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Abstract 35	
 36	
The gene targets of enhancer activity in pancreatic islets are largely unknown, impeding 37	
discovery of islet regulatory networks involved in type 2 diabetes (T2D) risk.  We 38	
mapped chromatin state, accessibility and conformation using ChIP-seq, ATAC-seq and 39	
Hi-C in human pancreatic islets, which we integrated with T2D genetic fine-mapping and 40	
islet expression QTL data.  Active islet regulatory elements preferentially interacted with 41	
other active elements, often at distances over 1MB, and we identified target genes for 42	
thousands of distal islet enhancers. A third of T2D risk signals mapped in islet 43	
enhancers, and target genes regulated by these signals were specifically involved in 44	
processes related to protein transport and secretion.  Among implicated target genes of 45	
T2D islet enhancer signals with no prior known role in islet function, we demonstrated 46	
that reduced IGF2BP2 activity in mouse islets leads to impaired glucose-stimulated 47	
insulin secretion.  These results link distal islet enhancer regulation of protein secretion 48	
and transport to genetic risk of T2D, and highlight the utility of high-throughput chromatin 49	
conformation maps to uncover the gene regulatory networks of complex disease.           50	
 51	
Introduction 52	
 53	
Genetic risk of type 2 diabetes (T2D) is largely mediated through variants affecting 54	
transcriptional regulatory activity in pancreatic islets1-7.  Genetic fine-mapping combined 55	
with epigenomic annotation data can identify causal variants at T2D risk loci mapping in 56	
islet regulatory elements1,2.  The gene targets of islet regulatory elements, however, are 57	
largely unknown, impeding discovery of disease-relevant gene networks perturbed by 58	
risk variants and novel therapeutic avenues.  The spatial organization of chromatin plays 59	
a critical role in tissue-specific gene regulation, and recently developed high-throughput 60	
techniques such as Hi-C identify physical relationships between genomic regions in 61	
human tissues genome-wide8-10.  Tissue-specific maps of chromatin organization can 62	
identify candidate target genes of distal regulatory elements and inform the molecular 63	
mechanisms of disease risk variants9.   64	
 65	
Here, we defined the spatial organization of transcriptional regulatory elements in 66	
primary pancreatic islets, through which we mapped genetic effects on islet gene 67	
expression and T2D risk.  Islet active regulatory elements preferentially interacted with 68	
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other active elements, in many cases over 1MB, and we identified putative distal target 69	
genes for thousands of islet enhancers.  A third of known T2D risk signals had likely 70	
causal variants in islet enhancers, and target genes of these signals were strongly 71	
enriched for processes related to protein secretion and transport.  Among target genes 72	
with no previously known role in islet function, we demonstrated that reduced activity of 73	
IGF2BP2 in mouse islets leads to impaired glucose-stimulated insulin secretion.  74	
Together our results define distal regulatory programs in islets through which we link 75	
islet enhancer regulation of protein transport and secretion to T2D risk. 76	
 77	
Results 78	
 79	
We first defined islet accessible chromatin using ATAC-seq11 generated from four 80	
pancreatic islet samples (Table S1). Accessible chromatin signal was highly concordant 81	
across all samples (Pearson r2>.8) (Figure S1). We called sites for each sample 82	
separately using MACS212, and merged sites to create a combined set of 105,734 islet 83	
accessible chromatin sites.  We then collected published ChIP-seq data of histone 84	
modification and transcription factor binding in primary islets5,13 and called chromatin 85	
states using ChromHMM14 (Figure S1). Accessible chromatin predominantly mapped 86	
within active enhancer and promoter states (Figure 1A). We functionally annotated islet 87	
accessible chromatin by using chromatin states to define active enhancers and 88	
promoters, as well as other classes of islet regulatory elements (Table S2). We identified 89	
44,860 active enhancers which, in line with previous reports4,15, were distal to promoters, 90	
more tissue-specific, and preferentially harbored motifs for FOXA, RFX, NEUROD and 91	
other islet transcription factors (Figure S1, Table S3).   These results define active 92	
enhancers and other classes of regulatory elements in pancreatic islets. 93	
 94	
Defining the target genes of enhancers has been challenging as they frequently control 95	
non-adjacent genes over large genomic distances through chromatin looping16. The 96	
spatial organization of chromatin in pancreatic islets is unknown, and we therefore 97	
identified physical interactions between genomic regions in islets.  We performed 98	
genome-wide chromatin conformation capture using in situ Hi-C8,17 in three islet 99	
samples, two of which were sequenced to a depth of >1 billion reads (Table S1). 100	
Contact matrices from islet Hi-C assays were highly concordant across samples (Figure 101	
S2).  We called chromatin loops at 5kb, 10kb, and 25kb resolution with HICCUPS8 using 102	
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reads from each sample individually, as well as with reads pooled from all three samples 103	
(Figure 1B).  We then merged loops across samples where both anchors overlapped at 104	
20kb resolution (see Methods), resulting in a combined set of 11,924 islet Hi-C loops 105	
(Table S4).  The median distance between loop anchor midpoints was 255kb, and 106	
nearly 10% were over 1MB in size (Figure S2).  This established a map of chromatin 107	
loops in human pancreatic islets. 108	
 109	
We determined the relationship between islet regulatory element activity and chromatin 110	
looping.  Islet accessible chromatin signal was largely localized to islet loop anchors, 111	
with the strongest signal at anchor midpoints (Figure 1C).  Nearly half of all islet 112	
regulatory elements were proximal to an anchor (48.7%), and regulatory sites most 113	
enriched (empirical P<1.5x10-4) for chromatin loop anchors included CTCF binding sites 114	
(2.61-fold), active promoters (2.08-fold), and active enhancers (1.85-fold) (Figure 1D).  115	
We further mapped the relationship between islet regulatory sites connected by loop 116	
anchors.  The most significantly enriched anchor interactions were between active 117	
enhancer and promoter sites (EnhA1-TssA OR=1.28, P=1.53x10-37; EnhA1-EnhA1 118	
OR=1.37, P=1.87x10-38; TssA-TssA OR= 1.42, P=6.15x10-36).  We also observed strong 119	
enrichment for interactions between CTCF binding sites (CTCF-CTCF OR=1.16; 120	
P=1.1x10-17) (Figure 1E).  These results demonstrate that islet chromatin loops are 121	
prominently enriched for active regulatory sites in addition to CTCF binding sites.   122	
                 123	
We next used chromatin loops to annotate distal relationships between islet enhancers 124	
and potential target genes genome-wide (see Methods).  Over 40% (18,240) of islet 125	
active enhancer elements interacted with at least one gene promoter region, and on 126	
average, these enhancers interacted with 2 gene promoter regions (Figure S2, Table 127	
S5). Conversely, the promoter regions of 8,448 genes had at least one loop to an 128	
enhancer element (Figure 2A, Table S6).  Of these 8,448 genes, 1,157 had more than 129	
two independent chromatin loops to enhancer elements.  Genes with multiple loops were 130	
strongly enriched for processes related to transcription factor activity and gene 131	
regulation, protein transport, and insulin signaling (Table S7).  Among highly-looped 132	
genes were also numerous critical for islet function, such as INS, ISL1, FOXA2, NKX6.1, 133	
and MAFB (Table S5).  For example, there were four distinct loops between active 134	
enhancers and MAFB, including several loops to enhancers over 1 MB distal (Figure 135	
2B).  These results define candidate distal target genes of enhancer elements in islets. 136	
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 137	
We examined the relationship between active enhancer interactions and target gene 138	
expression level by using RNA-seq data from pancreatic islet samples18 and 53 tissues 139	
in GTEx release v7 data19.  A significantly higher proportion of genes expressed in islets 140	
had at least one enhancer loop compared to non-islet expressed genes (ln(TPM)>1; 141	
expr=.48, non-expr=.30, Chi-square P=2.2x10-16).  Genes with increasing numbers of 142	
enhancer loops had, on average, higher expression level in islets (r=.15, P=2.2x10-16), 143	
with the highest expression among genes with 6 or more loops (median=19.8 TPM) 144	
(Figure 2C).  The number of islet enhancer interactions was also a significant predictor 145	
of expression level in islets (b=.10, P=6.4x10-4), and not of relative expression level in 146	
any of the other 53 tissues in GTEx (all P>.05) (Figure 2D).  We measured the relative 147	
expression level of genes in islets and 53 GTEx tissues normalized across all tissues 148	
(see Methods), and again observed a significant relationship between enhancer loops 149	
and relative expression level in islets and no other tissues (Figure S2).  These results 150	
suggest distal islet enhancer chromatin loops are correlated with islet-specific gene 151	
expression patterns. 152	
 153	
We next determined the effects of genetic variants in islet enhancers on target gene 154	
regulation.  We generated expression quantitative trait loci (eQTL) data in 230 islet RNA-155	
seq samples by combining summary statistics from two published studies through meta-156	
analysis7,18 (see Methods).  We identified variants overlapping classes of islet regulatory 157	
elements genome-wide.  We then quantified the eQTL association of these variants to 158	
target genes determined from their proximity to nearby genes and from chromatin loops 159	
(see Methods).  As expected, we observed the strongest eQTL evidence for active 160	
promoter and enhancer variants proximal to genes (TssA median –log10(P)=.65, EnhA 161	
proximal median –log10(P)=.50) (Figure 2E). For variants in distal enhancers, we 162	
observed stronger evidence for islet eQTL association among genes in loops relative to 163	
non-loop genes (EnhA interacting median=.35, EnhA non-interacting median=.31, 164	
Wilcox P=2.2x10-16), even when matching based on gene distance to the enhancer 165	
(Wilcox P=2.9x10-4) (Figure 2E). These results suggest that genetic variants in distal 166	
islet enhancer elements are preferentially correlated with the expression level of genes 167	
within chromatin loops.     168	
 169	
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Genetic variants at T2D risk loci are enriched for islet regulatory elements1,2,4,5, but the 170	
effects of variants in regulatory elements on T2D risk in the context of chromatin looping 171	
is unknown.  We determined the effects of variants in islet regulatory elements and 172	
chromatin loops on T2D risk using association data of 6.1M common (MAF>.05) variants 173	
with fgwas and LD-score regression20,21.  We observed strongest enrichment of variants 174	
in active regulatory elements, most notably in active enhancers (EnhA1 fgwas 175	
ln(enrich)=3.9, LD-score Z=3.1) (Figure 3A, Figure S3).  The effects of variants in active 176	
enhancer and promoter elements on T2D risk were more pronounced among those in 177	
chromatin loops (EnhA1 fgwas ln(enrich)=4.38, LD-score Z=3.1; TssA fgwas 178	
ln(enrich)=3.03, LD-score Z=0.86) (Figure 3B, Figure S3).  Conversely, variants in other 179	
islet elements such as flanking promoters and weak enhancers and were more enriched 180	
outside of loops (Figure 3B, Figure S3).  To determine the inter-dependence of these 181	
effects, we jointly modelled variants in islet regulatory elements on T2D risk, while also 182	
including variants in GENCODE coding exons and UTRs.  In a joint model, we observed 183	
enrichment of variants in islet active enhancer elements (EnhA1 ln(enrich)=4.04), in 184	
addition to flanking promoters (TssFlnk ln(enrich)=3.77) and coding exons (CDS 185	
ln(enrich)=2.34) (Figure S3).  These results demonstrate genome-wide enrichment of 186	
variants in islet active regulatory elements within chromatin loops for T2D risk. 187	
 188	
To identify T2D risk signals mapping in islet enhancers, we used effects from the joint 189	
enrichment model as priors on the causal evidence (PPA) for both variants at known 190	
T2D loci and in windows genome-wide1,2,21 (see Methods).  Among 107 known risk 191	
signals, variants in islet enhancers accounted for almost a third (29%) of the total 192	
probability mass (Table S8, Figure 3C).  We clustered known risk signals based on 193	
annotations at candidate causal variants (see Methods) and identified 30 signals where 194	
the causal variant was likely in an islet enhancer (Figure 3D). The 30 T2D islet enhancer 195	
signals were associated with IGTT-based insulin secretion phenotypes significantly more 196	
than un-annotated signals (Enh=42%, un-annot=17%, Chi-square P=1x10-7), supporting 197	
a role in islet function22 (Figure 3E).  Fine-mapping including functional priors improved 198	
resolution of causal variants at the 30 T2D islet enhancer signals (avg. 3.5 enh variants) 199	
(Figure 3F), and at 6 signals resolved a single causal islet enhancer variant (Table S8). 200	
One example is previously unreported variant rs7732130 (ZBED3; PPA=98%) in a 201	
chromatin loop and which has allelic effects on islet enhancer activity (T-test Fwd 202	
P=3.7x10-3, Rev P=6.8x10-6) (Figure 3G, 3H).  Outside of known loci, we identified an 203	
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additional 131 1MB windows genome-wide harboring putative T2D enhancer variants 204	
(Figure S3, Table S9; see Methods). These results identify a large number of known 205	
and putative T2D risk signals with causal variants in islet enhancers.   206	
 207	
A large percentage of T2D risk signals map in islet enhancers, and the gene targets of 208	
these signals are largely unknown.  We defined candidate target genes based on gene 209	
promoter regions in chromatin loops with, or in proximity to, T2D enhancer signals 210	
(Figure 3D, see Methods).  T2D enhancer signals had on average 2 target genes 211	
(Figure 4A, 4B, Table S10), a large reduction in candidate gene numbers obtained 212	
when using a 1MB window (avg.=18 genes) or TAD definitions (avg.=7 genes) (Figure 213	
4A).  Target genes were enriched in gene sets related to protein transport and secretion, 214	
potassium ion transport, vesicles and vesicle membranes, and endoplasmic reticulum 215	
(FDR<.2) (Figure 4B, Table S11).  Target genes also included multiple involved in 216	
MODY and other monogenic and syndromic diabetes (ABCC8, KCNJ11, GCK, INS, 217	
GLIS3, WFS1) (Figure S4).  Conversely, non-target genes within 1MB of these same 30 218	
signals were enriched for gene sets related to stress-response and other processes 219	
(FDR<.2), suggesting regulatory programs potentially activated in other cellular states 220	
(Table S11, see Methods).  At several loci, loops implicated target genes highly distal 221	
(>500kb) to T2D enhancer variants; for example, multiple KCNQ1 signals interacted with 222	
INS/IGF2 over 700kb distal, and ZMIZ1 interacted with POLR3A over 1MB distal (Figure 223	
S4).  These results define putative target genes of T2D enhancer signals involved in 224	
protein transport and secretion and monogenic diabetes. 225	
 226	
We then further identified target genes regulated by T2D enhancer signals using islet 227	
eQTL data.  At each signal, we tested the most likely casual enhancer variant for eQTL 228	
association to each target gene correcting for the total number of target genes (see 229	
Methods).  For genes with eQTL evidence (P<.05), we further confirmed eQTL and T2D 230	
signals were unlikely to be driven by distinct causal variants using Bayesian co-231	
localization (see Methods). Target genes showed evidence of islet eQTLs with 8 known 232	
T2D islet enhancer signals (P<.05) including CAMK1D, ABCB9, C2CD4B, and IGF2BP2 233	
(Figure 4D, Table S12).  For example, known T2D variant rs11257655 is in an islet 234	
active enhancer element that loops to the CAMK1D promoter and is an islet eQTL for 235	
CAMK1D expression23 (Figure 4E).  At the 131 putative T2D enhancer signals, we 236	
identified 12 additional target genes with evidence for eQTLs to T2D variants (P<.05) 237	
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such as FADS1, VEGFA, SNX32 and SCRN2 (Table S12).  Among the 21 directly 238	
regulated genes, nearly a third have not been identified as significant islet eQTLs in 239	
previous studies7,18,41. Target genes with islet eQTLs to known and putative T2D 240	
enhancer signals were specifically enriched for genes involved in vesicle-mediated 241	
transport (FDR<.2) (Figure 4C, Table S11).  These results demonstrate that target 242	
genes of T2D islet enhancer signals are involved in protein transport and secretion.   243	
 244	
Among novel target genes, IGF2BP2 has a strong islet eQTL with T2D enhancer 245	
variants and has no known role in T2D-relevant islet biology.  As T2D risk alleles are 246	
correlated with reduced IGF2BP2 expression and reduced insulin secretion 247	
phenotypes22, we hypothesized that reduced IGF2BP2 expression in islets would 248	
increase T2D risk.  We thus determined the effects of reduced IGF2BP2 on islet function 249	
using a mouse model.  IGF2BP2/Imp2 is widely expressed in adult mouse tissues 250	
including fat, muscle, liver and pancreas24, and in the pancreas Imp2 expression 251	
localized to islets and overlapped insulin (Figure 5A).  We inactivated Imp2 in mouse 252	
beta cells by recombining the Imp2flox(f) allele with Cre recombinase driven by the rat 253	
insulin 2 promoter (RIP2-Cre) (Figure S5A).  Immunoblot analysis of extracts from 254	
isolated Imp2ff/RIP2-Cre islets confirmed reduced Imp2 abundance compared to Imp2ff 255	
islets (Figure 5B).  Imp2ff/RIP2-Cre mice exhibited no overt phenotype and gained 256	
weight similar to Imp2ff controls on both a normal chow (NCD) and high fat diet (HFD) 257	
(Figure S5B).   258	
 259	
We next assessed the effect of IGF2BP2 deficiency in mouse beta cells on glucose 260	
homeostasis. At 10 weeks of age, Imp2ff and Imp2ff/RIP2-Cre mice on NCD exhibited no 261	
difference in blood glucose and insulin levels.  By contrast, blood insulin and C-peptide 262	
levels were reduced in HFD-fed Imp2ff/RIP2-Cre compared to HFD-fed control mice, 263	
whereas blood glucose and glucagon levels were similar (Figure 5C).  When challenged 264	
with an intraperitoneal glucose injection, HFD-fed, but not NCD-fed, Imp2ff/RIP2-Cre 265	
mice exhibited significantly higher glucose and lower insulin levels than Imp2ff mice 266	
(Figure 5D,E). Importantly, this was not due to a difference in insulin sensitivity, as blood 267	
glucose levels after an intraperitoneal insulin injection were similar in Imp2ff and 268	
Imp2ff/RIP2-Cre mice (Figure S5C). These results indicate that IGF2BP2 deficiency 269	
limits the capacity of beta cells to augment insulin secretion in response to increased 270	
insulin demand.  271	
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 272	
In summary, we defined the genomic location, function, and spatial orientation of 273	
regulatory elements in pancreatic islets.  Islet active regulatory elements preferentially 274	
interacted with other active elements, in many cases at distances over 1MB, and we 275	
identified putative target genes for thousands of islet distal enhancers.  Target genes of 276	
T2D islet enhancer signals were specifically involved in processes related to protein 277	
transport and secretion, and we validated that reduced activity of a previously unknown 278	
target gene IGF2BP2 in mouse islets leads to defects in glucose-stimulated insulin 279	
secretion.  Together our results define distal regulatory networks in islets and link T2D 280	
risk to enhancer regulation of protein transport and secretion.  Furthermore, these 281	
results highlight the utility of high-resolution chromatin conformation maps in dissecting 282	
the gene regulatory networks underlying genetic risk of T2D and other complex disease.   283	
 284	
Methods 285	
 286	
Islet ATAC-seq data generation 287	
Four human islet donors were obtained from the Integrated Islet Distribution Program 288	
(IIDP) (Table S1). Islet preparations were further enriched and selected using zinc-289	
dithizone staining.  We generated ATAC-seq data from the four human islet samples 290	
with a protocol as previously described11. For each sample, we trimmed adaptor 291	
sequences using TrimGalore (https://github.com/FelixKrueger/TrimGalore). The resulting 292	
sequences were aligned to sex-specific hg19 reference genomes using bwa mem25,26. 293	
We filtered reads were to retain those in proper pairs and with mapping quality score 294	
greater than 30.  We then removed duplicate and non-autosomal reads.  We called 295	
peaks individually for each sample with MACS212 at a q-value threshold of .05 with the 296	
following options “—no-model”, “—shift -100”, “—extsize 200”.  We removed peaks that 297	
overlapped genomic regions blacklisted by the ENCODE consortium and merged the 298	
peaks26. In total, we obtained 105,734 merged peaks. To assess concordance between 299	
ATAC-seq experiments, we calculated read coverage at 200 bp bins genome-wide, 300	
excluding blacklisted genomic regions. We then calculated the Pearson correlation 301	
between the read counts for each sample. 302	
 303	
Islet Hi-C data generation 304	
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We generated Hi-C data from three pancreatic islet samples, two of which also had 305	
ATAC-seq data (Table S1).  Islet preparations were further enriched and selected using 306	
zinc-dithizone staining. In situ Hi-C was performed using a previously published protocol 307	
with modifications adapted to frozen human tissue17.  Briefly, the tissue was cut to fine 308	
pieces and washed with cold PBS. Cross-linking was carried out with 1% formaldehyde 309	
(sigma) in PBS at room temperature (RT) for 10 min and quenched with 125mM Glycine 310	
(sigma) at RT for 5 min. Nuclei were isolated using a loose-fitting douncer in hypotonic 311	
buffer (20mM Hepes pH7.9, 10mM KCl, 1mM EDTA, 10% Glycerol and 1mM DTT with 312	
additional protease inhibitor (Roche) for 30 strokes and centrifuge at 4 °C. 313	
  314	
Nuclei were digested using 4 cutter restriction enzyme MboI (NEB) at 37 °C overnight 315	
(o/n). Digested ends were filled in blunt with dBTP with biotinylated-14-ATP (Life 316	
Technologies) using Klenow DNA polymerase (NEB). Re-ligation was performed in situ 317	
when nucleus was intact using T4 DNA ligase (NEB) at 16 °C for 4 hrs. The cross-linking 318	
was reversed at 68 °C o/n while protein was degraded with proteinase K treatment 319	
(NEB). DNA was purified with phenol-chloroform extraction and ethanol precipitation, 320	
followed by fragmentation to 300-500 bp with the Covaris S220 ultrasonicator. Ligation 321	
products were enriched with Dynabeads My One T1 Streptavidin beads (Life 322	
Technologies).  PCR was used to amplify the enriched DNA for sequencing. HiSeq 4000 323	
sequencer (Illumina) was used to sequence the library with 2x100 bp paired-end reads.   324	
 325	
For each sample, reads from paired end reads were aligned with bwa mem27 as single-326	
end reads, and then filtered through following steps. First, only five prime ends were kept 327	
for chimeric reads.  Second, reads with low mapping quality (<10) were removed.  Third, 328	
read ends were then manually paired, and PCR duplicates were removed using Picard 329	
tools (https://github.com/broadinstitute/picard).  Finally, filtered contacts were used to 330	
create chromatin contact maps with Juicebox28.  331	
 332	
Contact maps for each sample were binned to 100kb, and the correlation between 333	
samples across all bins for all chromosomes was calculated using scipy.stats.pearsonr 334	
in scipy. Chromatin loops were identified by using HICCUPS8 at 5kb, 10kb, and 25kb 335	
resolutions with default parameters on the Hi-C maps for each individual.  The Hi-C data 336	
was then pooled across all three samples to create a single contact map, and loops 337	
were called with HICCUPs at the same resolutions with the same parameters.  A single 338	
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loop set was then created by identifying loops where both anchors were within 20kb of 339	
one another via pgltools29 and retaining the loop with the highest resolution.  If multiple 340	
loops were found at the highest resolution, loops were kept from the contact map with 341	
the highest overall sequencing depth.  We also called topologically associated domains 342	
(TADs) from the pooled Hi-C data using a previously described approach10. 343	
 344	
Islet ChIP-seq data processing 345	
We obtained previously published data from ChIP-seq assays of H3K4me1, H3K27ac, 346	
H3K4me3, H3K36me3 and CTCF generated in primary islets and for which there was 347	
matching input sequence from the same sample4-6.  For each assay and input, we 348	
aligned reads to the human genome hg19 using bwa30 with a flag to trim reads at a 349	
quality threshold of less than 15.  We converted the alignments to bam format and 350	
sorted the bam files.  We then removed duplicate reads, and further filtered reads that 351	
had a mapping quality score below 30.  Multiple sequence datasets obtained from the 352	
same assay in the same sample were then pooled.    353	
 354	
We defined chromatin states from ChIP-seq data using ChromHMM14 with a 9-state 355	
model, as calling larger state numbers did not empirically appear to identify additional 356	
states.  We assigned the resulting states names based on patterns previously described 357	
in the NIH Roadmap and ENCODE projects – CTCF (CTCF), Transcribed (Txn; 358	
H3K36me3), Active promoter (TssA; H3K4me3, H3K4me1), Flanking promoter (TssFlnk; 359	
H3K4me3, H3K4me1, H3K27ac), Weak/Poised Enhancer (EnhWk; H3K4me1), Active 360	
Enhancer 1 (EnhA-1; H3K27ac), Active Enhancer 2 (EnhA-2; H3K27ac, H3K4me1), and 361	
two Quiescent states (Quies; low signal for all assays).   362	
 363	
We then annotated accessible chromatin sites based on overlap with the chromatin 364	
states.  If an accessible chromatin site overlapped multiple chromatin states, we split the 365	
site into multiple distinct elements.    366	
 367	
Islet chromatin interaction analyses 368	
To determine the normalized tag counts of ATAC-seq data at loop anchors, loop anchors 369	
were converted to a regular BED file with pgltools29, and HOMER31 was used to find the 370	
normalized tag density across all loop anchors for each ATAC-seq sample.  Output from 371	
HOMER was normalized to a maximum height of 1 for each sample to determine the 372	
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distribution of ATAC-seq signal within each sample, rather than the relative magnitude 373	
coverage difference between ATAC-seq samples. 374	
 375	
To determine the enrichment of each class of islet regulatory elements near loops, and 376	
the types of elements colocalized by loops, we utilized pgltools and HOMER to integrate 377	
the ATAC-seq and Hi-C data.  We first created a size matched null distribution 378	
comprised of 7,000 permuted regions.  Next, for each islet accessible chromatin state, 379	
we identified the proportion of states within 25kb of a loop.  We determined the fold 380	
enrichment of each class over the average calculated from the null distribution, and 381	
determined significance as the number of permuted counts greater than the observed.     382	
 383	
To determine which pairs of islet regulatory elements were in chromatin loops at a 384	
statistically significant level, we compared the distribution of islet regulatory elements 385	
around loop anchors using HOMER.  We utilized the “annotateInteractions” function to 386	
obtain logistic regression p-values and odds ratio enrichment estimates for all pairs of 387	
islet regulatory elements. 388	
 389	
We defined candidate target genes of islet enhancer elements using Hi-C loops in the 390	
following way.  First, we identified all islet active enhancer elements mapping within 25kb 391	
of a Hi-C loop anchor.  We then filtered these loops based on whether the other anchor 392	
mapped within 25kb of a promoter region (-5kb/+2kb of transcription start site) for 393	
protein-coding or long non-coding genes in GENCODEv2732.  For each active enhancer, 394	
we then calculated the number of gene promoter regions interacting with that enhancer.  395	
For each gene promoter region, we calculated the number of independent interactions 396	
containing at least one active enhancer element.  397	
 398	
We identified genes with multiple (>2) active enhancer interactions and tested these 399	
genes for gene set enrichment using GSEA33, considering only gene sets with more than 400	
25 genes at an FDR>.2. 401	
 402	
Genomic enrichment analyses 403	
We tested for enrichment of variants in each accessible chromatin class using T2D 404	
association data of 1000 Genomes project variants from the DIAGRAM consortium21. 405	
From this meta-analysis, we identified common variants (with minor allele frequency 406	
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(MAF)>.05).  In total, we retained 6.1M common variants for testing.  For each variant, 407	
we then calculated a Bayes Factor from effect size estimates and standard errors using 408	
the approach of Wakefield34. 409	
 410	
We then modelled the effect of variants in each class of islet regulatory elements on T2D 411	
risk using fgwas20.  For these analyses, we used a window size (-k) that resulted in a 412	
1Mb window on average.  We first tested for enrichment of variants in each state 413	
individually. We then built a joint model iteratively in the following way. We first identified 414	
the annotation with the highest likelihood.  We then added annotations to the model until 415	
the likelihood did not increase further.  Using this model, we introduced a series of 416	
penalties from 0 to .5 in increments of .01 and fit the model using each penalty, and 417	
identified the penalty that gave the highest cross-validation likelihood.  We then finally 418	
removed annotations from the model that further increased the cross-validation 419	
likelihood.  We considered the resulting set of annotations and effects to be the optimal 420	
joint model. 421	
 422	
We also modelled the effect of variants in islet regulatory elements using LD-score 423	
regression.  For these analyses, we extracted variants in HapMap3 from T2D 424	
association data.  We then calculated LD scores for variants in each regulatory element 425	
class.  Finally, we obtained enrichment estimates using these LD scores with T2D 426	
association data of HapMap3 variants. 427	
 428	
Fine-mapping of T2D risk variants 429	
We used the effects from the joint enrichment model as priors on the evidence for 430	
variants at 107 known T2D signals using fine-mapping data from the Metabochip2, 431	
GoT2D1 and DIAGRAM 1000 Genomes21 studies.  We used data of 49 T2D signals at 432	
39 T2D loci on the Metabochip, 41 additional T2D signals from GoT2D data for T2D loci 433	
not on the Metabochip, and 17 additional T2D signals in DIAGRAM 1000G not in 434	
Metabochip or GoT2D.       435	
 436	
For each signal, we obtained the enrichment effect of the islet regulatory or coding 437	
annotation overlapping that variant.  We calculated a prior probability for the variant by 438	
dividing the effect by the sum of effects across all variants at a signal.   We then 439	
multiplied this prior probability by the Bayes Factor for each variant.  From the resulting 440	
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odds, we calculated a posterior probability that the variant is causal for T2D risk (PPA) 441	
by dividing the odds by the sum of odds across all variants at the locus.   442	
 443	
For each signal, we calculated a cumulative PPA (cPPA) value for islet enhancer 444	
(EnhA1, EnhA2, EnhWk), promoter (TssA, TssFlnk), CTCF binding site, UTR, and 445	
coding exon (CDS) annotations by summing the PPAs of all variants overlapping each 446	
annotation.  We then clustered T2D signals into groups based on cPPA values using k-447	
means clustering. 448	
 449	
We determined the effects of T2D signals in each cluster on glycemic association data22.  450	
We identified 73 T2D signals represented in these data and cataloged 23 associated at 451	
P<.05 with first-phase insulin response, peak insulin response, AIR, or insulin secretion 452	
rate.  We calculated the percentage of signals in each cluster associated with these 453	
measures and tested for differences between clusters using a chi-square test. 454	
 455	
For the 30 T2D islet enhancer signals, we calculated “99% credible sets” as the set of 456	
candidate variants that explain 99% of the total PPA using genetic fine-mapping data 457	
alone (genetic), and fine-mapping including priors from the joint genome-wide 458	
enrichment model (+priors). 459	
 460	
We then fine-mapped casual variants in putative T2D loci genome-wide.  For variants in 461	
each 1MB window across the genome, after excluding any windows overlapping a 462	
known T2D signal, we obtained the effect of the islet annotation overlapping that variant.  463	
We calculated a prior probability for each variant as described above also including an 464	
additional prior on the evidence that the 1MB window is a T2D locus.  We multiplied both 465	
prior probabilities by the Bayes Factor for each variant.  From the resulting odds, we 466	
calculated the PPA that each variant is causal for T2D risk.  We then considered the 131 467	
windows with at least one islet enhancer variant with PPA>.01 in downstream analyses.    468	
 469	
Genomic features analyses 470	
For each class of islet open chromatin, we determined the overlap with other genomic 471	
features.   472	
 473	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/299388doi: bioRxiv preprint 

https://doi.org/10.1101/299388
http://creativecommons.org/licenses/by-nc-nd/4.0/


We identified motifs enriched in sequence underneath each islet accessible chromatin 474	
class.  We first extracted genomic sequence for each site using bedtools35, and masked 475	
repetitive sequences.  We then identified de novo motifs enriched in this sequence using 476	
DREME36.  For each de novo motif, we determined whether this motif matched a known 477	
sequence motif in a custom database of >2,500 motifs from ENCODE, JASPAR and 478	
SELEX with tomtom26,37-39.  479	
 480	
We determined the overlap of islet accessible chromatin classes with transcription factor 481	
(TF) ChIP-seq data in islets for 5 proteins4,26.  For each islet chromatin class, we 482	
calculated the Jaccard index of overlap with sites for each TF35.  We then determined 483	
the overlap of islet accessible chromatin classes with DHS sites from 384 cell types in 484	
the ENCODE project26. We first filtered out DHS sites from islets, and then for each 485	
accessible chromatin site, we calculated the percentage of ENCODE cell-types the site 486	
was active in.  We then determined the median percent overlap across all sites within 487	
each accessible chromatin class.     488	
 489	
Gene expression analysis 490	
We obtained transcript-per-million (TPM) counts from RNA-seq data in 53 tissues from 491	
the GTEx project release v719.  We further obtained RPKM read counts from RNA-seq 492	
data of 118 pancreatic islet samples18, and calculated TPM values as previously 493	
described40.  We then retained only protein-coding and long non-coding genes 494	
annotated in GENCODEv2732.  We first calculated the percentage of genes expressed in 495	
islets (defined as ln(TPM)>1) and not expressed in islets with at least one enhancer 496	
chromatin loop to the promoter region and tested for a significant difference using a Chi-497	
square test.  498	
 499	
Across all 54 tissues, we filtered out genes not expressed (ln(TPM)>1) in at least one 500	
tissue.  We determined correlation between gene expression level in islets and enhancer 501	
loop number using Spearman’s rho. We further grouped genes by the number of 502	
chromatin loops to enhancer elements and calculated the median islet TPM value for 503	
each group.  For genes with at least one enhancer loop, we created a linear model of 504	
log-transformed gene TPM with chromatin loop number as the predictor using the glm 505	
package in R.  Values are reported as the p-value, effect size (beta) and standard error 506	
from the resulting model.   507	
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 508	
We then determined the relative expression level for each gene in 54 tissues.  We log-509	
transformed expression values and calculated a z-score for each gene using the mean 510	
and standard deviation across tissues.  We then repeated the above analyses using 511	
tissue z-scores instead of tissue TPM values.    512	
 513	
Islet expression QTL analysis 514	
We obtained summary statistic eQTL data from two published studies of 118 and 112 515	
primary pancreatic islet samples18,41.  We then performed inverse sample-size weighted 516	
meta-analysis to combine the summary results for each variant and gene pair using 517	
METAL42.  We retained only protein-coding and long non-coding RNA genes as defined 518	
by GENCODEv2732, only variant and gene pairs tested in both studies, and only variants 519	
with minor allele frequency (MAF) > .01.       520	
 521	
We extracted eQTL associations for variants in classes of islet accessible chromatin.  To 522	
remove potential biases due to linkage disequilibrium, we sorted variant associations 523	
based on p-value and iteratively pruned out variants in LD (r2>.5) with a more significant 524	
variant using LD information in European samples from 1000 Genomes project data.  525	
We then extracted pruned eQTL associations for variants in active promoter elements 526	
for genes within 20 kb (TssA), variants in active enhancer elements for genes within 20 527	
kb (EnhA proximal), variants in active enhancer elements for genes in chromatin loops 528	
(EnhA distal target), and variants in active enhancer elements for genes without a loop 529	
(EnhA distal no-target).  For each set of eQTL associations, we compared p-value 530	
distributions using a two-sided Wilcox rank-sum test.  To remove potential biases in 531	
variant distances to loop and no-loop genes, we randomly selected variant-gene pairs 532	
matched on distance to the distal target set to re-performed analyses.   533	
 534	
Target genes of T2D islet enhancer signals 535	
We defined candidate target genes of 30 known T2D enhancer signals and 131 putative 536	
T2D enhancer windows in the following way.  We identified candidate causal variants at 537	
each signal overlapping islet enhancer elements and considered target genes as those 538	
where a candidate variant either (a) mapped in a chromatin loop to the promoter region 539	
(-5kb/+2kb of transcription start site) or (b) was within 25kb proximal to the promoter 540	
region.     541	
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 542	
We next defined alternate sets of target genes of the 30 T2D enhancer signals based on 543	
1MB windows or TAD boundaries.   For 1MB window definitions, we identified the 544	
highest probability variant for each signal and extracted a +/-1MB window around the 545	
variant position. We then considered gene promoter regions (-5kb/+2kb of transcription 546	
start site) for protein-coding or long non-coding genes in GENCODEv27 that overlapped 547	
this +/-1MB window the set of target genes.  For TAD boundary definitions, we 548	
intersected the merged set of TADs with gene promoter regions to obtain a set of genes 549	
within each TAD. We then intersected the highest probability variant at each T2D signal 550	
with TADs to obtain gene sets in the TAD. 551	
 552	
For each enhancer signal with a candidate target gene, we extracted eQTL p-values for 553	
each target gene using the islet enhancer variant with the highest PPA at the signal.  554	
Where the highest probability variant was not present in the eQTL dataset, we used the 555	
next most probable islet enhancer variant.  We then Bonferroni-corrected eQTL p-values 556	
for the total number of candidate target genes at the signal and considered eQTLs 557	
significant with a corrected p-value<.05.   558	
 559	
For genes with significant eQTL evidence we further tested whether T2D and eQTL 560	
signals were co-localized.  We obtained the T2D Bayes Factor for each variant at the 561	
signal from fine-mapping data.  For significant gene eQTLs at the signal, we then 562	
calculated the Bayes Factor that each variant is an islet eQTL for that gene34.  We 563	
compared Bayes Factors for T2D signals and eQTLs for each gene using Bayesian co-564	
localization43.  We considered the prior probability that a variant was causal for T2D risk 565	
or an islet eQTL as 1x10-4, and the prior probability that a variant was causal for both 566	
T2D risk and an islet eQTL as 1x10-5.  We considered signals as having evidence for co-567	
localization where the probability of a shared causal variant was higher than the 568	
probability of two distinct causal variants. 569	
 570	
We tested target genes for gene set enrichment using GSEA33, considering only gene 571	
sets with more than 25 total genes and at an FDR threshold of .2.   572	
 573	
Luciferase reporter assays 574	
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To test for allelic differences in enhancer activity at rs7732130, we cloned sequences 575	
containing alt or ref alleles in forward and reverse orientation upstream of the minimal 576	
promoter of firefly luciferase vector pGL4.23 (Promega) using KpnI and SacI restriction 577	
sites.  578	
 579	
The primer sequences were: 580	
forward/left: GATAACGGTACCGCGAAGTGGTCATGGGTAAA 581	
forward/right: AAGTAGGAGCTCACCATCCCAGCATTTAGTGG 582	
reverse/left: GATAACGAGCTCGCGAAGTGGTCATGGGTAAA 583	
reverse/right: AAGTAGGGTACCACCATCCCAGCATTTAGTGG 584	
 585	
MIN6 beta cells were seeded into 6 (or 12)-well trays at 1 million cells per well. At 80% 586	
confluency, cells were co-transfected with 400ng of the experimental firefly luciferase 587	
vector pGL4.23 containing the alt or ref allele in either orientation or an empty vector and 588	
50ng of the vector pRL-SV40 (Promega) using the Lipofectamine 3000 reagent. All 589	
transfections were done in triplicate. Cells were lysed 48 hours after transfection and 590	
assayed for Firefly and Renilla luciferase activities using the Dual-Luciferase Reporter 591	
system (Promega). Firefly activity was normalized to Renilla activity and compared to the 592	
empty vector and normalized results were expressed as fold change compared to empty 593	
vector control per allele. Error bars are reported as standard deviation.  A two-sided t-594	
test was used to compare luciferase activity between the two alleles in each orientation.    595	
 596	
Mouse Imp2 targeting construct and physiological studies 597	
We generated the Imp2 construct by using a genomic fragment of 12 kb containing Imp2 598	
exons 1 and 2 as well as flanking intron sequences of the murine gene extracted from 599	
the RP23-163F16 BAC clone. The replacement-type targeting construct consisted of 9.4 600	
kb of Imp2 genomic sequences (4.4 kb in the left homology arm and 5.4 kb in the right 601	
homology arm) (Figure S5). 602	
 603	
We bred mice for experiments by crossing IMP2-loxp mice (Imp2ff) with RIP2-Cre mice 604	
on a C57Bl/6J background. We maintained colonies in a specific pathogen-free facility 605	
with a 12:12 light - dark cycle and fed irradiated chow (Prolab 5P75 Isopro 3000; 5% 606	
crude fat; PMI nutrition international) or a HFD (D12492i; 60% kcal fat; Research Diets 607	
Inc.). Blood glucose, insulin, C-peptide and glucagon levels were measured by the 608	
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Vanderbilt metabolic core.  Measurements for Imp2ff and Imp2ff/RIP2-Cre mice were 609	
performed using male mice under basal conditions (N=10), upon intraperitoneal glucose 610	
injection (N=9), and upon intraperitoneal insulin injection (N=9).  A two-sided t-test was 611	
used to compare differences in measurements across genotypes.   612	
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Figure legends 633	
 634	
Main Figures: 635	
 636	
Figure 1.  Chromatin accessibility and conformation in pancreatic islets.  (A) Islet 637	
accessible chromatin signal mapped predominantly within active islet chromatin states.  638	
(B) Chromatin looping from in situ Hi-C assays of three pancreatic islet samples at entire 639	
chromosome (left), 25MB (middle) and 2MB (right) resolution on chromosome 7.  Black 640	
circles on the right panel represent statistically significant loop calls. (C) Accessible 641	
chromatin signal from four islet samples (ISL1-4) was distributed around chromatin loop 642	
anchor midpoints (D) Islet chromatin loop anchors were enriched for islet CTCF binding 643	
sites, active enhancers, and active promoters compared to random sites.  Values 644	
represent fold change and SD. (E) Islet chromatin loops were most enriched for 645	
interactions between islet active enhancers and active promoter elements, and between 646	
CTCF binding sites.   647	
 648	
Figure 2.  Islet enhancer regulation of distal target gene expression.  (A) The 649	
promoter regions of 8.4k genes had at least one chromatin loop to an islet enhancer 650	
element.  (B) Multiple islet enhancers formed chromatin loops with the MAFB promoter 651	
region including several over 1MB.  (C) Genes with increasing numbers of chromatin 652	
loops to islet enhancers had increased expression level in islets, with the highest 653	
expression among genes with 6 or more interactions (D) The number of chromatin loops 654	
to islet enhancers was a significant predictor of islet gene expression but not 53 other 655	
tissues in GTEx. Values represent effect size and SE. **P<.001 (E) Genetic variants in 656	
distal islet enhancer elements had stronger evidence for islet expression QTLs with 657	
genes in chromatin loops (blue) than genes with no loop (grey), even when matched 658	
based on distance (light blue). **P<.001, ***P<.0001    659	
 660	
Figure 3.  Type 2 diabetes risk signals map in islet enhancers.  (A) Genetic variants 661	
in islet active regulatory elements genome-wide were enriched for T2D risk, with 662	
strongest enrichment in active enhancer elements.  Values represent log enrichment and 663	
95% CI.  (B)  The effects of variants in active enhancer and promoter elements on T2D 664	
risk were stronger among those in chromatin loops, whereas other elements were 665	
enriched for T2D outside of loops.  Values represent log enrichment and 95% CI.  (C) 666	
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Over 30% of the total causal probability across 107 known T2D risk signals mapped in 667	
islet enhancer elements. (D) Clustering of known T2D signals based on islet and coding 668	
annotations identified 30 signals with likely causal variants in islet enhancers.  (E) A 669	
significantly higher percentage of T2D islet enhancer signals were associated with IGTT-670	
based insulin secretion phenotypes than un-annotated T2D signals. **P<.001 (F) 671	
Number of variants in the 99% credible sets for the 30 T2D islet enhancer signals based 672	
on genetic fine-mapping alone (genetic), genetic fine-mapping including functional priors 673	
(+priors) (G) T2D causal variant rs7732130 at the ZBED3 locus mapped in an islet active 674	
enhancer and chromatin loop, and had (H) allelic effects on enhancer activity in the islet 675	
cell line MIN6 (N=3).  Values represent fold change and SD.  **P<.001, ***P<.0001 676	
 677	
Figure 4.  Target genes of type 2 diabetes islet enhancer signals are involved in 678	
protein secretion and transport.  (A) Prioritizing target genes using chromatin loops 679	
and proximity greatly reduces the number of candidate genes over using a 1MB window 680	
(avg=18) or topologically associated domain (TAD) boundaries (avg=7). (B) T2D islet 681	
enhancer signals formed chromatin loops with, or were in proximity to, an average of 2 682	
target genes.  (C) Target genes of T2D enhancer signals were strongly enriched for 683	
biological processes related to protein secretion, protein transport, vesicles and vesicle 684	
membranes, and endoplasmic reticulum (FDR<.2) (top), and target genes with islet 685	
eQTL evidence were specifically enriched for vesicle-mediated transport (FDR<.2) 686	
(bottom). (D) Target genes with islet eQTLs to T2D islet enhancer signals (corrected 687	
eQTL P<.05; p-values reported in table are uncorrected) and evidence that T2D and 688	
eQTL signals are co-localized.  (E) At the CDC123/CAMK1D locus T2D islet enhancer 689	
variant rs11257655 was in a chromatin loop to the CAMK1D promoter and an islet eQTL 690	
for CAMK1D expression. Probabilities (PPA) that variants are causal for T2D risk (top) 691	
and variant association (-log10 P) with islet expression level of CAMK1D (middle).   692	
 693	
Figure 5.  Reduced IGF2BP2 activity in mouse islets impairs glucose-stimulated 694	
insulin secretion during insulin resistance.  (A) Immunostaining of insulin and IMP2 695	
in mouse pancreas. (B) Expression of IMP2 in islets and other T2D-relevant tissues liver, 696	
adipose, muscle, and brain. (C) Blood glucose, insulin, c-peptide and glucagon level 697	
in 10-week-old male mice on high fat diet (HFD) (N=9). Wild-type (black) and 698	
Imp2ff/RIP2-Cre (red). (D) 1 g/kg glucose was administered intraperitoneally after 699	
overnight fasting of 12-week-old Imp2ff (black; N=10) and Imp2ff/RIP2-Cre (red; N=10) 700	
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male mice maintained on normal chow diet (NCD). left=blood glucose; right=serum 701	
insulin.  (E) 1 g/kg glucose was administered intraperitoneally after overnight fasting to 702	
12-week-old Imp2ff (black; N=9) and Imp2ff/RIP2-Cre (red; N=9) male mice maintained 703	
on NCD. left=blood glucose; right=serum insulin.  Values represent mean and SD.  704	
*P<.05, **P<.01 705	
  706	
Supplemental Figures: 707	
 708	
Figure S1. Characteristics of pancreatic islet regulatory elements (A) Heatmap of 709	
the Pearson correlation of ATAC seq signal across four islet samples, calculated as the 710	
raw tag count in 1kb bins across the genome.  (B) Heatmap of emission matrix 711	
probabilities for the 9-state islet model from chromHMM, with individual ChIP-seq assays 712	
shown on the x-axis and labelled chromatin states on the y-axis.  (C) Heatmap showing 713	
percentage of each class of islet regulatory elements mapping in 200bp bins around 714	
GENCODE transcriptional start sites.  (D) Percentage of ENCODE cell-types in DHS 715	
sites overlapping each class of islet regulatory elements.  (E) Jaccard overlap of each 716	
class of islet regulatory elements with islet ChIP-seq sites for five transcription factors.    717	
 718	
Figure S2. Characteristics of pancreatic islet chromatin loops (A) Heatmap showing 719	
the Pearson correlation of Hi-C contacts across islet samples in 100kb bins across the 720	
genome.  (B) Histogram of the distance between loop anchors in islets.  (C)  Histogram 721	
of number of loops within 25kb of each islet active enhancer to gene promoter regions.  722	
(D) Boxplot showing genes with increasing numbers of chromatin loops to islet 723	
enhancers (x-axis) had on average higher relative expression level in islets (y-axis). (E) 724	
The number of chromatin loops to islet enhancers was a significant predictor of relative 725	
gene expression level in islets but not 53 other tissues in GTEx. **P<.001.  Values 726	
represent effect size and SE. 727	
 728	
Figure S3. Effects of variants in pancreatic islet regulatory elements on T2D risk 729	
(A) Enrichment Z-score measured using LD-score regression for each class of islet 730	
regulatory elements (y-axis), subset by states that were (dark) or were not (light) within 731	
25kb of a Hi-C loop anchor.  (B) Enrichments from the fgwas genome-wide joint model 732	
including islet active enhancers (EnhA1), flanking promoters (TssFlnk), and coding 733	
exons (CDS).  Values represent log enrichment and 95% CI.  (C) Posterior causal 734	
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probabilities (PPA) of variants within islet active enhancers in 1MB windows genome-735	
wide excluding known T2D risk loci.  Blue = variants with PPA>0.01, grey = variants with 736	
PPA<0.01.  737	
 738	
Figure S4. T2D enhancer signal chromatin loops to candidate target genes.  Re-739	
weighted posterior causal probabilities of variants (top), islet Hi-C loops, chromatin 740	
states and ATAC-seq signal (middle), and known genes (bottom), for (A) five 741	
independent T2D risk signals at the KCNQ1 locus, (B) T2D signal at the ZMIZ1 locus, 742	
and (C) T2D signal at the KCNJ11/ABCC8 locus. For (A), posterior probabilities are 743	
shown in different colors for each of the five independent signals. 744	
 745	
Figure S5. Characterization of mice after conditional IGF2BP2 ablation in beta 746	
cells. (A) Schematic representation of the wild type Imp2 allele showing exon 1-2 and 747	
flanking intron sequences, and the Imp2flox targeted allele.  (B) Body weight for wild-type, 748	
RIP2-Cre, Imp2ff and Imp2ff/RIP2-Cre mice on normal chow diet (top) and high fat diet 749	
(bottom). (C) Insulin tolerance tests in 14-week-old Imp2ff/RIP2-Cre (red) and Imp2ff 750	
(black) mice on a normal chow diet (left) and high fat diet (right).  Values represent mean 751	
and SD.    752	
 753	
Supplemental Tables: 754	
 755	
STable 1:  Donor and sequencing characteristics of pancreatic islet samples 756	
STable 2:  Regulatory elements in pancreatic islets 757	
STable 3:  Sequence motifs enriched in islet regulatory elements 758	
STable 4:  Hi-C loops identified in pancreatic islet samples 759	
STable 5:  Target gene chromatin loops of islet enhancer elements 760	
STable 6:  Islet enhancer chromatin loops of gene promoter regions 761	
STable 7:  Functional annotations enriched in genes with multiple enhancer interactions 762	
STable 8:  T2D candidate causal variants in islet active enhancers 763	
STable 9:  Target genes of T2D islet enhancer signals 764	
STable 10: Gene set annotations enriched in target genes of T2D islet enhancer signals 765	
STable 11: Target genes with islet eQTLs for T2D islet enhancer signals 766	
 767	
 768	
 769	
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Figure 1.  Chromatin accessibility and conformation in pancreatic islets
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Figure 2.  Enhancer regulation of target gene expression in islets 
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Figure 3.  Type 2 diabetes risk signals map in islet enhancers
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Figure 4.  Target genes of type 2 diabetes islet enhancer signals
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Figure 5.  Reduced IGF2BP2 activity in mouse islets impairs glucose-stimulated insulin secretion in 
diet-induced insulin resistance
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Figure S1.  Characteristics of pancreatic islet regulatory elements

I6L
3

I6L
4

I6L
1

I6L
2

I6L3

I6L4

I6L1

I6L2

1.00

0.93

0.85

0.88

0.93

1.00

0.81

0.83

0.85

0.81

1.00

0.85

0.88

0.83

0.85

1.00

0.0 0.2 0.4 0.6 0.8 1.0

Txn
Quies
EnhWk
EnhA1
EnhA2
TssFlnk
TssA
Quies
Ctcf

Ts
sA

Ts
sF
ln
k

En
hA
1

En
hA
2

C
tc
f

En
hW
k

Q
ui
es

-2000
-1800
-1600
-1400
-1200
-1000
-800
-600
-400
-200
0
200
400
600
800
1000
1200
1400
1600
1800A B C

D

E
nh
A
1

Tx
n

Ts
sF
ln
k

Q
ui
es

C
tc
f

Ts
sA

E
nh
A
2

E
nh
W
k

FOXA2
MAFB

NKX6.1

PDX1
NKX2.2

E

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/299388doi: bioRxiv preprint 

https://doi.org/10.1101/299388
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2.  Characteristics of pancreatic islet chromatin loops
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Figure S3.  Effects of variants in pancreatic islet regulatory elements on T2D risk
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Figure S4. T2D enhancer signal chromatin loops to candidate target genes
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Figure S4. T2D enhancer signal chromatin loops to candidate target genes
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Figure S4. T2D enhancer signal chromatin loops to candidate target genes
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Figure S5. Characteristics of beta cell IMP2 mouse model 
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