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Abstract 1 

The brain transforms nociceptive input into a complex pain experience comprised of 2 
sensory, affective, motivational, and cognitive components. However, it is still unclear how pain 3 
arises from nociceptive input, and which brain networks coordinate to generate pain 4 
experiences. We introduce a new high-dimensional mediation analysis technique to estimate 5 
distributed, network-level patterns mediating the relationship between stimulus intensity and 6 
pain. In a large-scale analysis of functional magnetic resonance imaging data (N=284), we 7 
identify both traditional mediators in somatosensory brain regions and additional mediators 8 
located in prefrontal, midbrain, striatal, and default-mode regions unrelated to nociception in 9 
standard analyses. The whole brain mediators are specific for pain vs. aversive sounds and are 10 
organized in five functional networks. Brain mediators explain 32% more within-subject variance 11 
of single-trial pain ratings than previous brain-based models. Our results provide a new, broader 12 
view of the networks underlying pain experience, as well as distinct targets for interventions.  13 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/298927doi: bioRxiv preprint 

https://doi.org/10.1101/298927
http://creativecommons.org/licenses/by-nc/4.0/


High-dimensional mediation analysis of pain 

 3 

Introduction 1 

The brain is central to the generation of pain; it transforms sensory input from peripheral 2 
receptors into a complex set of responses, including subjective experience, autonomic and 3 
neuroendocrine responses, avoidance behavior, and new learned stimulus-outcome and action-4 
outcome associations. Neurophysiology and neuroimaging studies have identified brain regions 5 
that are targeted by afferent nociceptive pathways (Willis and Westlund, 1997; Apkarian et al., 6 
2005; Dum et al., 2009), which are thought to encode sensory-discriminative and affective 7 
aspects of pain experience. But pain is a complex experience that entails not only sensory and 8 
emotional aspects, but also motivational, attentional and cognitive components. A full picture of 9 
the functional brain networks supporting these components of pain experience is still lacking. 10 
Here, we address this question using a new multivariate analysis method and a large functional 11 
magnetic resonance imaging (fMRI) dataset (N=284).  12 

Although the complexity of pain is widely acknowledged, the underlying brain processes 13 
are often conceptualized as a unitary system that is activated by nociceptive input. Brain regions 14 
traditionally associated with pain include primary (S1) and secondary (S2) somatosensory, 15 
anterior midcingulate cortices (aMCC), medial and lateral thalamus, and posterior and mid-16 
insular cortices (Apkarian et al., 2005; Schweinhardt and Bushnell, 2010; Jensen et al., 2016). 17 
But regions not directly targeted by afferent pathways are also activated by acute pain stimuli 18 
(Apkarian et al., 2005; Wager et al., 2013; Jensen et al., 2016; Seminowicz and Moayedi, 2017). 19 
For example the dorsolateral prefrontal cortex (dlPFC) – a brain region involved in high-level 20 
cognitive functions – responds to painful stimulation, shows alterations in chronic pain 21 
conditions, and contributes to placebo analgesia (Krummenacher et al., 2010; Bushnell et al., 22 
2013; Seminowicz and Moayedi, 2017; Schafer et al., 2018). Other brain regions, including the 23 
ventromedial prefrontal cortex (vmPFC) (Wager et al., 2011; Roy et al., 2012; Geuter et al., 2017b) 24 
and the nucleus accumbens (NAc) (Baliki et al., 2012; Chang et al., 2014; Lee et al., 2015; Woo 25 
et al., 2015; Ren et al., 2016), key structures for reinforcement learning, also contribute to pain 26 
modulation. However, the exact role of these regions is not clear, and they are often thought of 27 
as external modulators of activity in the core pain system (Seminowicz and Moayedi, 2017). If 28 
so, these regions may be involved in the endogenous construction and regulation of pain in the 29 
brain, but they do not mediate the effects of nociceptive input on pain, i.e., they do not link 30 
nociception with pain (Woo et al., 2017). 31 

Another view, in line with the ideas originally proposed by Melzack (1999), treats these 32 
regions as part of the brain’s pain system for processing cognitive-evaluative aspects of pain. If 33 
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the neuronal pain system was mirroring the phenomenal complexity of the pain experience, we 1 
might expect regions processing cognitive aspects, and perhaps even other areas, e.g., those 2 
controlling attention, to be part of the broader pain system (Melzack, 1999). In this case, the 3 
dlPFC, vmPFC, NAc, and potentially parietal regions, should be true mediators of the pain 4 
response, i.e., they should be closely associated with nociceptive input and pain experience. For 5 
example, pain-evoked activity in parietal regions could link attention to the sources of pain with 6 
motor intentions (Downar et al., 2003; Oshiro et al., 2007). Furthermore, the different pain 7 
mediators should be separable into multiple different functional networks, each associated with 8 
different aspects of pain processing. 9 

Here, we introduce a new multivariate mediation analytic framework that captures two 10 
important advantages in a single model. First, by analyzing spatial patterns of brain activity, our 11 
method builds on spatially distributed information across multiple spatial scales. Second, our 12 
method allows the identification of brain responses jointly linked, and interposed between, 13 
nociceptive input and pain reports. Mediation analysis (Figure 1A) has previously been applied 14 
on a voxel-by-voxel basis to investigate relationships between stimulation intensity, voxel-wise 15 
brain activation, and pain report (Figure 1B) (Atlas et al., 2014). However, as with other work on 16 
multivariate pattern classification and regression (Wager et al., 2013; Haynes, 2015), a univariate 17 
approach can miss brain regions whose contributions to pain perception are conditional on other 18 
regions. In order to capture cross-regional interactions, we use a unified high-dimensional 19 
approach that takes into account spatial co-variation of activity patterns across the brain (Figure 20 
1C,D).  21 

This new approach, high-dimensional mediation analysis, identifies multiple whole brain 22 
mediators, termed principal directions of mediation (PDM). Each PDM represents a pattern of 23 
whole brain activity chosen because it maximizes the indirect (mediating) effect between 24 
stimulus intensity and pain report. The voxel weights of each PDM inform us about the 25 
contribution of individual brain regions to the generation of a painful experience following noxious 26 
stimulation. This approach decomposes activity across the brain into multiple networks that 27 
independently mediate stimulation effects on outcomes (i.e., pain report). Furthermore, these 28 
independent PDMs can be combined into a single, joint PDM that can be prospectively applied 29 
to new datasets as a predictive model. 30 

Using data from eight different heat pain studies (N=284), we comprehensively investigate 31 
the role of brain mediators in the generation of pain experiences. Seven of the eight studies, 32 
were used as training data for the mediation analyses (N=209), and the largest individual study 33 
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(N=75) was used as a test data set, using the model parameters estimated in the training data 1 
to validate model predictions in new individuals. Importantly, the test data set not only included 2 
heat pain stimuli, but also physically and emotionally aversive sounds. While brain mediators of 3 
pain should generalize to different pain data sets, they are not expected to mediate the 4 
relationship between sound stimulation levels and perceived sound intensity. This allows us to 5 
study the sensitivity and specificity of the brain mediators of pain. 6 
 7 

Results 8 

Principal Directions of Mediation (PDM) 9 

Participants in all eight studies underwent fMRI scanning while being exposed to varying 10 
levels of heat pain and rating the perceived pain intensity (see Tables 1-3 for details on each 11 
study). For each participant, we recorded the temperature applied, the pain rating on a 0-100 12 
scale for each trial and estimated single-trial maps of brain activity. These three variables were 13 
used in the primary mediation analysis with temperature as the initial variable, brain activity as 14 
the mediator, and pain rating as the outcome variable (Figure 1). Using our novel high-15 
dimensional mediation analysis model (see Chén et al., 2017 for a similar approach), we first 16 
estimated 30 whole-brain mediation patterns (PDMs). Each PDM specifies a linear combination 17 
of voxels across the brain maximizing the mediated effect from temperature to pain rating, while 18 
being orthogonal to other PDMs (Figure 1C). Each PDM (or !") thus represents a whole brain 19 

mediator for pain. For each individual PDM, we obtain path coefficients for the relationship 20 
between temperature $, brain mediator %& , and pain rating ' as in a standard mediation model. 21 
A positive path ( indicates that higher temperatures lead to more activity in voxels with positive 22 
PDM weights and less activity in voxels with negative PDM weights. A positive path ) indicates 23 
that voxels with positive weights contribute positively to the pain rating after controlling for 24 
temperature. This pattern of weights would be expected for regions that receive spinothalamic 25 
input, for example the posterior insula or S2 (Willis and Westlund, 1997; Dum et al., 2009), and 26 
possibly other mediating regions as well. Finally, we combine the individual brain mediator maps 27 
into a joint PDM by computing the weighted sum of the individual PDMs (Figure 1D). 28 

The absolute coefficient values for the indirect () path assess how much of the effect of 29 
the manipulated temperature on pain ratings is explained by the brain mediator, i.e., individual 30 
PDM pattern. Here, the first 10 PDMs accounted for 99.1% of the total mediation effect (Figure 31 
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1E, Figure 1-supplement 1). We thus focus on the first 10 PDMs in all subsequent analyses with 1 
minimal loss of information. In order to analyze the contribution of individual brain regions to the 2 
mediation of pain, the signs of both paths ( and ) and the sign of the voxel weights have to be 3 
considered: Voxel weights are multiplied by the respective path coefficients to determine a 4 
region’s relationship to stimulation intensity and pain rating. When considering the sign of the 5 
voxels weights, four different kinds of relationship are possible: (i) positive to temperature, 6 
positive to pain; (ii) negative to temperature, negative to pain; (iii) positive to temperature, 7 
negative to pain; and (iv) negative to temperature, positive to pain. Here, type (i) is the standard, 8 
positive mediator case and type (ii) represents a negative mediator, in which greater deactivation 9 
to the stimulus mediates increased pain (MacKinnon et al., 2000; Atlas et al., 2010). Types (iii) 10 
and (iv) are suppressor effects (MacKinnon et al., 2000), e.g., for type (iii), brain activity increases 11 
with stimulus intensity that suppress pain, and may thus be involved in stimulus-engaged 12 
regulatory processes and other negative feedback loops. 13 

PDM 1 has both positive path ( and ) coefficients. Brain regions with positive weights 14 
(representing positive mediators, type (i) with positive paths ( and )) are shown in warm colors 15 
in Figure 2. These include brain regions commonly associated with pain processing, such as the 16 
dorsal posterior and mid-insula, S1, S2, MCC, and the PAG (Figure 2). Significant voxels in MCC 17 
stretch into the supplementary motor area (SMA), dorsal of the cingulate sulcus. In addition, PDM 18 
1 contains negative, type (ii), mediators, including the medial prefrontal cortex (mPFC) and 19 
ipsilateral S1/M1. The negative weights indicate that these regions show less activation with 20 
increasing temperatures and less regional activation is related to higher pain ratings. Such 21 
relationships would be expected for brain regions whose function is inhibited by nociceptive 22 
input or that are deactivated with increased pain-related processing.  23 

Brain regions positively mediating the relationship between temperature and pain rating 24 
(type (i)) in other PDMs are S1, M1, superior frontal gyrus (SFG), fronto-temporal operculum, 25 
temporal poles, temporal operculum, ventral insula, pons, and cerebellum (Figure 2). These 26 
positive mediators include regions, like the temporal regions, that are traditionally not considered 27 
to be pain-processing regions. Brain regions acting as negative mediators (type (ii)) in other 28 
PDMs include medial orbitofrontal cortex (mOFC), dorso-medial prefrontal cortex (dmPFC), 29 
superior parietal lobule (SPL), retrosplenial cortex (RSC), precuneus, and cuneus.  30 

A more complex function is indicated by positive path ( coefficients, but negative path ) 31 
coefficients (types (iii) and (iv), PDMs 3,5,7, and 9). Here, regions with positive voxel weights 32 
show a positive relationship with temperature, i.e., higher temperatures lead to more activity. By 33 
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contrast, the negative path ) indicates that these regions are negatively related to pain ratings 1 
controlling for temperature, i.e., more activity is related to lower pain ratings. Regions with such 2 
a profile fit a pain-inhibitory role as their activity increases with rising stimulus temperatures, but 3 
their increased activity mediates lower pain ratings (type (iii)). Parts of the mOFC, the cerebellum, 4 
precuneus, S1, and the left dlPFC fit this pain inhibitory profile. 5 

A final set of regions shows a negative relationship with temperature (positive path (, but 6 
negative weights) and a positive relationship with pain ratings, controlling for temperature 7 
(negative voxel weights and negative path ) resulting in a net positive relationship; type (iv)). 8 
Such regions show stimulus intensity-dependent deactivation, with larger de-activation 9 
mediating decreased pain, consistent with regulatory negative feedback mechanisms.  Regions 10 
with this profile include parts of the mOFC, the parahippocampal gyrus, visual cortices, and the 11 
NAc. For example, NAc shows decreased activation for high temperatures, which may relate to 12 
punishment or negative reinforcement signals. At the same time, controlling for temperature, 13 
stronger NAc de-activation is related to lower pain ratings, potentially signaling reduced 14 
motivational relevance. 15 

Joint PDM 16 

The individual PDMs can be combined into a single, joint PDM since the individual PDMs 17 
are orthogonal to each other. Weighting each individual PDM by its indirect effect (path ()) and 18 
summing the weighted PDMs results in a joint PDM map representing the total contribution of 19 
each voxel to the total indirect (pain mediation) effect (see Figure 1D and Methods). Significant 20 
voxel weights of the joint PDM map were determined by an additional bootstrap procedure at a 21 
false discovery rate (FDR) of * < 0.05.  22 

Within the joint PDM, individually significant clusters of positive mediators included S2, 23 
MCC, SMA, PAG, insula, including anterior and dorsal-posterior parts, as well as the medial 24 
thalamus (Figure 2). Negative mediators (stimulus-induced deactivations mediating increased 25 
pain) included mPFC, SPL, S1, and M1. Many of these regions were also part of PDM 1, which 26 
accounted for the biggest proportion of the total mediated effect. However, the medial thalamus 27 
and SPL were significant in the joint PDM, but not in PDM 1.  28 

While the size of the S1/M1 cluster was smaller in the joint PDM compared to PDM 1, the 29 
size of the mPFC cluster increased. Voxel weights for the mPFC and S1 were all negative in the 30 
joint PDM. The negative weights in the joint PDM indicate that the net contribution of these 31 
regions is a negative mediation of the relationship between temperature and pain, although these 32 
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regions received positive weights in some of the individual PDMs. Indeed, it is possible for 1 
weights to be both positive and negative in different PDMs, because voxels may include neural 2 
ensembles participating in different distributed circuits related to either more or less pain. Thus, 3 
the individual PDMs represent a decomposition of voxels’ activity into different distributed 4 
components, while the joint PDM reflects each voxel’s net contribution (controlling for other 5 
voxels). Computing and analyzing the joint PDM can thus help to clarify overall relationships 6 
between regional activity and the predictor and outcome variables. 7 

Clustering PDMs into functional networks 8 

The PDMs provide a dimensional view of coherent distributed processes, with each PDM 9 
a distinct dimension; in addition, it is useful to cluster the regions with the highest dimensional 10 
weights, to further examine the network structure of the inter-regional relationships. To do this, 11 
we used an iterative clustering procedure to group regions based on inter-regional correlations 12 
in stimulus-evoked responses across trials without considering stimulation temperatures or pain 13 
ratings (Kober et al., 2008; Atlas et al., 2014). The cluster analysis of single-trial activity from 14 
significant voxels of all 10 PDMs revealed 26 functional regions organized into 5 different 15 
functional networks (Figure 3A,C). A functional description of these networks was determined by 16 
computing the similarity of each network with feature maps generated by the meta-analytic tools 17 
on neurosynth.org (Yarkoni et al., 2011). The top ten features for each network are shown in 18 
Table 4. Network names were chosen based on the functional associations with Neurosynth 19 
(Yarkoni et al., 2011) terms. For example, the top three feature associations for network 1 were 20 
somatosensory, motor, and stimulation. Based on these associations we labeled network 1 as 21 
‘sensorimotor network’. 22 

Network 1 (‘sensorimotor’) included somatosensory regions like dpIns, mid-insula, S2, S1, 23 
but also the PAG, MCC, SMA, M1, and cerebellum. The second network (‘value learning’) 24 
included the NAc, ventral anterior insula, frontal operculum, and temporal poles. Network 3 25 
consisted of regions that are part of the default mode network (DMN), including mPFC, mOFC, 26 
and retrosplenial cortex. The fourth network (‘executive function’) included precuneus, inferior 27 
parietal lobule (IPL), superior parietal lobule (SPL), dorsal lateral occipital cortex (dLOC), 28 
temporal-parietal junction (TPJ), superior frontal gyrus (SFG), and dlPFC. Finally, network 5 29 
(‘visual’) included mostly occipital, visual areas and parts of the parahippocampal gyrus. The 30 
variety of functions ascribed to the five networks mediating pain indicate that pain processing 31 
involves multiple, distinct brain networks in addition to somatosensory systems. 32 
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We next investigated with which functional networks the individual PDMs are associated 1 
by computing pairwise Dice similarity coefficients (Figure 3B). Interestingly, the joint PDM was 2 
almost equally similar to the visual (/ = 0.3), sensorimotor (/ = 0.27), and to the executive 3 
function (/ = 0.25) networks, again stressing the diversity of brain regions contributing to pain. 4 
By contrast, PDM 1 had the greatest overall similarity with any single network, namely with the 5 
sensorimotor network (/ = 0.7). No other network was substantially associated to PDM 1 (all 6 
/ < 0.05). The sensorimotor network was also associated with PDMs 2, 5, and 6. The value 7 
learning network was related to PDMs 3, 6, and 9, with the highest similarity to PDM 9 (/ = 0.16). 8 
Similarity between the default mode network and PDM 4 was highest (/ = 0.24). Parts of the 9 
DMN also overlapped with PDMs 3, 5, and 7. The executive function network was associated 10 
with PDM 2 (/ = 0.22) and PDM 3 (/ = 0.23), and, to a lesser degree, with PDMs 4 and 7. Finally, 11 
the visual network was related to PDM 3 (/ = 0.38) and to a lesser degree to PDMs 5, 7, and 9. 12 
The overall similarity pattern between functional networks and PDMs shows that in contrast to 13 
PDM1, few of the remaining joint and individual PDMs are dominated by a single network. More 14 
often PDMs were comprised of a mix of 2 or 3 networks that together act as a pain mediator, 15 
reflecting the complexity of the transformation from nociception into pain experience. 16 

Projecting functional networks and regions onto the first 2 dimensions of the underlying 17 
non-metric multidimensional scaling (NMDS) space revealed that the sensorimotor network had 18 
high loadings on dimension 1, in contrast to the DMN, which had low loadings on dimension 1 19 
(Figure 3C). Dimension 1 thus spanned from the DMN to the sensorimotor network with the value 20 
learning and visual networks located between the two. Dimension 1 could thus be described 21 
approximately as an activation-deactivation gradient during pain. Interestingly, the PAG loaded 22 
relatively low on dimension 1 within the sensorimotor network and was located closest to the 23 
value learning network (Roy et al., 2014). Given the pain-modulatory role of the PAG this could 24 
indicate a flexible behavior in pain processing that differs from other regions like S1, S2, or insula, 25 
in line with previous literature (Satpute et al., 2013; Roy et al., 2014). 26 

The value learning network loaded lowest on dimension 2. Default mode and sensorimotor 27 
networks scored higher than the value learning network, but still lower than the visual network. 28 
The executive function network occupied much of the top-left quadrant, with low to medium 29 
loadings on dimension 1 and medium to high loadings on dimension 2. With precuneus and LOC 30 
as the highest loading regions on dimension 2 and NAc, anterior insula, and mOFC loading 31 
lowest, this dimension can potentially be described as a gradient across processing of different 32 
time-scales, with NAc encoding transient surprises and precuneus integrating semantic 33 
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information across longer time-scales (Hasson et al., 2015). 1 

Validation on an independent cohort 2 

Although we estimated PDMs on a large and diverse data set, here is a risk that the PDMs 3 
may over-fit noise inherent in the training data, potentially preventing generalization to other data 4 
sets. We thus applied the PDMs to an independent test data set, without re-estimating any model 5 

parameters. The resulting vectors of potential mediators (%&8
(:)) were then entered into standard 6 

multi-level mediation models. If the PDMs generalize to the new data, the indirect ( × ) effects 7 
should be significant on the test data.  8 

Applying the PDMs to independent pain test data (N = 75, an independent community 9 
sample cohort of mixed races and sex), revealed significant paths ( and ) for all 10 PDMs and 10 
the joint PDM (Figure 4A). The indirect path was also significant for the joint PDM and all 10 11 
individual PDMs, suggesting that all 10 PDMs are reliably related to pain and generalize across 12 
cohorts. The magnitude of the indirect effects (path ()) are monotonically decreasing for the 13 
training data (Figure 1E). On the test data, indirect path coefficients were not strictly 14 
monotonically decreasing from PDM 1 to PDM 10 (Figure 4A, Figure 4-supplement 1), indicating 15 
some variability of the PDM order across data sets, as expected. The joint PDM and the first two 16 
individual PDMs had the strongest effect in both data sets, suggesting that they capture the 17 
most important brain activity for pain across data sets. Figure 4C shows the predicted pain from 18 
the joint PDM plotted against the empirical pain ratings for pain training and test data.  19 

In order to further corroborate the generalizability and robustness of the PDMs, we also 20 
estimated 10 PDMs on the original test data set (Study 8) and cross-validated the new PDMs on 21 
the original training data set (Studies 1-7). The results were similar to the main results presented 22 
here. Six out of ten indirect paths were significant when PDM estimation was done on the smaller 23 
sample. The indirect () path coefficients for the first four PDMs were highest when applying the 24 
new PDMs to the original training data (Figure 4-supplement 2). Generalization thus does not 25 
depend strongly on the choice of the training data.  26 

In order to test whether PDMs are mediators specifically for somatic pain, we also applied 27 
the original PDMs to other aversive stimuli that are not painful. The test data of Study 8 also 28 
included trials with physically (fingernails on chalkboard) and emotionally (screaming, crying, 29 
etc.) aversive sounds with three pre-defined intensity levels of each stimulus type. Study 8 was 30 
designed to test specificity vs. generalizability to aversive sounds and matched in duration and 31 
approximate aversiveness ratings based on pilot studies; trials were randomly intermixed with 32 
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heat pain trials. Application of the original PDMs on the sound data revealed no significant 1 
indirect effects (Figure 4B, Figure 4-supplement 3) and only nine significant paths ( or ) in total. 2 
Thus, pain PDMs do not mediate the relationship between sound intensity and intensity ratings 3 
for ether type of sound. These results indicate specificity to somatic pain vs. sound. 4 

Comparison to the Neurological Pain Signature (NPS) 5 

Previous studies have investigated the direct relationship between brain responses and 6 
pain reports, both using univariate (Coghill et al., 1999; Bornhövd et al., 2002; Ploner et al., 2010; 7 
Atlas et al., 2014) and multivariate approaches (Marquand et al., 2010; Brodersen et al., 2012; 8 
Schulz et al., 2012; Wager et al., 2013; Woo et al., 2017). One study trained a multivariate pattern, 9 
termed the Neurological Pain Signature (NPS), that predicts pain reports with high accuracy from 10 
brain activity that can be easily applied to new data sets (Wager et al., 2013; Krishnan et al., 11 
2016; Geuter et al., 2017a). In contrast to the present approach, the estimation of the NPS did 12 
not account for temperature-brain relationships; its goal was to predict pain intensity without 13 
demonstrating mediation (Wager et al., 2013). We compared our mediation approach to the 14 
predictive power of the NPS by computing the variance explained in single-trial pain ratings by 15 
both models. The joint PDM explained a total of 10.5% of the single-trial rating variance in the 16 
training data (Studies 1-7) while the NPS explained a total of 4% of the rating variance within 17 
subjects (Figure 4D). The variance uniquely explained by the joint PDM was 7%, while the NPS 18 
only explained 0.5% unique rating variance and 3.5% of the rating variance was jointly explained 19 
by the joint PDM and the NPS. On the test data set (Study 8), the joint PDM explained a unique 20 
share of 6.1% of the rating variance. NPS and PDMs explained an additional 3.7% of variance 21 
together and the NPS explained additional 0.9% alone (Figure 4D). Together, this indicates that 22 
including temperature-brain relationships in the PDM approach captures additional pain variance 23 
not explained by the NPS. Here one should note that single-trial data are extremely noisy (Woo 24 
et al., 2017), but these numbers indicate high accuracy if an application can average across trials 25 
within a person as shown in previous studies results (Wager et al., 2013; Woo et al., 2017). 26 

Comparison to univariate mediation analysis 27 

In contrast to the present multivariate PDM approach, mass-univariate mediation analyses 28 
of fMRI data estimate independent mediation models for each voxel (Wager et al., 2008; Atlas et 29 
al., 2014). The intersection of voxels with significant paths (, ), and () is then interpreted as a 30 
set of mediating brain regions.  In order to compare the novel high-dimensional PDM approach 31 
to the univariate mediation analysis, we first computed a mass-univariate mediation analysis on 32 
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the training data set (Studies 1-7).  1 
This analysis identified the MCC, cerebellum, posterior and mid-insula, S2, and S1 as brain 2 

mediators defined as the intersection of the coefficient maps for paths (, ), and () at FDR * <3 
0.05	(Figure 5). Comparing these results to the joint PDM, which estimates a joint mediating 4 
pattern across voxels, revealed both similarities and some notable differences (Figure 5). The 5 
joint PDM included additional regions not in the univariate model, including mPFC, PAG, SPL, 6 
and S1. By contrast, the univariate mediation results included a part of the cerebellum that was 7 
not included in the joint PDM. Overall, the high-dimensional approach identified more regions 8 
than the univariate approach, including regions outside the classic pain processing network like 9 
mPFC and SPL. Furthermore, the PAG, a region known to be involved in descending pain 10 
control, is part of the joint PDM, but not part of the univariate mediators. Such results are 11 
expected if some brain regions make detectable contributions only after controlling for the 12 
influences of other brain regions; this is an advantage of multivariate predictive approaches to 13 
neuroimaging analysis and multiple regression generally.  14 

Computing the cosine similarities of PDMs and NPS to both univariate path ( and ) maps 15 
revealed an interesting pattern (Figure 6).  Path ( represents the relationship between 16 
temperature and brain responses, while path ) represents the relationship between brain 17 
responses and rating, controlling for temperature. Projecting all maps on the space defined by 18 
temperature and pain rating related brain responses, revealed a linear ordering of components 19 
along these dimensions. The map representing the univariate mediation effect (path ()) was 20 
most similar to path ) (purple dot in Figure 6). The joint PDM (red) was most similar to the 21 
univariate path ( and located in close proximity to the univariate mediation effect map with 22 
respect to the path ( and ) maps. However, the cosine similarity of the joint PDM with the 23 
univariate path () map was only 0.45, indicating that the two maps reflect substantially different 24 
brain processes. Similarities between individual PDMs and the two univariate maps were ordered 25 
according to their order of estimation (and the variance explained in the training dataset), with 26 
the exception of PDM 3, which was negatively related to both maps. The NPS (black dot) was 27 
positioned between PDMs 2 and 4. However, the low overall similarity values for PDMs 3, 5-10, 28 
suggest that the space defined by univariate maps of temperature and pain rating related brain 29 
responses do not capture all components involved in pain processing. A higher dimensional 30 
representation may be more consistent with psychological theories of pain experience.  31 

 32 
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Discussion 1 

Using a novel high-dimensional mediation analysis approach (Principal Directions of 2 
Mediation [PDM]), we identified brain networks that mediate the relationship between stimulus 3 
intensity and pain reports. Importantly, the PDM mediators generalized to independent pain test 4 
data but not to aversive sound data, suggesting at least some specificity for pain. A parcellation 5 
of the brain mediators into functional networks revealed distinct contributions of classic 6 
somatosensory brain regions, but also motor regions, value learning, executive control, default 7 
mode, and visual regions. This diversity of mediators shows that pain involves many brain 8 
regions in addition to somatosensory regions. The observation that the joint PDM map, which 9 
integrates the brain mediators, is equally related to the executive function, visual, and 10 
sensorimotor networks further supports the importance of non-somatosensory regions in pain 11 
processing. In this way, the diversity of brain mediators mirrors the multi-dimensional nature of 12 
pain including of sensory, affective, motivational, and cognitive components (Melzack, 1999; 13 
Turk and Melzack, 2011). 14 

The new, high-dimensional mediation approach provides a more comprehensive picture of 15 
pain processing in the human brain than previous studies using univariate analyses, or studies 16 
focusing solely on the stimulation-brain or brain-outcome relationships. This is reflected by the 17 
higher share of pain rating variance explained compared to the NPS (Wager et al., 2013), by the 18 
higher sensitivity at the brain-voxel level compared to univariate mediation, and by the 19 
involvement of brain regions not observed in recent meta-analyses of pain (e.g., mPFC, PAG, 20 
and M1) (Duerden and Albanese, 2013; Jensen et al., 2016). The higher sensitivity is 21 
demonstrated by the direct comparison of univariate and multivariate maps (Figure 5), and by 22 
the PDMs not contained in the space defined by the univariate maps (Figure 6). Together, these 23 
results highlight the importance of a broad and methodologically advanced approach to studying 24 
pain and related affective processes. 25 

Our results parallel observations in animals and humans that have stressed the importance 26 
of psychological and neural processes underlying motivation, learning, attention, and cognition 27 
for pain (Melzack, 1999; Atlas et al., 2014; Navratilova and Porreca, 2014; Kucyi and Davis, 2015; 28 
Wiech, 2016; Seminowicz and Moayedi, 2017). Functional and structural changes in regions 29 
strongly involved in learning, valuation, and executive functions occur during the development 30 
of chronic pain and also contribute to chronic pain (Bushnell et al., 2013; Seminowicz and 31 
Moayedi, 2017). For example, structural changes observed in the NAc, insula, dlPFC, and 32 
sensorimotor cortex distinguish healthy individuals and those suffering from chronic pain (Baliki 33 
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et al., 2012; Chang et al., 2014; Schwartz et al., 2014; Seminowicz and Moayedi, 2017). 1 
Furthermore, altered communication between mPFC and NAc contributes to the development 2 
of chronic pain and regulation of acute pain (Baliki et al., 2012; Lee et al., 2015; Woo et al., 2015).  3 

Studies on large-scale functional brain connectivity have also shown that the brain 4 
switches dynamically between different states as indexed by state-dependent changes in the 5 
communication patterns within and between different brain networks (Cribben et al., 2012; 6 
Hutchison et al., 2013). These spontaneous state changes influence perception and cognition 7 
(Boly et al., 2007; Sadaghiani et al., 2015) and are known to affect the perception of noxious 8 
stimuli (Ohara et al., 2008; Ploner et al., 2010). These observations have led to the hypothesis of 9 
a ‘pain connectome’ in which the functional connectivity between networks determines pain 10 
experiences (Kucyi and Davis, 2015). The DMN (including mPFC, precunues, and temporal 11 
regions), the salience network (including anterior insula, PFC, and TPJ), and the anti-nociceptive 12 
network (including mPFC and PAG) have been proposed to be particularly important for pain 13 
perception (Kucyi and Davis, 2015). All of these regions were also part of the functional networks 14 
mediating pain processing in our multivariate analyses (Figure 3), supporting the notion that pain 15 
depends on activation and co-activation patterns (or functional connectivity) between all these 16 
regions and not just on the activation level in a unitary core pain system. The high-dimensional 17 
mediation approach further allows us to analyze the relationships between activity in individual 18 
brain regions with stimulus intensity and pain experience in more detail. In the following we will 19 
discuss contributions of brain regions based on their functional relationships with stimulation 20 
intensity and pain reports.  21 

Activity in brain regions receiving afferent nociceptive input, including the medial thalamus, 22 
PAG, S2, insula, MCC, SMA, and ipsilateral S1 (Dum et al., 2009), increased due to increasing 23 
temperatures and higher activity was related to stronger pain, controlling for temperature. This 24 
set of commonly pain-associated regions (Apkarian et al., 2005; Bushnell et al., 2013; Duerden 25 
and Albanese, 2013; Jensen et al., 2016) was complemented by anterior temporal regions and 26 
the cerebellum, which share the same functional response profile. A positive relationship with 27 
both temperature and pain rating is in line with a traditional, feedforward encoding view of 28 
nociception (Bushnell et al., 2013; Atlas et al., 2014; Geuter et al., 2017a). Because the mediation 29 
analysis statistically controls the effects of temperature, our results show that fluctuations in 30 
regional activity also contribute to pain perception beyond the regional activity driven by direct 31 
afferent input. Activity in these positive mediator regions is thus not only determined by 32 
nociceptive input, but the processing and transformation of nociceptive input in these regions 33 
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contributes to the perceived pain (Büchel et al., 2002).  1 
By contrast, the mPFC, SPL, RSC, precuneus, and contralateral S1 and M1 were negatively 2 

related to both temperature and pain. The mPFC, RSC, and precuneus are part of the DMN, 3 
which has been associated with mind-wandering and internal thoughts (Andrews-Hanna et al., 4 
2010; Kucyi and Davis, 2015). The negative mediating role of the DMN regions could be related 5 
to the disruption of ongoing thought processes by the painful stimulation or attentional 6 
refocusing from internal to external sensations. Similarly to the DMN response profile, activity in 7 
contralateral M1 was negatively related to stimulus intensity and pain. Motor cortex activity has 8 
been associated with painful stimuli in some neuroimaging studies (Apkarian et al., 2005; 9 
Schweinhardt and Bushnell, 2010). Along with premotor areas such as SMA, activation in M1 is 10 
sometimes interpreted in terms of motor function. However, if M1 activity would represent a 11 
motor planning response, we would expect a positive relationship with stimulus intensity and 12 
pain ratings. By contrast, the negative relationship of the contralateral M1 with pain is in line with 13 
reports of reductions in clinical pain following the inhibition of M1 by transcranial magnetic 14 
stimulation (TMS) of M1 (Passard et al., 2007; Mori et al., 2010; Moisset et al., 2016) suggesting 15 
a pain modulatory role of M1, potentially via the PAG and the ACC (Pagano et al., 2011). 16 
However, further studies are needed to test a potential causal pain inhibitory function of these 17 
negative mediator regions in the DMN and sensorimotor cortices. 18 

Pain has also strong motivational implications – humans and animals avoid pain when 19 
possible because pain is usually associated with tissue damage (Navratilova and Porreca, 2014; 20 
Geuter et al., 2016). It is thus important to learn which stimuli cause pain in order to minimize 21 
future harm. However, the role of value learning regions like NAc in pain are complex and not 22 
well understood, yet (Becerra et al., 2013; Woo et al., 2015). Unraveling them could contribute a 23 
great deal to pain characterization and treatment because of its prominent role in persistent pain 24 
in animal models (Chang et al., 2014; Navratilova and Porreca, 2014; Schwartz et al., 2014; Ren 25 
et al., 2016) and humans (Baliki et al., 2010, 2012). The present study offers some constraints on 26 
interpreting NAc function in pain by demonstrating opposing relationships of NAc activity with 27 
stimulus intensity (negative) and pain (positive). Here, NAc shows stimulus intensity-dependent 28 
deactivation, with larger de-activation mediating decreased pain, consistent with regulatory 29 
negative feedback mechanisms. The NAc might exert its control in this feedback loop indirectly 30 
via its connections with the hypothalamus or mPFC as indicated by studies in humans and 31 
animals (Baliki et al., 2012; Schwartz et al., 2014; Lee et al., 2015; Woo et al., 2015). However, 32 
the exact contribution of the NAc to pain perception might rely on more complex temporal 33 
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dynamics that cannot be resolved in the current data set. For example, the direction of the 1 
valence encoding at pain onset and offset is still a matter of debate (Baliki et al., 2010; Becerra 2 
et al., 2013) as is its role in aversive learning more generally (Roy et al., 2014; Matsumoto et al., 3 
2016). Elucidating the specific contributions of the NAc in different contexts in future studies will 4 
further help our understanding of motivational and learning aspects for pain perception.  5 

An advantage of the present multivariate mediation approach is that it controls for the 6 
effects of stimulation intensity when estimating the relationship between brain activity and 7 
reported outcomes. Compared to approaches that do not take into account the stimulus-brain 8 
relationship when predicting pain (Wager et al., 2013; Krishnan et al., 2016; Lindquist et al., 9 
2017), the present mediation approach yields higher predictive accuracy. Both approaches may 10 
yield whole brain maps that can be used as predictive models of acute pain that can be applied 11 
prospectively to new data. Application of the PDMs to new datasets can be used to (i) further 12 
evaluate the sensitivity and specificity of the model, and (ii) to evaluate the effects of 13 
psychological or medical interventions on the brain processes supporting pain. Testing the 14 
PDMs on a large, independent data set showed that the PDMs generalize to other pain data, but 15 
do not generalize to aversive sounds. This speaks against the notion that the brain mediators 16 
are completely driven by stimulus independent features, such as general feelings of aversiveness 17 
or unpleasantness. 18 

In summary, the new high-dimensional mediation analysis revealed a comprehensive 19 
picture of brain responses underlying the complex, multi-faceted pain experience. Several brain 20 
regions, such as the mPFC, NAc, and M1, are shown to directly and formally mediate stimulus-21 
to-pain relationships. The functional diversity of the brain mediators observed here offers a better 22 
understanding of the brain responses underlying the complexity of the pain experience. 23 
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Materials and Methods 1 

Participants 2 

The analysis included a total of 284 healthy participants from 8 independent studies, with 3 
sample sizes ranging from N = 17 to N = 75 per study. Descriptive statistics on the age, sex, and 4 
other features of the subjects in each individual study are provided in Tables 1-3. Further details 5 
on Studies 1-7, which were used to estimate the PDMs are provided in Lindquist et al. (2017). 6 
Participants were recruited from New York City and Boulder/Denver Metro Areas. The 7 
institutional review board of Columbia University and the University of Colorado Boulder 8 
approved all the studies, and all participants provided written informed consent. Preliminary 9 
eligibility of participants was determined through an online questionnaire, a pain safety screening 10 
form, and a functional Magnetic Resonance Imaging (fMRI) safety screening form. 11 

We applied several exclusion criteria for analysis purposes. Participants with psychiatric, 12 
physiological or pain disorders, neurological conditions, and MRI contraindications were 13 
excluded prior to enrollment. In addition, participants were required to have at least 30 trials with 14 
low variance inflation factors (see below), non-missing rating, and stimulation intensity data. 15 
Based on these criteria, 18 participants from Study 8 were excluded, resulting in a total of 209 16 
participants for the primary PDM analysis and 75 participants for the validation sample. 17 

Procedures 18 

In all studies, participants received a series of contact-heat stimuli and rated their 19 
experienced pain following or during each stimulus. The number of trials, stimulation sites, inter-20 
trial intervals, rating scales, and stimulus intensities and durations varied across studies, but 21 
were comparable; these variables are summarized in Tables 2 and 3. Each study also comprised 22 
a specific psychological manipulation (except Study 8), such as placebo treatment, which will be 23 
or has been reported elsewhere (Table 1). Study 8, which was used for validation purposes (see 24 
below), also presented aversive sounds to participants. Trials with aversive sounds were used 25 
to test the specificity of the pain PDMs. Sounds included were a physically aversive recording of 26 
nails on a chalkboard and a set of emotionally aversive sounds (attacks, screaming, and crying) 27 
from the International Affective Digital Sounds database (IADS) (Bradley and Lang, 2007). Aside 28 
from these sound trials, we focus on brain mediation of pain across all trials in the present paper, 29 
irrespective of the study-specific psychological and physical manipulations that influenced pain.  30 
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Thermal stimulation 1 

In each study, except Studies 7 and 8, thermal stimulation was delivered to multiple skin 2 
sites using a TSA-II Neurosensory Analyzer (Medoc Ltd., Chapel Hill, NC) with a 16 mm Peltier 3 
thermode endplate. A PATHWAY system (Medoc Ltd., Chapel Hill, NC) was used in Studies 7 4 
and 8. Study 7 used a circular CHEPS Peltier endplate (diameter: 32 mm) and study 8 used a 16 5 
mm ATS Peltier endplate. On every trial, after the offset of stimulation, participants rated the 6 
magnitude of the warmth or pain they had felt during the trial on a visual analog scale. 7 
Participants in Study 8 rated their pain continuously during stimulation. The maximum rating of 8 
each trial was used in the following analyses. Other thermal stimulation parameters varied across 9 
studies, with stimulation temperatures ranging from 40.8 °C to 50 °C and stimulation durations 10 
from 1.85 to 12.5 s. Most studies applied thermal stimulation to the forearm. See Table 2 for 11 
stimulation intensity levels, mean temperature for each intensity level, and details of the rating 12 
scales. See Table 3 for stimulation duration, duration of inter-stimulus interval, number and 13 
location of stimulation sites, and number of trials per subject. 14 

fMRI data processing 15 

Preprocessing 16 
Structural T1-weighted images were co-registered to the mean functional image for each 17 

subject using the iterative mutual information-based algorithm implemented in SPM (Ashburner 18 
and Friston, 2005), and then normalized to MNI space using SPM. The version of SPM used 19 
varied across studies (Studies 1 and 6 used SPM5; while all other studies used SPM8; 20 
http://www.fil.ion.ucl.ac.uk/spm/). Following normalization, Studies 1 and 6 included an 21 
additional step of normalization to the group mean using a genetic algorithm-based 22 
normalization (Wager and Nichols, 2003; Atlas et al., 2010, 2014). 23 

For each functional dataset, initial volumes were removed to allow for image intensity 24 
stabilization (see Lindquist et al. (2017) for details). In addition, volumes with signal values that 25 
were outliers within the time series (i.e., “spikes”) were removed. To identify outliers, both the 26 
mean and the standard deviation of intensity values across each slice were computed for each 27 
image. The Mahalanobis distances for the matrix of (concatenated) slice-wise mean and 28 
standard deviation values by functional volumes (over time) were computed, and values with a 29 
significant =2 value (corrected for multiple comparisons based false discovery rate) were 30 
considered outliers. In practice, less than 1% of images were deemed outliers. The output of this 31 
procedure was later included as nuisance covariates in the subject level models. Next, functional 32 
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images were corrected for differences in the acquisition timing of each slice (except for multiband 1 
data with a short TR of 480 ms in Study 8) and were motion-corrected (realigned) using SPM. 2 
The functional images were warped to SPM's normative atlas (warping parameters estimated 3 
from co-registered, high-resolution structural images), interpolated to 2	 × 	2	 × 	2	%%> voxels, 4 
and smoothed with an 8 mm FWHM Gaussian kernel. 5 

Single trial analysis (Except Study 3 and Study 6) 6 
For each study, a single trial, or “single-epoch”, design and analysis approach was used 7 

to model the data. Quantification of single-trial response magnitudes was done by constructing 8 
a GLM design matrix with separate regressors for each trial (Rissman et al., 2010; Mumford et 9 
al., 2012). First, boxcar regressors, convolved with the canonical hemodynamic response 10 
function (HRF), were constructed to model cue and rating periods in each study. Regressors for 11 
each trial, as well as several types of nuisance covariates were also included. Because each trial 12 
consisted of relatively few volumes, trial estimates could be strongly affected by acquisition 13 
artifacts that occur during that trial (e.g. sudden motion, scanner pulse artifacts, etc.). Therefore, 14 
trial-by-trial variance inflation factors (VIFs; a measure of design-induced uncertainty due, in this 15 
case, to collinearity with nuisance regressors) were calculated, and any trials with VIFs exceeding 16 
2.5 were excluded from the analyses (VIF threshold for Study 8 was 3.5 as in the primary 17 
publication). For Study 1, global outliers (trials that exceeded three standard deviations (SDs) 18 
above the mean) were also excluded, and a principal component based denoising step was 19 
employed during preprocessing to minimize artifacts. This generated single trial estimates that 20 
reflect the amplitude of the fitted HRF on each trial and refer to the magnitude pain-period activity 21 
for each trial in each voxel.  22 

Single trial analysis (Only Study 3 and Study 6)  23 
For Studies 3 and 6, single trial analyses were based on fitting a set of three basis functions, 24 

rather than the standard canonical HRF used in the other studies. This flexible strategy allowed 25 
the shape of the modeled hemodynamic response function (HRF) to vary across trials and voxels. 26 
This procedure differed from that used in other studies because it maintains consistency with 27 
the procedures used in the original publications. For both Study 3 and Study 6, the pain period 28 
basis set consisted of three curves shifted in time and was customized for thermal pain 29 
responses based on previous studies (Lindquist et al., 2009; Atlas et al., 2010). To estimate cue-30 
evoked responses for Study 6, the pain anticipation period was modeled using a boxcar epoch 31 
convolved with a canonical HRF. This epoch was truncated at 8 s to ensure that fitted 32 
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anticipatory responses were not affected by noxious stimulus-evoked activity. As in the other 1 
studies, nuisance covariates were included and trials with VIFs larger than 2.5 were excluded. In 2 
Study 6 trials that were global outliers (those that exceeded 3 SDs above the mean) were also 3 
excluded. The fitted basis functions from the flexible single trial approach were used to 4 
reconstruct the HRF and compute the area under the curve (AUC) for each trial and in each voxel. 5 
These trial-by-trial AUC values were used as estimates of trial-level pain-period activity.  6 

Data sets and PDM validation 7 
The high-dimensional brain mediators (PDMs, see below) were estimated on the training 8 

data comprised of Studies 1-7 (Lindquist et al., 2017). Even though this data set is large (N=209) 9 
and diverse, the possibility of overfitting in the training data might reduce the generalizability of 10 
the PDMs. To test for the generalizability of the PDMs, we validated the PDMS on independent 11 
test data (Study 8, N=75). Computing the inner product of each PDM with each single-trial beta 12 
image from Study 8 resulted in 10 potential mediator variables. Each of these potential mediators 13 
was then subjected to a multi-level mediation analysis (Wager et al., 2009) with p-values 14 
determined by a bootstrap procedure with 5,000 iterations each. If the PDMs generalize to the 15 
new dataset, paths a:, b:, and the indirect effect ab:  should be significant for all A = 1,… ,10 16 
PDMs.  17 

We also tested whether the PDMs specifically mediate the relationship between 18 
temperature and pain intensity. To this end, we also tested the original PDMs on the aversive 19 
sound trials from Study 8. If the PDMs reflect specific patterns of brain activity involved in pain 20 
processing, they should not mediate the relationship between sound stimulation level and 21 
intensity ratings. We thus expect no significant indirect effect for the sound trials. 22 

A further test to validate the stability of PDM estimation was conducted by switching 23 
training and test data. That is, pain PDMs were estimated on Study 8 and tested on the original 24 
training data from Studies 1-7 as described above.  25 

Dimension reduction 26 
The training data set consisted of a total of 13,372 single-trial beta images, each consisting 27 

of 229,519 voxels, from 209 participants. To reduce the dimensionality of the data to a 28 
computationally tractable size, a generalized version of population value decomposition (PVD) 29 
(Caffo et al., 2010; Crainiceanu et al., 2011; Chén et al., 2017) was applied (using PVD.m as part 30 
of the M3 mediation toolbox available at https://github.com/canlab/MediationToolbox). This 31 
procedure is similar to singular value decomposition (SVD) but decomposes the data matrix into 32 
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both participant specific and population specific components. We chose a dimensionality of D =1 
30 based on a tradeoff between variance explained and the number of trials available for each 2 
participant. The beta images were z-scored within each participant before PVD application. The 3 
reduced data matrix used for Principal Directions of Mediation (PDM) estimation consisted of a 4 
matrix with dimensions 13,372	 × 	30. 5 

Principal Directions of Mediation (PDM) 6 

Let X8 be the temperature, Y8 the reported pain, and G8 = (m8
(I),m8

(J), …m8
(")) the brain 7 

activity over D voxels (i.e., the beta maps) measured between the application of the thermal 8 
stimuli and the pain report for observation (i.e., trial) K = 1,…L. We are interested in determining 9 
how brain activation mediates the relationship between temperature and pain report, which is 10 
illustrated using the three-variable path model shown in Figure 1. We can estimate the 11 
parameters of this model using the following set of equations: 12 

 13 

   %8
(M) = NO,M + NM$8 + Q8M											for							U = 1,…D 14 

   '8 = VO + W
X$8 + VI%8

(I) + VJ%8
(J) +⋯+ V"%8

(") + Z8	    (1) 15 

 16 
Once the parameters have been estimated we can express the total effect W as the sum of the 17 
direct and indirect effects as follows: 18 

 19 

  W = WX + ∑ NMVM
"
M\I .      (2) 20 

 21 
If p is relatively small the series of regressions described in (1) can be used to estimate the 22 

pertinent mediation effects. However, in our setting there are too many mediators to allow 23 
reasonable interpretation (unless the model coefficients are highly structured) and there are many 24 
more mediators than subjects, precluding estimation using standard procedures. To overcome 25 
these problems, we introduce a transformation of the space of mediators, determined by finding 26 
linear combinations of the original mediators that (i) are orthogonal; and (ii) are chosen to 27 
maximize the indirect effect. The first constraint allows us to fit a separate linear model for each 28 
transformed variable. The second constraint allows us to limit our analysis to only those 29 
directions that contain the most information about the indirect effect. Here, we improve and 30 
extend the approach proposed by Chén et al. (2017) by choosing a different cost function, 31 
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computing the joint PDM, and analyzing an almost 10-times larger data set.  1 
This new model, called the principal directions of mediation (PDM), linearly combines 2 

activity in different voxels into a smaller number of orthogonal components, with components 3 
ranked based upon the proportion of the indirect effect that each accounts for. Ideally, the 4 
components form a small number of uncorrelated mediators that represent interpretable 5 
networks of voxels.  6 

To illustrate, let  %&8
(:) = ∑ w:

(M)m8
(M)"

M\I  for A = 1,…* be a set of linear transformations of the 7 

mediators with ^: = (w:
(I), w:

(J),…w:
(")). Placing these new variables into our mediation model 8 

we obtain: 9 

 m&j
(k) = (O,: + (kXj + QM:																	for							A = 1,…* 10 

	'8 = )O,: + a
X$8 + ):%&8

(:) + Z8:     (3) 11 

 12 
Now, we can decompose the total effect into direct and indirect effects as follows: 13 
 14 

   a = aX + ∑ (:):
b
:\I       (4) 15 

  16 
The difference between this model and the standard mediation model described in (1) is 17 

that the ^:  are unknown. In our approach Î	is chosen so that it maximizes the amount of the 18 
indirect effect that is explained (i.e., (I)I is maximized). We refer to Î	as the first principal 19 
direction of mediation (PDM). Note the first PDM corresponds to voxel-specific weights that can 20 
be mapped onto the brain, and thus provides interpretable maps of brain networks in the same 21 
manner as independent component analysis (ICA) and principal component analysis (PCA). 22 
Subsequent directions ^:	, A = 1,…*, can be found that maximize the remaining indirect effect 23 
conditional on being orthogonal to previous PDMs. As the transformed mediators are ranked 24 
based upon the proportion of the indirect effect explained, one could potentially limit the number 25 
of PDMs computed to achieve dimension reduction. Hence, our approach is philosophically 26 
similar to PCA, but addresses a fundamentally different problem.  27 

The individual, orthogonal PDMs can be combined into a joint PDM by computing the 28 
following weighted sum: 29 
 30 

!Mc8de = ∑ (:):
b
:\I !:             (5) 31 

 32 
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According to the model formulation the signs of the PDMs are not identifiable, as any 1 

change in the sign of %&8
(:) can be offset by a change in sign of both (: and ):. We fix the signs 2 

of (: to be positive for easier interpretation, i.e., positive voxel weights indicate higher brain 3 
activity for higher stimulus intensities. This is a similar constraint to the ICA approach often used 4 
in neuroimaging to detect networks. Note this does not impact the joint PDM as the sign of 5 
(:):is unchanged if both (: and ): change signs. 6 

The problem of finding the Aef PDM involves finding the vector ^:	that maximizes (:): 7 
based on the constraint that ^:

g^: = 1	and ^:
g

M̂ = 0	for all U = 1,… , A − 1. This problem can be 8 

solved using a nonlinear programming solver such as the interior-point algorithm. Inference is 9 
performed using a bootstrap procedure with 5,000 iterations, as described in Chén et al. (2017). 10 
We also test individual voxel weights for the joint PDM for significance using the bootstrap 11 
procedure above. All PDM maps are thresholded at a false discovery rate (FDR) of * < 0.05. We 12 
present results of 10 PDMs accounting for more than 99% of the total indirect effect (Figure 2). 13 
The PDM implementation is available at https://github.com/canlab/MediationToolbox 14 
(multivariateMediation.m).  15 

In summary, we obtain scalar coefficients for paths (:, ):, and a′:, as well as the indirect 16 
effect (): for each PDM as in a standard, univariate mediation analysis. In addition, we obtain 17 
the voxel weight vector ^:  that maximizes the indirect effect ():. 18 

Cluster analysis 19 

The voxel weight maps for the mutually independent 10 PDMs span a high-dimensional 20 
space of brain mediators of pain perception. In order to reduce the dimensionality of that space 21 
and identify brain regions with similar activation profiles, we conducted a two-stage cluster 22 
analysis. The procedure is described in detail in Kober et al. (2008) and Atlas et al. (Atlas et al., 23 
2014). Briefly, for significant voxels from the 10 PDMs we extracted single-trial activity estimates, 24 
resulting in a 13,372 trials × 25,469 voxels matrix. We then used singular value decomposition 25 
(SVD) to reduce the dimensionality of the voxel space. We kept 364 components that explained 26 
95% of the variance. Next, we clustered voxels into 250 parcels using hierarchical clustering. 27 
We then computed average single-trial activity within each parcel and used non-metric 28 
multidimensional scaling (NMDS) and hierarchical clustering to further reduce the dimensionality 29 
of the data. Inspection of the Shepard plot suggested a NMDS dimensionality of 15 with stress 30 
indices below 0.05. Stress indices (j) are computed according to Shepard (1980) with 31 

 32 
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j = k∑ (lf8 − lmf8)Jf,8 ∑ lf8
J

f,8n       (6) 1 

 2 

Here, lf8 is the pairwise empirical dissimilarity and lmf8 is the distance implied by the current 3 
solution between two brain regions ℎ and K. Hierarchical clustering was then used to cluster the 4 
250 parcels into 33 regions that co-activate across trials. These regions were not necessarily 5 
contiguous and some spanned multiple anatomical regions, e.g., covering right mid-, and dorsal 6 
insula plus operculum. Since we used voxel-wise FDR correction on the 10 PDMs, we expect 7 
some false positive values. Accordingly, some of the functional regions were located in the 8 
cerebrospinal fluid or outside the gray matter. We thus removed 7 smaller functional clusters 9 
that were considered highly unlikely to be true gray matter region. We then averaged brain 10 
activity within the remaining 26 functional regions. NMDS was used to reduce the dimensionality 11 
again to 10 dimensions based on stress values. Applying hierarchical clustering again on the 12 
regions identified in the previous step identified large-scale functional brain networks. 13 
Permutation tests indicated that 5 networks provided the best clustering solution in terms of 14 
improvement over solutions on permuted data. The position of the 5 networks and their 15 
constituent brain regions were projected on the first 2 dimensions of the NMDS space to visualize 16 
relationships and functional connectivity. Similarity of those 5 networks with the binarized PDM 17 
maps was assessed by Dice coefficients, which represents the true positive rate of the 18 
intersection between two maps. 19 

Univariate mediation analysis 20 

In univariate mediation analyses, a mediation model is estimated separately for every brain 21 
voxel (Wager et al., 2008; Atlas et al., 2010, 2014). Univariate mediation analysis produces three 22 
sets of brain maps – one for each path – in contrast to the PDM approach, which estimates only 23 
one set of paths for each PDM map. Previous studies also used smaller sample sizes available 24 
than the present study and had thus less statistical power than the present study. We ran a 25 
univariate mediation analyses on the training data set to directly compare the univariate results 26 
to the PDM approach. Univariate multilevel mediation analysis was conducted using the 27 
Multilevel Mediation and Moderation (M3) Toolbox for Matlab 28 
(https://github.com/canlab/MediationToolbox). Voxel-wise significance was determined using a 29 
bootstrap procedure with 5,000 iterations. A false discovery rate (FDR) of * < 0.05 was used to 30 
control for multiple comparisons.  31 
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Figures 

  

Figure 1 Mediation analysis. (A) Schematic of the mediation analysis framework. Brain activity is an 
intermediate variable between a manipulated variable X and outcome Y. (B) In the univariate case, a 
separate mediation analysis is computed for every brain voxel to determine mediators between 
stimulation temperature and pain report. (C) In the high-dimensional Principal Directions of Mediation 

(PDM) approach, a linear combination of all brain voxels is used as a mediator. Multiple, orthogonal 
mediators can be estimated. The weight vectors qr (or PDMs) represent the contribution of individual 

voxels to the rst mediation pathway. Taking the dot product of the PDM (qr) and single-trial brain 
activation maps (beta images) results in a vector representing a potential mediator. Voxel weights (qr) 
are fit so that the indirect, mediated effect is maximal. (D) Individual PDMs can be combined into a single 
joint PDM by summing the individual PDMs weighted by their path coefficients because individual PDMs 
are orthogonal to each other. (E) Mediation path coefficients for all 30 PDMs are shown with signs of 
path u coefficients set to be positive. Path u indicates the temperature to brain (PDM) relationship, path 
v the PDM to pain rating relationship, and path uv the indirect, mediated effect. Positive coefficients 
indicate that voxels with positive weights in a given PDM are positively related with temperature and/or 
rating. The first 10 PDMs explain more 99% of the total indirect effect. We focus on these PDMs in the 
following analyses (shaded area in right panel). 
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Figure 1-supplement  1 Bivariate relationships between temperatures, mediators (PDM expression), 
and pain ratings for the training data (studies 1-7). Data are adjusted according to the mediation 
equations, i.e. ratings in path b plots are adjusted for temperatures and PDMs, ratings in path c’ plots 
are adjusted for PDMs, and PDMs in path b plots are adjusted for temperatures. PDMs are estimated on 
the training data. 
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Figure 2 Principal Directions of Mediation. Voxel maps for PDMs with individually significant voxels at 
FDR q<0.05. Tan backgrounds indicate PDMs with positive paths u and v. Blue backgrounds indicated 

PDMs with positive path u	and negative path v. Brain activity increases in voxels with positive weights 
(warm colors) with higher temperatures. Higher brain activity in these voxels is related to higher pain ratings 
in PDMs with positive path v (tan panels) and negatively with negative path v (blue panels). No voxels are 
individually significant in PDM 8. Bottom panel shows the joint PDM, a combination of the above 10 PDMs. 
Regions with individually significant voxels in the joint PDM include somatosensory regions, such as S1, 
S2, insula, MCC, SMA, PAG, and thalamus, but also mPFC M1, and SPL. All brain figures are displayed 
in neurological convention (left is left) and thresholded at FDR w < x.xy. MCC=midcingulate cortex, 
SMA=supplementary motor area, mPFC=medial prefrontal cortex, PAG=periaqueductal gray, 
midIns=mid-insula, dpIns=dorsal posterior insula, S2=secondary somatosensory cortex, S1=primary 
somatosensory cortex, M1=primary motor cortex, mOFC=medial orbitofrontal cortex, RSC=retrosplenial 
cortex, SFG=superior frontal gyrus, vIns=ventral insula, dmPFC=dorsomedial prefrontal cortex, 
V1=primary visual cortex, V2=secondary visual cortex, vStriatum=ventral striatum, NAc=nucleus 
accumbens, mThal=medial thalamus, aIns= anterior insula, SPL=superior parietal lobule. 
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Figure 3 Functional networks mediating pain processing. (A) Five functional networks based on the 
clustering of brain activity in significant voxels from the PDM analysis. Labels for colors are shown in B. 
(B) Associations between functional networks and the joint and individual PDMs. Ribbon width represents 

Dice-coefficient similarity between networks and PDMs. (C) Projection of the five functional networks and 

individual regions onto the first two dimensions spanned by the NMDS solution. Circle size indicates the 
number of significant connections for each region or network. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/298927doi: bioRxiv preprint 

https://doi.org/10.1101/298927
http://creativecommons.org/licenses/by-nc/4.0/


High-dimensional mediation analysis of pain 

 36 

Figure 4 Validation on independent data (N=75). (A) The joint (dark circle) and all 10 individual PDMs 

(lighter circles) are significant mediators for independent pain test data. (B) PDMs show specificity with 
respect to aversive sounds because no indirect effect is significant here. (C) Scatter plots of pain 
predicted from the joint PDM against empirical pain ratings for training (left) and test (right) pain data. 
Individual trials from all subjects are shown. Colors indicate different subjects. (D) Variance explained in 
single-trial pain ratings of the training and test data sets for the joint PDM and the NPS, which was only 
trained on pain ratings without temperature information. The joint PDM accounts for 7% and 6.1%, 
respectively, pain rating variance not accounted for by the NPS. Error bars indicate SEM. * p<0.05; ** 
p<0.01; *** p<0.001. 
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Figure 4-supplement 1 Bivariate relationships between temperatures, mediators (PDM expression), and 
pain ratings for the pain test data (Study 8, N = 75). Data are adjusted according to the mediation 
equations, i.e. ratings in path b plots are adjusted for temperatures and PDMs, ratings in path c’ plots 
are adjusted for PDMs, and PDMs in path b plots are adjusted for temperatures. PDMs are estimated on 
the pain training data (studies 1-7). 
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Figure 4-supplement 2 Generalization of pain PDMs from small sample to large sample. Here, test and 
training data sets were switched. 10 pain PDMs were estimated on the original test data set (study 8, 
N=75) and used as mediators in the original training data (studies 1-7, N=209). PDM 1-4, 6, and 10 are 
significant mediators for the larger set when trained on the smaller set. 
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Figure 4-supplement 3 Bivariate relationships between sound intensity levels, mediators (PDM 
expression), and intensity ratings for the training data (studies 1-7). Data are adjusted according to the 
mediation equations, i.e. ratings in path b plots are adjusted for stimulus levels and PDM, ratings in path 
c’ plots are adjusted for PDMs, and PDMs in path b plots are adjusted for stimulus levels. PDMs are 
estimated on the pain training data (studies 1-7). 
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Figure 5 Comparison to univariate mediation analysis. Top three panels show individually significant 

voxels for paths a (blue), b (green), and ab (purple) from a univariate mediation analysis at FDR q<0.05. 
Panel 4 shows voxels mediating the relationship between temperature and pain, i.e., the overlap 
between the three paths (red). The bottom panel compares the univariate mediation map (red) and the 
joint PDM (yellow). 
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Figure 6 Similarity of mediation maps to univariate stimulus intensity and pain rating maps. Similarity 
between the PDMs, univariate mediation (path ab), and a previous pain predictive map (NPS) to the 
univariate maps for path a and b, respectively, measured by the cosine similarity between pairs of maps. 
The joint PDM and the univariate ab map most similar to the a and b maps representing stimulus intensity 
and pain intensity, respectively. The similarity between the joint PDM and the path ab map is only 0.45. 
Individual PDMs and the NPS are less and less similar to the univariate effect maps, indicating that the 
univariate maps do not capture all the information of the multivariate mediation maps. 
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Table 1. Demographics 

Study® Sample Size Sex Mean age in Years 
(Std. Deviation) 

Prior publications 

PDM Training Data 
Study 1 (NSF) 26 9 F / 17 M 27.8 Atlas et al. (2014), PAIN;  

Wager et al. (2013) NEJM 
Study 2 (BMRK3) 33 22 F / 11 M 

 
27.9 (9.0) Woo et al. (2015), PLoS Biology 

Wager et al. (2013) NEJM 
Study 3 (BMRK4) 28 10 F / 18 M 25.2 (7.4) Krishnan et al. (2016) eLife 
Study 4 (IE) 50 27 F / 23 M 25.1 (6.9) Roy et al. (2014), Nature Neuroscience  
Study 5 (ILCP) 29 16 F* / 12 M 20.4 (3.3)** Schmidt et al. (in prep.) 
Study 6 (EXP) 17 9 F / 8 M 25.5 Atlas et al. (2010), Journal of Neuroscience 
Study 7 (SCEBL) 26 11 F / 15 M 28 (9.3) Koban et al. (in prep.) 

PDM Test Data 
Study 8 (BMRK5) 75 39 F / 36 M 28.2 (5.6) Losin et al. (under review) 

Note. ®Internal study codes to facilitate tracking of datasets; *Gender of one participant is unknown; **Age of one participant is 
unknown. Studies 1-7 have been reported on in Lindquist et al., 2017. 
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Table 2. Stimulation Parameters 
Study Intensities Mean Temperature by  

Intensity Level 
(Within Subject SE) 

Rating scale Mean Ratings by Intensity Level 
(Within Subject SEM) 

PDM Training Data 
Study 1 
(NSF) 

N, L, M, H 
(Calibrated) 

40.8, 43.1, 45.1, 47.0 
(0.16) 

0-8 VAS (0, no sensation; 1,  
non-painful warmth; 2, low pain; 
5, moderate pain; 8, maximum 
tolerable pain) 

2.0, 2.8, 4.2, 6.6 
(0.14) 

Study 2 
(BMRK3) 

6 levels 
(Fixed) 

44.3, 45.3, 46.3, 47.3, 
48.3, 49.3 

0-100 VAS 49.1, 56.6, 74.3, 99.4, 133.0, 159.3 
(3.12) 

Study 3 
(BMRK4) 

L, M, H 
(Fixed) 

46.0, 47.0, 48.0 0-100 VAS (0, no sensation; 1.4, 
barely detectable; 6.1, weak; 
17.2, moderate; 35.4, strong; 
53.3, very strong; 100, strongest 
imaginable sensation) 

UL: 31.7, 40.5, 53.6 
(0.9787) 
LL: 31.5, 40.2, 53.3 
(0.96) 

Study 4 
(IE) 

L, M, H 
(Fixed) 

46.0, 47.0, 48.0 0-100 VAS (0, no pain; 100, 
worst imaginable pain) 

29.4, 38.9, 51.9 
(0.64) 

Study 5 
(ILCP) 

L, H 
(Calibrated) 

44.7, 46.7 
(0) 

0-8 VAS (no pain to worst pain 
imaginable) 

24.3, 46.7 
(1.14) 

Study 6 
(EXP) 

L, M, H 
(Calibrated) 

41.2, 44.4, 47.2 
(0.21) 

0-8 VAS (0, no sensation; 1,  
non-painful warmth; 2, low 
pain; 5, moderate pain; 8, 
maximum tolerable pain) 

2.5, 4.3, 7.4 
(0.13) 

Study 7 
(SCEBL) 

L, M, H 
(Fixed) 

48, 49, 50 0-100 VAS (0, no pain; 100, 
worst imaginable pain) 

26.0, 33.3, 40.4 
(1.12) 

PDM Test Data 
Study 8 
(BMRK5) 

L, M, H 
(Fixed) 

47, 48, 49 0-100 gVAS (0, no experience; 
100, strongest imaginable 
experience) 

30.6, 39.9, 48.2 
(1.64) 

Note: Heat /pain levels: N = Nonpainful, L = Low, M = Medium, H = High. VAS = visual analogue scale. gVAS = generalized visual 
analogue scale.  
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Table 3. Task Characteristics 

Study Duration 
(seconds) 

Inter-heat 
interval 
(seconds) 

Locations 
(number of 
sites) 

Range of 
Number of Trials 
Per Subject 

Mean proportion of 
trials excluded  
(Std. Deviation) 

Other experimental 
manipulations 

PDM Training Data 
Study 1 
(NSF) 

10 38 Left arm (3) 35-48 0.08 (0.07) Masked emotional faces evenly 
crossed with temperature 

Study 2 
(BMRK3) 

12.5 20.5-28.5 Left arm (2) 97 0.1 (0.04) Cognitive self-regulation up and 
down 

Study 3 
(BMRK4) 

11 25-27 Left arm (4), 
left foot (4) 

81 0.08 (0.06) Heat-predictive visual cues (low, 
medium, or high) 

Study 4 
(IE) 

11 36-38 Left arm (6) 48 N/A Heat-predictive visual cues; 
placebo manipulation 

Study 5 
(ILCP) 

10 17-25 Left arm (2) 64 0.05 (0.03) Agency (make choice, observe 
choice), Certainty (80% low pain, 
50% low pain) 

Study 6 
(EXP) 

10 38 Left arm (4) 61-64 0.03 (0.04) 
 

Heat-predictive auditory cues 

Study 7 
(SCEBL) 

1.85 26-37 Right leg (6) 96 0.04 (0.03) Heat-predictive visual cues (low or 
high) and unreinforced social 
information 

PDM Test Data 
Study 8 
(BMRK5) 

8, 11 11.5-
32.75 

Left arm (4) 30-36 0.04 (0.04) Aversive sounds, modality-
predictive cues (sound vs. heat) 
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Table 4. Neurosynth.org network associations 

Sensorimotor Value-learning Default mode Executive function Visual 

r features r features r features r features r features 
0.369 somatosensory 0.313 reward 0.207 self-referential 0.139 mental 0.223 visual 
0.304 motor 0.255 money 0.202 person 0.124 intention 0.152 eye 
0.301 stimulation 0.252 anticipation 0.201 self 0.117 stories 0.141 eyes 
0.272 sensorimotor 0.252 rewards 0.197 default 0.115 attention 0.137 color 
0.266 muscle 0.251 incentive 0.176 autobiographical 0.115 visuospatial 0.126 shape 
0.257 sensory 0.240 monetary 0.157 resting state 0.114 story 0.108 shapes 
0.256 pain 0.236 outcome 0.149 social 0.108 reasoning 0.105 spatial 
0.245 movements 0.196 outcomes 0.149 mentalizing 0.107 default 0.102 development 

0.245 production 0.185 dopamine 0.148 personal 0.106 calculation 0.097 distractor 
0.240 painful 0.179 reinforcement 0.135 thought 0.106 retrieval 0.097 target 

Note: Top ten features from neurosynth.org showing the highest Pearson’s correlation (r) with each network. 
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