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Abstract 

Background: The extent to which changes in gene expression can influence 

cardiovascular disease risk across different tissue types has not yet been systematically 

explored. We have developed an analytical framework that integrates tissue-specific gene 

expression, Mendelian randomization and multiple-trait colocalization to develop 

functional mechanistic insight into the plausibility of there being a causal pathway from 

genetic variant to complex trait. We demonstrate the value of this approach by 

investigating association signals detected in a population of young individuals. 

Results: Eight genetic loci were associated with changes in gene expression and early 

life measures of cardiovascular function. Fine mapping was undertaken to identify 

potential causal variants at each region. Our Mendelian randomization analysis provided 

evidence of tissue-specific effects at multiple loci, of which the effects at the ADCY3 and 

FADS1 loci for body mass index and cholesterol respectively were particularly insightful. 

Multiple trait colocalization uncovered evidence which suggested that changes in DNA 

methylation at promoter regions upstream of these genes may also play a role in 

cardiovascular trait variation along with gene expression. 

Conclusions: Disease susceptibility can be influenced by differential changes in tissue-

specific gene expression and DNA methylation. Our analytical framework should prove 

valuable in elucidating mechanisms in disease, as well as helping prioritize putative 

causal genes at associated loci where multiple nearby genes may be co-expressed. 

Future studies which continue to uncover quantitative trait loci for molecular traits across 

various tissue and cell types will further improve our capability to understand and prevent 

disease. 
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Background  

Despite recent efforts in research and development, cardiovascular disease still poses one of the 

greatest threats to public health throughout the world, accounting for more deaths than any other 

cause [1]. Since their development, genome-wide association studies (GWAS) have identified 

thousands of different genetic loci associated with complex disease traits [2]. An example of their 

successful application within cardiovascular research is the identification of numerous genetic 

variants associated with low density lipoprotein (LDL) cholesterol levels [3], which is a causal 

mediator along the coronary heart disease progression pathway [4, 5]. However, the functional 

and clinical relevance for the vast majority of GWAS results are still unknown, emphasizing the 

importance of developing our understanding of the causal pathway from single nucleotide 

polymorphism (SNP) to disease.  

 

A large proportion of associations detected by GWAS are located in non-coding regions of the 

genome [6], suggesting that the underlying SNPs influence complex traits via changes in gene 

regulation [7]. Recent efforts have incorporated messenger ribonucleic acid (mRNA) expression 

data into analyses to determine whether SNPs identified by GWAS influence levels of gene 

expression (i.e. whether they are expression quantitative trait loci [eQTL]) as well as complex 

traits [8]. Novel methods have integrated eQTL data with summary association statistics from 

GWAS [9] to identify genes whose nearby (cis) regulated expression is associated with traits of 

interest (widely defined as variants within 1 megabase (Mb) on either side of a genes transcription 

start site [TSS]) [10]. These types of studies have been referred to as transcriptome-wide 

association studies (TWAS).  

 

A recent paper has highlighted some limitations that may be encountered by studies integrating 

transcriptome data to infer causality [11], such as intra-tissue variability and co-expression 
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amongst proximal genes, making it challenging to disentangle putative causal genes for 

association signals. This exemplifies the importance of developing methods that investigate 

tissue-specificity and co-expression of association signals detected by TWAS.  Therefore, there 

needs to be further research into the most appropriate manner to harness eQTL data (across 

multiple tissue and cell types) in order to improve the biological interpretation of GWAS findings.  

 

We have developed a systematic framework which can be used to evaluate five potential 

scenarios that can help explain findings from TWAS (Figure 1). Firstly, we identify putative causal 

genes responsible for observed association signals, by evaluating the association between lead 

SNPs and proximal gene expression using eQTL data. We then investigate the relationship 

between gene expression and complex traits at loci of interest by applying the principles of 

Mendelian randomization (MR); a method which uses genetic variants associated with an 

exposure as instrumental variables to infer causality among correlated traits [12, 13]. A recent 

development in this paradigm is two-sample MR, by which effect estimates on exposures and 

outcomes are derived from two independent datasets, allowing researchers to exploit findings 

from large GWAS consortia [14]. Applying this approach can therefore be used to help infer 

whether changes in gene expression (our exposure) may influence a complex trait identified by 

GWAS (our outcome). Furthermore, as tissue-specificity is fundamental in understanding causal 

mechanisms involving gene expression, we have used data from the genotype tissue expression 

project (GTEx) [15] in a number of tissues that could be important in cardiovascular disease 

susceptibility (Additional file 2: Table S1) to try and disentangle co-expression amongst proximal 

genes (i.e. differentiating between scenarios 1, 2 and 3). We refer to this approach as tissue-

specific MR, which should prove increasingly valuable in investigating both the determinants and 

consequences of changes in tissue-specific gene expression as sample sizes increase [12]. 
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We subsequently apply colocalization analyses [16] at each locus of interest to evaluate whether 

the same underlying genetic variant is responsible for changes in both gene expression and 

complex trait, or whether association signals may be a product of linkage disequilibrium (LD) 

between two causal variants (scenario 4). This analysis can also complement findings from the 

MR analysis, particularly given that the majority of genes can only be instrumented with a single 

eQTL using GTEx data. In addition, there has been recent interest in the impact that DNA 

methylation may have on cardiovascular disease risk via modifications in gene expression [17]. 

Therefore, we apply multiple-trait colocalization (moloc) [16] at each locus to simultaneously 

investigate whether the same underlying genetic variant is driving the observed effect on all three 

traits of interest (i.e. the cardiovascular trait, gene expression and DNA methylation).  

 

Uncovering evidence suggesting that DNA methylation and gene expression may be working in 

harmony to influence complex traits can improve the reliability of causal inference in this field, as 

it suggests there may be underlying mechanisms which are consistent with causality (i.e. DNA 

methylation acting as a transcriptional repressor). However, a major challenge in this paradigm is 

the lack of accessible tissue-specific DNA methylation/mQTL data akin to GTEx for gene 

expression. Previous studies have investigated the potential mediatory role of DNA methylation 

between genetic variant and gene expression using eQTL and mQTL data derived from blood 

which may act as a proxy for other tissue types [18, 19]. Moreover, other studies have 

demonstrated a surprisingly high rate of replication between mQTL derived from blood and more 

relevant tissue types for a complex trait of interest [20]. We have therefore undertaken moloc 

analyses using eQTL derived from both blood and cardiovascular-specific tissue types. Finally, it 

is also important to note that, along with other approaches which apply causal methods to 

molecular data, we are currently unable to robustly differentiate mediation from horizontal 

pleiotropy (scenario 5) [12, 21]. However, within this framework we will be able to accommodate 
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additional eQTL as instrumental variables derived from future larger studies in order to address 

this.  

 

In this study, we demonstrate the value of our framework by applying it to data from the Avon 

Longitudinal Study of Parents and Children (ALSPAC) using early life measures of cardiovascular 

function as outcomes. Evaluating putative causal mechanisms apparent early in the life course 

can be extremely valuable for disease prevention and healthcare, particularly given that 

cardiovascular disease such as atherosclerosis has been shown to develop in childhood [22]. 

Therefore, we used ~19,000 cis-eQTL’s observed in adults at risk of cardiac events from the 

Framingham Heart Study [8] for our TWAS to ascertain whether they influence these 

cardiovascular traits in young individuals (age  10). We have further evaluated results using our 

framework by harnessing summary statistics from large-scale GWAS to demonstrate the value of 

our approach and validate findings in independent samples. 
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Results  

Identifying putative causal genes for measures of early life cardiovascular 

function 

We carried out 273,742 tests to evaluate the association between previously identified cis-eQTLs 

[8] with 14 cardiovascular traits in turn within ALSPAC (19,553 cis-eQTLs x 14 traits). Trans-eQTL 

were not evaluated in this analysis as they may be more prone to horizontal pleiotropy (scenario 

5). After multiple-testing corrections, we identified 11 association signals across 8 unique genetic 

loci which provided strong evidence of association (p < 1.8 x10-7 [Bonferroni corrected threshold: 

p<0.05/273,742]). These results can be found in Table 1 and are illustrated in Figure 2. The region 

near SORT1 was associated with total cholesterol, LDL cholesterol and apolipoprotein B (ApoB). 

Additionally, the LPL region was associated with both triglycerides and very low-density 

lipoprotein (VLDL) cholesterol.  

 

We undertook fine-mapping 1Mb either side of the lead SNP at each locus identified in our initial 

analysis to investigate which SNP(s) may be driving the observed effects of complex traits. 

Posterior probability of association’s (PPA) from FINEMAP [23] suggested that there was most 

likely only a single variant influencing trait variation for seven of the eleven total loci. For the other 

four loci, FINEMAP suggested there may be multiple variants influencing traits (Additional file 2: 

Table S2).  

 

Disentangling causal mechanisms using tissue-specific Mendelian 

randomization 

To explore whether multiple causal genes were responsible for association signals as opposed 

to being observed due to co-expression (i.e. differentiating between scenarios 2 and 3), we 
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undertook tissue-specific MR. This approach applies the principles of MR by using eQTL as 

instrumental variables to assess whether changes in tissue-specific gene expression may 

influence an outcome, such as cardiovascular traits in this study. The tissue types evaluated were; 

adipose – subcutaneous, adipose – visceral (omentum), liver, pancreas, artery – coronary, artery 

– aorta, heart – atrial appendage and heart – left ventricle. For these analyses we used two-

sample MR, using effect estimates concerning tissue-specific gene expression from GTEx (i.e. 

our exposure) and obtaining high powered effects on cardiovascular traits from large-scale GWAS 

(i.e. our outcome) (Additional file 2: Table S4). As a validation analysis, we also ran the MR using 

observed effects on cardiovascular traits from our discovery analysis in ALSPAC (Tables S5-S15) 

to investigate whether results were also observed at an earlier stage in the life course (i.e. genetic 

liability to cardiovascular trait risk via changes in gene expression).   

 

After adjusting for the number of tests performed across all tissues and complex traits (p < 9.3x10-

4 [p<0.05/54]), we identified 34 associations between tissue-specific gene expression and 

cardiovascular traits. In the validation analysis in ALSPAC, we observed consistent directions of 

effect for 30 of the associations. The value of this approach in terms of disentangling causal genes 

(i.e. scenarios 2 and 3) was exemplified at the body mass index (BMI) associated region on 

chromosome 2. Of the 3 cis- and potentially causal genes for this signal, only ADCY3 provided 

strong evidence of being the putative causal gene in two types of adipose tissue (adipose 

subcutaneous (P = 6.8 x 10-40) and adipose visceral (P = 3.1 x 10-48)) (Figure 3a). This suggests 

that changes in ADCY3 expression in adipose tissue could influence BMI levels. In contrast, there 

was a lack of evidence that changes in NCOA1 or CENPO expression in the analyzed tissue 

types influence BMI. As a sensitivity analysis, we repeated the MR analysis on BMI using eQTL 

effect estimates derived from ADCY3 expression in brain tissue (pituitary), although there was 

limited evidence of association (Beta (SE): 0.008 (0.006) , P: 0.177). 
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Figure 3b illustrates results observed at the cholesterol associated region on chromosome 11. 

There was evidence that FADS1 expression was associated with total cholesterol in 3 different 

tissues (adipose subcutaneous (P = 2.2 x 10-40), heart left ventricle (P = 1.0 x 10-35) and pancreas 

(P = 2.2 x 10-40)). Interestingly, the strength of evidence was comparable between subcutaneous 

adipose and pancreas tissues despite the differences in GTEx sample sizes (Pancreas: 220 & 

Adipose Subcutaenous: 385). TMEM258 expression provided strong evidence of association in 

one tissue type (adipose subcutaneous (P = 7.2 x 10-34)), whereas association between FADS2 

expression and total cholesterol was observed in multiple tissue types (adipose subcutaneous (P 

= 5.1 x 10-11), adipose visceral (P = 4.2 x 10-20), artery aorta (P = 5.8 x 10-10), heart – atrial 

appendage (P = 6.3 x 10-5) and pancreas (P = 6.3 x 10-5)). The most parsimonious explanation 

may be that multiple genes at this locus influence cholesterol levels, however further analyses 

are required to robustly differentiate between scenarios 2 and 3 here (Figure 1). 

 

At other loci evaluated (Additional File 1: Figure’s S1-S7), LPL showed evidence of association 

with triglycerides in a single tissue (adipose subcutaneous (P = 9.6 x10-168)) implying that this 

effect may be more tissue-specific compared to those observed at other loci in this study 

(Additional file 1: Figure’s S6 & S7, Additional file 2: Tables S14 & S15). On chromosome 1, there 

was strong evidence that gene expression in liver influences total cholesterol (Additional file 1: 

Figure S4) and LDL (Additional file 1: Figure S5) (p < 3.22x10 -120). However, this was observed 

for all three genes in the region (SORT1, CELSR2 and PSRC1). In these analyses alone, we 

were unable to determine whether a particular gene is driving this observed effect, with the other 

proximal genes being co-expressed, or whether there are multiple causal genes for these traits 

(i.e. scenario 2). However, evidence from the literature implicates SORT1 as the most likely causal 

gene for this association signal [11, 24]. Due to the lack of accessible genome-wide summary-

level data for interleukin 6 (IL-6), we were unable to investigate loci associated with this trait using 

findings from large samples. However, our MR results from ALSPAC provided evidence between 
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ABO expression and IL-6 in 4 different tissues (Additional file 2: Table S12).  However, caution is 

required when interpreting this signal based on previous evidence across a diverse range of traits 

[25]. Finally, to test the direction of effect at each locus (i.e. are changes in gene expression 

causing changes in trait or vice versa), we ran a causal direction test [26]. In all scenarios, the 

test provided evidence that gene expression influences traits at these loci rather than the opposite 

direction of effect (Additional file 2: Tables S5-S15). 

 

Ascertaining whether DNA methylation resides on the causal pathway to 

disease 

For this analysis we only used findings from large-scale consortia due to sample size (n > 10,000) 

and recommendations from the authors of moloc [16]. We applied moloc at each locus associated 

with cardiovascular traits using default prior probabilities (see methods). This was to further 

evaluate putative causal genes at each region, as well as investigate whether changes in proximal 

DNA methylation may reside on the causal pathway to trait variation along with gene expression. 

This was undertaken using data from three sources; cardiovascular trait data from large-scale 

GWAS (Additional file 2: Table S4), tissue-specific gene expression from GTEx and DNA 

methylation data from adult participants from the ALSPAC cohort. We applied moloc in a gene-

centric manner to investigate whether cis-acting DNA methylation may influence complex trait 

variation potentially via changes in gene expression across multiple tissues. Based on our MR 

analysis, we ran moloc for each trait twice, once in a tissue associated with the corresponding 

analysis, as well as whole blood, as DNA methylation data was only available in this tissue. 

 

To establish the presence of colocalization between three separate traits (cardiovascular trait, 

tissue-specific gene expression and DNA methylation), moloc assessed 15 possible scenarios 

evaluating how causal variants may be shared amongst traits. As recommended by the authors 
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of moloc, we interpreted scenarios with a PPA > 0.8 as evidence of colocalization, which was the 

case for 7 unique genes across 5 loci in various tissues (Additional file 2: Tables S16-S20). 

Specifically, we identified evidence that DNA methylation and gene expression may both reside 

along the causal pathway to complex trait variation at 2 regions (Figure 4).  

 

Building upon results from the tissue-specific MR analysis, we found strong evidence that ADCY3 

is the functional gene for the BMI associated signal on chromosome 2 (maximum PPA of 0.99 

between gene expression and BMI). Furthermore, there was evidence that changes in DNA 

methylation at a CpG site within a promoter region upstream of ADCY3 (cg04553793, PPA = 

0.88) may also influence BMI variation at this locus via changes in ADCY3 expression (Figure 

4a). We identified evidence of colocalization with GWAS, expression and methylation only in 

whole blood and not subcutaneous adipose tissue. There was also evidence of colocalization for 

CENPO expression at this region (maximum PPA = 0.99), although DNA methylation did not 

appear to play a role in this effect, which was unsurprising given that cg04553793 resides 

downstream of CENPO. A lack of functional evidence via methylation regulation may therefore 

suggest that CENPO expression colocalizes with the effect on BMI at this region due to co-

expression with ADCY3. 

 

There was also evidence that changes in DNA methylation at a CpG site in the promoter region 

for FADS1 (cg19610905) colocalized with total cholesterol variation. There was strong evidence 

of colocalization for all 3 traits using gene expression for TMEM258 (PPA=0.85) (Figure4b), 

whereas the result for FADS1 expression narrowly missed the cut-off (PPA=0.77). As before, this 

effect was only observed in whole blood. Finally, we found limited evidence that changes in DNA 

methylation at this CpG site colocalized with FADS2 expression, although as with the previously 

evaluated locus, this was not surprising given that cg19610905 is located downstream of FADS2. 
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We did not identify evidence in the colocalization analysis suggesting that DNA methylation plays 

a role in trait variation at the SORT1 region. However, there was evidence of tissue specificity in 

liver tissue which supports evidence identified in our MR analysis. Figure 5a illustrates how effects 

on SORT1 gene expression and total cholesterol at this region colocalizes in liver tissue. In 

contrast, Figure 5b depicts the same analysis but in whole blood, whereby no colocalization was 

detected. Furthermore, we see the same tissue-specific colocalization for the effect on ApoB in 

the same region (Additional file 2: Table S16). The CELSR2 gene showed similar evidence for 

tissue specificity in liver, whereas PSRC1 expression colocalized with GWAS traits in both whole 

blood and liver.
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Discussion 

In this study we have developed a framework to elucidate transcriptional mechanisms in disease 

which can help explain the functional relevance of GWAS findings. This is achieved by adapting 

the principles of MR to evaluating the putative effect of tissue-specific gene expression on 

complex traits, which can be complemented with moloc and harnessing large-scale summary 

statistics. We demonstrate the value of this approach by evaluating 11 signals identified in a 

TWAS study undertaken in a cohort of young individuals from the ALSPAC cohort. Tissue-specific 

analyses helped infer whether individual or multiple genes were potentially responsible for 

observed signals at each locus. Moloc suggested that changes in gene expression and proximal 

DNA methylation may influence disease susceptibility at the ADCY3 and FADS1 loci. 

 

The ADCY3 locus has been reported to be associated with BMI in young individuals in previous 

studies [27, 28]. Our MR analyses identified evidence that changes in ADCY3 expression in 

adipose tissues may influence BMI, whereas weaker  evidence was observed based on the 

expression of other proximal genes (CENPO and NCOA1). Specifically, we found that the 

magnitude of the effect for ADCY3 expression was observed most strongly in adipose tissue, 

aligning with other research [29, 30]. Furthermore, recent work has uncovered a variant in ADCY3 

associated with an increase in obesity levels [31]. We also identified evidence that DNA 

methylation levels at a CpG site (cg04553793) (located in a promoter region upstream of ADCY3) 

colocalized with effects on ADCY3 expression and BMI for this signal. This effect was observed 

using data from whole blood (which is the only tissue we had accessible DNA methylation for in 

this study), which is potentially acting as a proxy for the true causal/relevant tissue type for this 

effect [32] . We found that CENPO expression and BMI also colocalized at this region, but moloc 

suggested changes in DNA methylation are not involved in this association. Furthermore, moloc 

showed a lack of evidence of colocalization for NCOA1 expression. From this, we believe that 
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ADCY3 is likely the functional gene impacting BMI at this locus, although only with in-depth follow 

up analyses can this be determined with confidence. Our sensitivity analysis indicated no tissue-

specific effects using eQTL effect estimates derived from brain tissue, which suggests that the 

influence of ADCY3 expression on BMI levels may be confined to adipose tissue. However, 

extended analyses using molecular data derived from brain tissue is necessary to confirm this, 

particularly given that previous work has linked gene expression in brain tissue with obesity-

related traits [29, 33].  

 

We also identified evidence of colocalization for gene expression, DNA methylation and complex 

trait variation at the cholesterol associated region on chromosome 11. This was observed for 

TMEM258 expression in whole blood, although FADS1 narrowly missed the 0.8 cut-off (PPA = 

0.77). This was based on DNA methylation levels at a CpG site located in the promoter region of 

FADS1 (cg19610905).  However, there was no indication that methylation played a role in the 

expression of FADS2.  TMEM258 has been proposed as a regulatory site for cholesterol in 

‘abdominal fat’ previously [34]. Interestingly, our MR analyses identified a single hit for this gene 

in adipose tissue, suggesting that TMEM258 expression is highly tissue-specific. FADS1 has 

previously been associated with cholesterol levels in young individuals [35]. Additionally, genetic 

variation at this region is associated with DNA methylation levels at cg19610905 based on cord 

blood in ARIES, which suggests that these methylation changes may influence the expression of 

FADS1/TMEM258 from a very early age. Overall at this region, our results suggest that scenario 

2 is a likely explanation for the association signal, where it is biologically plausible that multiple 

causal genes influence complex trait variation. Specifically, our analyses suggest that TMEM258 

and FADS1 are potential causal genes, however, further work is needed to elucidate whether 

FADS2 is directly influencing cardiovascular traits or is simply co-expressed with the nearby 

functional loci.   
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The LPL locus was not subject to co-expression/uncertainty over the likely causal gene and is 

therefore likely attributed to scenario 1. LPL has been previously reported to influence lipid and 

triglyceride levels [36–38] and there is also evidence from gene knockout experiments [39]. The 

tissue-specificity of LPL has also previously been explored, although not by recent studies [40]. 

2SMR analyses provided robust evidence of highly specific gene expression in adipose tissue, 

corroborating previous research [40, 41].  

 

For other regions evaluated in our study, there was evidence that multiple genes may potentially 

influence traits. The SORT1 locus has been previously studied in detail with regards to its effect 

on cholesterol levels [24, 42]. Our MR analyses provided additional evidence of an effect using 

expression derived from liver tissue for SORT1, CELSR2 and PSRC1, as well as in pancreas 

tissue for SORT1 and CELSR2 only. Our subsequent moloc analysis identified evidence of 

colocalization for SORT1 and CELSR2 expression with cholesterol only in liver tissue, suggesting 

that PSRC1 could be less tissue-specific than the other 2 genes in this region. Previous research 

supports these observations with regards to the effects of SORT1 and CELSR2 in liver [11, 43], 

as well as the lack of tissue-specificity for the PSRC1 locus [44]. There was limited evidence that 

DNA methylation was affecting gene expression at this region, although future work with 

methylation data derived from liver tissue is warranted.  

  

This study has demonstrated the value of our systematic framework in terms of distinguishing 

between scenarios 1, 2, 3 and 4. However, an important limiting factor, as with any study applying 

single-instrument MR, is the inability to separate mediation from horizontal pleiotropy (i.e. 

scenario 5). Given that trans-eQTLs likely regulate genes through a non-allele-specific 

mechanism [45], we selected only eQTLs that were influencing proximal genes. As more eQTL 

are uncovered across the genome by future studies, across a wide range of tissue and cell types, 

our framework should become increasingly powerful to evaluate all 5 outlined scenarios. 
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In terms of limitations in this study, we recognise the varying sample sizes between tissues in 

GTEx will determine the relative power to detect eQTL (Additional file 1: Figure S8). Increased 

sample sizes in GTEx  [46] and similar endeavours will help address this limitation. Furthermore, 

the DNA methylation data we incorporated within our framework from the accessible resource for 

integrated epigenomic studies (ARIES) [47] project was only obtained in whole blood. However, 

in general,  investigating the potential mediatory role of DNA methylation in whole blood is a 

limitation, as this assumes that whole blood is acting as a proxy for another, more relevant tissue 

type [48] . Furthermore, recent work has suggested that promoter DNA methylation may not be 

sufficient on its own to influence transcriptional changes [49]. Future work will need to incorporate 

DNA methylation data from various tissues as and when these data become available so we can 

better understand the role of this epigenetic process on transcriptional activity. For this purpose, 

a resource concerning tissue-specific DNA methylation would be extremely valuable. 

 

Another constraint of relatively modest sample sizes in GTEx is that we did not detect evidence 

of co-localization at some loci despite investigating the functionally relevant gene. For example, 

we can be reasonably certain that circulating apolipoprotein A1 (ApoA1) levels are influenced by 

the expression of APOA1. The complexity of gene regulation is often under-estimated due to 

factors such as feedback loops, hidden confounders in expression data and regulatory activity 

not always being detected in relevant tissues [50]. However, we are beginning to better 

understand regulation across tissues [44], which should provide us with further opportunities to 

detect cross-tissue regulatory activity and develop our biological understanding of disease. 
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Conclusions 

 We have identified a number of tissue-specific effects at several regions throughout the genome. 

Our results suggest that DNA methylation may also influence complex traits through gene 

expression pathways for observed effects on BMI and cholesterol. In-depth evaluations of the loci 

identified in our study should help fully understand the causal pathway to disease for these effects. 

Furthermore, as these genetic loci influence cardiovascular traits early in the life course, these 

endeavours should allow a long window of intervention for disease susceptibility. Finally, the 

framework outlined in this study should prove particularly valuable for future studies as 

increasingly large datasets concerning tissue-specific gene expression become available.  
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Methods  

ALSPAC 

Detailed information about the methods and procedures of ALSPAC is available elsewhere [51–

53]. In brief, ALSPAC is a prospective birth cohort study which was devised to investigate the 

environmental and genetic factors of health and development. In total, 14,541 pregnant women 

with an expected delivery date of April 1991 and December 1992, residing in the former region of 

Avon, UK were eligible to take part. Participants attended regular clinics where detailed 

information and bio-samples were obtained. The study website contains details of all the data that 

is available through a fully searchable data dictionary [54]. All procedures were ethically approved 

by the ALSPAC ethics and Law Committee and the Local Research Ethics Committees. Written 

informed consent was obtained from all participants.  

 

Genetic data 

All children were genotyped using the Illumina HumanHap550 quad genome-wide SNP 

genotyping platform. Samples were removed if individuals were related or of non-European 

genetic ancestry. Imputation was performed using Impute V2.2.2 against a reference panel from 

1000 genomes [55] phase 1 version 3 [56]. After imputation, we filtered out variants and kept 

those with an imputation quality score  0.8 and minor allele frequency (MAF) > 0.01.  

Phenotypes 

The methods and procedures to acquire data for the 14 phenotypes analyzed in this study are as 

follows. All measurements were obtained at the ALSPAC clinic. Height and weight were measured 

at age 7 (mean age: 7.5, range: 7.1-8.8). Height was measured to the nearest 0.1 cm with a 

Harpenden stadiometer (Holtain Crosswell), and weight was measured to the nearest 0.1 kg on 
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Tanita electronic scales. BMI was calculated as (weight [kg]/(height[m]2). Non-fasting blood 

samples were taken at age 10 (mean age: 9.9, range: 8.9-11.5). The methods on the assays 

performed on these samples which included total cholesterol, high-density lipoprotein cholesterol, 

LDL cholesterol (calculated using the Friedewald equation [57]), VLDL cholesterol, triglycerides, 

ApoA1, ApoB, fasting glucose, fasting insulin, adiponectin, leptin, C-reactive protein (CRP) and 

IL-6 have been described previously [58]. 

GTEx  

GTEx is a unique open-access online resource with  gene expression data for 449 human donors 

(83.7% European American and 15.1% African American) across 44 tissues. Sample sizes vary 

between tissues, thus affecting statistical power to identify eQTL. In depth information on the 

materials and methods for GTEx is available in the latest publication [15]. In short, RNA 

sequencing samples were sequenced to a median depth of 78 million reads. This is suggested to 

be a credible depth to quantify accurately genes that may have low expression levels [59]. DNA 

was genotyped at 2.2 million sites and imputed to 12.5 million sites. We used GTEx data in our 

tissue-specific MR and in the moloc analysis.  

 

Statistical analysis  

Data were initially cleaned using STATA [version 15] and outliers defined as ± 4 standard 

deviations from the mean were removed. We plotted histograms to check the data for normality 

and where necessary applied log-transformation. Using PLINK [version 1.9] [60, 61], we 

undertook an age and sex adjusted TWAS to evaluate the association between eQTLs known to 

influence gene expression and cardiovascular traits. We applied a Bonferroni correction to 

account for multiple testing which equated to 0.05/the total number of tests undertaken. We 

excluded trans-eQTLs to reduce the possibility of pleiotropy and reduce the burden of multiple 

testing [62], therefore leaving only cis eQTLs. Using a script derived from the qqman R package 
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[63], results were plotted using a Manhattan plot. We undertook fine mapping across the region 

1Mb either side of each lead SNP identified from our TWAS using FINEMAP [23] software. We 

used the default setting which outputs a maximum of 5 putative causal variants.  

 

Tissue-specific Mendelian randomization analysis 

To investigate potential causal genes at association signals detected in our TWAS, we applied 

the principles of MR to assess whether changes in tissue-specific gene expression may be 

responsible for effects on associated traits. Furthermore, it can help discern whether multiple 

proximal genes at a region are contributing to trait variation or whether they are likely just co-

expressed with causal genes in accessible tissue types such as whole blood, i.e. scenario 3. 

Firstly, for each lead eQTL from the TWAS we used tissue-specific data from GTEx to discern 

whether they were cis-eQTL for genes in tissue types which may play a role in the pathology of 

cardiovascular disease (P < 1 x 10-4). If this was not possible then we used eQTL for all genes 

within a 1MB distance of the lead eQTL. The tissue types evaluated were; adipose – 

subcutaneous, adipose – visceral (omentum), liver, pancreas, artery – coronary, artery – aorta, 

heart – atrial appendage and heart – left ventricle. The mean donor age for all tissues included in 

this analysis resided in the range of 50-55 years. In addition to this, we ran a sensitivity analysis 

for the association with BMI but investigating effects in the following brain tissues: pituitary, 

anterior cingulate cortex (BA24) and frontal cortex (BA9).  

 

For this analysis, we used data from large-scale GWAS; A full list of these with details can be 

found within additional file 2 (Table S4) [64–66]. We then undertook a validation analysis using 

our ALSPAC data. As cardiovascular trait data is therefore obtained at an earlier stage in the life 

course compared to the tissue-specific expression data, any associations detected in the 

validation analysis suggest genetic liability to cardiovascular risk via changes in gene 
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expression. These analyses were undertaken using the MR-Base platform [67]. The only trait we 

were unable to assess in our analysis was interleukin-6, due to the lack of GWAS summary 

statistics for this trait. Nonetheless, we still performed MR for the IL-6 data we possessed in 

ALSPAC. We applied a multiple testing threshold to the MR results to define significance 

(p<0.05/54). We plotted the results from the validation analysis using volcano plots from the 

ggplot2 package in R [68]. We also applied the Stieger directionality test [26] to discern whether 

our exposure (i.e. gene expression) was influencing our outcome (i.e. our complex trait) as 

opposed to the opposite direction of effect.  

 

Moloc 

Blood samples were obtained from 1018 ALSPAC mothers as part of ARIES [47] from the ‘Focus 

on Mothers 1’ time point (mean age = 47.5). Epigenome-wide DNA methylation was derived from 

these samples using the Illumina HumanMethylation450 (450K) BeadChip array. From this data, 

we obtained effect estimates for all genetic variants within a 1MB distance of lead eQTL from the 

TWAS and proximal CpG sites (again defined as < 1MB). We then used the moloc [16] method 

to investigate 2 questions: 

1) Is the same underlying genetic variant influencing changes in both proximal gene expression 

and cardiovascular trait (i.e. investigating scenario 4) 

2) Does the genetic variant responsible for these changes also appear to influence proximal DNA 

methylation levels, suggesting that changes in this molecular trait may also play a role along the 

causal pathway to disease. 

As such, at each locus we applied moloc using genetic effects on 2 different molecular phenotypes 

(gene expression and DNA methylation (referred to as eQTL and mQTL respectively) along with 
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the associated cardiovascular trait from our GWAS summary statistics. Since we included three 

traits (i.e. gene expression, DNA methylation and cardiovascular trait), moloc computed 15 

possible configurations of how the traits are shared: detailed information on how these are 

calculated can be found in the original moloc paper [16]. For each independent trait-associated 

locus, we extracted effect estimates for all variants within 1MB distance of the lead TWAS hit, for 

all molecular phenotypes and relevant cardiovascular GWAS traits. We subsequently applied 

moloc in a gene-centric manner, by mapping CpG sites to genes based on the 1MB regions either 

side of our TWAS hit. Moloc was subsequently applied to all gene-CpG combinations within each 

region of interest. We ran this analysis twice, once using expression data from whole blood and 

again using expression data from a tissue type which was associated with the corresponding trait 

in the tissue-specific MR analysis (Additional file 2: Table S3). 

Only regions with at least 50 SNPs (MAF >= 5%) in common between all three datasets (i.e. gene 

expression, DNA methylation and cardiovascular trait) were assessed by moloc based on 

recommendations by the authors. We computed summed PPAs  for all scenarios where GWAS 

trait and gene expression colocalized. When summed  PPAs were >= 80%, we reported findings 

as evidence that genetic variation was influencing cardiovascular traits via changes in gene 

expression. Furthermore, when summed PPAs relating to DNA methylation were >=80%, there 

was evidence that DNA methylation may also reside on the causal pathway to complex trait 

variation via changes in gene expression. In all analyses we used prior probabilities of 1e-04, 1e-

06, 1e-07 and 1e-08 as recommended by the developers of moloc based on their simulations 

[16]. 
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Additional files 

Additional file 1 – Supplementary figures: Figure S1. Volcano plot from our tissue-specific Mendelian 
randomization analysis for the Apolipoprotein A1 associated region (rs2727784). Figure S2. Volcano plot 
from our tissue-specific Mendelian randomization analysis for the Apolipoprotein B associated region 
(rs646776). Figure S3. Volcano plot from our tissue-specific Mendelian randomization analysis for the 
Apolipoprotein B associated region (rs10419998). Figure S4. Volcano plot from our tissue-specific 
Mendelian randomization analysis for the cholesterol associated region (rs646776). Figure S5. Volcano 
plot from our tissue-specific Mendelian randomization analysis for the low density lipoprotein region 
(rs646776). Figure S6. Volcano plot from our tissue-specific Mendelian randomization analysis for the 
triglyceride associated region (rs80026582). Figure S7. Volcano plot from our tissue-specific Mendelian 
randomization analysis for the very low density lipoprotein associated region (rs80026582). Figure S8. 
Scatter plot illustrating how eGene discovery increases as sample size increases (R2 = 0.84). Figure 
adapted from the Genotype Tissue Expression Project.  
 
Additional file 2 – Supplementary tables: Table S1. Tissues used for tissue-specific Mendelian 
randomization. Table S2. Results of fine mapping analysis. Table S3. Tissues used for moloc analysis. 
Table S4. Details on the GWAS datasets used. Table S5. Tissue-specific Mendelian Randomization results 
for the Apoliporotein A1 associated region on chromosome 11 (rs2727784).  Table S6. Tissue-specific 
Mendelian randomization results for the Apolipoprotein B associated region on chromosome 1 (rs646776). 
Table S7. Tissue-specific Mendelian randomization results for the Apolipoprotein B associated region on 
chromosome 19 (rs10419998). Table S8. Tissue-specific Mendelian randomization results for the body 
mass index associated region chromosome 2 (rs11693654). Table S9. Tissue-specific Mendelian 
randomization results for the cholesterol associated region on chromosome 1 (rs646776). Table S10. 
Tissue-specific Mendelian randomization results for the cholesterol associated region on chromosome 11 
(rs174538). Table S11. Tissue-specific Mendelian randomization results for the interleukin-6 associated 
region on chromosome 1 (rs12129500). Table S12. Tissue-specific Mendelian randomization results for 
the interleukin-6 associated region on chromosome 9 (rs600038).Table S13. Tissue-specific Mendelian 
randomization results for the low density lipoprotein associated region on chromosome 1 (rs646776). Table 
S14. Tissue-specific Mendelian randomization results for the triglyceride associated region on chromosome 
8 (rs80026582). Table S15. Tissue-specific Mendelian randomization results for the very low density 
lipoprotein associated region on chromosome 8 (rs80026582). Table S16. Moloc results for the 
apolipoprotein B associated region on chromosome 1. Table S17. Moloc results for the cholesterol 
associated region on chromosome 1. Table S18. Moloc results for the body mass index associated region 
on chromosome 2. Table S19. Moloc results for the cholesterol associated region on chromosome 11. 
Table S20. Moloc results for the low density lipoprotein associated region on chromosome 1.  
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Abbreviations  

• GWAS; Genome-wide association study 

• LDL; Low-density lipoprotein 

• SNP; Single nucleotide polymorphism 

• mRNA; Messenger ribonucleic acid 

• eQTL; Expression quantitative trait loci  

• Mb; Megabase 

• TSS; Transcription start site 

• TWAS; Transcription-wide association study  

• MR; Mendelian Randomization  

• GTEx; Genotype tissue expression project  

• LD; Linkage Disequilibrium  

• Moloc; Multiple-trait colocalization  

• mQTL; Methylation quantitative trait loci  

• ALSPAC; Avon Longitudinal Study of Parents and Children 

• ApoB; Apolipoprotein B 

• VLDL; Very low-density lipoprotein 

• PPA; Posterior probability of association 

• BMI; Body mass index 

• IL-6; Interleukin 6 

• ARIES; Accessible resource for integrated epigenomic studies 

• ApoA1; Apolipoprotein A1 

• MAF; Minor allele frequency  
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• CRP; C-Reactive protein 
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Tables and figures 
 
Figure 1. Explanations for observed associations between SNPs and traits. 

1) The genetic variant influences the trait, mediated by the expression of a single 
gene at a locus. 

2) The genetic variant influences the trait via multiple genes which are co-expressed 
with one another. 

3) The genetic variant influences the trait via a single gene which is co-expressed 
with other non-causal genes. 

4) The genetic variant that influences the trait is in linkage disequilibrium with another 
variant which is responsible for changes in gene expression. 

5) The genetic variant influences both gene expression and the trait outcome by two 
independent biological pathways (horizontal pleiotropy).  

 
Figure 2. Manhattan plot illustrating observed associations between eQTLs and 
cardiovascular traits in ALSPAC 
Analysed SNPs are plotted on the x-axis ordered by chromosomal position against -log10 
p values which are plotted on the y-axis. SNPs that survived the multiple testing threshold 
(1.8 x 10-7 – represented by the red horizontal line) are coloured according to their 
associated trait and annotated with potential causal gene symbols.  
 
Figure 3. Volcano plots illustrating tissue-specific MR results 
(a)  Tissue-specific MR results for the observed effect on BMI. ADCY3 gene expression 
provided strong evidence that it influenced BMI in comparison to the NCOA1 gene and 
the CENPO gene, which is not shown due to minimal or no expression within our selected 
tissues. 
(b) Tissue-specific MR results for the observed effect on total cholesterol. All 3 genes 
provided strong evidence of association with total cholesterol at this region across various 
cardiovascular-specific tissue types.  
 
Figure 4. Examples of multiple-trait colocalization between GWAS results and 
different molecular phenotypes in whole blood.  
(a) Colocalization analysis at the ADCY3 region for GWAS and gene expression (left) as 
well as GWAS and DNA methylation (right). There was evidence that DNA methylation 
(cg04553793) may influence body mass index (BMI) through changes in gene 
expression. 
(b) Colocalization analysis at the TMEM258 region for GWAS and gene expression (left) 
as well as GWAS and DNA methylation (right). There was evidence that DNA methylation 
(cg19610905) may influence total cholesterol (TC) levels through changes in gene 
expression. 
 
Figure 5. Multiple-trait colocalization analysis at the SORT1 region to illustrate 
tissue-specific effects.  

(a) Colocalization between GWAS and eQTL (left) as well as GWAS and DNA 
methylation (right) in liver. Note that colocalization was only observed for eQTL 
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and not mQTL, suggesting only gene expression, not methylation is having an 
effect on total cholesterol (TC) levels.  

(b) (b) Colocalization in whole blood; no observed effects suggesting the expression 
of SORT1 is tissue-specific to liver.
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Table 1. Results of the TWAS between Genetic Variants Influencing Gene Expression and Cardiovascular Traits 

Tag SNP Gene(s) Trait Sample Size Beta SE P-Value 

rs646776 SORT1; 
CELSR2;  
PSRC1 

Total Cholesterol 4543 -0.099 0.016 1.10 x 10-9 

rs646776 
 

SORT1; 
CELSR2; 
PSRC1 

LDL Cholesterol 4543 -0.110 0.015 7.74 x 10-14 

rs646776 
 

SORT1; 
CELSR2; 
PSRC1 

ApoB 4546 -2.695 0.328 2.66 x 10-16 

rs12129500 IL6R IL-6 4503 -0.126 0.018 4.96 x 10-12 

rs11693654 ADCY3; 
NCOA1; 
CENPO 

BMI 6387 0.200 0.036 3.57 x 10-8 

rs80026582 LPL Triglycerides 4334 -0.101 0.018 1.49 x 10-8 

rs80026582 LPL VLDL 
Cholesterol 

4334 -0.100 0.018 1.57 x 10-8 

rs600038 ABO IL-6 4496 -0.207 0.021 4.12 x 1022 

rs174538 FADS1; 
FADS2; 

TMEM258 

Total Cholesterol 4539 -0.080 0.015 5.03 x 10-8 

rs2727784 APOA1; 
TAGLN 

ApoA1 4018 3.047 0.468 8.05 x 10-11 

rs10419998 
 

GATAD2A; 
MAU2; 

TM6SF2 

ApoB 4404 -2.024 0.376 7.96 x 10-8 

Abbreviations for the column headings from left to right: single nucleotide polymorphism, gene or gene cluster associated with SNP, associated 
trait, sample size for this effect, observed effect size (standard deviation), standard error of the effect size, p value for observed effect 
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