1	Title
2	Molecular determinants of enterotoxigenic <i>Escherichia coli</i> heat-stable toxin secretion and
3	delivery
4	
5	Yuehui Zhu ^{1a} , Qingwei Luo ^{1a} , Sierra M. Davis ¹ , Chase Westra ^{1b} , Tim J. Vickers ¹ , and James M.
6	Fleckenstein ^{1, 2} .
7	
8	
9	¹ Division of Infectious Diseases, Department of Medicine, Washington University School of
10	Medicine, Saint Louis, Missouri, ² Medicine Service, Department of Veterans Affairs Medical
11	Center, Saint Louis, Missouri.
12	
13	^a these authors contributed equally to the development of this manuscript
14	
15	[▶] present author address:
16	University of Illinois College of Medicine
17	Chicago, Illinois
18	
19	Correspondence:
20	
21	James M. Fleckenstein
22	Division of Infectious Diseases
23	Department of Medicine
24	Washington University School of Medicine
25	Campus box 8051
26	660 South Euclid Avenue
27	Saint Louis, Missouri 63110.
28	
29	p 314-362-9218
30	Juecken@wusti.edu

32 Abstract

Enterotoxigenic Escherichia coli (ETEC), a heterogeneous diarrheal pathovar defined by 33 production of heat-labile (LT) and/or heat-stable (ST) toxins, remain major causes of mortality 34 among children in developing regions, and cause substantial morbidity in individuals living in or 35 traveling to endemic areas. Studies demonstrating a major burden of ST-producing ETEC have 36 focused interest on ST toxoids for ETEC vaccines. We therefore examined fundamental aspects 37 of ETEC ST biology using ETEC H10407, which carries estH and estP genes encoding ST-H and 38 ST-P, respectively, in addition to *eltAB* genes responsible for LT. In this background, we found 39 that deletion of *estH* significantly diminished cGMP activation in target epithelia, while deletion 40 of estP had a surprisingly modest impact, and a dual estH/estP mutant was not appreciably 41 different than the estH mutant. Nevertheless, either ST-H or ST-P recombinant peptides 42 stimulated cGMP production. We also found that the TolC efflux protein was essential for both 43 toxin secretion and delivery, providing a potential avenue for efflux inhibitors in treatment of 44 acute diarrheal illness. In addition, we demonstrated that the EtpA adhesin is required for 45 optimal delivery of ST and that antibodies against either the adhesin or ST-H significantly 46 impaired toxin delivery and cGMP activation in target T84 cells. Finally, we used FLAG epitope 47 fusions to demonstrate that the ST-H pro-peptide sequence is secreted by the bacteria, 48 potentially providing additional targets for antibody neutralization. These studies collectively 49 extend our understanding of ETEC pathogenesis and potentially inform additional avenues to 50 51 mitigate disease by these common diarrheal pathogens.

53 54	Introduction
55 56	Diarrheal illnesses in low income countries continue to cause substantial morbidity and remain
57	one of the leading causes of death in young children in developing countries under the age of
58	five years. Among the bacterial causes of diarrheal illness enteroxigenic Escherichia coli (ETEC)
59	are commonly linked to more severe forms of illness in young children($\underline{1}$). These organisms are
60	perennially the most common cause of diarrhea in those who travel to endemic areas where
61	sanitation is $poor(2, 3)$, however they have been identified repeatedly as the etiology of
62	diarrheal outbreaks and sporadic cases of illness in industrialized countries including the U.S($_{4-}$
63	<u>8</u>).
64	Acute clinical presentations of ETEC infection may range from mild self-limited illness to severe
65	cholera-like diarrhea(<u>9-11</u>). In addition, ETEC and other diarrheal pathogens have been linked
66	to pernicious sequelae of malnutrition, growth stunting, and impaired cognitive(<u>12</u>)
67	development. Presently, there are no vaccines to protect against these common infections.
68	ETEC are a genetically(<u>13</u>) and serotypically (<u>14</u>) diverse pathovar of <i>E. coli</i> defined by the
69	production of heat-labile (LT) and/or heat stable (ST) enterotoxins which activate production of
70	host cyclic nucleotides to alter intestinal salt and water transport that culminate in net fluid
71	losses and diarrhea.
72	Heat-stable toxins are synthesized as 72 amino acid proteins consisting of a signal peptide, a
73	pro peptide and a carboxy terminal region of 18-19 amino acids, which forms the mature active
74	enterotoxin(<u>15</u>). Two enterotoxins cause disease in humans: STp (ST1a) 18 amino acids, and
75	STh (ST1b) 19 amino acids. Both mature toxins contain four cysteine residues which form two
76	intramolecular disulfide bonds. Their overall structure is shared with two homologous
77	mammalian peptides, guanylin and uroguanylin. Each of the bacterial and mammalian peptides
78	binds to guanylate cyclase C(<u>16</u> , <u>17</u>), leading to increases in intracellular cGMP(<u>18</u>). Increases in

79	this cyclic nucleotide result in activation of protein kinases which phosphorylate and activate
80	the cystic fibrosis transmembrane regulatory(CFTR) channel, and inhibit sodium-hydrogen ion
81	exchange(19). These effects lead to a net loss of salt and water into the intestinal lumen with
82	ensuing watery diarrhea.
83	Bacteria producing any of the toxins LT, STh, or STp have been linked to diarrheal illness in
84	humans(<u>20-23</u>), and recent studies suggest that ST-producing ETEC are commonly represented
85	among the pathogens that cause severe diarrheal illness among young children in low income
86	countries leading to substantial interest in the development of a vaccine that incorporates ST-
87	toxoids(<u>24</u>).
88	Enterotoxigenic <i>E. coli</i> strain H10407, originally isolated from a case of severe cholera-like
89	diarrheal illness in Bangladesh, is to date the most extensively characterized isolate of this
90	pathovar. Interestingly, this isolate encodes all three enterotoxins associated with ETEC
91	diarrheal illness in humans(25, 26), with the gene for STh on the largest 94,797 bp virulence
92	plasmid (<u>NCBI Genbank acccession NC_017724.1</u>), and the genes for both LT and STp on a
93	66681 bp plasmid(<u>27</u>). H10407 is frequently used as the challenge strain in controlled human
94	infection models to test candidate vaccines. Therefore, we set out to examine the relative
95	contribution of STh and STp to activation of cGMP in host epithelia by H10407, and the ability
96	of anti-ST and anti-adhesin antibodies to mitigate effective toxin delivery by the bacteria.
97	

Materials and methods 99

Bacterial strains and growth conditions 100

101	Bacterial strains used are listed in Table 1. For general purposes, ETEC bacteria were grown in
102	lysogeny broth at 37°C overnight from frozen glycerol stocks. To optimize synthesis and
103	secretion of ST toxin, bacteria were grown in Casamino Acids-yeast extract –sucrose medium
104	(CAYE-ST) (2% Casamino acids, o.6% Yeast extract, 43mM NaCl, 38mM K2HPO4, 203mM
105	MgSO4, 25mM MnCl2, 18mM FeCl3, 2% sucrose) at 37°C overnight from frozen glycerol stocks.
106 107	Construction of mutants lacking production and secretion of heat stable toxins
108	Lamda red recombinase mediated recombination(28) was used to disrupt genes encoding heat
109	stable toxins in H10407. In brief, we used the primers jf070212.1 and jf070212.2 to amplify the
110	kanamycin cassette from pKD13 with 36 bp overhang sequence from <i>estH</i> gene, and primers of
111	jfo70212.3 and jfo70212.4 to amplify kan cassatte from pKD13 with 36 bp overhang sequence
112	from estP gene. The PCR product was electroporated into competent H10407 containing helper
113	plasmid pKD46, and selected on LB plate with 50 μ g/ml kanamycin. Kanamycin-resistant
114	colonies were screened by PCR with primers of jf071612.1 and jf071612.2 for the estH locus, and
115	primers of jf071612.3 and k2 for <i>estP</i> . The deletion mutants were further confirmed by toxin
116	multiplex PCR as previously described (29).
117	To construct complemented strains, we amplified the <i>estP</i> gene with primers jfo72412.3 and
118	jfo6o614.1 for cloning into Xhol site of pBAD/mycHisA, yielding pSMDoo2; <i>estH</i> was amplified
119	with primers of jf072414.5 and jf072414.6 and cloned into the EcoRV site of pACYC184 to
120	produce pSMDoo1. We also cloned <i>estH</i> and <i>estP</i> genes individually and together in pETDuet-1
121	at Ncol & EcoRI sites and BqIII & XhoI sites with primer pairs of jfo6o614.2 and jfo6o614.3,

jfo6o614.4 and jfo6o614.5, respectively. This resulted in plasmids pQL230 (estP), pQL231(estH), 122

and pQL238 (estP/estH) (table 1). After confirmation by sequencing, the respective plasmids 123 were transformed into the deletion strains, and complementation confirmed by PCR. 124 To generate an ETEC tolC deletion mutant, primers jf110716.44 /45 were first used to amplify a 125 Δ tolC732:: Km^R fragment from JQ55031(30). Next, the regions flanking *tolC* in the H10407 126 genome were amplified with primer pairs jf110716.38/ jf110716.43 and jf110716.46/ jf110716.39 127 128 to amplify 1027 bp of upstream and 985 bp of downstream sequence, respectively. The three resulting fragments were then fused by PCR with primer pairs jf110716.38/ jf110716.39, using 129 high-fidelity polymerase Phusion (Thermo Fisher Scientific), with denaturing for 2 min at 98°C, 130 followed by 30 cycles of 10 s at 98°C, 30 s at 65°C, and 1.5 min at 72°C, and a final extension for 131 10 min at 72°C. The resulting 3,325-bp amplicon was then introduced into H10407(pKD46) as 132 described above. Kanamycin resistant, Ampicillin sensitive colonies were then screened by 133 colony PCR using primer pair jf112016.50/51 flanking the entire amplicon for a 4269-bp product, 134 and primers jf101716.21/22 specific to tolC gene (603-bp product). Primers k2/jf112016.51 135 (2,024-bp product) were then used to confirm the *tolC* gene deletion and the Km^R cassette 136 integration in the H10407 genome. To complement the tolC mutant, the tolC gene was 137 amplified from H10407 genomic DNA using primers jf120716.59/jf120716.60, and the plasmid 138 vector backbone was amplified from plasmid pBAD/myc-His B using primers 139 jf120716.52/jf120716.53. The recombinant pYZ008 complementation plasmid was assembled 140 using an adaptation of circular polymerase extension cloning (CPEC) (31) (30 s denaturation at 141 98°C, followed by 20 cycles of 10 s at 98°C, 30 s at 55°C, and 1.5 min at 72°C, and a final 142 extension for 10 min at 72°C.). Following sequence verification, pYZ008 or the pBAD/myc-His B 143 vector control plasmids were then used to transform the $\Delta tolC$ mutant. Complementation was 144 confirmed by PCR with primers jf101716.21/22. 145

146 **FLAG-STH** fusions

147	FLAG epitope fusions were constructed to introduce the 3X FLAG sequence between the signal
148	peptide of <i>estH</i> and the beginning of the propeptide encoding region (on plasmid pFLAG ³ -STH)
149	or at the 3' end of <i>estH</i> (on pSTH-FLAG ³). The 3X FLAG fragment was 1 st constructed by
150	annealing complementary synthetic oligonucleotides jf092616.9 encoding + strand bases 1-43
151	and jf092616.10 representing— strand bases 66-19 of a 66 base pair sequence encoding the 3x
152	FLAG peptide (DYKDHDGDYKDHDIDYKDDDDK).
153	To generate plasmid pFLAG ³ -STh where the 3xFLAG encoding sequence was inserted between
154	the STh signal peptide and the STh propeptide, primers jf101916.33/ jf092616.4 were first used
155	to amplify the nucleotides (1-63) of <i>estH</i> encoding the signal peptide. Next primers jf092616.1/
156	jf092616.2 were used to amplify the 3xFLAG fragment from the above synthetic
157	oligonucleotide 3XFLAG template flanked by nucleotide extensions representing nucleotides
158	44-60 and 64-99 of <i>estH</i> , while primers jf092616.3/ jf101916.34 were used to amplify the 3' end
159	of estH from nucleotide 64 to the native stop codon. The three fragments were fused in a single
160	PCR reaction using primers jf101916.33/jf101916.34. Next, the vector backbone was amplified
161	using primers jf101916.31/ jf101916.32 from pFLAG-CTC (Sigma), followed by final assembly of
162	pFLAG ³ -STh by CPEC. Similarly, to make plasmid pSTh-FLAG ³ primers jf092616.5/ jf101916.35
163	were used to amplify 3XFLAG with a 5' nucleotide extension representing nucleotides 197-216
164	of <i>estH</i> , while primers jf101916.33/jf092616.8 were used to amplify the <i>estH</i> gene with a 5'
165	nucleotide extension corresponding to pFLAG-CTC. The resulting amplicons were then fused in
166	a single PCR reaction using primers jf101916.33/ jf101916.35, and assembled with the pFLAG-
167	CTC backbone by CPEC.
168	

169 Cloning, expression, and purification of recombinant ST proteins peptides

170	To construct a GST-STh or mutant GST-mSTh (A14Q) expression plasmid, synthetic
171	oligonucleotides were synthesized (IDT, Coralville, Iowa) which encompassed the region of the
172	estH gene corresponding to the mature peptide minus the native start codon, preceded by an
173	in-frame flexible linker sequence (<u>32</u>). The forward sequence (jf042715.1 for STh and jf042517.1
174	for mSTh), preceded by a <i>BamHI</i> overhang sequence (GATCC) and the reverse sequence
175	(jfo42715.2 for STh and jfo42517.2 for mSTh), preceded by an <i>EcoR</i> I overhang sequence
176	(AATTC) were mixed in 1:1 molar ratio, heated to 95° C for 5 minutes, and cooled to room
177	temperate. The annealed double stranded 91 base pair DNA fragments were then cloned
178	directly into the pGEX-4T1 vector digested with <i>BamH</i> I and <i>EcoR</i> I, yielding plasmids pCWoo2
179	and pYZ011, respectively. A similar strategy was to construct a GST-STp expression plasmid
180	using forward oligonucleotide jfo31915.5 and the reverse sequence jfo31915.6, resulting in
181	plasmid pCWoo3. <i>E. coli</i> TOP10(pCWoo2), TOP10(pCWoo3), and TOP10(pYZ011) were then
182	used to express recombinant GST-STh, GST-STp, or GST-mSTh, and the resulting fusion
183	proteins were purified by affinity chromatography. In brief, the bacterial cultures were grown in
184	Luria broth at 37°C to an OD $_{600}$ between 0.6 and 0.7, and induced with 1 mM IPTG final
185	concentration for 1-3 hours. The cell pellets were re-suspended in 30 ml cold PBS containing 5
186	mM DTT, 1 protease inhibitor tablet (Roche), and 0.1 mg/ml lysozyme. Following sonication,
187	supernatants were clarified by centrifugation at 12,000 rpm for 20 minutes at 4°C, followed by
188	passage through a 0.45 μm filter. Filtered supernatants were then loaded onto columns
189	(Glutathione Sepharose High Performance, GE Healthcare) pre-equilibrated with phosphate
190	buffered saline (PBS), pH 7.3 (140 mM NaCl, 2.7 mM KCl,10 mM Na2 HPO4, 1.8 mM KH 2 PO4,
191	pH 7.3). After washing with 20 column volumes of PBS containing 1 mM dithiothreitol (DTT),

- 192 GST fusion proteins were eluted in fresh buffer containing (100 mM Tris-HCl, pH 8.0 and 10 mM
- reduced glutathione), and dialyzed against PBS.
- 194
- 195 To liberate native STh or mutant STh (mSTh) from its GST fusion partner, GST-fusion protein
- unit of thrombin (Sigma) per mg GST-
- 197 fusion protein at 4°C overnight, centrifuged at 4000 x g for 20 minutes a 10 kDa MWCO
- 198 centrifugal filter to collect the filtrate, and dried by vacuum centrifugation. Peptide
- concentrations were then determined by measurement of the molar extinction coefficient at
- 200 280 nm (<u>Take3, BioTek</u>).
- 201 Plasmids pCWoo2, and pCWoo3 have been deposited in Addgene (https://www.addgene.org/)
- 202 under accession numbers 90225, and 90226, respectively.
- 203 transcriptional analysis of *estH*, *estP* and *tolC* genes
- 204 Confluent T84 cells were inflected with early-log phase H10407 bacteria (~10⁹ cfu) for 30 or 90
- 205 min. Total RNA was isolated from adherent and planktonic (nonadherent) bacterial fractions
- using an RNAspin Mini Isolation Kit (GE Life Sciences, <u>25050070</u>) and treated with DNase I
- 207 (ThermoFisher, <u>18068015</u>). PCR for the *arcA* housekeeping gene was used to confirm the
- 208 removal of DNA. Total RNA was reverse-transcribed (SuperScript VILO cDNA Synthesis Kit,
- 209 ThermoFisher, <u>11754250</u>). RNA transcripts were quantified by real-time PCR (Fast SYBR Green
- 210 Master Mix, ThermoFisher, <u>4385612</u>; ViiA 7 Real-Time PCR system, <u>Applied Biosystems</u>).
- 211 Primers specific to *arcA*, *estH*, *estP*, or *tolC* gene are listed in Table 2. All transcripts were
- normalized to *arcA*, and presented as a ratio of transcripts in adherent bacteria relative to that
- of planktonic bacteria.

Production and purification of anti-ST polyclonal antibody

- To generate rabbit polyclonal antibody which recognizes ST-H, New Zealand white rabbits
- were immunized (<u>Rockland</u>) with recombinant GST-ST-H. We used lyophilized *E. coli*

217	AAEC191A (33), and an immobilized <i>E. coli</i> lysate column (Pierce 44938) to absorb <i>E. coli</i> -
218	reactive antibodies, followed by protein G column purification (HiTrap, GE <u>17-0404-01</u>). IgG
219	GST-ST-H antibodies were affinity purified using GST-STh immobilized on nitrocellulose as
220	previously described and anti-GST-reactive antibodies were removed by cross-absorption
221	against GST coupled to Glutathione Agarose Resin (Gold Bio <u>G-250-100</u> , St. Louis).
222	Anti-STp antibody, was purified from rabbit antisera (provided by Weiping Zhang, Kansas State
223	University) by cross-absorption against an immobilized <i>E. coli</i> lysate column and then followed
224	by affinity purification against recombinant GST-STp) immobilized on nitrocellulose
225	membranes for affinity purification.
226	Immunoprecipitation and detection of heat-stable toxins in culture supernatants
227	Purified anti-STh polyclonal IgG was immobilized with AminoLink Plus Coupling Resin (Pierce
228	Direct IP kit Thermo Scientific, <u>26148</u>). Clarified culture supernatants of overnight cultures of
229	ETEC were mixed with protease inhibitor cocktail (ThermoFisher <u>88666</u>), and filtered through a
230	0.45 μ m filter. Sixty ml of supernatant was then filtered through 10 kDa molecular weight cutoff
231	membrane (Amicon). Filtrates were then dried by vacuum centrifugation, and dialyzed in PBS
232	against a 1 kDa-cutoff membrane (Float-A-Lyzer G2, MWCO 0.5-1 kDa, Spectrum Labs).
233	Immunoprecipitations were conducted by incubation of filtrates with anti-STh immobilized
234	resin for 2 hours at room temperature followed by elution with 4.5% acetic acid. Eluates were
235	dried by under vacuum centrifugation, and reconstituted in PBS. Immunoprecipitated samples
236	or purified protein/peptide as controls were applied directly to 0.22 μm pore-size PVDF
237	membranes (Bio-Rad), and detected by anti-STh and/or anti-STp primary antibody and anti-
238	Rabbit-HRP conjugated secondary antibody using Clarity Western ECL Substrate (Bio-Rad).
239	FLAG-STh fusion peptides were prepared from strain jf2847 carrying pFLAG ³ -STh, pSTh-FLAG ³ ,
240	or the blank vector pFLAG-CTC. Briefly, following overnight growth at 37°C in lysogeny broth

241	containing ampicillin (100 µg/ml), cultures were diluted 1:100 in fresh media, grown to OD_{600} of
242	~0.2, then induced with 1 mM IPTG for 7 h. 40 ml of clarified supernatant was mixed with 200 μl
243	of anti-FLAG (M2) affinity gel (#A2220, Sigma), then incubated overnight at 4°C with agitation.
244	After washing with TBS buffer, bound proteins were eluted with 0.1M glycine-HCl, pH 3.5,
245	separated by SDS-PAGE, transferred to nitrocellulose for subsequent immunoblotting, and
246	detected by anti-FLAG antibody (#F1804, Sigma).
247 248	Confocal immunofluorescence imaging and quantification To examine the delivery of FLAG-tagged STh toxin to intestinal epithelial cells, <i>estP/estH</i>
249	mutant strains with or without plasmids encoding FLAG-tagged STh were grown overnight and
250	diluted 1:50 in CAYE-ST medium, grown to OD_{600} of ~0.2, then induced with 1 mM IPTG for 2 h.
251	The bacteria were added to T84 cells at a multiplicity of infection (MOI) of ~1:50, maintaining
252	the induction with 1 mM IPTG. After infection with the bacteria, T84 cells were washed with
253	PBS, fixed with 4% paraformaldehyde for 10 min at room temperature, permeabilized with
254	o.1% TRITON X-100 for 5 min, blocked with 1.5% BSA/PBS at 37°C for 1 h. Anti-O78 rabbit
255	polyclonal antisera (Penn State University) diluted 1:300 in PBS with 0.02% Tween-20 (PBST)
256	and 1.5% BSA was used to identify H10407 and monoclonal Anti-FLAG M2 antibody (#F1804,
257	Sigma) diluted 1:500 in PBST with 1.5% BSA to detect FLAG-tagged STh. Following incubation
258	overnight at 4°C, slides were washed 3x with PBS, and incubated for 1 hour at 37°C with goat-
259	anti rabbit IgG (H&L) AlexaFluor-488 conjugate (ThermoFisher <u>A11070</u>) and goat-anti mouse
260	IgG (H&L) conjugated to AlexaFluor 594 (ThermoFisher <u>A11032</u>) at a dilution of 1:500 in PBST
261	containing 1.5% BSA. After washing, DAPI (4', 6-diamidino-2-phenylindole) was added at 1:
262	6,000. Confocal microscopy images were acquired using a <u>Nikon C2+ Confocal Microscope</u>
263	System. To quantitate binding of FLAG-epitope tagged STh molecules, fluorescence detection
264	was normalized to the DAPI signal using NIS-Elements DUO software (v4.4).

265 In vitro assessment of toxin delivery

266	T84 (ATCC [®] CCL-248 [™]) intestinal epithelial cells were maintained in DMEM/F12 (1:1) medium
267	containing FBS (5% [vol/vol]). T84 cell monolayers were grown in 96 well plates for 24-48 hours
268	at 37°C, 5% CO2 incubator, to > 90% confluency. Cultures of bacteria were grown overnight in
269	lysogeny broth from frozen glycerol stocks in CAYE-ST medium. Phosphodiesterase inhibitors
270	vardenafil hydrochloride trihydrate (# <u>Yooo1647</u>), rolipram (# <u>R6520</u>), and cilostazol (# <u>Co737</u>)
271	(all from Sigma-Aldrich), were each added to target T84 cells at a final concentration of 16.7 or
272	50 μ M and incubated with cells for one hour. Bacteria or toxin were added to T84 monolayers
273	seeded into 96-well plates and continued the treatment for the indicated duration. After
274	washing in PBS cyclic GMP (cGMP) levels were determined by enzyme immunoassay (EIA)
275	(<u>Arbor Assays, Ko2o-H1</u>) using the acetylated protocol as directed by the manufacturer.
276	To examine the capacity of antibodies to neutralize ST delivery, antibody against ST-H and/or
277	EtpA was added directly to T84 cell monolayers at the indicated dilution at the time of
278	infection. After 1.5 hours, cells were washed by PBS, and lysed, and cGMP assays were
279	performed as described above.
280 281	Results
282	contribution of ST-H, ST-P and EAST1 to activation of cGMP in target epithelial cells
283	Understanding the individual contributions of ST and ST-like molecules of ETEC is relevant to
284	development and testing of toxin neutralization strategies. H10407 encodes three peptides
285	with the potential to activate cGMP in target intestinal epithelial cells: ST-H1, ST-P, and EAST1,

- a heat stable toxin originally identified in enteroaggregative *E. coli* (<u>34</u>). ST-H (ST-1b) is
- encoded by the *estH* gene on the large 94,797 bp p948 plasmid (<u>NCBI Genbank accession</u>
- 288 NC_017724.1). The *astA* gene which encodes EAST1 peptide (35) is imbedded within a IS1414
- insertion sequence(<u>36</u>) is also located on the p948 plasmid immediately downstream from the

etpBAC adhesin locus(27, 37). ST-P (ST-1a) is encoded by the estP gene on a second 66 kb

virulence plasmid <u>NCBI GenBank FN649417.1</u> in H10407.

We found that deletion of *estH* resulted in appreciable decreases in cGMP production at or near 292 background levels of cGMP production by uninfected cells, and that complementation of estH 293 in trans restored activation of this cyclic nucleotide (Figure 1A). In contrast, the estP mutant was 294 295 not appreciably different than the wild type strain, and the introduction of the estP mutation to the estH strain did not yield further measurable decreases in cGMP production by target 296 epithelial cells. However, we found that the target T84 cells used in these assays did respond to 297 GST fusions to either ST-H or ST-P (Figure 1B) suggesting that these cells have the capacity to 298 respond to either peptide. Interestingly, we found that in contrast to estH, estP transcription 299 was significantly influenced by bacterial cell contact with transcription of the gene encoding 300 301 ST-P enhanced by bacterial adhesion, as was the *tolC* gene which encodes the putative export channel for ST (Figure 1C). Deletion of *astA* gene encoding EAST on the p948 plasmid did not 302

303 impact bacterial activation of cellular cGMP under the conditions of the assay (Figure 1D).

304

305 TolC is required for effective ETEC secretion of ST1 toxins

306 The precise mechanism for secretion of heat stable toxins from ETEC strains associated with

307 disease in humans is presently uncertain. Prior studies of heat-stable toxin investigated the

308 secretion STb(ST-II)(<u>38</u>), or STp(STIa)(<u>39</u>) from laboratory strains of *E. coli* containing

309 recombinant expression plasmids. While both studies suggested that the outer membrane

- protein TolC is involved in secreting these toxins from the recombinant E. coli background,
- there is conflicting data regarding the involvement of the STb (STII) toxin in human disease(40,
- 312 41), and unlike the ST1 toxins, STb does not bind to guanylate cyclase C. Similarly, to our
- knowledge, there has been no verification of the role of *tolC* in mediating the secretion of either

of the ST1 toxins (STh and STp) from strains of ETEC isolated from humans. Therefore, to verify

- the importance of the TolC in secretion of both STh (ST1b) and STp(ST1a) from ETEC which
- cause human illness, we constructed an isogenic *tolC* mutant in the ETEC H10407 strain, and
- tested the ability of the mutant bacteria to deliver ST to target epithelial cells.
- 318 We found that mutants lacking *tolC* were markedly deficient in their ability to deliver ST toxins
- to epithelial monolayers as we observed only background levels of cGMP production following
- infection with the *tolC* mutant strain, and complementation with *tolC in trans* restored the
- ability of the bacteria to provoke a cGMP response in targeted cells (Figure 2).

322 Optimal delivery of ST requires the EtpA adhesin.

- 323 We have previously demonstrated that intimate interaction of ETEC with intestinal epithelial
- cells is essential for efficient delivery of heat labile toxin to intestinal epithelial cells(<u>42</u>).
- 325 Moreover, delivery of LT requires the concerted action of several ETEC adhesins with different
- receptor specificities. To examine the dependence of ST delivery on bacterial adhesion we
- 327 compared cGMP activation of target intestinal epithelial cells by wild type ETEC to a mutant
- 328 strain lacking EtpA, a plasmid-encoded adhesin, expressed by a diverse population of ETEC(43).
- 329 These studies demonstrated that cGMP activation in target epithelia by wild type bacteria was
- 330 significantly accelerated relative to the *etpA* mutant (<u>Figure 3</u>) suggesting that efficient delivery
- 331 of these small peptides also requires effective bacterial-host interactions.

332 Anti-toxin and anti-adhesin antibodies mitigate delivery of heat-stable toxins

- 333 ETEC delivery of heat labile toxin can be effectively blocked by antibodies directed against
- either LT or the EtpA adhesin molecule(44). These data suggest that anti-adhesin and anti-
- 335 toxin strategies could provide complementary approaches to vaccine development. The *etpA*
- gene, like those encoding LT, and ST1 molecules appears to be highly conserved within the

- 337 ETEC pathovar(43). Therefore, we examined the ability of antibodies against the EtpA adhesin
- to inhibit activation of cGMP in target intestinal cells.
- 339 Antibodies directed against either the EtpA adhesin molecule or STh significantly inhibited the
- 340 delivery of heat-stable toxins to target cells (Figure 4). Although we were not able to
- 341 demonstrate that the combination of these antibodies was synergistic, these data add
- additional support to the concept that EtpA could be useful as a target to engender coverage
- 343 against a wide variety of ETEC isolates that produce heat-stable and/or heat-labile
- 344 enterotoxins(<u>43</u>, <u>45</u>).

345 Delivery and secretion of epitope-tagged ST-H

346 Understanding the nature of ST secretion and its delivery to epithelial receptors could be

relevant to informed development of ST toxoid molecules. ST-H is synthesized as a 72 amino

- acid molecule that includes a 19 amino acid signal peptide, followed by a 34 amino acid pro-
- 349 peptide, and a mature ST molecule of 19 amino acids. Although most attempts to develop ST
- 350 toxoids have targeted the mature peptides, there are earlier, but conflicting data regarding the
- precise form of ST that is secreted into the extracellular milieu $(\underline{15}, \underline{46})$, with some data
- 352 suggesting that the pro-peptide may be exported with subsequent processing to the mature
- 353 peptide outside the bacteria (47). To investigate the potential secretion of the pro-peptide, we
- as a engineered 3x-FLAG-epitope fusions to the amino terminal end of the pro-peptide region
- 355 (FLAG³-pro-ST-H) of ST-H and compared the export, and delivery of the resulting peptides to

356 carboxy-terminal fusions to the mature peptide (pro-ST-H-FLAG³, <u>schematic, figure 5</u>).

- 357 We were able to recover either the amino-terminal or carboxy-terminal FLAG-tagged
- 358 molecules from culture supernatants of *estH/estP* mutant ETEC transformed with the pST-
- 359 FLAG³ or pFLAG³-STH plasmids, respectively (figure 5a). Both molecules appeared to yield
- 360 functional ST mature peptides as either plasmid was sufficient to complement the ability of
- 361 *estH/estP* to activate cGMP in target epithelial cells (<u>figure 5b</u>). Likewise, we were able to

- 362 demonstrate binding of FLAG-epitope tagged molecules to target epithelial cells following
- infection with either of the complemented strains (figure 5c, d). Collectively, these data appear
- to reaffirm earlier observations of STA3 (ST-H)(47) suggesting that both the mature form (19
- amino acids) of the peptide and the extended Pro-ST-H (53 amino acids) may be found outside
- 366 the bacteria.
- 367
- 368

369 Discussion

370	Because of the significant global burden of diarrheal illness caused by ETEC, these pathogens
371	have been a target for vaccine development since they were first identified as a cause of severe
372	diarrheal illness more than four decades ago. Currently, there is no vaccine available that
373	affords broad-based protection against ETEC, in part due the substantial antigenic diversity
374	within the pathovar, and limited mechanistic insight into immunologic correlates of protection
375	that appears to follow early infections among young children endemic areas. Moreover, many
376	features of the molecular pathogenesis of these common pathogens have not been explored in
377	sufficient detail to inform vaccine development.
378	Because ST-producing ETEC comprise a large proportion of strains associated with
379	symptomatic diarrheal illness(<u>48</u>), we investigated the molecular contributions of the known
380	heat-stable toxins, their proposed secretion apparatus, and bacterial adhesion to toxin delivery.
381	The present studies suggest that efficient delivery of ST toxins is a complex process that
382	requires the ability to directly engage host cells and at least transient adhesion afforded by
383	EtpA and other adhesins(49). Moreover, as antibodies directed at either the EtpA adhesin or ST
384	effectively impaired toxin delivery, our studies provide further support for development of a
385	vaccine platform that combines ST-toxoid(24) and anti-adhesin approaches.
386	Interestingly, clinical studies have suggested that either ST-H originally identified in humans
387	and ST-P can cause diarrheal illness in humans(23). In keeping with these observations, we
388	found no difference in the ability of ST-H or ST-P peptides to elicit cGMP activation(<u>18</u>) in
389	target epithelia. Although deletion of the gene encoding ST-H resulted in lower cGMP
390	activation in infected monolayers than when the ST-P gene was deleted from the ETEC H10407
391	strain, we cannot exclude the possibility of a compensatory increase in ST-H secretion in the
392	absence of a potentially competing peptide. Indeed, deletion of the <i>tolC</i> gene resulted in

complete abrogation of cGMP activation in target epithelial cells, similar to deletion of both of
the ST1 toxin genes from H10407.

395	Earlier studies also noted that many ETEC strains including H10407 bear copies of an insertion
396	sequence(36) that encompass the <i>astA</i> gene encoding EAST1(35), a cGMP activating peptide
397	structurally similar to ST1 that was originally identified as a heat-stable enterotoxin in
398	enteroaggregative <i>E. coli(34)</i> . However, we saw no appreciable decrease in cGMP in target
399	epithelial cells following infection with the <i>astA</i> mutant, compared to wild type ETEC. We
400	cannot rule out the possibility of EAST1 expression from additional copies of <i>astA</i> not residing
401	on the 92 MDa virulence plasmid, or that EAST1 is not optimally expressed in <i>vitro</i> . However,
402	the complete absence of a cGMP response in cells infected with the ST-1a/ST-1b deletion
403	mutant might alternatively suggest that EAST1 does not contribute to ETEC virulence and that
404	further toxoid vaccine development can simply focus on engendering neutralizing antibody
405	responses to the established ST1 and LT enterotoxins.
406	The reaffirmation of ToIC as a key mechanism for export of ST1 toxins could be relevant to
407	management of diarrheal illness. The rapid emergence of multi-drug resistance in the
408	Enterobacteriaciae that is in part dependent on drug efflux through TolC has stimulated
409	interest in efflux inhibitors to enhance the potency of available antimicrobial agents(50-52).
410	Theoretically, these inhibitors could offer novel therapeutic agents for treatment of ETEC.
411	Our studies also revisit the concept that the larger pro-peptide form of ST-H may be exported
412	by the bacteria, and the data presented here are consistent with prior observations suggesting
413	that some processing of the pro-peptide occurs outside the bacteria(15, 47). Further study will
414	be needed however to determine whether the pro-peptide sequence contributes to
415	immunologic recognition of ST following infection and whether these larger molecules might
416	be exploited in the development of improved toxoids to neutralize ST.

418		
419	Figure legends	
420		

421	Figure 1. relative contribution of STh, STp, and EAST to cGMP production in target epithelia.
422	A. cGMP activation of T84 target epithelial cells following infection with wild type <i>estH</i> ,
423	complemented <i>estH</i> mutant <i>estH</i> (pQL231), <i>estP</i> , the complemented <i>estP</i> mutant
424	estP(pQL230), and the estH/estP dual deletion mutant. ø=uninfected cells. B. cGMP production
425	following the addition of GST, GST-STh, or GST-STp fusions. Numbers on the x-axis represent
426	final concentration of protein in μ g/ml. ø=untreated cells. C. transcription of genes encoding ST
427	toxins ST-H (estH), ST-P (estP) and TolC. Data are normalized relative to the arcA housekeeping
428	gene, and represent the ratio of transcripts in attached to planktonic bacteria at 30 and 90
429	minutes after infection of monolayers. Whisker plots represent the range of data obtained over
430	six replicates from two independent experiments. Horizontal lines represent mean values. D.
431	Activation of cGMP in T-84 cells after addition of wild type H10407, the <i>astA</i> mutant or the dual
432	<i>estH/estP</i> mutant. Data for each group represent mean of n=3 replicates ± SEM.
433 434	
435	Figure 2 role of <i>tolC</i> in ST1 toxin secretion and delivery to target epithelial cells.
436	A. Immunoblot detection of ST1 toxins in culture supernatants of the wild type H10407 strain,
437	tolC mutant, or estH/estP dual deletion mutant following immunoprecipitation of culture
438	supernatants with affinity-purified anti-STh antibodies (IP $lpha$ -STh). BSA and GST-STh fusion are
439	shown as negative and positive controls, respectively. B. cGMP production by T84 target
440	epithelial cells following infection with wild type (wt) ETEC strain H10407 (ST1a, ST1b), the <i>tolC</i>

441 mutant, the vector complemented mutant (pBAD-Myc-HisB) or the *tolC*-complemented

442 mutant (pZYoo8).

444	Figure 3 The EtpA adhesin is required for optimal delivery of heat stable toxins
445	Shown are comparisons of cGMP activation in target T84 intestinal epithelial cells following
446	infection with wild type ETEC H10407, or the <i>etpA</i> mutant (n=4 replicates). The <i>estH/estP</i> dual
447	deletion mutant and uninfected monolayers (n=3). Dashed lines in each group connect
448	geometric mean values obtained at 30, and 60 minutes following the addition of bacteria. st
449	represents p<0.05 obtained by Mann-Whitney, (two tailed) comparisons.
450 451	
452 453	Figure 4. antitoxin and anti-adhesin antibodies inhibit heat-stable toxin delivery Shown are monolayers infected with the dual heat-stable toxin mutant (<i>estH/estP</i>), wild type
454	H10407, or uninfected control monolayers (ø). Dotted horizontal lines for each group represent
455	geometric means. (*=0.028) by Mann Whitney two-tailed nonparametric comparisons.
456	
45/	
457 458 459	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the
457 458 459 460	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the <i>estH</i> gene. The arrow at top shows the location of the predicted signal peptide cleavage site
457 458 459 460 461	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the <i>estH</i> gene. The arrow at top shows the location of the predicted signal peptide cleavage site which is retained in both constructs. a. anti-FLAG and anti-STH immunoblots of FLAG ³ -STH
457 458 459 460 461 462	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the <i>estH</i> gene. The arrow at top shows the location of the predicted signal peptide cleavage site which is retained in both constructs. a. anti-FLAG and anti-STH immunoblots of FLAG ³ -STH and STH- FLAG ³ peptides recovered by anti-FLAG immunoprecipitation from culture
457 458 459 460 461 462 463	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the <i>estH</i> gene. The arrow at top shows the location of the predicted signal peptide cleavage site which is retained in both constructs. a. anti-FLAG and anti-STH immunoblots of FLAG ³ -STH and STH- FLAG ³ peptides recovered by anti-FLAG immunoprecipitation from culture supernatants of the ETEC <i>estH/estP</i> mutant bearing the pFLAG ³ -STH and pSTH- FLAG ³ . b.
457 458 459 460 461 462 463 464	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the <i>estH</i> gene. The arrow at top shows the location of the predicted signal peptide cleavage site which is retained in both constructs. a. anti-FLAG and anti-STH immunoblots of FLAG ³ -STH and STH- FLAG ³ peptides recovered by anti-FLAG immunoprecipitation from culture supernatants of the ETEC <i>estH/estP</i> mutant bearing the pFLAG ³ -STH and pSTH- FLAG ³ . b . complementation of <i>estP/estH</i> mutant strain with pSTH- FLAG ³ or pFLAG ³ -STH restores
457 458 459 460 461 462 463 464 465	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the estH gene. The arrow at top shows the location of the predicted signal peptide cleavage site which is retained in both constructs. a. anti-FLAG and anti-STH immunoblots of FLAG ³ -STH and STH- FLAG ³ peptides recovered by anti-FLAG immunoprecipitation from culture supernatants of the ETEC estH/estP mutant bearing the pFLAG ³ -STH and pSTH- FLAG ³ . b. complementation of estP/estH mutant strain with pSTH- FLAG ³ or pFLAG ³ -STH restores toxicity upon infection of T84 cells. c. quantitation of FLAG ³ -tagged ST delivered to epithelial
457 458 459 460 461 462 463 464 465 466	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the estH gene. The arrow at top shows the location of the predicted signal peptide cleavage site which is retained in both constructs. a. anti-FLAG and anti-STH immunoblots of FLAG ³ -STH and STH- FLAG ³ peptides recovered by anti-FLAG immunoprecipitation from culture supernatants of the ETEC estH/estP mutant bearing the pFLAG ³ -STH and pSTH- FLAG ³ . b. complementation of estP/estH mutant strain with pSTH- FLAG ³ or pFLAG ³ -STH restores toxicity upon infection of T84 cells. c. quantitation of FLAG ³ -tagged ST delivered to epithelial cells by estH/estP bacteria complemented with pSTH- FLAG ³ or pFLAG ³ -STH. Values represent
457 458 459 460 461 462 463 464 465 466 467	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the estH gene. The arrow at top shows the location of the predicted signal peptide cleavage site which is retained in both constructs. a. anti-FLAG and anti-STH immunoblots of FLAG ³ -STH and STH- FLAG ³ peptides recovered by anti-FLAG immunoprecipitation from culture supernatants of the ETEC estH/estP mutant bearing the pFLAG ³ -STH and pSTH- FLAG ³ . b. complementation of estP/estH mutant strain with pSTH- FLAG ³ or pFLAG ³ -STH restores toxicity upon infection of T84 cells. c. quantitation of FLAG ³ -tagged ST delivered to epithelial cells by estH/estP bacteria complemented with pSTH- FLAG ³ or pFLAG ³ -STH. Values represent fluorescence intensity per field. d. Confocal immunofluorescence images of bacteria expressing
457 458 459 460 461 462 463 464 465 466 467 468	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the estH gene. The arrow at top shows the location of the predicted signal peptide cleavage site which is retained in both constructs. a . anti-FLAG and anti-STH immunoblots of FLAG ³ -STH and STH- FLAG ³ peptides recovered by anti-FLAG immunoprecipitation from culture supernatants of the ETEC <i>estH/estP</i> mutant bearing the pFLAG ³ -STH and pSTH- FLAG ³ . b . complementation of <i>estP/estH</i> mutant strain with pSTH- FLAG ³ or pFLAG ³ -STH restores toxicity upon infection of T84 cells. c . quantitation of FLAG ³ -tagged ST delivered to epithelial cells by <i>estH/estP</i> bacteria complemented with pSTH- FLAG ³ or pFLAG ³ -STH. Values represent fluorescence intensity per field. d . Confocal immunofluorescence images of bacteria expressing pST-FLAG ³ (anti-O78, yellow) attached to T84 cells (nuclei, blue) and the distribution of FLAG
457 458 459 460 461 462 463 464 465 466 467 468 469	Figure 5. secretion and delivery of FLAG-epitope tagged ST-H. Schematic at top depicts the location of the region encoding the 3xFLAG peptide relative to the estH gene. The arrow at top shows the location of the predicted signal peptide cleavage site which is retained in both constructs. a. anti-FLAG and anti-STH immunoblots of FLAG ³ -STH and STH- FLAG ³ peptides recovered by anti-FLAG immunoprecipitation from culture supernatants of the ETEC estH/estP mutant bearing the pFLAG ³ -STH and pSTH- FLAG ³ . b. complementation of estP/estH mutant strain with pSTH- FLAG ³ or pFLAG ³ -STH restores toxicity upon infection of T84 cells. c. quantitation of FLAG ³ or pFLAG ³ -STH. Values represent fluorescence intensity per field. d. Confocal immunofluorescence images of bacteria expressing pST-FLAG ³ (anti-O78, yellow) attached to T84 cells (nuclei, blue) and the distribution of FLAG epitope-tagged toxin (cyan).

471 tables

472 table 1

table 1 bacterial strains and	l plasmids used in these studies	
Strain or plasmid	Description	Source or reference(s)
Strains		
H10407	Wild-type ETEC strain 078:H11: CFA/1: LT, ST-H, ST-P: EtpA	(27, 37, 53)
if2656	H10407 derivative with isogenic deletion of estP	This study
if2649	$H_{10,07}$ derivative with isogenic deletion of estH	This study
if2847	H10407 derivative with isogenic deletion of estP and estH	This study
if2028	deletion of $astA$ in on the large no.8 virulence plasmid of H10.07: Km ^R	this study
j13030	if a 6 co complemented with pOL 221	this study
	$F_{coliK_{-12}}$ in-frame Atol(722: Km ^R	(20)
if (6 5 2	E: conversion of derivative with talG. Km ^R mutation	(<u>30</u>)
j14052	if for with a DA Dimicel list	this study
		this study
Jf4712		this study
Jf4644	Jf2847 with PFLAG-CTC, Cm [®] Km [®] Amp [®]	this study
jf4648	jf2847 with pFLAG-STh, Cm [°] Km [°] Amp [°]	this study
jf4651	jf2847 with pSTh-FLAG, Cm [®] Km [®] Amp [®]	this study
AAEC191A	afimbriate <i>E. coli</i> K-12 derivative	(<u>33</u>)
Plasmids		
pBAD/mycHisA	pBR322ori; PBAD; Amp ^k ; <i>araC</i> ; C-terminal <i>myc</i> epitope tag. Arabinose inducible expression plasmid	Invitrogen
pBAD/mycHisB	pBR3220ri; PBAD; Amp [®] ; <i>araC;</i> C-terminal <i>myc</i> epitope tag. Arabinose inducible expression plasmid	Invitrogen
pKD13	oriRSKγTn5 neomycin phosphotransferase (Km ^R), FRT, β-lactamase (Amp ^R)	(<u>28</u>)
pKD46	lambda red recombinase helper plasmid	(28)
nSMD002	estP cloned into Xhol site of pBAD/myc-HisA in frame with myc-His tags	this study
nACYC184	$p_{1r}\Delta ori Cm^{R} Tc^{R}$	
pSMD001	estH cloned into EcoRV site of pACYC184	this study
pGPS4	oriRSKy Cm ^R , Tc ^R	NEB
pFTDuet-1	nBR2220ri: <i>lacl</i> : Amp ^R :IPTG inducible expression plasmid	Novagen
nOl 220	estP cloned into Balll & Xhol sites of pETDeut-1	
nOl 221	estH cloned into Ncol & EcoRI sites of pETDeut-1	
pQL238	estP cloned into <i>Bell & Xhol</i> sites and <i>estH</i> cloned into <i>Ncol</i> & <i>EcoRI</i> sites of pETDeut-1	
pGEX-4T1	<i>lacl</i> ⁴ , Amp ^R , expression plasmid for N-terminal GST fusions	GE Healthcare Life
	so (s ba CCT CTh overcession plasmid Ama ^R	this study
pCW002	5047 bp GST-STITExpression plasmid, Amp	this study
	estP cloned into BamHi & EcoRi sites of pGEX	this study
pY2011	5047 bp GST-mSTn expression plasmid for mSTn (A14Q), Amp	this study
p¥2008	H10407 tolC cloned into pBAD/mycHisB	this study
pFLAG-CTC	5.3 Kb plasmid, expressing C-terminal FLAG fusion proteins, Amp^{R}	Sigma
pFLAG ³ -STh	5609 bp Flag-Pro-STh expression plasmid, Amp ^R	this study
pSTh-FLAG ³	5612 bp Pro-STh-Flag expression plasmid, Amp ^R	this study
Km ^R :kanamycin resistance; Tc ^R : tetracycline resistance; Cm ^R : chloramphenicol resistance; Amp ^R :ampicillin resistance; NEB: New England Biolabs; ^a addgene accession number 90225: <u>https://www.addgene.org/90225/</u> ^b addgene accession number 90226: <u>https://www.addgene.org/90226/</u>		

^caddgene accession number 110570: <u>https://www.addgene.org/110570/</u>

473 474

Table 2: primers used in these studies

Primer	Sequence (5'-3')	Description
jf070212.1	ATGAAAAAATCAATATTATTTATTTTTCTTTCTGTAG	Forward primer for amplifying estH flanking from
-	TGTAGGCTGGAGCTGCTTCG	pKD13
jf070212.2	TTAATAGCACCCGGTACAAGCAGGATTACAACACA	Reverse primer for amplifying estH flanking from

	AATTCCGGGGATCCGTCGACC	рКD13
jf070212.3	ATGAAAAAGCTAATGTTGGCAATTTTTATTTCTGTA GTGTAGGCTGGAGCTGCTTC	Forward primer for amplifying estP flanking from pKD13
jf070212.4	TTAATAACATCCAGCACAGGCAGGATTACAACAAA GATTCCGGGGATCCGTCGACC	Reverse primer for amplifying estP flanking from pKD13
jf071612.1	GGCGCACACAAATATAAAG	368 bp amplicon in H10407-estH downstream primer
jf071612.2	AGCGGAGAGTATAGTATGA	estH Upstream
jf071612.3	AAAACCAGATAGCCAGAC	168bp upstream from estP on H10407 plasmid p666
k2	CGG TGC CCT GAA TGA ACT GC	primer binding Km [®] cassette for confirming estP and tolC deletion
jf072312.1	ATGAAAAAATCAATATTATTTATTTTTCTTTCTGTAC CCTGTTATCCCTAGATTT	Forward primer for amplifying estH from pGPS4
jf072312.2	TTAATAGCACCCGGTACAAGCAGGATTACAACACA ATAACGGTCCTAAGGTAGC	Reverse primer for amplifying estH from pGPS4
jf072412.3	TGGATCCGAGCTCGAGATGAAAAAGCTAATGTTG	pBAD_Myc-hisA_XHOI_ST-P Forward primer for in- fusion cloning
jf060614.1	AGCTGCAGATCTCGAG TTAATAACATCCAGCACA	for ST-P cloning to pBAD/mycHisA, pair to jfo72412.3
jf072412.5	GGCCTCTTGCGGGATATCTAAATGAAAAAATCAATA TTA	pACYC184_ECORV_TAA_ST-H forward primer for in- fusion cloning
jf072412.6	GTCGGAATGGACGATATCTTAATAGCACCCGGTAC A	pACYC184_ECORV_TAA_ST-H reverse primer for in- fusion cloning
jf060614.2	AGGAGATATACCATGGATGAAAAAATCAATATTA	forward primer for ST-H in Ncol&EcoRI sites on pETDuet-1 vector
jf060614.3	CGCCGAGCTCGAATTCTTAATAGCACCCGGTACA	reverse primer for ST-H in Ncol&EcoRI sites on pETDuet-1 vector
jf060614.4	TACATATGGCAGATCTATGAAAAAGCTAATGTTG	forward primer for ST-P in BgIII&XhoI sites on pETDuet-1 vector
jf060614.5	CTTTACCAGACTCGAGTTAATAACATCCAGCACA	reverse primer for ST-P in Bglll&Xhol sites on pETDuet-1 vector
jf042715.1	GATCCGATCCCCGGGTACCGAGCTCGAATAGTAGC AATTACTGCTGTGAATTGTGTTGTAATCCTGCTTGT ACCGGGTGCTATTGAG	5' Mature estH gene with BamHI, linker, gene, stop codon
jf042715.2	AATTCTCAATAGCACCCGGTACAAGCAGGATTACAA CACAATTCACAGCAGTAATTGCTACTATTCGAGCTC GGTACCCGGGGATCG	3' Mature estH gene with Linker, gene, stop codon, EcoRl
jf042517.1	GATCCGATCCCCGGGTACCGAGCTCGAATAGTAGC AATTACTGCTGTGAATTGTGTTGTAATCCTcaaTGTA CCGGGTGCTATTGAG	5' mutant estH gene with BamHI, linker, gene, stop codon
jf042517.2	AATTCTCAATAGCACCCGGTACAttgAGGATTACAAC ACAATTCACAGCAGTAATTGCTACTATTCGAGCTCG GTACCCGGGGATCG	3' mutant estH gene with Linker, gene, stop codon, EcoRI
jf031915.5	GATCCGATCCCCGGGTACCGAGCTCGAACACATTTT ACTGCTGTGAACTTTGTTGTAATCCTGCCTGTGCTG GATGTTATTGAG	5' Mature estP gene with BamHI, linker, gene
jf031915.6	AATTCTCAATAACATCCAGCACAGGCAGGATTACAA CAAAGTTCACAGCAGTAAAATGTGTTCGAGCTCGG TACCCGGGGATCG	3' Mature estP gene with Linker, gene, EcoRI
jf021915.1	CGCTTACAGACAAGCTGTG	Reverse sequencing primer that binds 70 bp downstream of the pGEX cloning site
jf021915.2	CCAGCAAGTATATAGCATGG	Forward sequencing primer that binds 117 bp upstream of pGEX cloning site
jf110716.38	CGGGCGCAGTCTGTTCTATTG	Forward primer for amplifying 1027 bp left flank segment of H10407 <i>tolC</i>
jf110716.43	TCATTTGCATTCCTTGTGGTGAAGCAGTATTTAGCG C	Reverse primer for amplifying 1027 bp left flank segment of H10407 <i>tolC</i>
jf110716.44	AAAGGGTTATGTGTAGGCTGGAGCTGCTTCG	Reverse primer for amplifying Km ^R cassette from strain JQ5503-1
jf110716.45	CTTCACCACAAGGAATGCAAATGATTCCGGGGATCC	Forward primer for amplifying Km ^R cassette from strain JQ5503-1
jf110716.39	CTTTTCAACCTGGGCGAGGG	Reverse primer for amplifying 985 bp right flank segment of H10407 <i>tolC</i>
jf110716.46	CCTACACATAACCCTTTCCGTAACTGATGACGACGA	Forward primer for amplifying 985 bp right flank

	CGGGGCTTCGG	segment of H10407 <i>tolC</i>
jf101716.21	CGATCGTGATGCTGCCTTTG	603 bp amplicon in H10407- <i>tolC</i> forward primer
jf101716.22	AGCGACAGGTTGCGTTTTTC	603 bp amplicon in H10407- <i>tolC</i> downstream primer
jf112016.50	ATTTGCCATTGCTCACCAATAAAC	forward primer binding 2 kb upstream of H10407 tolC
jf112016.51	CTTGCAGACTGTTAAACTGGTCG	reverse primer binding 2 kb downstream of H10407
		tolC
jf120716.52	GAACAAAAACTCATCTCAGAAGAGGATCTGAATAG	Forward primer to amplify 4036 bp of pBAD/myc-His
	CG	В
jf120716.53	GGTTAATTCCTCCTGTTAGCCCAAAAAACGG	Reverse primer to amplify 4036 bp of pBAD/myc-His B
jf120716.59	GGCTAACAGGAGGAATTAACCATGCAAATGAAGAA	Forward primer H10407 <i>tolC</i> gene
	ATTGCTCCCCATTCT	
jf120716.60	CTCTTCTGAGATGAGTTTTTGTTCTCAGTTACGGAA	Reverse primer H10407 <i>tolC</i> gene
	AGGGTTATGACCGTTACT	
jf092616.1	<u>TTTCACCTTTCGCTCAG</u> GATTACAAAGACCAC	forward <u>bp 44-60 of estH</u> -5'3XFLAG
jf092616.2	<u>GAAGACCCTGCTGGTTTAGC</u> CTTGTCATCGTC	reverse <u>bp 83-64 of <i>estH</i>-</u> 3'3XFLAG
jf092616.3	GCTAAACCAGCAGGGTCTTCAAAAGAAAAAATTAC	Forward primer bp 64-99 of <i>estH</i>
-	A	
jf092616.4	ATCCTGAGCGAAAGGTGAAAAAGATAATACAGAAA	reverse primer bp 63-27 of <i>estH</i>
	GA	
jf092616.5	<u>CTGCTTGTACCGGGTGCTAT</u> GATTACAAAGAC	Forward primer <u>bp 197-216 of estH-5'3XFLAG</u>
jf092616.8	ATAGCACCCGGTACAAGCAGGATTACA	Reverse primer representing bp 216-190 of estH
jf092616.9	GATTACAAAGACCACGATGGTGACTATAAAGACCA	bp 1-43 and 66 through 19 of the 3X FLAG encoding
	TGATATCG	sequence.
jf092616.10	CTTGTCATCGTCGTCTTTATAATCGATATCATGGTCT	
-	TTATAGTCACC	
jf101916.31	CAGATCTGGTACCCGGGAATTCT	For amplifying pFLAG-CTC vector backbone
jf101916.32	TGAAGATCGATCTCTCGATCGAGTGA	
jf101916.33	ATTCCCGGGTACCAGATCTGATGAAAAAATCAATAT	forward primer beginning with <u>pFLAG-CTC-</u> sequence
	TATTTATTTTCTTTCTGTATT	followed by (<i>estH</i> sequence bp 1-38)
jf101916.34	<u>GATCGAGAGATCGATCTTCA</u> TTAATAGCACCCGGTA	reverse primer beginning with <u>pFLAG-CTC sequence</u>
	CAAGCAGG	followed by 3'estH native reverse sequence (bp 219-
-		196).
jf101916.35	<u>GATCGAGAGATCGATCTTCA</u> TTACTTGTCATCGTCG	reverse primer beginning with <u>pFLAG-CTC-</u> sequence
-	TCTTTATAATCGATATCATG	followed by bases 69-34 of the 3xFLAG sequence.
jf092313.5	TCTTTCCCCTCTTTTAGTCAG	estP RT-PCR forward primer
jf092313.6	ACAGGCAGGATTACAACAAAG	estP RT-PCR reverse primer
jf092313.7	TACAAGCAGGATTACAACAC	estH RT-PCR forward primer
jf092313.8	AGTGGTCCTGAAAGCATG	estH RT-PCR reverse primer
jf092210.1	ATCAATCTGCCGGGTAAGAACGGT	arcA RT-PCR forward primer
jf092210.2	TCCAGATCACCGCAGAAGCGATAA	arcA RT-PCR reverse primer

1.77	refere	nces
4//	1	Kotloff K L J P Nataro W C Blackwelder D Nasrin T H Farag S Panchalingam Y Wu S O
4/0	1.	Sour D. Sur, D. E. Brainan A. C. Earweider, D. Nashin, T. H. Hardy, S. Hallenanigani, T. Wo, S. C.
4/9		Sow, D. Sul, K. F. Breiman, A. S. Faruque, A. K. Zalui, D. Sana, F. L. Alonso, B. Tamboura, D. Sanogo,
400		U. Onwuchekwa, B. Manna, T. Ramamurthy, S. Kahungo, J. B. Ocnieng, R. Omore, J. O. Oundo, A.
481		Hossain, S. K. Das, S. Ahmed, S. Qureshi, F. Quadri, R. A. Adegbola, M. Antonio, M. J. Hossain, A.
482		Akinsola, I. Mandomando, T. Nhampossa, S. Acacio, K. Biswas, C. E. O'Reilly, E. D. Mintz, L. Y.
483		Berkeley, K. Muhsen, H. Sommerfelt, R. M. Robins-Browne, and M. M. Levine. 2013. Burden and
484		aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric
485		Multicenter Study, GEMS): a prospective, case-control study. Lancet.
486	2.	Hameed, J. M., R. L. McCaffrey, A. McCoy, T. Brannock, G. J. Martin, W. T. Scouten, K. Brooks, S. D.
487		Putnam, and M. S. Riddle, 2016. Incidence, Etiology and Risk Factors for Travelers' Diarrhea during a
, 88		Hospital Ship-Based Military Humanitarian Mission: Continuing Promise 2011. PLoS One 11:e015/830
7 7.80	2	Shah N H L DuPont and D L Ramsey 2000 Global etiology of travelers' diarrhea: systematic review
409	2.	from 1072 to the present Am I Trop Med Hys 80:600.617
490	,	Modus C I M Rescent R A luni R Kazial V Lanni K E Smith and C W Hadhara and Lang
491	4.	Medus, C., J. M. Dessel, D. A. Juli, D. Koziol, V. Lappi, K. E. Siniti, and C. W. Heuberg. 2010. Long-
492		Term Settiner Solveinance for Enterotoxygenic escherichia con and Non-O15/ Shiga Toxin-Producing E.
493		coll in Minnesota. Open Forum Infect Dis 3:07w003.
494	5.	Beatty, M. E., P. M. Adcock, S. W. Smith, K. Quinlan, L. A. Kamimoto, S. Y. Rowe, K. Scott, C.
495		Conover, T. Varchmin, C. A. Bopp, K. D. Greene, B. Bibb, L. Slutsker, and E. D. Mintz. 2006. Epidemic
496		diarrhea due to enterotoxigenic Escherichia coli. Clin Infect Dis 42: 329-334.
497	6.	Devasia, R. A., T. F. Jones, J. Ward, L. Stafford, H. Hardin, C. Bopp, M. Beatty, E. Mintz, and W.
498		Schaffner. 2006. Endemically acquired foodborne outbreak of enterotoxin-producing Escherichia coli
499		serotype O169:H41. Am J Med 119: 168 e167-110.
500	7.	Jain, S., L. Chen, A. Dechet, A. T. Hertz, D. L. Brus, K. Hanley, B. Wilson, J. Frank, K. D. Greene, M.
501		Parsons, C. A. Bopp, R. Todd, M. Hoekstra, E. D. Mintz, and P. K. Ram. 2008. An outbreak of
502		enterotoxigenic Escherichia coli associated with sushi restaurants in Nevada, 2004. Clin Infect Dis 47:1-7.
502	8	Beatty M.E. C.A. Boon, J.G. Wells, K.D. Greene, N.D. Puhr, and F.D. Mintz. 2004. Enterotoxin-
50%	0.	producing Escherichia coli 0.160.H/1. United States Emerg Infect Dis 10:518-521
504	0	Sack R B S L Gorbach L G Ranwell B Jacch B D Chatteries and R C Mitra 1071
5°5 rof	9.	Sock, K. S. S. Colobach, J. C. Barwen, B. Sacoba, D. Charceljee, Jan K. C. Mitta 1971.
500		Enteroloxygenic Escherichia con isolated non patients with severe cholera-like disease. 5 meet Dis
507		123:370-305.
500	10.	Carpenter, C. C., D. Barba, C. K. Wallace, K. B. Sack, P. P. Mitra, A. S. Werner, T. P. Dutty, A. Oleinick,
509		S. R. Khanra, and G. W. Lewis. 1965. Clinical and physiological observations during an epidemic outbreak
510		of non-vibrio cholera-like disease in Calcutta. Bull World Health Organ 33 :665-671.
511	11.	Vicente, A. C., L. F. Teixeira, L. Iniguez-Rojas, M. G. Luna, L. Silva, J. R. Andrade, and B. E. Guth. 2005.
512		Outbreaks of cholera-like diarrhoea caused by enterotoxigenic Escherichia coli in the Brazilian Amazon
513		Rainforest. Trans R Soc Trop Med Hyg 99: 669-674.
514	12.	Guerrant, R. L., M. D. DeBoer, S. R. Moore, R. J. Scharf, and A. A. Lima. 2013. The impoverished guta
515		triple burden of diarrhoea, stunting and chronic disease. Nat Rev Gastroenterol Hepatol 10: 220-229.
516	13.	Sahl, J. W., H. Steinsland, J. C. Redman, S. V. Angiuoli, J. P. Nataro, H. Sommerfelt, and D. A. Rasko.
517		2011. A comparative genomic analysis of diverse clonal types of enterotoxigenic Escherichia coli reveals
518		pathovar-specific conservation. Infect Immun 79: 950-960.
510	1/.	Wolf M K 1997 Occurrence distribution and associations of Q and H serogroups colonization factor
5-5	-4.	antigens and toxins of enterrotoxigenic Excharichia coli Clin Microbiol Rev 10: 60-r8.
520 F01	15	Backbad L K L M Gurman Varduzca and V M Kuparatach 1000 Nov To 509 Sol.
521	15.	Rasheed, J. K., L. M. Goznani verdozo, and T. M. Ropersztorn. 1990. Two precisions of the freat-
522		stable enterotoxin of Eschentria colle evidence of extracellular processing, with with outputs $\frac{1}{2}$ 25-273.
523	16.	Schulz, S., C. K. Green, P. S. Yuen, and D. L. Garbers. 1990. Guanyiyi cyclase is a neat-stable enterotoxin
524		receptor. Cell 63 :941-948.
525	17.	Giannella, R. A., and E. A. Mann. 2003. E. coli heat-stable enterotoxin and guanylyl cyclase C: new
526		functions and unsuspected actions. Trans Am Clin Climatol Assoc 114: 67-85; discussion 85-66.
527	18.	Field, M., L. H. Graf, Jr., W. J. Laird, and P. L. Smith. 1978. Heat-stable enterotoxin of Escherichia coli: in
528		vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine.
529		Proc Natl Acad Sci U S A 75: 2800-2804.
530	19.	Zachos, N. C., M. Tse, and M. Donowitz. 2005. Molecular physiology of intestinal Na+/H+ exchange. Annu
531	2	Rev Physiol 67:411-443.
532	20.	Sack, D. A., M. H. Merson, J. G. Wells, R. B. Sack. and G. K. Morris. 1975. Diarrhoea associated with
533		heat-stable enterotoxin-producing strains of Escherichia coli. Lancet 2:239-241.

534 535 536	21.	Ryder, R. W., I. K. Wachsmuth, A. E. Buxton, D. G. Evans, H. L. DuPont, E. Mason, and F. F. Barrett. 1976. Infantile diarrhea produced by heat-stable enterotoxigenic Escherichia coli. N Engl J Med 295: 849- 853.
537 538	22.	Levine, M. M., E. S. Caplan, D. Waterman, R. A. Cash, R. B. Hornick, and M. J. Snyder. 1977. Diarrhea caused by Escherichia coli that produce only heat-stable enterotoxin. Infection and immunity 17:78-82.
539 540 541	23.	Bolin, I., G. Wiklund, F. Qadri, O. Torres, A. L. Bourgeois, S. Savarino, and A. M. Svennerholm. 2006. Enterotoxigenic Escherichia coli with STh and STp genotypes is associated with diarrhea both in children in areas of endemicity and in travelers. J Clin Microbiol 44 :3872-3877.
542 543 544	24.	Taxt, A. M., Y. Diaz, R. Aasland, J. D. Clements, J. P. Nataro, H. Sommerfelt, and P. Puntervoll. 2016. Towards Rational Design of a Toxoid Vaccine against the Heat-Stable Toxin of Escherichia coli. Infect Immun 84:1239-1249.
545 546 547	25.	Moseley, S. L., M. Samadpour-Motalebi, and S. Falkow. 1983. Plasmid association and nucleotide sequence relationships of two genes encoding heat-stable enterotoxin production in Escherichia coli H-10407. LBacteriol 156 :441-443
548 549	26.	Yamamoto, T., and T. Yokota. 1983. Plasmids of enterotoxigenic Escherichia coli H10407: evidence for two heat-stable enterotoxin genes and a conjugal transfer system. J Bacteriol 153 :1352-1360.
550 551 552 553	27.	Crossman, L. C., R. R. Chaudhuri, S. A. Beatson, T. J. Wells, M. Desvaux, A. F. Cunningham, N. K. Petty, V. Mahon, C. Brinkley, J. L. Hobman, S. J. Savarino, S. M. Turner, M. J. Pallen, C. W. Penn, J. Parkhill, A. K. Turner, T. J. Johnson, N. R. Thomson, S. G. Smith, and I. R. Henderson. 2010. A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli
555 555 555	28.	strain H10407. Journal of bacteriology 192: 5822-5831. Datsenko, K. A., and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in <i>Escherichia coli</i>
556 557 558	29.	K-12 using PCR products. Proc Natl Acad Sci U S A 97 :6640-6645. Rodas, C., V. Iniguez, F. Qadri, G. Wiklund, A. M. Svennerholm, and A. Sjoling. 2009. Development of multiplex PCR assays for detection of enterotoxigenic Escherichia coli colonization factors and toxins. J Clin
559 560 561	30.	Microbiol 47:1218-1220. Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita, B. L. Wanner, and H. Mori. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:
562 563 564	31.	the Keio collection. Molecular systems biology 2 :2006 0008. Quan, J., and J. Tian. 2009. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4 :e6441.
565 566	32.	Clements, J. D. 1990. Construction of a nontoxic fusion peptide for immunization against Escherichia coli strains that produce heat-labile and heat-stable enterotoxins. Infect Immun 58 :1159-1166.
567 568 569	33.	Blomfield, I. C., M. S. McClain, and B. I. Eisenstein. 1991. Type 1 fimbriae mutants of Escherichia coli K12: characterization of recognized afimbriate strains and construction of new fim deletion mutants. Mol Microbiol 5 :1439-1445.
570 571	34.	Savarino, S. J., A. Fasano, J. Watson, B. M. Martin, M. M. Levine, S. Guandalini, and P. Guerry. 1993. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat- stable toxin. Proc. Natl Acad Sci U.S. A 00:2002-2007.
572 573 574	35.	Yamamoto, T., and P. Echeverria. 1996. Detection of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene sequences in enterotoxigenic E. coli strains pathogenic for humans. Infect Immun
575 576 577 578	36.	64:1441-1445. McVeigh, A., A. Fasano, D. A. Scott, S. Jelacic, S. L. Moseley, D. C. Robertson, and S. J. Savarino. 2000. IS1414, an Escherichia coli insertion sequence with a heat-stable enterotoxin gene embedded in a transposase-like gene. Infect Immun 68:5710-5715.
579 580	37.	Fleckenstein, J. M., K. Roy, J. F. Fischer, and M. Burkitt. 2006. Identification of a two-partner secretion locus of enterotoxigenic Escherichia coli. Infect Immun 74 :2245-2258.
581 582 583	38.	Foreman, D. T., Y. Martinez, G. Coombs, A. Torres, and Y. M. Kupersztoch. 1995. TolC and DsbA are needed for the secretion of STB, a heat-stable enterotoxin of Escherichia coli. Molecular microbiology 18 :237-245.
584 585 586	39.	Yamanaka, H., T. Nomura, Y. Fujii, and K. Okamoto. 1998. Need for TolC, an Escherichia coli outer membrane protein, in the secretion of heat-stable enterotoxin I across the outer membrane. Microb Pathog 25 :111-120.
587 588 588	40.	Weikel, C. S., K. M. Tiemens, S. L. Moseley, I. M. Huq, and R. L. Guerrant. 1986. Species specificity and lack of production of STb enterotoxin by Escherichia coli strains isolated from humans with diarrheal
509 590 591	41.	Lortie, L. A., J. D. Dubreuil, and J. Harel. 1991. Characterization of Escherichia coli strains producing heat-stable enterotoxin b (STb) isolated from humans with diarrhea. J Clin Microbiol 29: 656-659.

- 592 42. Dorsey, F. C., J. F. Fischer, and J. M. Fleckenstein. 2006. Directed delivery of heat-labile enterotoxin by
 593 enterotoxigenic Escherichia coli. Cell Microbiol 8:1516-1527.
- Luo, Q., F. Qadri, R. Kansal, D. A. Rasko, A. Sheikh, and J. M. Fleckenstein. 2015. Conservation and
 immunogenicity of novel antigens in diverse isolates of enterotoxigenic Escherichia coli. PLoS Negl Trop
 Dis 9:e0003446.
- Koy, K., D. J. Hamilton, and J. M. Fleckenstein. 2012. Cooperative role of antibodies against heat-labile
 toxin and the EtpA Adhesin in preventing toxin delivery and intestinal colonization by enterotoxigenic
 Escherichia coli. Clin Vaccine Immunol 19:1603-1608.
- Escherichia coli. Clin Vaccine Immunol 19:1603-1608.
 Del Canto, F., P. Valenzuela, L. Cantero, J. Bronstein, J. E. Blanco, J. Blanco, V. Prado, M. Levine, J.
 Nataro, H. Sommerfelt, and R. Vidal. 2011. Distribution of Classical and Nonclassical Virulence Genes in
 Enterotoxigenic Escherichia coli Isolates from Chilean Children and tRNA Gene Screening for Putative
 Insertion Sites for Genomic Islands. J Clin Microbiol 49:3198-3203.
- 604 46. **Okamoto, K., and M. Takahara.** 1990. Synthesis of Escherichia coli heat-stable enterotoxin STp as a pre-605 pro form and role of the pro sequence in secretion. J Bacteriol **172**:5260-5265.
- Yang, Y., Z. Gao, L. M. Guzman-Verduzco, K. Tachias, and Y. M. Kupersztoch. 1992. Secretion of the
 STA3 heat-stable enterotoxin of Escherichia coli: extracellular delivery of Pro-STA is accomplished by
 either Pro or STA. Mol Microbiol 6:3521-3529.
- Kotloff, K. L., J. P. Nataro, W. C. Blackwelder, D. Nasrin, T. H. Farag, S. Panchalingam, Y. Wu, S. O.
 Sow, D. Sur, R. F. Breiman, A. S. Faruque, A. K. Zaidi, D. Saha, P. L. Alonso, B. Tamboura, D. Sanogo,
 U. Onwuchekwa, B. Manna, T. Ramamurthy, S. Kanungo, J. B. Ochieng, R. Omore, J. O. Oundo, A.
 Hossain, S. K. Das, S. Ahmed, S. Qureshi, F. Quadri, R. A. Adegbola, M. Antonio, M. J. Hossain, A.
 Akinsola, I. Mandomando, T. Nhampossa, S. Acacio, K. Biswas, C. E. O'Reilly, E. D. Mintz, L. Y.
 Berkeley, K. Muhsen, H. Sommerfelt, R. M. Robins-Browne, and M. M. Levine. 2013. Burden and
 aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric
- 616Multicenter Study, GEMS): a prospective, case-control study. Lancet 382:209-222.61749.618Sheikh, A., R. Rashu, Y. A. Begum, F. M. Kuhlman, M. A. Ciorba, S. J. Hultgren, F. Qadri, and J. M.618Fleckenstein. 2017. Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host
- 619 interactions. PLoS Negl Trop Dis 11:e0005586.
 620 50. Bohnert, J. A., S. Schuster, W. V. Kern, T. Karcz, A. Olejarz, A. Kaczor, J. Handzlik, and K. Kiec621 Kononowicz. 2016. Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia
 622 coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux
 623 Assay. Antimicrob Agents Chemother 60:1974-1983.
- Mahamoud, A., J. Chevalier, S. Alibert-Franco, W. V. Kern, and J. M. Pages. 2007. Antibiotic efflux
 pumps in Gram-negative bacteria: the inhibitor response strategy. J Antimicrob Chemother 59:1223-1229.
 Koronakis, V., J. Eswaran, and C. Hughes. 2004. Structure and function of TolC: the bacterial exit duct for
- 62652.Koronakis, V., J. Eswaran, and C. Hughes. 2004. Structure and function of ToIC: the bacterial exit duct for627proteins and drugs. Annu Rev Biochem 73:467-489.
- 628 53. Evans, D. J., Jr., and D. G. Evans. 1973. Three characteristics associated with enterotoxigenic Escherichia
 629 coli isolated from man. Infect Immun 8:322-328.
- 630 54. **Rose, R. E.** 1988. The nucleotide sequence of pACYC184. Nucleic Acids Res 16:355.

633 634 Acknowledgements

- 635 These studies were supported in part by funds from the National Institute for Allergy and
- 636 Infectious Diseases (NIAID) grants Ro1AI89894, Ro1AI126887; and The Department of Veterans
- 637 Affairs (5101BX001469-05); CW was supported in part by a Washington University/HHMI
- 638 Summer Undergraduate Research Fellowship (HHMI SURF).

639

