis.

2. Marginal growth

If we use the growth form for µ = 1 in the deter-
ministic calculation, we no longer get a simple power
law for f(x); the functional form is instead f(x) ∼
exp(
√
a+ b log x/

√
a+ b log x/x where a and b depend

on the prefactors associated with `(t) and on θ and K.
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FIG. A4 Comparison of allele frequency spectra over a
range of system sizes for µ = 1. Allele frequency spectra
for µ = 1 over different values of L and u, rescaled according
to the assumption that the only length scale for the domains
is χ. The low-frequency behaviour is consistent with a power-
law decay that goes as x−0.72 (straight line).

This form is not a strict power law in x. However, when
the various coefficients are computed using the full ex-
pression for `(t) measured from the growth of single do-
mains (Appendix B), we find that f(x) behaves similar
to a power law over a wide range of nk, with an effective
exponent between -0.65 and -0.85. Using the same rescal-
ing as for the power-law growth for the measured f(x)
gives reasonable collapse over a range of values of u and
L (Fig. A4) with a power law decay f(x) ∼ x−0.72. We
note that f(x) measured from simulations appears closer
to a power-law form for x → 0 than the deterministic
approximation.

3. Stretched exponential growth

In the stretched-exponential growth regime µ < d, the
rescaling of the frequency spectra for a specific kernel pro-
posed in Equation 3 is no longer exact. The rescaling as-
sumed that χ set all length scales in the problem; this was
true for power-law growth because the halo-dependent
scales ψ and rmax were proportional to χ (with propor-
tionality factors that depended only on µ and not on χ).
By contrast, for stretched-exponential growth the addi-
tional length scales depend on the average clone sizes and
hence on ũ. However, Fig. 6 showed that the rescaling
captured much of the variation in f(x) across two well-
separated mutation rates, down to µ = 0.4.

Although we could compute approximate frequency
spectra using the deterministic calculation outlined
above, they are less revealing in this regime. Instead,
we gauge the inaccuracy of the proposed scaling in the
panmictic limit µ → 0 where we know the exact fre-
quency spectrum f∞. When Nũ = θ � 1, we have

Xave ≈ −1/(ũ log ũ) in the panmictic limit. Using this
result and the form for f∞ in Eq. 3, we find that

F∞(y) =
−1

y log ũ

(
1 +

y

θ log ũ

)θ−1
≈ −1

y log ũ

(
1 +

y

log ũ

)
,

(E1)
where y = Nx/Xave and we have used θ � 1 in the sec-
ond step. We find that the function after rescaling has
a residual dependence on log ũ, both in the overall mag-
nitude and in the value yc ∼ log ũ of the dropoff in f .
The gentle logarithmic correction implies that the pro-
posed rescaling still captures much of the variation with
mutation rates for a given kernel, even if ũ is varied by
orders of magnitude, thus explaining the decent collapse
of curves at different mutation rates in Fig. 6 even for
µ < d.

Appendix F: Allele frequency spectra with a hard cutoff

The measured allele frequency spectra display a power-
law behaviour f(x) ∼ xp, p > −1 for small values of
x. For cores growing as contiguous domains, balancing
growth and mutation rates gives rise to a characteristic
linear domain size χ (and corresponding clone size χd)
for domain growth before a cone encounters a new mu-
tation. In a finite range of size Ld, such growth would
imply an upper bound on the allowed allele frequency at
some value xc ∼ (χ/L)d. These observations suggest the
ansatz for the allele frequency spectra introduced in the
main text:

f(x) =


p+ 2

xp+2
c

xp, x < xc

0, x > xc,

(F1)

where the prefactor is determined by the normalization

condition
∫ 1

0
x f(x)dx = 1.

This ansatz ignores contributions from higher-
frequency clones, which are clearly significant especially
for small values of µ. We can evaluate the significance of
these contributions by comparing measured quantities to
expectations from the hard-cutoff ansatz below.

The average clone size Xave ≡ N/nc = N/
∫
f(x)dx

can be evaluated for all p > −1 as

Xave =
p+ 1

p+ 2
Nxc. (F2)

The sampling probability of observing only one allele
in a sample of size j evaluates to

P (1; j) =

∫ 1

0

xjf(x)dx =
p+ 2

p+ j + 1
xj−1c (F3)

which deviates weakly from the exponential falloff
P (1; j) = x∗j−1 expected if all clones are of the same
size and hence the same frequency x∗.
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Appendix G: Sampling statistics in panmictic and wavelike
growth limits

In the panmictic limit, µ → 0, sampling probabilities
are known analytically for all sample sizes [18]. Using
f∞(x) in Eq. 5 gives Phard = θ(j − 1)!Γ(θ)/Γ(j + θ) [5,
18] (where Γ denotes the gamma function). The result
has two distinct behaviours depending on the value of
θ = Nũ. When θ � 1, an exponential falloff Phard ∼
(1/θ)jθΓ(θ) is recovered for large j, whereas for θ � 1,
Phard(j) falls slower than 1− θ log j.

For 1D wavelike growth with constant front velocity,
Ref. [19] provides the exact form for the allele frequency
spectrum, Eqs. D2–D3. The probability of observing
only one allele in a random sample of size j is then

P (1; j) =
∫ 1

0
xjf(x) dx = (

√
2χ/L)j−1

∫ L/√2χ

0
sjp(s).

The latter integral cannot be evaluated in a closed form,
even when we consider L/χ� 1 so that the upper limit
can be replaced by s = ∞. However, by tracking the
position of the maximum value of the integrand which
occurs at x ≈ √j, and using Laplace’s method to approx-
imate the integral, we arrive at

∫∞
0
sjp(s) ≈ 2jj/2p(

√
j),

which provides a correction to the leading approximation
P (i; j) ≈ (

√
2χ/L)j−1.
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