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The mammalian brain is composed of diverse, specialized cell populations, few of which we fully understand. To more 
systematically ascertain and learn from cellular specializations in the brain, we used Drop-seq to perform single-cell 
RNA sequencing of 690,000 cells sampled from nine regions of the adult mouse brain: frontal and posterior cortex 
(156,000 and 99,000 cells, respectively), hippocampus (113,000), thalamus (89,000), cerebellum (26,000), and all of 
the basal ganglia – the striatum (77,000), globus pallidus externus/nucleus basalis (66,000), 
entopeduncular/subthalamic nuclei (19,000), and the substantia nigra/ventral tegmental area (44,000). We developed 
computational approaches to distinguish biological from technical signals in single-cell data, then identified 565 
transcriptionally distinct groups of cells, which we annotate and present through interactive online software we 
developed for visualizing and re-analyzing these data (DropViz). Comparison of cell classes and types across regions 
revealed features of brain organization. These included a neuronal gene-expression module for synthesizing axonal 
and presynaptic components; widely shared patterns in the combinatorial co-deployment of voltage-gated ion 
channels by diverse neuronal populations; functional distinctions among cells of the brain vasculature; and 
specialization of glutamatergic neurons across cortical regions to a degree not observed in other neuronal or non-
neuronal populations. We describe systematic neuronal classifications for two complex, understudied regions of the 
basal ganglia, the globus pallidus externus and substantia nigra reticulata. In the striatum, where neuron types have 
been intensely researched, our data reveal a previously undescribed population of striatal spiny projection neurons 
(SPNs) comprising 4% of SPNs. The adult mouse brain cell atlas can serve as a reference for analyses of development, 
disease, and evolution. 
 
 

 
Cellular specialization is central to the function of the 
mammalian brain. At the coarsest level, cells of different 
classes (for example, neurons, astrocytes, and 
endothelial cells) interact to maintain homeostasis and 
enable electrochemical communication. At the finest 
level, subtle specializations – such as those that 
distinguish neuron subtypes in the same brain region – 
can control behaviors such as appetite (Andermann and 
Lowell, 2017; Sternson, 2013), sex drive (Anderson, 
2012), habit formation (O’Hare et al., 2016; Wang et al., 
2011), spatial mapping (Moser et al., 2008), and 
associative learning (Krabbe et al., 2017; Letzkus et al., 
2015). Although some of these cell populations have 
been characterized in detail, many more remain to be 
characterized or even discovered for the first time.  

Systematic efforts to identify cell populations, reveal 

the RNA repertoires of every cell type and state, and 
identify markers for these populations, would help to 
understand the functions and interactions of cells in the 
brain. Comprehensive datasets would also enable new 
ways of probing the roles of distinct cell types in circuit 
function, behavior, and disease. High-throughput single-
cell RNA-seq (scRNA-seq) now makes it possible to 
profile RNA expression in thousands of individual cells 
in complex tissue (Klein et al., 2015; Macosko et al., 
2015; Rosenberg et al., 2018; Zheng et al., 2017). To date, 
single-cell gene expression studies have yielded cell-
type classifications in the mouse cerebral cortex (Tasic 
et al., 2016a; Zeisel et al., 2015), retina (Shekhar et al., 
2016), hypothalamic arcuate nucleus (Campbell et al., 
2017), and amygdala (Wu et al., 2017).  

Here we sought to analyze cellular diversity across a 
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wide variety of brain regions in a uniform manner that 
would make it possible to learn from shared and region-
specific patterns in cellular composition and gene 
expression. To do this, we had to overcome several 
challenges. First, dissociating adult mammalian brain 
tissue into healthy and representative cell suspensions 
is difficult; many scRNA-seq studies have therefore used 
developing mice (younger than 30 days old). However, 
the strong transcriptional programs associated with 
development can obfuscate gene-expression differences 
underlying the functional specializations of cell 
subtypes. Here we developed approaches, borrowing 
from techniques used for electrophysiological 
recordings, that allowed adult tissue to be dissociated 
into intact cell soma while representing all major cell 
classes. Second, scRNA-seq data are simultaneously 
shaped by real underlying cellular categories, 
continuously varying signals, and technical artifacts; the 
grouping of cells into discrete clusters often reflects 
unknown and non-transparent combinations of these 
effects. Here we developed analytical methods to dissect 
biological and technical influences on single-cell data 
sets and enable a more transparent view and revision of 
the resulting cellular classifications. 

Here, we describe an early mouse brain cell atlas, 
which we created by analyzing (using Drop-seq) 
690,000 individual cells from nine regions of the adult 
mouse brain. By comparing transcriptional patterns 
from within and across neuron types, we identified and 
validated a widely-used transcriptional state that 

supports axon and synapse function and discovered 
large-scale structure in the expression of ion channels 
that enable and constrain electrophysiological 
properties. We determined that glutamatergic neurons 
tend to be specialized by region in cortex, while non-
neuron cell classes, such as those that make up the 
vasculature, can be variably specialized across cortical 
and subcortical areas. We also highlight the depth of 
individual datasets through the classification of neuron 
types. While we present in-depth analyses of all nine 
regions through DropViz, here we illustrate our insights 
into neuronal diversity using examples from the basal 
ganglia. In the globus pallidus externus (GPe) and 
substantia nigra reticulata (SNr), two regions where 
neuron types are not well-understood, we propose 
complete neuron-type classifications and identify 
selective markers for each population. In the striatum, 
where neuronal diversity is well charted, our data 
rediscovered, then built upon, accepted molecular 
distinctions, identifying a novel group of principal 
neurons that have been overlooked despite decades of 
research.  

Our hope is that these data will advance a wide 
variety of efforts and nominate many unforeseen 
research questions. To facilitate the exploration and 
utilization of these data, we developed a flexible, 
interactive analysis platform (“DropViz”, 
http://dropviz.org/) for comparing cell types to one 
another, identifying cell populations that express genes 
of interest, and performing many other kinds of analyses. 

 
Figure 1. Single-cell transcriptional 
profiling of the adult mouse brain 
using Drop-seq 
(A) Sagittal brain schematic 
illustrating the n=9 profiled regions. 
Detailed schematics are presented in 
Figure S1.  
(B) Plot illustrating the number of 
single-cell transcriptomes per region.    
(C) Flowchart describing how acute 
single-cell suspensions are prepared 
from adult mouse brain. 
(D) Example single-cell suspension 
generated from frontal cortex that 
contained little debris and diverse 
cellular morphologies. Bottom, 
enlargements of example cells.    
(E) Distribution of sequencing reads, 
transcripts, and genes for all cells 
(n=690,207) 
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RESULTS 
 
Isolation and Molecular Analysis of Cells for an 
Adult Brain Cell Atlas 
To build an atlas of cell populations and cell-type-
specific gene expression across many regions of the 
adult mouse brain, we prepared single-cell suspensions 
from nine brain regions (Table S1) and used Drop-seq 
(Macosko et al., 2015) to profile the RNA expression of 
690,207 individual cells (Figure 1A,B). We profiled cells 
from the Frontal and Posterior Cerebral Cortex (FC and 
PC), Hippocampus (HP), Thalamus (TH), Cerebellum 
(CB), and the Basal Ganglia (consisting of the Striatum 
[STR], Globus Pallidus Externus / Nucleus Basalis 
[GP/NB], Entopeduncular Nucleus / Subthalamic 
Nucleus [EP/STN] (Wallace et al., 2017), and Substantia 
Nigra/Ventral Tegmental Area [SN/VTA]) (Figure S1).  

We generated cell suspensions from adult male mice 
(60–70 days old; C57Blk6/N) by adapting protocols 
from single-cell patch-clamp recording (Carter and 
Bean, 2009). We optimized the digestion time for each 
region to maximize cell recovery rates (see Methods, 
Figure 1C). Tissue was prepared in a buffer lacking Ca2+ 
with ionic concentrations designed to avoid activity-
induced toxicity by maintaining voltage-gated Na 
channels in an inactivated state [Estimated Vm = -30.5 
mV, Methods]). The resulting cell suspensions, which 
recovered intact 40–50% of cells from most tissues 
(cortex: 0.46 ± 19 mean ± sem; striatum: 0.39 ± 20, 
Figure S4A-C), had cells with the characteristic 
morphologies of neurons, astrocytes, and 
oligodendrocytes, and were largely free of debris 
(Figure 1D). We prepared 3-7 replicate suspensions of 
each brain region (44 total). 

We performed Drop-seq analysis of 690,207 
individual cells from these 44 cell suspensions (Macosko 
et al., 2015). We generated and analyzed 13 billion 
sequencing reads from the resulting Drop-seq libraries, 
ascertaining 1.45 billion distinct mRNA transcripts 
(UMIs), which arose from 31,767 distinct genes. We 
ascertained an average of 17,480 reads (median = 
10,824), 2,218 mRNA transcripts (median= 1,450 UMIs), 
and 1,169 genes per cell (median = 900) (Figure 1E). 

 
Cell-class Composition of Nine Adult Brain 
Regions 
We first separately analyzed data for each of the nine 
brain regions, analyzing each region in two stages (here 
termed “global clustering” and “subclustering”). The first 
round of analysis, which is relatively straightforward 
(Methods), grouped cells into 8-11 broad classes that 
were then easily identified by known marker genes; 
these broad classes included neurons, astrocytes, 
microglia/macrophages, oligodendrocytes, polydendrocytes  
 

(oligodendrocyte progenitor cells), and components of the 
vasculature – the endothelial stalk, endothelial tip, and 
mural cells (Abbott et al., 2006; Wälchli et al., 2015a). For 
example, the hippocampus yielded cells from all 11 cell 
classes (Figure 2A-C), including three local cell classes, 
of which two are native to the ventricle – the choroid 
plexus and ependymal cells, which had been sampled 
from ventricular tissue proximal to the hippocampal 
dissections, and an additional cell class undergoing adult 
neurogenesis (Habib et al., 2016; Hochgerner et al., 
2018; Ming and Song, 2011). Assignment of cells to these 
broad classes was robust to analysis parameters (Figure 
S2).  

Distinct brain regions yielded the major cell classes in 
different proportions. (Figure 2D). The proportion of 
neurons varied inversely with those of 
oligodendrocytes, endothelial stalk cells, and mural cells 
(Figure 2D); a natural explanation for this is the regional 
variation in the abundance of grey matter, with 
oligodendrocytes (as expected), endothelial stalk cells, 
and mural cells being more abundant in white matter 
than in grey matter. Endothelial tip cells comprised a 
similar proportion of all cells in each region, consistent 
with similar degrees of vascular sprouting throughout 
the brain. Polydendrocyte and astrocyte abundance 
appeared to vary independently of other cell classes, 
exhibiting enrichment in the GPe as expected based on 
earlier findings (Cui et al., 2016; Lange et al., 1976). 
Small fractions of choroid plexus and ependymal cells 
were sampled from ventricle-adjacent regions, while 
sparse neurogenic populations were observed in regions 
adjacent to the subventricular and subgranular zones 
(frontal cortex, striatum, and hippocampus) (Ming and 
Song, 2011). 

 
Inference of Cell Types and States Using 
Independent Components Analysis    
The systematic recognition of more-subtle (yet 
consistent) patterns of variation among cells of the same 
class presents formidable analytical challenges – 
particularly when these distinctions are to be made in 
systematic, inductive (unsupervised), data-driven ways 
(Mayer et al., 2015; Satija et al., 2015; Shekhar et al., 
2016; Tanay and Regev, 2017; Tasic et al., 2016b). The 
size and diversity of the data sets for these nine brain 
regions, and the generation of many biological replicates 
for each region, made apparent many limitations in 
diverse analysis methods. We initially found clusters 
that were specific to experimental replicates or that 
were defined by transcriptional signatures that we 
recognized as artifacts of tissue digestion (see below). 
We sought an analysis strategy that would make it 
possible to (i) dissect biological from technical  
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Figure 2. Comprehensive identification of brain cell classes  
(A) T-distributed stochastic neighbor embedding (tSNE) plot of gene expression relationships amongst the n=113,171 cell hippocampus 
dataset based on the first round of ICA-based clustering. The resulting “global” clusters (colored independently and numbered 1-19) 
are each associated with major cell classes of the brain. Right, global clusters color-coded by cell class.  
(B) Violin plots showing example gene markers that distinguish across and within brain cell classes (log10). Genes are color-coded by 
cell class. Global clusters are ordered by cell class.  
(C) Cartoons of the major cell classes of the brain. Numbers below indicate the corresponding global clusters from hippocampus.  
(D) Dot plots displaying the proportional representation of individual cell classes across regions. 
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contributions to the expression data, so that technical 
contributions could be excluded from subclustering 
analysis; and (ii) generate transparent and meaningful 
intermediate data sets (downstream of input expression 
data, and upstream of clustering outcomes) that could be 
critically evaluated – and, ideally, be meaningful objects 
of analysis in their own right. 

We therefore developed an analysis strategy based 
on independent components analysis (ICA)(Figure 
3A,B). ICA reduces large datasets to a smaller number of 
dimensions in which entities (here cells) have score 
distributions that are maximally structured – as 
measured by deviation from a normal distribution 
(generally due to a spikey or clustered distribution of the 
cells in that dimension) – and statistically independent 
(Hyvärinen, 1999). Each of the inferred independent 
components (ICs) is a weighted combination of many 
genes (the weight of each gene’s contribution to an IC is 
the gene “loading”). Each cell’s gene-expression profile is 
reduced to a weighted sum of these ICs, with each IC 
having a score for each cell that reflects the expression 
of that combination of genes in that cell. 

We found that many individual ICs corresponded to 
easily recognized biological phenomena (Figure 3C-
F)(Adamson et al., 2016). For example, among cells from 
frontal cortex cluster 6 (glutamatergic neurons from 
layer 2/3 and 5a), we identified ICs whose strongly 
loading genes were readily recognized as known 
markers for specific cell types, cell states or spatial 
gradients across anatomical axes (Figure 3F). Other ICs 
exhibited cell-loading distributions that immediately 
suggested technical effects, such as ICs that 
distinguished 1) cells (of all classes) from different 
replicate preparations from the same brain region; 2) 
single-cell RNA libraries of different sizes; 3) 
experimentally-identified effects of tissue preparation 
(Figure S3C-E); or 4) cell-cell “doublets” (Figure 3C-E). 
(By contrast, in principal components analysis (PCA), 
which optimizes components to maximize variance 
without regard to statistical independence or data 
distribution, distinct biological signals are typically 
distributed across many components and mixed with 
technical sources of noise (Figure S3A); PCs still carry 
maximal information forward to downstream clustering 
algorithms while reducing data dimensionality, but are 
not intended to parse statistically distinct signals into 
separate components). We found that the 
interpretability of individual ICs allowed us to 
distinguish ICs corresponding to presumed endogenous 
signals (which we call here “biological ICs”) from ICs 
related to technical signals described above. Moreover, 
by removing contributions from artifact ICs, we reduced 
spurious noise (Figure 3G). 

We analyzed the data from each class and brain 

region (109 analyses total, Table S9) using a semi-
supervised ICA, in which we excluded 1,157 ICs as 
recognizably technical in origin in that they 
corresponded doublets of cells from different classes 
(n=759), individual outlier cells (n=99), or replicate-
specific or tissue preparation artifacts (n= 299) (Table 
S11). We classified the remaining 601 ICs as “biological 
ICs”, though it remains possible that additional technical 
influences on the data were not recognized during 
curation. We then clustered the cells for each of the 109 
brain-region-specific, cell-class-specific analyses based 
on their combination of loadings for the “biological ICs” 
in the respective analysis.   

To group cells into subclusters, we used network-
based clustering (Waltman and van Eck, 2013), which 
has been utilized in earlier studies (Shekhar et al., 2016). 
For each subcluster analysis, we used only the putative 
“biological ICs” as dimensions for graph construction. To 
create a transparent relationship between biological ICs 
and subclusters, we utilized clustering-resolution 
parameters that maximized one-to-one relationships 
between subcluster assignments and underlying ICs 
(Figure 3H and Figures S3E,F). The 109 separate 
subclustering analyses of the cell classes from each of the 
nine regions identified 565 total subclusters (Figure 4A 
and Table S10). Of these subclusters, 323 were neuronal 
and were derived from 368 biological ICs (Figure S4). 
Hierarchical clustering of the expression profiles for 
subclusters (aggregated across their constituent cells) 
demonstrated that clustering is driven primarily by cell 
class and not by brain region (Figure 4B). 
 
Characteristics of the Cells of the Blood-Brain 
Barrier 
Non-neuronal cells, including glia and endothelial cells, 
exhibited broadly consistent expression signals across 
brain regions. To better appreciate diversity among non-
neuronal classes, we grouped single-cell libraries from 
each region by cell class and performed semi-supervised 
ICA on each of the seven datasets independently, 
identifying a total of 53 biological ICs (Figure 5A and 
Figure S5A-F). We focus here on cell classes that form 
the blood-brain barrier – mural, endothelial tip and 
endothelial stalk cells – because they are disease-
relevant (Sweeney et al., 2016) and remain incompletely 
characterized (Figure 5B).   

Mural cells are morphologically diverse cells 
embedded within the basement membrane of the 
endothelium. Mural cells control vascular development, 
stability, and homeostasis, and exhibit pathology in 
many disease states (Sweeney et al., 2016; Trost et al., 
2016). We identified 7 mural cell subclusters from 7 
biological ICs (n=4,713 cells, Figure 5C and Figure 
S5E). Mural cells are known to have two subtypes: 
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Figure 3 continued… 
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Figure 3. Independent component analysis identifies 
transcriptional programs allowing transparent description of 
within-cell class molecular diversity. 
(A) Workflow for semi-supervised two-stage ICA-based signal 
extraction and clustering. In the first stage (“global clustering”, red 
arrows), the full digital gene expression (DGE) is clustered into 
“global” clusters using a reduced space generated by ICA 
(Methods). These “global” clusters represent cell classes. The 
process is then repeated independently for each of the global 
clusters with >200 cells (“subclustering”, blue arrows), except that 
the resulting Independent Components (ICs) are manually 
curated into two categories: “technical” components representing 
signals associated with the 1) replicate (batch effects); 2) libraries 
containing two cells (“cell-cell doublets”) or single-cells with 
unique transcriptional signatures (“outliers”) or 3) the preparation 
process for acute tissue. “Biological” signals originate from cell 
types, cell states, or from spatial anatomical relationships. Only 
“Biological” ICs are used as input to subclustering. Subclustering 
is performed over a range of neighborhood sizes and resolutions, 
generating a portfolio of potential solutions. The single solution 
with the clearest correspondence between Biological IC cell 
loading and subclusters is selected (Figure S3). 
(B) Color-coded tSNE plots for frontal cortex global clustering (left) 
and two representative subclusterings, GABAergic interneurons 
(middle, cluster 1) and glutamatergic layer 2/3 and some layer 5 
neurons (right, cluster 6). 

(C-E) Examples of “technical” ICs from frontal cortex.  
(C) Example of an independent component (IC 38, cluster 6) representing a replicate-based signal. Left, plot of cell-loading scores 
(y-axis). On the x-axis, cells are ordered by library size (largest to smallest) within each sequencing pool (color-coded). Sequencing 
pools from the same mouse are grouped with black and gray bars above. Middle, cell-loading scores plotted on the subcluster 6 tSNE 
(tSNE constructed from all ICs). Higher loadings are shown in darker red. Right, gene-loading plot. The n=10 genes with the highest 
scores are shown at right.  
(D) Example of a component (IC 15, cluster 6) representing a “doublet” signal. Plots and layout are similar to C. IC 15 loads  heavily 
on a small number of cells across mice and sequencing pools. The top loading genes are markers of the polydendrocyte cell class, 
suggesting a signal that represents a “doublet” transcriptome consisting of layer 2/3 neurons and polydendrocytes. Inset shows area 
of the tSNE plot with high IC 15 loading.  
(E) Experimental identification of protease digest-related technical ICs. Top, frontal cortex tissue was under- (1 hr) or over- (3 hr) 
digested before making single-cell suspensions and Drop-seq libraries. The datasets were co-analyzed. Subcluster IC loadings that 
correlate with digest time were identified (Figure S3C-E). Example digest-related ICs (IC 15, cluster 2, Syt6+ deep-layer 
glutamatergic) and (IC 68, cluster 1, Nptxr+ upper-layer glutamatergic) show contributions from similar genes. Genes related to ATP 
synthesis and Calmodulins (eg., Cox6a1, Ndufa4, Calm2) load on the under-digested cells, while another set of genes including the 
nuclear-enriched Meg3 and Malat1 load highly onto the over-digested condition. Bottom, similar digest-related ICs were commonly 
observed in atlas subclustering analyses, suggesting heterogeneity in cellular transcriptional response to identical preparation 
conditions. Two examples of digest-related ICs from frontal cortex cluster 6 (20 and 23). Left, cell-loading plots and insets highlight 
the correlation of IC loading to library size. IC 20 tends to load on smallest libraries, while IC 23 loads on the largest. Middle, cell-
loadings for IC 20 and 23 demonstrate that digest-related signals contribute to local relationships within the subcluster 6 tSNE. Right, 
gene-loading plots for the 10 top and bottom loading genes indicate a similar signal to that identified in over and under-digested 
experiments.  
(F) Examples of heterogeneous “Biological” ICs from frontal cortex cluster 6, representing a cell state (top, IC 16), cell type (middle, 
IC 22), and spatial anatomical signal (bottom, IC 29). For each example, a cell-loading tSNE plot, gene loading plot, and in situ 
hybridization experiment for a top-loading gene are shown from left to right. IC 16 corresponds to the immediate early gene (IEG) 
signal. The IC 22 signal originates from layer 5a glutamatergic neurons, exemplified by the spatially restricted expression of top-
loading Deptor. IC 29 represents a spatial signal. Top-loading genes such as Lypd1 exhibit an expression gradient from medial 
(highest) to lateral (lowest). ISH data from the Allen Institute Mouse Atlas.  
(G) Removing technical ICs prevents spurious transcriptional similarities. Example tSNE cell-loading plot for cluster 6 digest-related 
IC 23 before and after IC curation. Before curation, cells with high loading of digest-related IC 23 (E, bottom left) are locally grouped. 
After curation, technical ICs (including IC 23) are removed, creating a different tSNE plot and preventing the digest-related effects 
from contributing to clustering.   
(H) Correspondence between heterogeneous transcriptional signals (Biological ICs) and subclusters identified by modularity-based 
clustering (Methods). tSNE cell loading plots for each of the n=16 Biological ICs from frontal cortex cluster 6. Top right, the resulting 
plot in which the n=5 subclusters are identified. The portfolio of alternative subcluster solutions is shown in Figure S3G. 
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pericytes, which associate with small-diameter capillaries 
and are enriched for Rgs5 expression, and smooth muscle 
alpha actin (SMA) cells, which associate with larger-bore 
arterioles and express Acta2 (Bondjers, 2006; He et al., 
2016; Hughes and Chan-Ling, 2004; Nehls and 
Drenckhahn, 1991). One independent component (IC 19) 
appeared to correspond to this distinction by having Rgs5 
and Acta2 as the most strongly weighted genes (Figure 
5C). Notably, the data suggested that the pericyte-SMA 
distinction may be continuous rather than categorical, as 
the expression levels of Rgs5 and Acta2 were graded and 
the cell scores for this IC were continuously rather than 
bimodally distributed across these cells(Figure 5C)(Trost 
et al., 2013). (For those downstream analyses that require 
comparisons of discrete cell populations, we discretized 
this signal into three subclusters (2,4,6), but “clusters” 
cannot be reflexively equated with “discrete cell types”.) 
Interestingly, the expression of Rgs5 and Acta2 was not 
always inversely correlated: a subpopulation of mural 
cells (cluster 1) expressed both Rgs5 and Acta2, and also 
uniquely expressed genes such as Aldh1a1 (Figure S5E). 
A population of Rgs5+ mural cells (cluster 3) appeared to 
potentially have a specialized function, as they expressed 
genes for a potassium channel potently activated by 
intracellular diphosphate levels (Kcnj8 and Abcc9) and an 
ADP-ribosyltransferase (Art3) – indicating they have 
signaling machinery that couples dinucleotide 
metabolites to membrane potential and post-
translational modification.  

Dynamic remodeling of the vasculature occurs in the 
postnatal brain, yet the cellular and molecular 
mechanisms are poorly understood (Wälchli et al., 
2015b). One striking morphological example is sprouting 
angiogenesis, during which endothelial stalk cells 
transform into endothelial tip cells, which then 
dynamically grow and fuse to build new vascular 
networks (Wälchli et al., 2015a). We found 7 subclusters 
each of endothelial stalk (n=16,248) and tip (n=1,587) 
cells (Figure 5D,E). Among the tip cells, two clusters (4 
and 5) were notable for their expression of genes 
encoding a variety of membrane transporters (e.g., 
Slc38a2, Slc4a10, Slc26a2, and Slc47a1) and pumps (e.g., 

Fxyd5 and Atp1b1) (Figure 5D). To varying extents, 
clusters 1, 2, and 3 expressed genes involved with 
extracellular matrix (ECM) secretion, angiogenesis, and 
contraction (Figure S5F), such as the basement 
membrane collagen genes (Col4a1, Col4a2, and Col15a1) 
(Figure 5D). Interestingly, cluster 3 expressed a distinct 
set of collagen genes (Col1a1 and Col3a1) (Figure S5F). 
These examples suggest that subsets of tip cells are 
transcriptionally specialized to affect membrane 
transport and ECM production; ECM secretion may 
involve coordinated expression of distinct sets of collagen 
genes.  

Among endothelial stalk cells (Figure 5E), one 
subpopulation expressed genes related to host immunity; 
these included genes encoding interferons (Ifit3, Ifit1, 
Ifit2, and Ifitm3), GTPases induced by interferons (Ligp1, 
Irmg2, and Gbp7), and other proteins involved in the anti-
viral response (Isg15 and Rsad2). Cluster 4 had the 
highest levels of expression of these genes, including 
Isg15 and Ifitm3. A distinct subpopulation (cluster 6) 
expressed genes related to growth-factor dependent 
vascular remodeling (Mgp, Fbln5, Cytl1, Eln, Igfbp4, and 
Clu) (Boström et al., 2004; Contois et al., 2012; Fitch et al., 
2004; Fu et al., 2013; Guadall et al., 2011; Karnik et al.), 
suggesting that they may be specialized to coordinate a 
component of angiogenesis. This phenotype appeared to 
continuous rather than categorical in distribution across 
cells: While Cytl1 was expressed exclusively in cluster 6, 
other genes, such as Mgp, were expressed at lower levels 
in other endothelial stalk cells (Figure 5E). These 
examples define transcriptional specializations in stalk 
cells related to host defense and remodeling of the adult 
vasculature. Other groups might reflect cell states 
specialized for iron handling, calcium signaling, and the 
stress response (Figure S5G). 

Functional specializations within endothelial, glial, 
and other non-neuronal cell classes could be a ubiquitous 
feature of the adult mouse brain, or could be enriched in 
particular brain regions. We compared the abundance of 
endothelial stalk and tip cells from each brain region 
within each of the clusters (Figure 5H) (results for 
astrocytes, oligodendrocytes, polydendrocytes, 

Figure 4. Transcriptional diversity by 
region and cell class  
(A) Number of subclusters by region. 
(B) Transcriptional correlations across atlas 
subclusters are largely explained by cell 
class and not region of origin. Hierarchical 
clustering diagram showing pairwise 
Pearson correlation scores calculated 
pairwise between average atlas subclusters. 
The analysis was restricted to genes with 
significantly variable expression (Methods). 
Color-coded bars at the top of the plot 
display the ordered region/cell class 
assignments for the subcluster.  
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microglia/macrophages and mural cells are in Figure 
S5H). While stalk cell subpopulations appeared in similar 
relative abundance across regions, tip cell subpopulations 
exhibited different contributions from cortical and 
subcortical areas: for example, the cortex and 

hippocampus contributed disproportionately to the stalk 
cell population that more strongly expressed genes with 
membrane-transport functions (cluster 6), while collagen-
expressing cell populations (clusters 2 and 3) came largely 
from the basal ganglia and thalamus (Figure 5H). 

 
  

 (C-E) Subcluster 
assignments and examples of 
two biological ICs for each 
vasculature cell class. 
Subclusters (color-coded), IC 
cell-loadings, and gene 
expression values displayed 
on tSNE plots. Left, subcluster 
assignments. Middle, IC cell- 
and gene-loadings. For each 
IC, the top ten loading genes 
are listed. Right, expression 
plots for individual genes. For 
Mural Cell IC 19, the bottom 
loading gene Acta2 is shown 
in purple.  
(F) Dot plots illustrating 
fractional representation of 
cells from each region 
contributing to each particular 
endothelial tip and stalk 
subcluster. Similar plots for 
other non-neuronal cell 
classes are shown Figure 
S5H. 
 

Figure 5. Comprehensive description of 
transcriptional diversity within non-neurons as 
illustrated by cell classes of the vasculature.  
(A) Table showing the number of biological ICs curated 
for each non-neuronal cell class. A description of non-
neuronal ICs is provided in Figure S5.  
(B) Cartoon of vasculature cell classes.  
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A Neuronal Transcriptional Program Related to 
Axon Function 
Cell states involve constellations of genes that are 
transiently co-expressed to enact cellular functions.  

In neurons, the most well-studied cell state, involving 
the expression of the immediate early genes (IEGs), is 
activated by Ca2+ influx after neuronal action potential 
firing (Bading, 2013; Hrvatin et al., 2017). IEGs (such as 
Fos and Junb) encode transcription factors that 
orchestrate a cellular response to neuronal activity. IEG 
expression in response to action potential firing is 
known to be largely uniform across neuronal 
types(Hrvatin et al., 2017) and brain regions and 
exhibits little background expression, making it 
straightforward to detect in the Drop-seq data. Though 
IEG induction has been reported as an artifact of cell 
dissociation(Hrvatin et al., 2017; Wu et al., 2017), we had 
sought to avoid promiscuous expression by digesting 
tissue in a buffer which lacked Ca2+ and inactivated 
channels necessary for action potential firing 
(Methods). Among the cells in this analysis, elevated 
expression of IEGs was observed in only a small fraction 
of the neurons of each type. For example, in FC layer 2/3 
and 5a (cluster 6, Figure 3) or HP CA3 (cluster 6, Figure 
S4C) – regions prone to epileptiform activity due to 
recurrent, excitatory connections – IEG+ neurons 
comprised less than 1.0% of the total population.  

Neurons could in principle have other common 
transcriptional dynamics or cell states. To identify such 
patterns, we looked for broad transcriptional patterns 
that, despite being ascertained in many different brain 
regions or neuronal classes, involve similar 
combinations of genes. More specifically, we calculated 
pairwise IC-IC correlations of gene loadings for 368 
biological ICs ascertained from neuronal cell classes 
(Figure 6A). One block of 15 highly inter-correlated ICs 
clearly represented the IEG signal in different regions (a 
positive control). Two additional correlation blocks 
were prominent. One of these arose entirely from 
thalamic neurons (of diverse types), suggesting a tissue-
specific transcriptional program (that we did not further 
analyze). We focused on the other correlation block, 
which consisted of ICs from many brain regions and 
neuronal types. 

This broad transcriptional pattern – present in 
almost all of the brain regions and many neuronal types 
– involved a large constellation of genes that underlie 
axonal and pre-synaptic function. We call this signal the 
“Neurofilament IC,” because three of most strongly 
contributing genes encode the neurofilament subunits of 
the axonal cytoskeleton (Nefl, Nefm, and Nefh) (Yuan et 
al., 2012). Other strongly co-regulated genes in this 
module included included Syt2, Vamp1, and Cplx1 – 
which have roles in vesicle exocytosis – and Pvalb and 

Caln1, which bind presynaptic Ca2+ (Figure S6A). Thus, 
the genes nominated by this transcriptional pattern are 
functionally related in the maintenance of axonal 
function and the support or tuning of neurotransmitter 
release. 

Neurofilament ICs were observed in all sampled 
brain regions and in multiple neuronal classes, including 
GABAergic, glutamatergic, and neuromodulatory 
neurons. The expression levels of genes with strongest 
Neurofilament IC contributions tended to covary 
strongly both within and across neuronal types. Among 
interneurons, the Neurofilament IC cell loading was 
most prominent in Pvalb+ interneurons, which tend to 
have higher firing rates than other interneurons (Hu et 
al., 2014). For example, in frontal cortex Sst+/Pvalb+ 
interneuron cluster 2, this constellation of genes 
exhibited continuously varying expression across Pvalb+ 
cells, suggesting that it contributes to variation among 
cells of the same subtype (Figure 6B-D). Among Pvalb+ 
interneurons, expression levels of the genes most 
strongly contributing to the Neurofilament IC – including 
Nefh, Kcnc3, Syt2, and Nefm – were continuously 
distributed and  strongly correlated with one another; by 
contrast, expression levels of these genes were lower 
and less correlated among Sst+ interneurons (Figure 
6D). In the hippocampus, Pvalb+ interneurons exhibited 
high cell loading for the Neurofilament IC, as did the 
Pvalb+ “prototypical” neurons of the globus pallidus 
externus (Mallet et al., 2012; Saunders et al., 
2016)(Figure S6A). We also identified this axis of 
transcriptional variation among glutamatergic 
populations, for example the subplate neurons in the 
frontal cortex (Figure S6A).  

To determine whether these co-expression 
relationships are present in vivo, we performed three-
channel transcript counting using single-molecule 
fluorescent in situ hybridization (smFISH). The Drop-seq 
data predicted correlated expression of Pvalb, Syt2, and 
Nefm – but not Gabra4 (selected as a control gene) – 
among Pvalb+ neurons in the frontal cortex (Figure 6E). 
This prediction was strongly confirmed by smFISH: 
among Pvalb+ interneurons, Syt2 transcript densities 
correlated with transcript densities for Pvalb and Nefm 
(Figure 6F) but not the control gene Gabra4 (Figure 
6G). We did not observe any obvious spatial 
organization of Syt2/Nefm expression among Pvalb+ 
cells. To confirm that the Neurofilament signal did not 
arise from a cell-preparation artifact (such as 
transcriptional responses to axotomization during cell 
dissociation), we performed Drop-seq analysis of 28,194 
single nuclei isolated from flash-frozen mouse frontal 
cortex; Neurofilament IC cell loading was still strongly 
visible among the nuclei of the Pvalb+ interneurons 
(Figure 6H).  
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Figure 6. A prevalent expression state in neurons related to axon structure and presynaptic function 
(A) Identification of a novel transcriptional state in neurons using biological ICs. ICs encoding transcriptional states utilized by different 
types of neurons can be identified by high correlations in expressed genes (gene-loadings). Hierarchical clustering diagram displaying 
pairwise Pearson correlations of gene-loading scores for all biological ICs curated from neuronal subclustering (n=45 subclustering 
analyses, n=323 total subclusters). Right, enlargement of the boxed region. IC gene-loading correlation blocks identify the immediate early 
gene (“IEG”) transcriptional state, with IC contributions from different regions. Another correlation block (“TH”) identifies a thalamus-specific 
collection of ICs. A third correlation block (“Neurofilament”) has IC contributions from different regions and top-loading genes containing 
neurofilament subunits and other proteins involved in Ca2+ handling, vesicle exocytosis, and membrane excitability. ICs were color-coded 
for states by assessing the presence of state-marker genes in top loading genes.  
(B) The Neurofilament transcriptional signal (IC 17) in frontal cortex Sst+/Pvalb+ interneurons (Cluster 2). Left, IC 17 cell-loadings displayed 
on subcluster tSNE plot. Right, gene-loading plot, with the top 20 loading genes shown at right. Syt2, Nefm, and Pvalb are color-coded to 
match ISH experiments below.  
(C) Color-coded subcluster identities for frontal cortex cluster 2. N=10 subclusters were based on n=9 biological ICs. The graded loading 
of IC 17 is discretized into subclusters 2-8, 2-7, and 2-9.  
(D) Expression plots for single genes. Left, n=4 top loading genes for IC 17 exhibit gradients of expression in Pvalb+ but not Sst+ 
interneurons (middle). Right, Gabra4 – a control gene that does not load onto IC 17 – does not exhibit expression gradients across Pvalb+ 
subclusters.  
   Figure 6 continued… 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299081doi: bioRxiv preprint 

https://doi.org/10.1101/299081
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Saunders et al.  A Single-Cell Atlas of the Mouse Brain 
 

12 

We conclude that many neuronal types share a 
coordinated transcriptional program involving genes 
whose functions are to facilitate maintenance, 
expansion, or subcellular transport to the axon and 
presynaptic terminal. Neuronal types characterized by 
extensive axonal arbors, long-distance axonal 
projections, and/or faster firing rates tended to utilize 
this transcriptional program more than other neurons. 
At the same time, the magnitude of expression of this 
program varied among neurons of the same subtype, 
suggesting that this program contributes to both intra- 
and inter-type diversity.  
 
Gene-gene Co-expression Relationships Inferred 
from Hundreds of Cell types and States 
Cells have diverse gene expression patterns – yet 
functional imperatives and regulatory architecture may 
greatly constrain genes’ patterns of co-expression. Gene 
expression data for the 565 cell populations (identified 
by the above subclustering analysis) make it possible to 
analyze genes’ co-expression relationships across many 
cell types, cell states and other functional contexts. We 
performed such analyses at the level of the 565 
transcriptionally distinct cell populations (rather than 
690,207 individual cells), a level of organization at which 
the data sample functional diversity yet are less 
influenced by single-cell noise and statistical sampling. 
(The 565 subclusters contained on average 565 cells, 
with expression patterns defined by an average of 1.9 
million UMIs.) (Figure S7A). 

To assess whether gene-gene correlations across the 
565 cell populations could capture known functional 
relationships, we first focused on genes encoding 
subunits of the nicotinic acetylcholine receptors 
(nAChRs, n=16 genes). nAChRs are ligand-gated, 
pentameric ion channels which we chose as a test system 
because the channels observed in vivo consist of eclectic 
but well-described subunit combinations that vary by 
brain region and neuron type (Gotti et al., 2006). We 
hypothesized that the observed combinations are at 
least partially achieved through cell-type-specific 
patterns of RNA expression (in addition to selective 
protein association). 

Across the 565 cell populations, expression levels of 
nAChR genes exhibited two prominent correlation 
blocks, each containing genes that encode subunits of 
known heteromeric α/β channels (Zoli et al., 
2015)(Figure 7A). For example, the expression of 
Chrna3 and Chrnb4 (known to form a functional 
heteromeric receptor) were positively correlated across 
a large range of average transcript abundance (from 0.01 
to 100 transcripts per 100K total transcripts) (Figure 
7B). The expression of other pairs of genes that encode 
subunits of known heteromeric receptors 
(Chrna6/Chrnb3 and Chrna4/Chrnb2) were also well-
correlated with each other, whereas Chrnb1 and Chrnb2 
were if anything negatively correlated, consistent with a 
lack of β1/β2 channels described in the brain (Figure 
7B). These selective correlations match prominent 
subunit combinations inferred at the protein level in 
vivo, suggesting that nAChR composition is achieved at 
least in part by cell-type-specific patterns of RNA 
expression.  

Some nAChR subunits form homomeric functional 
channels; the absence of obligate partners for such 
subunits could in principle cause them to lack positive 
pairwise correlations with other subunit genes. We 
observed several α-subunit genes with this property, 
including those known (Chrna7, Chrna9, and Chrna10) 
and others not yet known (Chrna1 and Chrna2) to form 
homomeric channels in the brain (Gotti et al., 2006). In 
summary, gene expression correlations across cell types 
recapitulate known nAChR receptor subunit 
combinations (Gotti et al., 2006) and do so more 
accurately than correlations based on the bulk 
expression profiles for the nine regions (Figure S7B).  

We then sought to explore the expression-correlation 
structure for other vital gene families whose co-function 
relationships are less well understood. An elegant body 
of experimental and theoretical work suggests that 
individual neurons can attain their type-specific 
electrophysiological properties by expressing unique 
combinations of voltage-gated ion channels (Marder and 
Goaillard, 2006). It is not known, however, if neurons 
can utilize any combination of ion channel genes, or face 
constraints (functional or regulatory) that limit which 

(E) Quantitative comparison of Neurofilament (Syt2, Pvalb, and Nefm) and control gene (Gabra4) single-cell transcript counts across 
Pvalb+ subclusters from Drop-seq. Transcript means were compared with a two-way Anova followed by a Tukey Honest Significance 
Difference Test to calculate a p-value for differences across means. Asterisk, P < 0.05; n.s P > 0.05.  
(F-G) Neurofilament gene and control gene in situ transcript count experiments within Pvalb+ frontal cortex cells using smFISH. Left, 
example single planes from confocal stacks. Right, quantification of transcript densities. Pvalb+ cells were split into n=3 groups based 
on Syt2 levels (low, medium, and high) mimicking subclusters 2-9, 2-7, and 2-8 from the atlas. Transcript densities were compared with 
a two-way Anova followed by a Tukey Honest Significance Difference Test to calculate a p-value for differences across means. Asterisk, 
P < 0.05; n.s P > 0.05. Longer arrows indicate cells with higher Pvalb expression.  
(F) Experiment 1, Pvalb, Syt2, and Nefm. 
(G) Experiment 2, Pvalb, Syt2, and Gabra4 (control).  
(H) The Neurofilament IC is observed in flash-frozen nuclei from frontal cortex. The Neurofilament (IC 25) cell-loading signal distribution 
across the Sst+/Pvalb+ interneuron subcluster. Left, cell-loadings displayed on subcluster tSNE plot. Right, gene-loading plots. The top 
20 loading genes are shown at right. 
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Figure 7. Inferring ion channel gene-gene co-expression relationships by comparing hundreds of brain cell types and states 
(A-B) Nicotinic acetylcholine receptor (nAChR) subunit composition can be inferred from gene expression correlations found in 565 
transcriptionally distinct atlas cell populations. Pearson correlations calculated from linear expression data.  
(A) Hierarchical clustering of pairwise correlations of n=16 nAChR subunit genes. Subunit families are color-coded.  
(B) Scatterplot comparisons of subunit expression levels. Expression levels are scaled to 100K UMIs and shown on a log10 scale. α and 
β subunit genes are color-coded. Note, Chrna3/Chrnb4/Chrna5 are adjacently located on chromosome 9; Chrna4/ Chrnb2 genes are on 
chromosome 2 and 3, respectively.  
(C-E) Correlation structure amongst voltage-gated (VG) Na and K channels measured from n=323 neuronal populations. 
  Figure 7 continued… 
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channel subunits are expressed in the same cell types. 
We therefore evaluated the correlations among the 
expression patterns of 71 voltage-gated potassium 
(VGK) and sodium (VGNA) channel genes across 323 
neuronal populations, focusing on the genes that encode 
the alpha (pore-forming) subunits. This analysis 
identified prominent blocks of positive and negative 
correlation, with each such block including 
combinations of VGK and VGNA genes (Figure 7D).   

To evaluate whether these gene expression–
correlation blocks relate to cells’ electrophysiological 
properties, we identified fast-firing cell types among the 
323 neuron populations (Figure S7D). Among two 
prominent sets of co-expressed genes (which were 
negatively correlated to each other), the larger set 
contained genes that enable fast and persistent action 
potential firing rates, including the Kcnc1-3 (Kv3.1), 
Kcna1 (Kv1.1) and Scn8a (Nav1.6) channels (Chen et al., 
2008; Goldberg et al., 2008; Rudy and McBain, 2001) 
(Figure 7D). Fast-firing cell types expressed high levels 
of the VGK channel genes Kcnc2 and Kcnc1 and the VGNA 
channel genes Scn1a and Scn8a (the only two VGNA 
channels in the block). Fast-firing cells expressed 
variable levels of Kcnc4 (the fourth Kv3 family member) 
and consistently low levels of Scn2a1, whose expression 
was inversely correlated with Kcnc1-3 and Scn1a 
(Figure 7D). These relationships may nominate 
functional hypotheses about channels whose 
contributions to cells’ physiological properties are only 
partly understood. For example, Kcnc4 could be a Kv3 
family member that helps tailor membrane properties 
orthogonal to firing frequency, and Scn2a1 might 
undermine fast-firing. Interestingly, many of the genes 
whose expression was correlated with fast-firing 
properties are transcriptionally activated during 
postnatal maturation of fast-spiking interneurons 
(Okaty et al., 2009). 

Finally, we asked what other genes were consistently 
co-expressed with the alpha subunit channel genes that 
themselves exhibited high expression in fast-firing 
neurons (Figure S7D). This collection contained 
expected genes (like those found in the Neurofilament 
signal, Figure 6), plausible ion channels (such as Hcn2), 
and unexpected genes, such as the transcription factor 
Foxj1 and the creatine transporter Slc6a8. Indeed, 
expression levels of Slc6a8 and Hcn2 were strongly 
correlated and high in fast-firing cell types (Figure 7F). 
Humans with dominant-negative mutations in Slc6a8 

often present with epilepsy, intellectual disability, and 
motor symptoms (van de Kamp et al., 2013), but the 
cellular mechanisms remain largely unknown. Our data 
suggest that Slc6a8 plays an enhanced role in fast-
spiking cells – which would include Pvalb+ basket cells, 
the resident fast-firing inhibitory neurons in cortical 
areas known to seed seizures. Indeed, male mice with 
mutations in (x-linked) Slc6a8 have fewer GABAergic 
synapses (Baroncelli et al., 2017). These data highlight 
how analyses of gene co-expression across a large 
number of cell types can nominate new hypotheses 
about genes, brain circuitry, and disease.  
 
Cell-type Specialization Between Cortical Poles 
The cerebral cortex processes motor, sensory, and 
associative information and is expanded in primates, 
especially humans (Buckner and Krienen, 2013). While 
extrinsic inputs are specific to different cortical areas, 
little is known about what intrinsic molecular 
specializations could contribute to region-specific 
cortical function. We first determined how accurately 
our cortex datasets represents cellular populations in 
vivo and then systematically identified transcriptional 
specializations within each non-neuronal cell class and 
across the two major neuronal types (glutamatergic and 
GABAergic neurons). 

The process of single-cell dissociation followed by the 
capture, amplification, and sequencing of single-cell 
transcriptomes may distort the abundance of brain cell 
types. To test for distortions in our tissue preparation or 
analysis, we compared the abundances of molecularly-
defined cell populations in our frontal cortex dataset to 
intact tissue using immunohistochemistry and in situ 
hybridization (Figure S8D,E and Methods). We found 
that neurons were over-represented relative to non-
neurons in the Drop-seq dataset (Drop-seq: 0.76 ± 02 
mean ± sem; tissue: 0.51 ± 03). We believe this effect is 
partially explained by cell-inclusion thresholds used for 
analysis, in which some real single-cell libraries are not 
included due to their small size; neurons, which had over 
three-fold higher transcript counts than non-neurons, 
are relatively protected from this effect (neurons: 5,039 
± 15 mean ± sem; non-neurons: 1,696 ± 9, Figure S8F 
and Methods). Compared to GABAergic interneurons, 
glutamatergic neurons exhibited two-fold greater 
abundance than expected from tissue (ISH: 5.1:1; Drop-
seq: 11:1)(Sahara et al., 2012), an effect that again could 
be driven by larger libraries (glutamatergic: 5,298.916 ± 

(C) Hierarchical clustering of pairwise correlations calculated from expression data. The n=17 VGK channel alpha subunit families are 
color-coded and labeled with a common name if used. The n=1 VGNA channel alpha subunit family is shown in black. The correlation 
block encompassing channels known to control firing rate is shown with an arrow.  
(D-E) Scatterplot comparisons of subunit expression levels. Neuronal populations known to exhibit fast firing rates are shown in red 
(Figure S7D). Gene families are color-coded. Expression levels are scaled to 100K UMIs and shown on a log10 scale. Slc6a8 and Hcn2 
were amongst the genes most frequently correlated with the alpha subunit gene set that putatively encodes firing rate (Figure S7D). 
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16, mean ± sem; GABAergic: 2,626 ± 21) (Figure S8H). 
Comparing three major subtypes of GABAergic 
interneurons, we observed that Vip+ cells were over-
represented and Sst+ and Pvalb+ cells were 
underrepresented in the data (Vip+ ISH: 16%; Dropseq: 
35%; Pvalb+ ISH: 31%; Dropseq: 25%; Sst+ ISH: 28%; 
Dropseq, 22%). Since greater Vip+ interneuron 
abundance cannot be explained by higher transcript 
counts (Pvalb+: 2,996 ± 61; Sst+: 2,758 ± 53; Vip+: 2,236 ± 
32), these data may suggest that Pvalb/Sst interneurons 
were preferentially depleted during the preparation. 
This distortion could also contribute to the increased 
fraction of glutamatergic/GABAergic neurons that we 
observe. We conclude that our data exhibit modest, 
quantitative skews in cellular representation that are 
primarily driven by differences in transcript abundance 
and cell viability. 

To identify molecular specializations across cortical 
regions, we performed semi-supervised ICA on cells 
from the frontal and posterior cortex together, 
separately analyzing cells of the various cell classes: 
excitatory neurons, inhibitory neurons, astrocytes, 
oligodendrocytes/polydendrocytes, 
microglia/macrophages, and endothelial tip and stalk 
cells. To identify transcriptional signals that differed 

between regions, we first calculated a “region skew 
score” for each of the biological ICs (based on the 
tendency of high-scoring cells to come from one region 
or the other, relative to low-scoring cells) (Figure 8A, 
Methods). Glutamatergic excitatory neurons generated 
more such regionally specialized ICs than GABAergic 
interneurons and non-neuronal cell classes did. 
Consistent with this, we identified strong regional 
differences in cellular abundance (a normalized ratio of 
greater than 3:1, P < 0.05, Barnard’s Test, Bonferroni 
corrected) for seven subclusters of excitatory neurons 
and none of the other cell classes (Figure 8B,C and 
Figure S9A). To visualize the spatial distributions of the 
excitatory-neuron populations corresponding to these 
subclusters, we examined the ISH patterns of markers 
for each of these populations; the ISH patterns 
consistently confirmed asymmetric expression across 
the cortical mantle (Figure 8C and Figure S9B). To 
determine whether molecular differences, in addition to 
differences in cell-type representation, contributed to 
frontal versus posterior specialization, we performed 
differential expression analysis comparing cells (within 
the same subcluster) from the two cortical regions. 
These analyses revealed far more differentially 
expressed genes in comparisons of excitatory 

(B) Plot comparing the relative number of FC vs PC cells within each subcluster following clustering of the biological ICs for each cell 
class analysis. Circle size denotes the fractional representation. Subclusters with greater than 3:1 compositional skew are indicated with 
an asterisk and their label is shown (P < 0.05, Barnard’s test, Methods). Subclusters plots for each cell class are shown in Figure S9.  
(C) Subcluster analysis of glutamatergic excitatory neurons from FC and PC illustrating that excitatory neuron populations are 
transcriptionally specialized by cortical region. Top left, tSNE plot of excitatory neurons color-coded by region. Top right, expression tSNE 
plots for Sccpdh and Whrn, genes enriched in subclusters 21 and 5 that are disproportionately composed of FC or PC cells respectively. 
Bottom, ISH stain (Allen Institute Mouse Brain Atlas) for Sccpdh and Whrn, which exhibit skewed expression in the FC or PC, respectively. 
High expression, long arrow; Medium expression, short arrow.  
(D) Barplot summarizing the number of genes differentially expressed across FC and PC cells within each subcluster across all cell class 
experiments (> 2-fold change, P < .05, Bonferroni corrected).   

Figure 8. Cortical regions remain 
transcriptionally specialized via 
excitatory glutamatergic neurons  
(A) Beeswarm plot showing the relative 
contribution of frontal (FC) vs posterior 
(PC) cells to top-loading cells for each 
of the biological ICs in six separate cell-
class analyses (glutamatergic 
excitatory neurons, n=82,936 cells; 
GABAergic inhibitory neuron, n=7,783; 
astrocyte, n=7,782, 
oligodendrocytes/polydendrocytes, 
n=3,505; microglia/macrophage, 
n=1,027; and endothelial stalk/tip cells, 
n=3,578). For each analysis, 
equivalent cell classes from the frontal 
and posterior datasets were jointly 
reanalyzed. The normalized proportion 
of cells in FC and PC is plotted. The IC 
Skew score is 1 if only FC cells 
contribute and 0 if only PC cells 
contribute. Equal contribution is 0.5 
(dotted line).  
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populations than in comparisons of GABAergic 
interneurons or non-neuronal cell classes (Figure 8D). 
These data suggest that molecular specializations across 
cortical areas are largely driven by differences involving 
excitatory projection neurons. This result is consistent 
with independent single-cell analyses in mouse (Tasic et 
al., 2017) and with theories of cortical specialization in 
humans and other primates (Krienen et al., 2016). 
 
Resolving Neuron Types within the Basal Ganglia 
Neuronal types and subtypes in many brain regions are 
incompletely identified or characterized, limiting their 
study in neural circuits, behavior, and disease. Our data 
provide an opportunity to more systematically identify 
neuronal types in many regions. From the 9 regions, we 
identified 323 neuronal subclusters which arose from 
368 biological ICs (Figure S4).  

Here, we illustrate the identification of neuronal 
types by focusing on the basal ganglia, a collection of 
richly interconnected subcortical areas. While neuron 
types in the striatum have received most attention, 
decades of in vivo and in vitro electrophysiological 
recordings in other basal ganglia nuclei have 
documented extensive neuronal diversity – yet the 
anatomical complexity of these regions has made 
identifying neuron types challenging and laborious 
(Bolam et al., 2000; DeLong et al., 1984). We turned to 
the globus pallidus externus (GPe) and substantia nigra 
reticulata (SNr), two highly disease-relevant (Albin et al., 
1989) regions in which neuron types are not yet well 
classified (Figure 1 & Figure S1).  

Like many functionally specialized nuclei in the 
rodent brain, the GPe and SNr are anatomically small 
structures, with 103–105 total neurons (Oorschot, 1996), 
as compared to the 106–107 found in larger regions like 
the striatum, cortex, and hippocampus (Abusaad et al., 
1999; Schüz and Palm, 1989). This poses a challenge for 
Drop-seq, which samples only about 5% of the total cells 
in a cell suspension (Macosko et al., 2015). We addressed 
this issue by both optimizing dissociation (to maximize 
cell yield, Methods) and sampling larger volumes of 
tissue that encompassed multiple adjacent structures. 
(We note, however, that as the number of included 
regions goes up, so too does the chance for biases in 
neuronal representations (because of differences in 
library size and sensitivity to the digest), as well as the 
complexity and ambiguity of the post-hoc anatomical 
analysis.) The GPe and SNr were included in the GP/NB 
and SN/VTA analyses, respectively (Figure S1).  

To identify GPe neuron populations, we leveraged the 
Allen Institute’s digital ISH atlas to spatially map 
expression of markers of global clusters and subclusters 
to the GPe or surrounding regions from the GP/NB 
dataset (Figure 9, Figure S1). GPe neurons were 

present in cluster 2 (n=11,103 cells), one of three neuron 
clusters we identified. Cluster 1 corresponded to 
cholinergic neurons from the NB and GPe (n=437 cells) 
and cluster 3 to neurons of the adjacent striatum and 
basolateral amygdala (n=9,847 cells; Figure 9A). 

To determine which of the 25 subclusters within 
cluster 2 were intrinsic to the GPe or the adjacent ventral 
pallidum (VP), we identified markers from our data and 
evaluated their spatial expression using ISH. We found 8 
candidate subclusters intrinsic to the GPe and/or VP, of 
which 4 were exclusive to the GPe (Figure 9C-E). The 
other 17 subclusters mapped to surrounding regions, 
including the thalamic reticular nucleus (TRN), the 
substantia innominata (SI), and the lateral olfactory tract 
(LOT) (Figure S10).  

Modern approaches to classify GPe neurons rely on 
iterative mapping of anatomical, electrophysiological, 
and behavioral response properties onto single 
molecular markers (e.g., (Mallet et al., 2012; Saunders et 
al., 2016)); such data provide essential insights into 
neuronal diversity, but have trouble conclusively 
identifying distinct populations. To associate 
subclusters with putative GPe neuron types, we 
compared the expression of published GPe markers to 
pairs of markers that we identified for each subcluster 
(Figure 9D). Of markers described previously, only 
Pvalb and Penk/Foxp2 were selectively expressed in 
particular GPe subclusters (Kita, 1994; Voorn et al., 
1999). This correspondence suggests subcluster 2-14 
represents the fast-spiking “prototypical” population, 
while 2-19 represents the slow-firing “arkypallidal” 
population (Abdi et al., 2015; Mallet et al., 2012). 
Interestingly, 2-13 is transcriptionally similar to 2-14, 
sharing markers such as Grem1, but is distinguished by 
its stronger expression of genes like Scn4b and Kcnc3 
and those from the “Neurofilament program” (described 
above) (Figure S6A). Further experiments will be 
necessary to determine whether subclusters 2-14 and 2-
13 represent anatomically distinct subpopulations or 
transient states. The fourth GPe subcluster (2-17) is 
enriched for markers Elfn1/Grik3, but to our knowledge, 
has not been characterized. Other published markers 
(e.g., Nkx2.1, Npas1, and Lhx6) show mild, reciprocal 
enrichments across multiple subclusters, illustrating 
how markers can fail to capture the true population 
structure of neurons (Abdi et al., 2015; Hernandez et al., 
2015; Mastro et al., 2014).  

To our surprise, several subclusters (2-15, 2-21, and 
2-18) expressed markers found in both the VP and 
bordering GPe (Figure 9D,E). This border-spanning ISH 
pattern suggests that some neuron types may be found 
in regions with differing behavioral functions and 
connectivity (Gittis et al., 2014; Kita, 2007; Smith et al., 
2009). Conceptually, this may be analogous to distinct 
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regions of the cerebrum harboring similar interneurons 
(Harwell et al., 2015). These shared subclusters may 
explain a neuron type that is synaptically incorporated 
into the GPe, but exhibits VP-like axonal projections 
(Chen et al., 2015b; Saunders et al., 2015).  

To identify the neuron populations intrinsic to the 
SNr, we followed a similar procedure using the SN/VTA 
dataset (Figure 9F, Figure S1). Of the 4 global neuron 
clusters identified, one (cluster 3, n=10,049 cells) 
contained neurons of the SNr as well as the surrounding 
regions (Figure 9H). The other three clusters (clusters 
1, 2, and 4, respectively containing 73, 297, and 1,841 
cells) contained hippocampal, thalamic, and 
dopaminergic neurons, respectively.  

Of the 19 subclusters in cluster 3, we mapped 6 to the 
SNr (Figure 9G,H and Figure S10B). Two sets of 
subclusters shared highly selective markers (3-18/3-19: 
Sema3a, Adarb2; 3-17/3-13: Pax5, Pou6f2), suggesting 
they are closely related. Each pair is distinguished by 
genes whose expression might imply a state or subtype 
distinction, like ion channels (Kcnc3, Kcna1), 
transmembrane proteins (Tmem132c), and 
transcription factors (Pou3f1) (Figure 9I). Of the 
remaining 2 SNr subclusters, 3-12 expressed Slc17a6+, 
presumably corresponding to the glutamatergic 
projection from the SNr to the thalamus (Antal et al., 
2014). Subcluster 3-2 was Gad2+/Pvalb-, expressed the 

developmental marker Zfpm2 (Lahti et al., 2016), and 
likely represents a third GABAergic type marked by 
Sox14 and Cplx3 expression (Figure 9I). To our 
knowledge, this is the first comprehensive molecular 
description of adult SNr neurons.  

The GPe and SNr each abut small populations of 
neuromodulatory neurons that have profound effects on 
circuit physiology and behavior through the widespread 
release of acetylcholine (ACh) and dopamine (DA), 
respectively. Molecular specializations are known to 
exist in the DA system that are, at least in part, associated 
with the anatomical location of DA neuron subtypes 
(Lammel et al., 2008; Poulin et al., 2014). It is unclear 
whether the ACh-releasing population exhibits similar 
heterogeneity and whether this diversity has a spatial 
component.  

Subcluster analyses of the dopaminergic (SN/VTA, 
cluster 4, 919 cells) and cholinergic (GP/NB, cluster 1, 
n=218 cells) clusters revealed that the sampled 
dopaminergic neurons were indeed more 
heterogeneous than the cholinergic neurons (DA: 6 
biological ICs, 9 subclusters; ACh: 2 biological ICs, 2 
subclusters)(Figure 9A,F). As expected, aspects of DA 
transcriptional diversity were related to spatial 
positioning (Poulin et al., 2014) – for example, 
delineating the dorsal (IC 10) from ventral (IC 12) VTA 
as illustrated by ISH stains for the weighted genes Lpl 

Figure 9. Transcription-based identification of known and novel neuron type distinctions within the basal ganglia.  
(A-E) Globus pallidus externus (GPe). 
(F-J) Substantia nigra reticulata (SNr). 
(K-O) Dopaminergic vs acetylcholinergic neuromodulatory neuron populations.  
(A) Color-coded global clusters (n=11) for globus pallidus externus/nucleus basalis dataset displayed on a tSNE plot. Clusters 1, 2, 
and 3 are neuronal.  
(B) Subcluster structure within cluster 2.  
(C) Subclusters color-coded by candidate anatomical regions, inferred by ISH expression patterns of selective marker genes (Figure 
S10). Populations are intrinsic to the GPe, ventral pallidum (VP), substantia innomatita (SI), adjacent striatum (STR), lateral olfactory 
tract (LOT), rostral entopeduncular nucleus (EP) and the thalamic reticular nucleus (TRN) consistent with dissections (Figure S1).  
(D) Dot plot illustrating the expression patterns of neurotransmitter marker genes, neuron type markers from the literature, and novel 
markers identified in this analysis. Dot diameter represents the fraction of cells within a subcluster where a transcript was counted. 
Colors represent average single-cell scaled expression value (out of 100K UMIs, log10).   
(E) ISH experiments with subsets of novel marker genes illustrating the expression within the anatomical regions of the GPe and/or VP 
(sagittal sections). Region borders are approximated by a dotted line (Allen Institute Mouse Atlas).  
(F) Color-coded global clusters (n=14) for substantia nigra/VTA dataset displayed on a tSNE plot. Clusters 1, 3, and 4 are neuronal. 
(G) Subcluster structure within cluster 3. 
(H) Subclusters color-coded by candidate anatomical regions, inferred by ISH expression patterns of selective marker genes (Figure 
S10). Populations are intrinsic to the SNr, ventral tagmental area (VTA), red nucleus (RN), supramammillary nucleus (SuM), thalamus 
(TH), and deep mesencephalic nucleus (DpMe). 
(I) Dot plot as in (D). Marker genes for neurotransmitters, current SNr markers, and novel markers identified in this study.  
(J) ISH experiments with subsets of novel marker genes illustrating the expression within the anatomical regions of SNr (sagittal 
sections). Region borders are approximated by a dotted line (Allen Institute Mouse Atlas). 
(K) Subcluster structure within Th+/Ddc+ dopaminergic cluster 3 from the SN/VTA dataset. 
(L-M) Example cluster 3 ICs that encode spatial signals within the SNc/VTA.  
(L) IC cell loadings displayed on tSNE plot. 
(K). IC gene-loadings. Top ten genes shown at right.  
(L) ISH experiments (sagittal sections) for Lpl (IC 10, top) and Aldh1a1 (IC 12, bottom). IC 10 identifies the dorsal VTA, while IC 12 
identifies the ventral VTA and SNc (Allen Institute Mouse Atlas). 
(O-P) Minimal heterogeneity identified within Chat+/Slc5a7+ cholinergic cluster 1 from the GP/NB dataset. 
(O) Plot of IC 4 cell-loadings. Based on IC 4, cells are assigned as subcluster 1-1 or 1-2.  
(P) IC 4 gene-loading plot. Top ten loading genes at right suggest a Neurofilament-type signal. 
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and Aldh1a1 (Figure 9L-N). In contrast, the major signal 
in cholinergic neurons (IC 4) appears to be 
Neurofilament-like, with no spatial component (Figure 
9O,P). Thus, DA neurons of the SNc/VTA appear to be 
regionalized, whereas cholinergic neurons of the 
GPe/NB are not. Sampling more cholinergic neurons, 
especially from other areas of the basal forebrain 
(Zaborszky et al., 2013), could reveal additional signals. 
Spatial transcriptomic technologies that measure single 
cells could also reveal anatomical relationships missed 
by ISH analysis on thin slices of tissue (Chen et al., 2015a; 
Shah et al., 2016).  

 
Molecular Specializations of Striatal Principal 
Neurons 
Spiny projection neurons (SPNs) represent about 95% of 
the neurons in the rodent striatum. Decades of 
anatomical and functional work has sought to establish 
how molecularly defined subtypes of SPNs contribute to 
circuit function, behavior, and disease (Albin et al., 1989; 
Kozorovitskiy et al., 2012; Kravitz et al., 2010). Two 
principal categories have been used to distinguish SPN 
subsets. The first – based on divergent axonal 
projections and receptors for dopamine – assigns SPNs 
to the “direct” (dSPN) and “indirect” (iSPN) pathways; 
dSPNs and iSPNs are similarly numerous. The second – 
based traditionally on processing limbic versus 
sensory/motor information – groups SPNs into two 
spatial compartments within the striatum, the so-called 
“patch” and “matrix” compartments (Gerfen, 1992; 
Graybiel and Ragsdale, 1978). Both dSPNs and iSPNs are 
present in the patch and matrix.  

The direct- and indirect-pathway SPN types were 
readily identified by the expression of the pan-SPN 
marker Ppp1r1b along with the iSPN marker Adora2a or 
the dSPN marker Drd1 (Figure 10A,B). Two large 
clusters were highly enriched for Ppp1r1b/Drd1 and 
Ppp1r1b/Adora2a, suggesting they corresponded to 
dSPNs (Cluster 10, n=30,835 cells) and iSPNs (Cluster 
11, n=25,305 cells), respectively. There were 68 
differentially expressed genes between the two, 
including both known and previously undescribed 
markers (Figure 11A and Table S2).  

To identify cells from the patch and matrix 
compartments among dSPNs and iSPNs, we inspected 
transcriptional signals identified from SPN 
subclustering (dSPN Cluster 10: n=9 biological ICs; iSPN 
Cluster 11: n=10 biological ICs, Figure S11). Each 
analysis identified a single candidate “patch IC” whose 
most strongly contributing genes included known patch 
markers such as Tac1 and Pdyn. Approximately 10% of 
iSPNs and dSPNs exhibited this patch transcriptional 
phenotype (dSPN: IC 15, subcluster 10-2; iSPN: IC 20 in 
subcluster 11-2; Figure 10C,D).  

To appreciate the extent to which the patch/matrix 
distinction affects the functional specializations of 
dSPNs and iSPNs, we compared gene loadings between 
the patch-encoding dSPN IC 15 and iSPN IC 20 (Figure 
10E). As expected, we observed both classic (Tac1) and 
undescribed (Tshz1) pan-patch markers (Figure 10F). 
We found that the proton-gated Na channel Asic4 is 
enriched in iSPN patch cells, while Ca-binding protein 
Necab1 is enriched in dSPN patch cells (Figure 10G). 
While studies of SPNs have focused independently on 
the patch/matrix or pathway axes, our data suggest a 
more complex pattern of specialization between these 
systems: the transcriptional features endowed by a 
patch habitat are not identical for dSPNs and iSPNs, and 
some of these differences appear to remove pathway 
expression differences found in the matrix dSPNs and 
iSPNs. For example, among matrix SPNs, Asic4 was 
selectively expressed in the dSPNs but not iSPNs; among 
patch SPNs, however, Asic4 was expressed in both dSPNs 
and iSPNs. Thus Asic4 helps tailor iSPNs but not dSPNs 
to the patch habitat.   

 
“Eccentric” SPNs: A novel, third axis of SPN 
diversity 
Surprisingly, about 4% of SPNs (Ppp1r1b+) were 
observed in a third, smaller cluster that also expressed 
Adora2a and Drd1 (cluster 13: n=2,744 cells; 4.5% of 
Ppp1r1b+ neurons; Figure 10A,B). All three biological 
replicates contributed to this distinct population, 
suggesting it was not due to a dissection artifact. These 
SPNs had a transcriptional phenotype distinct from 
other SPNs: some 110 genes differed significantly in 
expression between this cluster and the canonical 
dSPNs+iSPNs (fold ratio > 2 and P < 10-100 by binomTest 
(Robinson et al., 2010)), more than the number of genes 
that distinguish dSPNs and iSPNs from each other 
(n=68) (Figure 11A, Table S3), Several genes were 
selectively expressed in cluster 13 with very little 
expression in the rest of the striatum (e.g., Casz1, Otof, 
Cacng5, and Pcdh8) (Figure 11B). Due to their 
expression of canonical SPN genes (e.g., Ppp1r1b) yet 
large transcriptional divergence from canonical SPNs, 
we call this population “eccentric” SPNs (eSPNs).  

To determine where eSPNs are located, we 
performed triple smFISH labeling with Ppp1r1b and 
pairs of selective eSPN markers (Figure 11C,D). 
Candidate eSPNs (triple-positive cells) clearly localized 
to the striatum; like dSPNs and iSPNs, eSPNs exhibited 
no obvious spatial organization within the striatum and 
were intermixed with other SPNs. We conclude that 
eSPNs are an intrinsic striatal neuron population. Our 
Drop-seq data account for all known striatal interneuron 
types at approximately the expected proportions (3.9% 
of total neurons)(Tepper and Bolam, 2004), suggesting 
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Figure 10. Molecular specializations within spiny projection neuron patch and matrix spatial compartments    
(A) Color-coded global clusters (n=15) for striatum dataset displayed on a tSNE plot. Clusters 10, 11, and 13 are presumed SPNs, 
corresponding to dSPNs, iSPNs, and eSPNs (described in Figure 8). 
(B) Expression tSNE plot of pan-SPN marker Ppp1r1b, direct pathway SPN (dSPN) marker Drd1, and indirect pathway SPN (iSPN) marker 
Adora2a. Cluster 13 expresses SPN markers. Ppp1r1b+ cells within Cluster 13 are eccentric SPNs (eSPN). 
(C-E) Identification and comparison of patch iSPN and dSPN transcriptomes.  
(C) Color-coded subcluster assignments for striatum cluster 10 (dSPNs) and cluster 11 (iSPNs) displayed on tSNE plot.  
(D) ICs encoding patch-specific transcriptional signals in dSPNs (IC 15) and iSPNs (IC 20). Left, IC cell-loadings on tSNE plots. Right, 
gene-loadings with top 10 genes displayed.  
(E) Identification of shared and distinct dSPN and iSPN patch-enriched genes. Scatterplot comparing gene loadings between patch ICs 
for dSPNs (IC 15) and iSPNs (IC 20). Genes with high loading in both ICs are hypothesized to be enriched in both patch iSPNs and 
dSPNs. This group includes described (Tac1) and previously undescribed (Tshz1) genes enriched in patch dSPNs and iSPNs. Genes that 
load strongly onto either IC are candidates for patch molecular specialization by SPN pathway. For example, Asic4 is enriched in patch 
iSPNs, while Necab1 is enriched in patch dSPNs. 
(F) ISH stains for Tac1 and Tshz1 on coronal sections of striatum (Allen Mouse Brain Atlas). Arrowheads point to example patches.  
(G) Expression tSNE plots for Asic4 and Necab illustrating patch enrichment exclusive to iSPNs and dSPNs, respectively.   
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Figure 11. Eccentric spiny projection neurons represent a third axis of SPN diversity 
(A) Genome-wide mean expression comparisons between SPN populations (log-normal scale). Left, cluster 10 vs cluster 11 (iSPN vs 
dSPNs). Right, cluster 13 vs clusters 10 and 11 (eSPNs vs d/iSPNs). Differentially expressed genes are shown with larger, dark dots (>2 
fold difference and P<10-100, binomTest (Robinson et al., 2010) and total number listed above each plot. Red arrow indicates genes with 
selective expression in eSPNs vs d/iSPNs.  
(B) Expression tSNE plot of n=4 genes (Casz1, Otof, Cacng5, and Pcdh8) enriched in eSPNs vs d/iSPNs (red arrow in C). Across all 
global clusters, genes are highly enriched in cluster 13 (red arrows). 
(C-D) eSPNs are anatomically dispersed throughout the striatum. 
(C) Single confocal planes from smFISH experiments validating co-expression of pan-SPN (Ppp1r1b) and highly-selective eSPN markers 
(Cacng5, Otof, and Casz1) in dorsal striatum. Top, Ppp1r1b, Cacng5, and Otof. Bottom, Ppp1r1b, Cacng5, and Casz1. Arrowhead 
indicates triple-positive cells.  
(D) Locations of triple positive Ppp1r1b, Cacng5, and Otof cells on a schematic of coronal striatum. Only dorsal striatum was used in the 
Drop-seq analysis (approximated by the dotted line). D, dorsal; V, ventral; L, lateral; M, medial. 
(E) Color-code subclusters from cluster 13. Subclusters 13-1, 13-2, 13-3, 13-4, and 13-5 correspond to eSPNs (83% of cluster 13 cells, 
black labels). The anatomical identity of other subclusters (17% of cluster 13 cells, gray labels) is described in Figure S12. Non-eSPN 
subclusters were excluded from the differential expression analysis described in (A).  
   Figure 11 continued… 
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by exclusion that the subclusters we identify as eSPNs do 
not correspond to an interneuron type but rather are 
SPNs.  

To establish whether the eSPNs harbor additional 
molecular diversity, we examined the five subclusters in 
which pan-SPN (Ppp1r1b) and pan-eSPN (Otof) markers 
were expressed (Figure S12A-C). These subclusters 
were divided into two major groups of eSPNs (Figure 
11F. Table S4), separated by a gene set that included 
markers used to distinguish canonical iSPNs and dSPNs, 
such as Drd1 and Adora2a, which we confirmed were 
expressed in eSPNs with smFISH (Figure 11G). eSPN 
expression of markers typically associated with 
canonical SPNs suggests eSPNs have been molecularly 
“camouflaged,” including in studies using mice that have 
employed Drd1 and Adora2a driven–transgenes to label 
and manipulate dSPNs or iSPNs (Cui et al., 2014; 
Kozorovitskiy et al., 2012; Kravitz et al., 2010; Oldenburg 
and Sabatini, 2015). Despite sharing markers, Adora2a+ 
eSPNs and Drd1+ eSPNs are distinguished from their 
canonical SPN counterparts by expression levels of many 
genes (Adora2a+ SPNs: 35 genes; Drd1+ SPNs: 96 genes; 
Figure S12D, Table S5,6). 

In addition to this major distinction, the Drop-seq 
data predict additional eSPN diversity, including an 
ultra-rare eSPN Adora2a+ subtype (13-5) that accounts 
for just 0.3% of all SPNs (n=88 cells). To validate the 
presence of this ultra-rare type and support the full 
spectrum of eSPN subcluster diversity implicated by 
Drop-seq, we performed two triple smFISH experiments 
for markers of subcluster 13-5. We confirmed instances 
in the striatum where subcluster 13-5 markers Th and 
Npffr1 were co-expressed with each other and with the 
pan-eSPN marker Otof (Figure 11H). One clue about the 
anatomical identity of eSPNs comes from this small Th+ 
population, as spiny Th+ principal cells have been 
observed in striatum with similar spatial arrangement to 
eSPNs and appear to be dynamically regulated by 
dopamine (Darmopil et al., 2008).  

We conclude that 1) the eSPN vs SPN distinction 
represents a third axis of SPN diversity, orthogonal to 
the dSPN/iSPN and patch/matrix SPNs distinctions; 2) 
eSPNs harbor rare, additional molecular diversity; and 
3) by using markers thought to exclusively distinguish 
iSPNs from dSPNS, functional studies have lumped 
eSPNs in with canonical SPNs, in spite of their 
considerable transcriptional divergence. These results 
highlight the utility of unbiased, high-throughput single-

cell methods for defining neuronal populations, even in 
brain regions and cell populations that have been 
extensively studied. 
 
DISCUSSION 
 
The mammalian brain is composed of synaptically 
interconnected regions, each of which contains a 
complex mosaic of spatially intermixed cell classes and 
types. Since Cajal and Golgi, single-cell analyses of cell 
morphology, cell membranes, and synaptic properties 
have formed the foundation of our understanding of how 
structure relates to function in neural circuits. The 
advent of high-throughput single-cell molecular 
techniques – such as genome-wide transcript counting 
with Drop-seq – allow newly systematic approaches to 
cataloging the essential units of the brain mosaic. Here, 
we analyzed RNA expression in more than 690K 
individual cells sampled from nine different regions of 
the adult mouse brain, encompassing all cell classes. We 
deployed a novel ICA-based method to disentangle 
technical effects from endogenous biological signals and 
highlighted several ways in which such data can identify 
novel brain cell types, ascertain cell states, and clarify 
the molecular basis of regionalization across brain 
circuits and cell classes.   

While single-cell profiling provides an exciting 
opportunity to aid the interrogations of neural circuits, 
it also presents numerous challenges that we sought to 
address here. The representations of cells in single-cell 
datasets can bear an uncertain relationship to their 
representation in intact complex tissues: we observed 
quantitative distortions in the representations of cell 
classes and cell types, driven by library size and cell 
viability. Such representational issues will be important 
to consider thoughtfully in future studies in which 
quantitative cell representation is a key outcome 
variable, for example, in studies of disease states. 

The clusters of cells that are derived from 
computational analyses cannot be reflexively equated 
with cell “types”. We identified many patterns of RNA 
expression that corresponded to cell types, but also 
many that appear to correspond to cell states or to 
reflect spatial locations in ways that are continuously 
varying rather than categorical.  The examples described 
above highlight diverse sources of transcriptional 
variation among individual cells. Comparisons of 
expression patterns between cell populations can reflect 
combinations of these influences, and it will be 

(F) Expression tSNE plot of pan-SPN (Ppp1r1b), pan-eSPN (Otof), dSPN (Drd1), iSPN (Adora2a), subcluster 13-5 (Th, Npffr1) markers.  
(G-H) Single confocal planes from smFISH experiments validating co-expression of markers in dorsal striatum. Arrowhead indicates 
triple-positive cells.  
(G) Co-expression of eSPN marker (Otof) with iSPN (Adora2a) and dSPN (Drd1) markers. 
(H) Co-expression of eSPN subcluster 13-5 markers. Triple-positive cells observed in dorsal striatum are indicated with white 
arrowheads. Top, Adora2a, Th, Otof. Bottom, Adora2a, Th, Npffr1.  
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important to be able to parse these component 
contributions. We developed an analytical approach to 
help make signal identification – and its relationship to 
subclusters – more transparent. This approach allowed 
us to identify a ubiquitous transcriptional program we 
believe is enacted to maintain axon and presynaptic 
function, to different degrees both within and across 
neuron types. We were also able to resolve signals from 
striatal SPNs representing differences in pathway 
(“direct” versus “indirect”), spatial arrangement 
(“patch” versus “matrix”), and eccentricity—a novel 
molecular SPN distinction we identified in our dataset. 
The analytical approach we used was critical for being 
able to recognize such distinctions and be confident of 
their biological origin.  

The size and complexity of single-cell datasets can 
limit their utilization by researchers in neuroscience or 
genetics. To facilitate the utilization of such data 
throughout neurobiology, we developed an interactive 
web-based software (DropViz, http://dropviz.org/) that 
facilitates access and dynamic, responsive exploration of 
the atlas data. 

An exciting direction will be to identify functional and 
anatomical characteristics that correspond to these 
transcriptional signatures. We hope that high-volume 
single-cell gene expression profiles, and the patterns 
present in such profiles, can function as a lingua franca 
for discussing cellular diversity of the adult mouse brain.   
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