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Abstract 

Brain structure has been proposed to facilitate as well as constrain functional interactions 

within brain networks. Simulation models suggest that integrity of white matter (WM) 

microstructure should be positively related to the complexity of BOLD signal—a measure of 

network interactions. Using 121 young adults from the Human Connectome Project, we 

empirically tested whether greater WM integrity would be associated with greater complexity of 

the BOLD signal during rest via multiscale entropy. Multiscale entropy measures the lack of 

predictability within a given time series across varying time scales, thus being able to estimate 

fluctuating signal dynamics within brain networks. Using multivariate analysis techniques 

(Partial Least Squares), we found that greater WM integrity was associated with greater network 

complexity at fast time scales, but less network complexity at slower time scales. These findings 

implicate two separate pathways through which WM integrity affects brain function in the 

prefrontal cortex—an executive-prefrontal pathway and a perceptuo-occipital pathway. In two 

additional samples, the main patterns of WM and network complexity were replicated. These 

findings support simulation models of WM integrity and network complexity and provide new 

insights into brain structure-function relationships. 

 

Keywords: diffusion tensor imaging; human connectome project; fMRI; multiscale entropy 

analysis; resting state networks; white matter microstructure 
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1. Introduction 

Some people process and analyze information quickly, whereas others do so more slowly. 

These individual differences in cognitive efficiency likely involve the coordination of many 

brain regions and are impacted by the integrity of both brain structure and function. Using the 

analogy of a road system, Nakagawa and colleagues [1] likened brain structure to street size 

(e.g., the amount of lanes) and brain function to traffic volume. They noted that street size both 

enables and limits the amount of traffic volume just as the integrity of brain structure enables and 

limits the amount of information flow between brain regions. They also emphasized that the 

effect of structure on function depends on the time scale with which traffic is measured—a 

property that has largely been ignored in human neuroscience. Consistent with this analogy, it is 

widely believed that brain structure impacts brain function. However, how structure impacts 

function and whether function impacts structure are far from well-understood.  

One approach to understanding structure-function relationships has been to correlate the 

integrity of white matter (WM) microstructure and brain activity assessed in fMRI. WM integrity 

is most often measured using diffusion tensor imaging (DTI) to assess the degree of water 

diffusion within the white matter. For example, individuals with greater WM integrity (i.e., 

fractional anisotropy or FA) in frontoparietal regions exhibited increased brain activity in similar 

brain regions [2,3]. Few studies have investigated other measures of WM integrity such as axial 

diffusivity (AD), radial diffusivity (RD), or mean diffusivity (MD). Notably, one study did find 

that increased RD—representing greater demyelination—in lateral temporal cortex was 

associated with decreased brain activity in lateral frontal and cingulate cortices [4]. These 

findings suggest that individuals with greater WM integrity are able to recruit more neural 
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resources and therefore might be able to process more information more quickly and efficiently 

than those with less WM integrity [5].  

However, WM integrity in one region might also impact brain function in gray matter 

regions that are not directly connected to that region, but rather are more distal. That is, WM 

integrity might impact brain function in other functional networks. Studies have found when 

WM and brain activity have been assessed in non-adjacent regions, greater WM integrity has 

been associated with less brain activity [6-9]. This negative association might reflect a reduced 

reliance on or interactions between distal regions (i.e., more local processing), or could reflect a 

type of interference that prevents greater activity in distal regions within the same network or in 

outside networks (i.e., a disruption of distributed processing).  

These studies illustrate the complicated relationship between brain structure and function 

and highlight the importance of separately characterizing local and distributed processing 

mechanisms. An emerging field within systems neuroscience has begun to investigate how 

temporal fluctuations within brain signals (i.e., predictability or lack thereof) is related to 

information processing. Specifically, researchers have proposed that less predictable fluctuations 

of brain activity are associated with richer [1,10-12] or more integrated information [13,14]. 

Unpredictable and highly complex biological systems often are related to a normal and healthy 

brain, whereas highly predictable or regular biological systems often are related to dysfunction 

and disease [15-17]. Critically, multiscale entropy (MSE) has been developed to estimate the 

complexity within temporal signals across multiple time scales [18]. MSE and its single scale 

counterpart, sample entropy (or SampEn), were originally used to understand temporal patterns 

of the human heartbeat [16,18]. Sample entropy estimates the irregularity of a time series, which 

increases as the amount of noise within a system increases. However, noise becomes quickly less 
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complex towards coarser time scales because it has one single expected mean value [1,16]. Thus, 

the term “complexity” refers to the ability for a system to maintain irregularity across time series 

from fine to coarse. Over the last five years, researchers have extended the application of MSE 

and related entropy metrics to brain signals [e.g.,1,13,14,17,19,20,21]. This research has 

proposed that high frequency (fine) time scales and low-frequency (coarse) time scales represent 

local and distributed information processing, respectively [13,14,20]. Additionally, these 

measures of brain signal complexity offer complementary information that is not captured 

through other measures such as functional connectivity or standard deviation as evidenced by 

weak correlations between the various measures [19,21,22]. While many studies have used MSE 

to understand brain signal complexity using EEG [e.g., 13,14,17,19], only recently has research 

applied the same analysis tools to BOLD fMRI signals [e.g.,20,21,23].  

The present study examined how WM integrity constrains brain function using MSE 

analyses, thus revealing its impact across multiple time scales. We base our predictions on 

simulations of WM integrity and complexity of the BOLD signal [1], but use non-simulated 

BOLD fMRI data to verify these simulations. According to Nakagawa and colleagues [1], people 

with greater WM integrity should have greater in neural complexity at fine time scales. They 

further suggested that these findings may emulate individual differences in brain and cognitive 

functioning (e.g., as with aging). For example, since WM integrity should be positively related to 

neural complexity, then as WM integrity declines with old age, brain function also would be less 

efficient, and ultimately lead to slower processing speeds—a general characteristic of aging 

[24,25]. Aging, however, is just one factor that can influence between-subject variability. Here, 

we tested the general notion that individual differences in WM integrity and neural complexity 

related to one another in a sample of healthy young adults from the Human Connectome Project 
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(HCP, WU-Minn Consortium [26]). In accordance with these simulations, we predicted that 

individuals with greater WM integrity would exhibit greater local network complexity in the 

HCP data. However, because the data used in the present study can afford a larger range of time 

scales than that used in the model simulations, we tested a new hypothesis that individuals with 

greater WM integrity would show reduced distributed network complexity than individuals with 

less WM integrity. Our rationale for this reverse effect stems from previous research revealing a) 

an inverse relationship with WM integrity and distal brain activity [5] and b) an inverse 

relationship between functional connectivity and neural complexity at fine (local) and coarse 

(distributed) time scales [20]. To understand these network dynamics, multivariate network 

analyses were implemented. Lastly, we tested our predictions in three samples to generalize our 

results. These finding should shed light on the impact of WM integrity on brain function and 

help further our understanding of patterns of MSE in the BOLD signal.  

2. Materials and Methods 

2.1 Participants 

Data was taken from participants in the HCP, which is a long-term study to explore 

human brain circuits. Participants were young adults that were relatively healthy and free of a 

prior history of significant psychiatric or neurological illnesses, but could have a history of 

smoking, heavy drinking, or recreational drug use. All subjects gave their written informed 

consent for inclusion before they participated in the study. The study was conducted in 

accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics 

Committee of Washington University, St. Louis and The University of Alabama. 

Four hundred and ninety adults, some of which were siblings, were included in the study 

if they had available DTI and fMRI data. From this total, three subgroups were formed (see the 
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sample characteristics for the final samples in Table 1). The first group consisted of 123 

unrelated individuals and was used for the primary analyses. The second and third groups were 

used for replication purposes. Due to the nature of the HCP data, these other two groups 

consisted of related individuals (both related to each other within the subgroup as well as related 

to the first group). Of these two groups, we were able to match the second group to the first on 

demographic factors including age, education, sex, and racial status (white or non-white). The 

third group was older than the other two groups, had more education, and was more likely to be 

white (all p’s < .001). There were no differences in sex between the last group and the first two 

groups (all p’s > .17). 

2.2 DTI procedures 

Diffusion data were collected using a single-shot, single refocusing spin-echo, echo-

planar imaging sequence with 1.25 mm isotropic spatial resolution (TE/TR = 89.5/5520 ms, 

FOV = 210 × 180 mm). Three gradient tables of 90 diffusion-weighted directions and six b = 0 

images each were collected with right-to-left and left-to-right phase encoding polarities for each 

of the three diffusion weightings (b = 1000, 2000, and 3000 s/mm2). HCP preprocessed DTI 

images were used which included correcting for B0, susceptibility artifact, and eddy current 

distortions. For a more detailed description of the DTI acquisition and preprocessing procedures 

[27,28]. Linearly fitting a diffusion tensor model to the DTI images resulted in FA, eigenvector, 

and eigenvalue maps that were then used to estimate axial diffusivity (AD; λ1), radial diffusivity 

(RD; (λ2 + λ3)/2)), and mean diffusivity (MD; (λ1 + λ2 + λ3)/3). Using Tract Based Spatial 

Statistics (TBSS) [29], FA images were skeletonized and normalized to the FMRIB58 template 

using a non-linear image registration tool (FNIRT). Using the mean FA image, a skeletonized 

mask was created representing the tract centers common to all participants. Mean DTI values for 
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each measure were then extracted from regions of interest based on the JHU atlas. The tracts 

included 30 major association, projection, and callosal white matter tracts, which were then 

extracted using masks from the JHU atlas. Due to computational demands, we had to exclude 

some tracts. We chose to first exclude tracts that had few voxels (thus potentially leading to poor 

estimations) or were not immediately relevant to the higher order cognitive networks of interest 

(exclude tracts included Fornix (cres)/Stria Terminalis, Cerebellar tracts). 

2.3 fMRI procedures 

All data were acquired on a Siemens Skyra 3T scanner housed at Washington University 

in St. Louis. The scanner had a customized SC72 gradient insert and a customized body 

transmitter coil with 56 cm bore size (diffusion: Gmax = 100 mT/m, max slew rate = 91 

mT/m/ms; readout/imaging: Gmax = 42 mT/m, max slew rate = 200 mT/m/ms). The HCP Skyra 

had the standard set of Siemen's shim coils (up to 2nd order) and used Siemen’s standard 32 

channel head coil. BOLD fMRI data were acquired using a T2*-weighted gradient-echo EPI 

sequence with 72 axial slices per volume, 104 x 90 matrix (2.0×2.0×2.0 mm3), FOV=208 mm, 

TE=33.1 ms, TR=720 ms, FA=52°. Across four scanning sessions of 15 minutes each, a total of 

4800 frames were acquired. Participants were instructed to keep their eyes open and focused on a 

bright cross-hair on a dark background. Across sessions, oblique axial acquisitions alternated 

between phase encoding in a right-to-left direction and phase encoding in a left-to-right 

direction. 

Postprocessed fMRI datasets were used in the present study, which consisted of standard 

processing methods using FSL [30,31]. Below briefly summarizes the HCP processing pipeline 

[32]. First, gradient-nonlinearity-induced distortion was corrected for all images. Next, FMRIB’s 

Linear Image Registration Tool (FLIRT) was used for motion correction using the single-band 
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reference (SBRef) image as the target. The FSL toolbox “topup” [33] was used to estimate the 

distortion field in the functional images. The SBRef image was used for EPI distortion correction 

and is registered to the T1w image. One-step spline resampling from the original EPI frames to 

MNI space was applied to all transforms. Lastly, image intensity was normalized to mean of 

10,000 and bias field was removed. Data was cleaned using ICA+FIX [34,35], which included 

linear detrending, regression of 24 motion parameters, and ICA noise components removed. This 

method better removes artifacts than regressing out white matter and/or CSF signal directly, as 

well as using the “scrubbing” method [36]. Global signal was not removed. Importantly, while 

choosing methods to preprocess resting-state fMRI data can be controversial, studies have shown 

that group differences in MSE are quite robust to variations in preprocessing methodologies [37]. 

2.4 Multiscale entropy (MSE) analysis 

The processed time series were extracted at each point on the normalized brains and 

averaged together if they fell within distinct resting-state networks (RSN) using the parcellation 

of 24 networks from the Power atlas [38]. This network approach was taken since networks are 

often defined by the similarity of their time series, thus resulting in a similar pattern of 

complexity within a given network [20]. Deriving MSE from networks offers a simplified and 

theoretically driven approach to investigating MSE across the brain. After the time series from 

each RSN was extracted, the complexity of each network (separately for each of the four resting-

state scans) was estimated using MSE. MSE estimates sample entropy at different time scales. 

First, fine to more coarse-grained time series were created by down-sampling the original time 

series (i.e., averaging neighboring data points within non-overlapping windows). Second, sample 

entropy was estimated for the time series at each time scale (1 to 25 scales). Sample entropy is 

defined as the natural logarithm of the conditional probability that a given pattern of data of a 
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specified length (m) repeats at the next time point for the entire time series at a given scale factor 

(of a dataset with a total length N). It considers subsequent patterns to be a repeat of the given 

pattern if they match within a certain tolerance (r) such that larger tolerance values increase the 

number of matches [39,40]. A time series with a greater number of pattern matches is more 

predictable and the entropy value is lower (less complexity). In contrast, a smaller number of 

pattern matches is characterized as being less predictable, yielding a greater entropy value 

(greater complexity). We selected our parameters based on those used in prior studies 

investigating MSE using fMRI, m = 2 and r = .5 [20, 41,42]. Previous investigations using the 

data from the HCP revealed qualitatively similar patterns of MSE estimations regardless of the 

parameters chosen [20]. This consistency is similar to other studies who have found that the 

choice of parameters leads to relatively robust estimations over a broad range of possible values 

[39,40,42]. The resulting MSE estimations for each of the four runs were then averaged together 

to obtain a more robust estimation of MSE for each time scale within each network.  

2.5 Partial least squares (PLS) analyses 

PLS was used to determine the regional WM associations with MSE across RSNs. PLS is 

a multivariate technique designed to identify latent factors that account for most of the variance 

in a data set [43]. For the PLS analysis, the X matrix was organized in the form of [Subjects x 

Time Scale in Network], resulting in a 123 x 600 matrix that represented network complexity in 

the 24 RSNs with 25 time scales for each network for each subject. The Y matrix was organized 

in the form of [Subjects x tracts in DTI measure], resulting in a 123 x 120 matrix that represented 

DTI values across the 30 different tracts for FA, AD, MD, and RD for each subject. Each matrix 

was grand-mean centered and normalized prior to conducting the analysis.  
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The cross product of the X and Y matrices was then decomposed into a set of mutually 

orthogonal factors using singular value decomposition, resulting in a set of orthogonal latent 

variables (LVs). An LV consists of three components: 1) a singular value, 2) a vector of weights 

representing the pattern of time scales in the LV (i.e., salience values), and 3) a vector of weights 

representing the degree to which each subject expresses the given LV (i.e., brain scores). Brain 

scores were calculated by multiplying the salience scores by the network complexity values for 

each subject and then summing these values. Each LV was statistically evaluated two ways. 

First, we assessed the significance of the relationship between network complexity and the DTI 

measures by computing 10,000 permutation tests in which network complexity values were 

randomly assigned within subjects. A measure of significance was calculated by estimating the 

proportion of times the permuted singular value was higher than the observed singular value. 

Second, to assess the reliability of the corresponding distribution across subjects (i.e., saliences), 

we resampled subjects with replacement (10,000 bootstrap samples). A bootstrap ratio was then 

calculated by dividing the saliences by the standard error of the generated bootstrap distribution. 

The bootstrap ratio is approximately equivalent to a z-score, whereby an absolute bootstrap ratio 

greater than 1.96 corresponds roughly to p < .05. When bootstrapped confidence intervals did not 

cross zero, we considered those values to be statistically significant. 

3. Results 

After forming the three groups, preliminary analyses across all three groups revealed five 

outliers that had at least one DTI measure (averaged across the whole brain) greater than 7.5 

standard deviations from the mean, resulting in final group sizes of 121 (primary group), 122 

(matched group), and 121 (non-matched group). We first report the PLS analyses on the primary 

group to determine the extent that network complexity was associated with WM integrity. 
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Finally, we report whether any of the findings replicated in the separate matched and non-

matched samples. 

3.1 Network complexity and WM integrity 

The PLS analysis resulted in four significant LV’s that explained 78.57%, 10.01%, 

5.27%, and 2.33% of the covariance in the data, respectively. Because the first two LV’s 

comprised almost 90% of the covariance, we focused on these LV’s. For the first LV (p = .009), 

a Pearson correlation conducted between the network-complexity brain scores and the WM brain 

scores confirmed a moderate effect size between the two factors (r = .39, p < .001). As seen in 

Figure 1 (top panel), the first LV pattern was characterized by greater network complexity at fine 

time scales and lower network complexity at mid and coarse time scales. Furthermore, this 

pattern was strongest in the following networks: default mode, frontoparietal, salience, cingulo-

opercular, dorsal and ventral attention, “unknown Nelson 2010”, and “unknown with memory 

retrieval”. These functional networks have been implicated in higher-order cognition [44-47] and 

most of these networks contain key regions within the prefrontal cortex. In regards to WM, this 

LV pattern was associated with lower FA and lower AD across most of the tracts, and lower MD 

in a smaller subset of tracts. In contrast, this LV was associated with weaker and more mixed 

relationships with RD. The tracts that most exhibited this WM pattern (and had confidence 

intervals that did not include zero) consisted of projection and association tracts and were left 

lateralized including left anterior corona radiata, posterior corona radiata, posterior thalamic 

radiata, external capsule, superior fronto-occipito fasciculus, superior longitudinal fasciculus, 

uncinate fasciculus. The right hemisphere consisted of anterior corona radiata, and superior 

longitudinal fasciculus. Like network complexity, many of these WM tracts contain connections 
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with prefrontal cortex. In sum, individuals with greater network complexity at fine time scales 

and lower complexity at mid and coarse time scales also had lower FA, AD, and MD values. 

The second LV (p = .019) had a weak effect size between between network complexity 

and white matter (r = .25, p < .005). As shown in Figure 1 (bottom panel), this LV pattern was 

characterized by greater network complexity at the second time scale (across almost every 

network) and lower network complexity at coarse time scales largely in sensorimotor networks 

including visual, auditory, hand, and mouth networks. The pattern of white matter was 

characterized by lower FA, AD, and MD, but greater RD, in only a few major tracts. 

Specifically, the FA relationships (that had confidence intervals excluding zero) were lowest in 

left and right anterior corona radiata, and left uncinate fasciculus. The AD and MD relationships 

were lowest in left anterior and posterior corona radiata, left superior fronto-occipital fasciculus, 

and left superior longitudinal fasciculus. The RD relationships were greatest (and negative) in the 

right anterior corona radiata, left uncinate fasciculus, and right cingulum. Together, the results 

from these two LV’s are consistent with the predictions that greater WM integrity would be 

associated with greater local network complexity (i.e., entropy at fine time scales), but less 

distributed network complexity (i.e., entropy at coarse time scales).  

3.2 Replication of effects: Matched sample 

 We next conducted the same PLS analysis on the matched sample (Figure 2). The first 

LV explained 66.55% of the covariance and was marginally significant (p = .057). Importantly, a 

Pearson correlation between the network-complexity brain scores and the WM brain scores 

exhibited a similar, moderately sized correlation (r = .31, p < .001). The pattern of network 

complexity also was quite similar as in the primary sample; major higher-order networks 

involving prefrontal cortex were characterized by greater network complexity at the finest time 
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scale and lower network complexity at the mid and coarse time scales. Like in the primary data 

set, this LV also was characterized by lower AD and MD in many of the same tracts including 

left anterior left anterior corona radiata, posterior thalamic radiata, superior fronto-occipito 

fasciculus, and superior longitudinal fasciculus. Unlike the primary group, the first LV in the 

matching group was characterized by higher FA values and many more consistent lower RD 

values. Thus, while differences did exist, the network-complexity measures and two of the WM 

measures (AD and MD) were quite consistent with the analysis in the primary group. 

 The second LV explained 21.89% of the covariance (p < .001). The Pearson correlation 

between the brain scores revealed a weak correlation as in the second LV from the primary group 

(r = .26, p < .005), and the pattern of network complexity also was similar. Network complexity 

was characterized by greater complexity at the second time scale across most networks and lower 

complexity at mid and coarse time scales in many of the networks, but failed to reach 

significance in the sensorimotor networks (BSR ≤ 1.96). However, the pattern of WM was 

different. Specifically, this pattern consisted of greater FA and AD values, and lower MD and 

RD values. Only the MD values were in a direction consistent with the primary group, but the 

tracts were different (largest correlations in right posterior corona radiata and right posterior 

thalamic radiation). Thus, while the second LV did show a significant relationship between 

network complexity and WM integrity, the different white matter tracts support only a partial 

replication.  

3.3 Replication of effects: Non-matched sample 

Finally, we conducted the same sets of analyses on the non-matched sample (Figure 3). 

The first LV (p = .005) explained 77.85% of the covariance. The Pearson correlation between 

two brain scores had a moderate effect size (r = .37, p < .001). The network-complexity patterns 
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largely resembled the previous two analyses, whereas the WM patterns largely resembled the 

previous, matched-sample analysis. Specifically, the pattern consisted of greater FA, but lower 

AD, MD, and RD values in many of the same tracts as the matched-sample analysis. The second 

LV (p < .001) explained 13.98% of the covariance and the Pearson correlation between the two 

brain scores had a weak effect size (r = .23, p = .011). The pattern of network complexity was 

similar as the other two analyses with the second time scale across most networks, but the mid 

and coarse time scales in the sensorimotor networks failed to reach significance (as in the Match-

sample analysis). The pattern of white matter consisted of greater FA, mixed AD, and lower RD 

and MD values. In relation to the other analyses, the specific tracts that show negative 

relationships with AD and MD values are consistent with the analyses in the primary group and 

the tracts with the greatest FA values were consistent with the analysis in the matched sample.  

3.4 Cross-Sample Summary 

To better depict which relationships were significant across each of the three samples, 

conjunction maps were created for both LV’s (Figure 4). For network complexity, BSR’s values 

at least |1.96| (corresponding to p = .05) that were consistent across two or three samples were 

included. For DTI measures, r values of at least |.20| (also corresponding to p = .05) that were 

consistent across two or three samples were included. For LV 1, the network complexity pattern 

was consistently significant in all three samples for almost every time scale and most networks 

with the largest exception being in the sensory networks (visual, auditory, hand, mouth). 

However, the DTI pattern was only consistent across the three samples in left anterior corona 

radiata (AD), left posterior thalamic radiation (AD and MD), left superior fronto-occipital 

fasciculus (MD), left superior longitudinal fasciculus. For LV 2, network complexity was 

replicated in time scale 2 for the majority of the networks (many of which overlapped with the 
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significant networks in LV 1), followed by time scale 3 and 4. None of the DTI measures for LV 

2 were consistently significant across the three samples, but several were consistent in two of the 

three samples. These regions included left anterior corona radiata (AD), left and right posterior 

thalamic radiata (MD), and left superior frontal-occipital fasciculus (AD). However, it should be 

noted that this conjunction analysis is quite conservative, equating to a joint p-value of .000125 

for commonalities across all three samples and a joint p-value of .0025 for commonalities across 

two of the three samples. These stricter thresholds explain the sparse overlap across the three 

samples. 

4. Discussion 

 While it is clear that brain structure influences brain function, how this happens is far 

from understood. In the present study, we took an individual differences approach to test the 

notion that people with greater WM integrity would exhibit greater localized processing, but less 

distributed processing than people with less WM integrity. To do this, we assessed brain 

structure using four measures of WM integrity including FA, AD, MD, and RD—all of which 

provide complementary information regarding the integrity of WM. To capture brain function 

across multiple time scales, we used multiscale entropy to estimate the complexity of the BOLD 

signal across 24 resting-state networks. This network complexity might represent the richness or 

integration of information processing signals that underlie processing efficiency [1,13,14,20]. 

Using a multivariate analysis technique, we found that WM integrity across many tracts was 

significantly associated with network complexity across many resting-state networks (RSNs). 

We elaborate on the details of these findings below. 

4.1 Latent Variable 1: White Matter Integrity Influences Network Complexity in the 

Prefrontal Cortex Networks 
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We first aimed to better understand how brain structure integrity influences the capacity 

of information processing within functional brain networks via network complexity measures. In 

the first latent variable of the PLS analysis, greater network complexity at fine time scales and 

lower network complexity at mid and coarse time scales were associated with greater WM 

integrity (i.e., lower AD and MD)—greater axonal density or fiber coherence [48-50]. This latent 

variable was consistent across the three samples. Better WM integrity might facilitate 

interconnectivity among local neural populations, perhaps at the expense of long-range 

interactions across distributed neural populations [13,14,20]. This idea is consistent with 

previously found positive correlations between WM integrity and brain activity in regions 

spatially adjacent to one another, but negative correlations when the regions being measured are 

more distal from one another [5]. 

The WM tracts that had the greatest associations with network complexity can be divided 

into two categories: anterior association tracts and posterior projection tracts. The anterior 

association tracts—connected to the prefrontal cortex [51,52]—consisted of the left superior 

fronto-occipital fasciculus and the superior longitudinal fasciculus and are related to processes 

including working memory [53,54]. The posterior projection tracts comprise of portions of the 

internal capsule (anterior corona radiata and posterior thalamic radiation), connecting the 

thalamus to both prefrontal and occipital cortex. These tracts have been primarily implicated in 

perceptual and motor functions [3]. In regards to brain function, the latent variable indicated that 

the strongest effects were in RSNs that included the prefrontal cortex including the default mode, 

frontoparietal, salience, cingulo-opercular, dorsal attention networks. While there are many 

regions that comprise each of these networks, we focus on the prefrontal cortex which is shared 

by all of the networks. Moreover, each of these RSNs has been implicated in higher-order 
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cognition (e.g., attention, working memory, executive function), which often involves the use of 

the prefrontal cortex [44-47]. In regards to WM integrity, greater WM integrity fosters faster 

information processing. For example, lower values of AD and MD in various tracts including the 

anterior thalamic radiation have been associated with faster response times during a speeded 

continuous performance task [55]. Other studies also have found relationships with WM integrity 

(i.e., FA) and processing speed [56,57] and attention [58,59]. Importantly, the tracts in these 

studies overlapped with the tracts here including the superior longitudinal fasciculus and corona 

radiata. Because of their broad nature, these structural and functional relationships may form the 

basis for processing efficiency across a variety of cognitive domains. Together, these results 

suggest that two primary components of brain structure—an executive-prefrontal component and 

a perceptuo-occipital component—affect brain function within the prefrontal cortex (see Figure 

5). 

4.2 Latent Variable 2: White Matter Integrity Affects Complexity Independent of Network 

 After accounting for the majority of the covariance between brain structure and function, 

a second latent variable revealed that greater WM integrity (i.e., lower AD and MD) was 

associated with greater network complexity at fine scales, although the exact time scale was 

shifted to the second time scale. While many WM tracts were associated with this latent variable 

pattern, the left superior fronto-occipital fasciculus and superior longitudinal fasciculus were 

most consistently found across the three samples. Both of these tracts contain long-range fibers 

and connect the prefrontal cortex with other cortical brain areas including parietal and occipital 

regions [51,52,60]. Neural complexity associated with this latent variable was found across 

almost every network and the three samples in the second time scale.  

4.3 Interpreting Network Complexity 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/299065doi: bioRxiv preprint 

https://doi.org/10.1101/299065
http://creativecommons.org/licenses/by-nc-nd/4.0/


NETWORK COMPLEXITY AND WHITE MATTER MICROSTRUCTURE 19 

Previous studies suggest that greater local WM integrity is associated with greater local 

brain activity, but reduced distal brain activity [5]. While the present results are consistent with 

those notions, the network complexity measures used here provide a complementary approach to 

measure local and distal interactions between brain regions and provide additional information as 

to how the richness of information processing is impacted by WM integrity. Also novel is the 

interaction between time course and the direction of the structure-function relationship—an 

effect that would not have been easily predicted directly from previous studies using non-

complexity measures. As reviewed by Shen et al. [61], some studies have suggested that brain 

function emerges from brain structure, but is best reflected at coarse timescales and is only 

weakly correlated at finer time scales [62]. The present findings suggest that brain structure at 

multiple time scales including finer time scales as applicable to the BOLD signal, which might 

be considered a coarser time scale in itself. Specifically, we found that greater complexity at fine 

time scales is associated with greater within-region processing whereas greater complexity at 

coarser time scales is associated with more distributed processing across regions or networks 

[13,14,20]. For example, McIntosh and colleagues [13] found that complexity at fine time scales 

was associated with more within-hemisphere (local) functional connectivity, but complexity at 

coarse time scales was associated with more between-hemisphere (distributed) functional 

connectivity. Thus, the greater WM integrity would be interpreted as facilitating local 

interconnectivity and inhibiting or interfering with distributed connectivity. This interpretation 

assumes that individual differences in WM integrity lead to quantitative differences functional 

interactions. That is, the brain operates in fundamentally similar ways whether one has a high or 

low level of structural integrity.  
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A different interpretation is that people with high or low level of structural integrity 

utilize functional networks in qualitatively different manners. People with greater WM integrity 

might rely more on local neural processing, whereas people with poorer WM integrity might rely 

more on distributed neural processing. To the extent that local WM integrity is high, less 

information might be lost when “in transit” from one neighboring gray matter region to the next, 

resulting in a maintenance of rich information processing. In contrast, if local WM integrity is 

low, more information might be lost when it is being processed within neighboring regions, 

resulting in less rich information processing. In response to this degraded information, people 

with poor WM integrity might need to draw resources from other brain regions in surrounding 

areas (non-local).  

Relying less on local neural processing and more on distributed neural processing has 

implications for individual differences in intelligence and network resiliency to aging or 

disorders that impact that brain. For instance, studies have shown that more intelligent young 

adults show less distributed neural processing [63,64,65]. However, as people get older and their 

intellectual faculties begin to decline, older adults rely on more distributed neural processing, 

which has been argued to either compensate for structural declines [66,67] or simply be a 

measure of less efficiency in the neural system [68,69]. Consistent with these ideas, Daselaar et 

al. [70] recently found that older adults with lower executive function exhibited an increase in 

distributed neural processing, which was in turn associated with reduced white-matter integrity. 

Gao et al. [71] found similar results in older adults and patients with Alzheimer’s disease. They 

found that white-matter integrity of short-range fibers contributed to more brain activity and 

lower cognitive efficiency.  
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A limitation to these interpretations, however, is the fact that much of the foundational 

work investigating the nature of MSE has been done in EEG and MEG, leaving much research to 

be conducted on the exact nature of MSE patterns in the BOLD signal [20,22]. 

4.4 Reliability and Strength of the Findings 

Neuroscience and psychological research has been under fire for failing to replicate key 

findings [72,73]. Here, we used multiple methods to obtain reliable results including using 

bootstrapping, large sample sizes (relative to most neuroimaging studies), and three different 

samples. With stringent criteria for replication, we found four of seven of the strongest 

correlations were replicated twice and three of seven of the strongest correlations were replicated 

once. Specifically, in Figure 1 we can see that the strongest correlations were for AD in left 

superior fronto-occipital fasciculus (r = -.36), left superior longitudinal fasciculus (r=-.33), left 

anterior corona radiata (r = -.30), left posterior corona radiata (r = -.31), and left posterior 

thalamic radiation (r = -.29), and for MD in left superior fronto-occipital fasciculus (r = -.31) and 

left superior longitudinal fasciculus (r=-.27). Given that the first seven of the strongest 

correlations were replicated at least once at a very stringent threshold, we feel that 

reproducibility was quite good for the strongest relationships.   

Despite these strengths, we only partially replicated our analyses. While the association 

between network complexity and two of the measures of WM integrity (AD and MD) replicated 

across the three samples, the direction of FA and RD were more similar between the two 

replication samples than in the primary sample. Because of this inconsistency, we have chosen 

not to interpret the FA and RD effects. It may be the case that some measures are not as reliable 

as one might hope and many studies that do not attempt to take these steps to enhance or validate 
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its reliability may lead to inaccurate inferences. It is also possible that critical characteristics 

(other than age, education, sex, and race) that differed across the three samples masked potential 

relationships. 

The strength of even the most reliable relationships was weak to moderate. On the one 

hand, these low correlation strengths might indicate that WM integrity does not influence 

network complexity (i.e., there is not a one-to-one connection between the two modalities). 

Instead, other factors might have a stronger impact on network complexity including the density 

of neurons, the number of synapses per neuron, blood flow, brain metabolism, among others 

[74]. On the other hand, many studies investigating structure-function relationships find weak to 

moderate sized correlations in the same upper range that we found (r = .31 to .39) [8,9,70,71,75]. 

Interestingly, in those studies finding much greater structure-function correspondences, the 

populations tend to be older [7,76-78] or have a disorder that impacts the brain [79]. These 

increases in correlation strength are often attributed to the greater variability in both structure and 

function that is necessary to detect individual differences in those populations. 

Different sources of noise for both DTI and fMRI also can contribute to the low 

correlations. Interestingly, Honey et al. [75] compared structure-function relationships using 

low-resolution maps and high-resolution maps and found that brain image resolution impacted 

those relationships. Specifically, the strength of the relationship was about half the size in the 

high-resolution map compared with the low-resolution map (r = .36 vs. .66, respectively). The 

authors attributed this difference to inter-individual differences in anatomical and functional 

locations, which benefitted from the “blurring” of the low-resolution maps analogous to 

“smoothing” of data, which is a common preprocessing step in most neuroimaging analysis 

pipelines. Consistent with these interpretations, we utilized high-resolution data from HCP, 
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which may have ironically decreased our ability to find strong connections. In balance, we 

interpret the weak to moderately sized correlations in the present study as real correlations, but 

also acknowledge that WM integrity obviously is one of multiple factors that impact network 

complexity.  

4.5 Conclusions 

We suggest that network complexity provides a novel window into the dynamics of brain 

functioning that mean activity and functional connectivity do not provide. Using multiscale 

entropy, the present study reveals new relationships between brain structure and function on 

multiple time scales. While evidence is gathering that greater WM integrity facilitates 

information processing in neighboring brain regions, this facilitation may come at a cost or 

disrupts a balance in how local WM integrity affects information processing across more 

distributed (distal) brain regions. The present findings support computational simulations of 

structure-function interactions, but also implicate two separate pathways through which WM 

integrity affects brain function in the prefrontal cortex—an executive-prefrontal pathway and a 

perceptuo-occipital pathway. This dual-structural path provides a framework to investigate how 

lesions or deterioration of these pathways differentially affects cognition in aging or clinical 

disorders. Future work should be aimed to test how these two pathways impact information 

processing at the behavioral level both in normal adults as well as changes in behavior as a 

function of age and disorders. 
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Table 1. Sample Characteristics Across Three Samples. 

 Primary Matched Non-Matched 

N 121 122 121 

Age (SD) 27.97 (3.14) 28.11 (3.54) 30.37 (3.04) 

Years of Education (SD) 14.38 (2.28) 14.30 (2.26) 15.69 (1.52) 

Sex (% Female, % Male) 57%/43% 63%/37% 65%/35% 

Race    

     White (%) 66% 68% 92% 

     Black (%) 24% 30% 6% 

     Asian/Pacific Islander (%) 3% 1% 2% 

     Other (%) 7% 1% 1% 

Note. SD = standard deviation. 
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Figure Legends 

Figure 1. LV 1 (top) and LV 2 (bottom) from the partial least squares analysis in the primary 

sample. The left panels represents bootstrap ratio (BSR) values for network complexity as 

measured by multiscale entropy across 25 time scales. The right panels represents the correlation 

values for each of the DTI measures (FA, AD, MD, and RD). For the LV 1, greater network 

complexity values at the fine time scale (shown in green in the left panel) were associated with 

lower FA, AD, and MD values (shown in blue in the right panel), but higher RD values in many 

of the tracts (shown in green in the right panel). In contrast, greater network complexity values at 

the mid and coarse time scales (shown in blue in the left panel) were associated with lower FA, 

AD, and MD values, but higher RD values. For LV 2, greater network complexity values at the 

fine time scales, but lower network complexity at mid and coarse time scales were associated 

with both lower (in blue) and higher (in green) DTI values depending on the measure and tract. 

LV 1 = latent variable 1; LV 2 = latent variable 2; FA = fractional anisotropy; AD = axial 

diffusivity; MD = mean diffusivity; RD = radial diffusivity. 

Figure 2. LV 1 (top) and LV 2 (bottom) from the partial least squares analysis in the matched 

sample. The left panels represents bootstrap ratio (BSR) values for network complexity as 

measured by multiscale entropy across 25 time scales. The right panels represents the correlation 

values for each of the DTI measures (FA, AD, MD, and RD). For the LV 1, greater network 

complexity values at the fine time scale (shown in green in the left panel) were associated with 

lower AD, MD, and RD values (shown in blue in the right panel), but higher FA values in many 

of the tracts (shown in green in the right panel). In contrast, greater network complexity values at 

the mid and coarse time scales (shown in blue in the left panel) were associated with lower AD, 

MD, and RD values, but higher FA values. For LV 2, greater network complexity values at the 
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fine time scales, but lower network complexity at mid and coarse time scales were associated 

with lower MD and RD values (in blue), but higher FA and AD values (in green) across many of 

the tracts. LV 1 = latent variable 1; LV 2 = latent variable 2; FA = fractional anisotropy; AD = 

axial diffusivity; MD = mean diffusivity; RD = radial diffusivity. 

Figure 3. LV 1 (top) and LV 2 (bottom) from the partial least squares analysis in the non-

matched sample. The left panels represents bootstrap ratio (BSR) values for network complexity 

as measured by multiscale entropy across 25 time scales. The right panels represents the 

correlation values for each of the DTI measures (FA, AD, MD, and RD). For the LV 1, greater 

network complexity values at the fine time scale (shown in green in the left panel) were 

associated with lower AD, MD, and RD values (shown in blue in the right panel), but higher FA 

values in many of the tracts (shown in green in the right panel). In contrast, greater network 

complexity values at the mid and coarse time scales (shown in blue in the left panel) were 

associated with lower AD, MD, and RD values, but higher FA values. For LV 2, greater network 

complexity values at the fine time scales, but lower network complexity at mid and coarse time 

scales were associated with lower MD and RD values (in blue), but higher FA values (in green) 

across many of the tracts. AD measures showed both positive and negative associations with 

network complexity in LV2. LV 1 = latent variable 1; LV 2 = latent variable 2; FA = fractional 

anisotropy; AD = axial diffusivity; MD = mean diffusivity; RD = radial diffusivity. 

Figure 4. Cells in green represent replications of significant correlations between MSE and WM 

microstructure across all three samples for LV 1 (top) and LV 2 (bottom). The left panels 

represent brain networks across 25 time scales. The right panels represent the DTI measures (FA, 

AD, MD, and RD). LV 1 = latent variable 1; LV 2 = latent variable 2; FA = fractional 

anisotropy; AD = axial diffusivity; MD = mean diffusivity; RD = radial diffusivity. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/299065doi: bioRxiv preprint 

https://doi.org/10.1101/299065
http://creativecommons.org/licenses/by-nc-nd/4.0/


NETWORK COMPLEXITY AND WHITE MATTER MICROSTRUCTURE 38 

Figure 5. Two primary components of brain structure—an executive-prefrontal component and a 

perceptuo-occipital component—affect network complexity within the prefrontal cortex. The top 

panel shows high and low white matter integrity from anterior white matter tracts (left superior 

longitudinal fasciculus and left superior fronto-occipital fasciculus) for both AD and MD on the 

x-axis with sample entropy on the y-axis for fine time scales (scale 1), mid time scales (scales 3-

14) and coarse time scales (scales 15-25). The bottom panel shows the same for high and low 

white matter integrity from posterior white matter tracts (left anterior corona radiata and left 

posterior thalamic radiation) for both AD and MD. Greater white matter integrity was associated 

with higher network complexity than poorer white matter integrity at fine time scales, but was 

associated with lower network complexity at mid and coarse time scales. 
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