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Abstract (200 words)

In higher metazoa, the nuclear hormone receptors activate transcription trough their specific
adaptors, nuclear hormone receptor cofactors NCoA, which are surprisingly absent in lower
metazoa. In this study, we demonstrated that the 9aaTAD from NHR-49 receptor activates
transcription as a small peptide. We showed, that the 9aaTAD domains are conserved in the
human nuclear hormone receptors including HNF4, RARa, VDR and PPARg. The small
9aaTAD peptides derived from these nuclear hormone receptors also effectively activated
transcription and that in absence of the NCoA adaptors. We identified adjacent inhibitory
domains in the human HNF4 and RARa, which hindered their activation function.

In acute promyelocytic leukaemia (PML-RARa), the receptor mutations often caused all-trans
retinoic acid (ATRA) resistance. The fact that almost the entire receptor is needed for ATRA
mediated receptor activation, this activation pathway is highly susceptible for loss of function
when mutated. Nevertheless in the most of the reported mutants, the activation domains
9aaTAD are still intact. The release of activation 9aaTAD from its dormancy by a new drug
might be the sound strategy in combat the ATRA resistance in PML leukaemia.
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I ntroduction

The 9aaTAD activation domains are universal activators of transcription in numerous
transcription factors, which are recognized throughout the eukartydt€he 9aaTAD domains

are recognized by multiple mediators of transcription including TAF9, MED15, CBP and p300
4% We have also demonstrated that the activation domains 9aaTAD from p53, MLL, E2A,
NFkB, Sp1, CTF and SOX transcription factors activated transcription as small pépfities

The direct interaction of transcription factors and general mediators of transcription is the
canonical activation of transcription, which was lost in nuclear hormone receptors in higher
eukaryotes and have been replaced by specific hormone adaptors, NCoAs (SRC-1/NCoA-1,
TIF-2/NCoA-2 or RAC-3/NCoA-3}*14

The nematod€.elegans has a complex physiology including neuronal network, reproduction
organs with ovary in female and testis in m&leMost of nuclear hormone receptors in
C.elegans have a common HNF4 ancestor and share high degree of homdldte nuclear
hormone receptor NHR-49 is the key regulator of lipid metabolism, dietary response and life
span inC.elegans 1~'® Both NHR-49 and NHR-64 nuclear hormone receptors are recognized
directly by the transcriptional mediator MED15 (MDT-158)

Recently from the Taubert 18, the 9aaTAD domain was identified in the nuclear hormone
receptor NHR-49 by our 9aaTAD prediction algorithm (www.piskacek.org). The gain-of-
function mutation NHR with V411E substitution was shown to cause significant reduction in
MED15 binding?°.

In this study, we investigated the 9aaTAD functionCielegans nuclear hormone receptor
NHR-49 in parallel to its human homolog Hepatocyte Nuclear Factor 4 (HNF4) and paralogs
including Retinoic acid receptor alpha (RARa), Vitamin D receptor (VDR) and Peroxisome
proliferator-activated receptor gamma (PPARQ).
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Results
Activation and Inhibitory domainsin the nuclear hormone receptor NHR-49

The nuclear hormone receptor NHR-49Grelegans interacts with transcriptional mediator
MED15 (MDT-15)'". The mutation V411E in NHR-49 caused significantly reduced MED15
binding.

We generated hybrid constructs with LexA (prokaryotic DNA binding domain) and activation
domain of the NHR-49HKigure 1A). The construct NHR-49 (H11+H12+F, 391-438 aa)
included the activation domain 9aaTAD (located in the H12 domain) and adjacent domains H11
and F. The construct (H11+H12, 391-424 aa) included the 9aaTAD activation domain and the
adjacent domain H11.

The construct NHR-49 (H12, 409-424 aa) included only the activation domain 9aaTAD. The
constructs NHR-49 (H11+H12+F, 391-438 aa, V411E) and NHR-49 (H11+H12, 391-424 aa,
V411E) included the mutation V411E.

The reporter activation was monitored by fagalactosidase assay (LexA dependent reporter
for transcription activation assay). We standardized all resufsgure 1 to the construct
NHR-49 (H11+H12+F, 391-438 aa, V411E) and set the activity to 100%. The expression of the
proteins were confirmed for each constructs by western bloiggie S1). The constructs

with the mutation V411E showed significantly higher reporter activation than the
corresponding wild type construct. Therefore, we concluded that the mutation V411E interfered
with inhibitory domain activity.

The construct NHR-49 (H12) including only the 9aaTAD domain showed the most activity in
contrast to constructNHR-49 (H11), which included both the activation domain 9aaTAD and
the adjacent domain H11. These results suggested the presence of an inhibitory domain within
the H11 region.


https://doi.org/10.1101/298646
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/298646; this version posted April 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Activation and Inhibitory domainsin human nuclear hor mone receptor NHF4

Following the observations in nuclear hormone receptor NHR-49 in C.elegals next
investigated the human HNF4 receptor activation domain and its adjacent domain H11. Several
HNF4 constructs were reported previousty(Figure S2), some that included the 9aaTAD
domain and activated transcription and other constructs that have not.

Similarly as above, we predicted the presence of inhibitory domain, which could inhibit the
9aaTAD activation domain in HNF4. Accordingly, we generated LexA constructs with and
without the predicted inhibitory H11 domain. The construct HNF4 (H11+H12, 346-379 aa)
included the activation domain and the adjacent H11 domain. The construct HNF4 (H12, 365-
379aa) included only the activation domain 9aaTAD located in H12 refgigar € 1B).

We then compared the construct HNF4 (H12) to a very strong activator Gal4 and found that the
activity of the construct HNF4 (H12) reached about 28% of the Gal4 actrgyre 2). The
activation domain | and Il of the human and rat p53, which all share sequence similarity with
hormone receptors, was added to experiment. We concluded that the 9aaTAD activation domain
is a powerful activator in HNF4. The HNF4 inhibitory domain inhibited about 10-fold the
9aaTAD function Figure 2). Our observations and conclusions are in a good agreement with
previously reported HNF4 construéigSupplementary Figure S2).
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Activation domainsin the human nuclear hormone receptors

Next, we generated sequence alignments (UniProt DB) of selected nuclear hormone receptors
including RARa, PPARg and VDR and focused on C-terminal ends with the H10, H11 and H12
domains (described previously for HNF4 and RARZ)(Figure 3).

We have predicted putative 9aaTAD activation domains in several nuclear hormone receptors
including RARa, PPARg and VDR. We then generated LexA constructs with the predicted
9aaTAD activation domains and tested their ability to activate transcription. We then confirmed
that all 9aaTADs in RARa, PPARg and VDR hormone receptors are strong activators of
transcription as small peptiddsiqure 2) and that without their hormone adaptors NCoAs.

Activation and Inhibitory domainsin the nuclear hormone receptor RARa

In parallel to NHR-49, we also identified inhibitory domains in RARa, which could cause the
inhibition of the predicted activation domain 9aaTAD. Accordingly, we generated LexA
constructs with and without the H11 predicted inhibitory domain. The construct RARa (H12)
included only the activation domain 9aaTAD located in H12 region. The construct RARa
(H11+12) included the H12 region with activation domain 9aaTAD plus the adjacent H11
domain Figure4). As expected, only the construct RARa (H12) without the inhibitory domain
H11 powerfully activated transcription.
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Discussion

The nuclear hormone receptors in vertebrates are evolutionary distinguished group of
unconventional transcription factors using specific adaptors NCoAs, including SRC-1/NCoA-
1, TIF-2/NCoA-2 or RAC-3/NCo0A-3, to activate transcriptféri*2°12-14

The NCoA adaptors are essential for nuclear hormone receptor activation in higher
invertebrates and all vertebrates, but are completely abs€rd @gans genome and all other

early branched invertebrata including nematoda, annelida, cnidaria, placozoa, porifera and
ctenophora (database Kyoto Encyclopedia of Genes and Genomes, KEGG, Mnemiopsis
Genome Project Portal at NHGRI/NIH, genome assembly Ensembl EMBL-EBI)(graphical
abstractf®. The absence of the NCoA adaptor€idegans therefore requires direct interaction

of the nuclear hormone receptors with the general mediators of transcription.

In this study, we demonstrated that small 9aaTAD peptides derived from nuclear hormone
receptors effectively activate transcription in absence of the NCoA adaptors. We showed that
adjacent domains in these hormone receptors have inhibitory effect on their 9aaTAD activation
domains.

In the higher eukaryotes, the interface of the nuclear hormone receptor HNF4 with the NCoA
adaptors involve multiple regions H3, H4 and H12 dom&iriBhe conserved residua Lys194
(from helix H3) and Glu363 (from helix H12frigure 5 and 6) together with the hydrophobic

cleft created by hydrophobic residua Val190 and Phe199 (from H3 and H4 domains) facilitated
NCoAL1 adaptor binding.

In the C.elegans NHR-49, where NCoA adaptors are absent, these residua are also conserved
(Lys194/240, Glu363/417, Val190/236 and Phel199/245) and might be an evolution prone for
the modern nuclear hormone NCoA adaptors, which merged already in mollusca (graphical
abstract).

Previously, the bivalent NHF4 character with AF1 and AF2 activation domains were reported
22 Strikingly, only a single residue (Glutamic acid Glu363) from the AF2 domain was involved
in the interaction with NCoA. The other residua of the HNF4 involved in interaction with NCoA
are located far away in the HNF4 protein from the activation domains AF1 and AF2 (Lys194,
Vall190 and Phel9%{gure 5). The Glu363 residue is in the position p5 of the activation
domains 9aaTAD, which generally face to solvent and did not contribute to binding with
mediators as are CBP, p300, ME[F¥15For the activation domain 9aaTAD function, only the
region of the H12 domain is needed (this study). Differently, almost the entire receptor
structural integrity is needed for the NCoA mediated activation of transcription.

Following the above, the modern hormone nuclear receptors posses two activation pathways,
which one is primordial (canonical, found alreadyGrelegans NHR-49, independent on
NCoAs and almost dormant in modern receptors) and another is gained (dependent on NCoAs
and required structural integrity of the whole ligand binding domain of the receptor).

The position, structure and motif of the 9aaTAD domain in the nuclear hormone receptor HNF4
matches to human RAR&? (Figure5). The H12 helix is in well agreement with other helical
activation domains 9aaTAB 2% The RARa interacts directly with the general mediator ADA3

of transcription also without NCoAs involvement, suggesting an early ancéstryThe
interaction was restricted by mutants analysis to the H12 region and therefore identical to the
9aaTAD activation domain.
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Another interaction, which is outside of the major NCoA scheme for vertebrates nuclear
hormone receptors, was reported for human nuclear hormone receptor PPARg. In a ligand-
dependent manner, the PPARg interacted directly with mediators p300 and CBP and that
without attendance of the NCoA adapt®Ys$* The last six amino acids of the PPARg, which

are part of the activation domain 9aaTAD, were essential for the interaction. The interaction of
CBP or p300 was reported also for other nuclear hormone receptors including PPARa, RARa,
RXR, TR and ER*38 These observations did not oppose the function of molecular adaptors,
rather show an alternative for the transcriptional activation in modern nuclear hormone
receptors.

The conventional activation of transcription facilitated by direct interaction of activation
domains with the general mediators of transcription were found in the most of transcription
factors inclusive ancient nuclear hormone receptors. The modern nuclear hormone adaptors
NCoA are evolutionary gained and broad out the diversification of the nuclear hormone
network. The activation of transcription found in ancient and modern nuclear hormone
receptors showed intriguing origin, which differentiated during evolution from simple to
complex.

The conservation of the ancestral 9aaTAD activation domains in hormone receptors offered
new strategy against cancer. The PML-RARa fusion protein cause about 95% acute
promyelocytic leukaemia (APL) and could be well treated in most cases by all-trans retinoic
acid (ATRA). However, the ATRA resistance is observed already during initial treatments and
is more pronounced during relap$eé®. The mutations of the RARa causing ATRA resistance
spread over the ligand binding region in PML-RARa fusions. Therefore, the nuclear hormone
adaptors NCoAs could no longer bind to mutated PML-RARa. In the most reported cases, the
dormant 9aaTAD activation domain stayed intact (UniProt DB), but is still naturally inactivated
by RARa inhibitory domain H11. Thus, a small molecule, which would released the 9aaTAD
from the inhibition might provide the cure.
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Materials and M ethods

Constructs

The construct pPBTM116-HA was generated by insertion of the HA cassette into the EcoRI
site of the vector pBTM116 (HA cassette nucleotide sequence: TGG CTG - GAATTA - GCC
ACC ATG GCT TAC CCA TAC GAT GTT CCA GAT TAC GCT GTC GAG ATA -

GAATTC, which render in amino acids sequence: WL-EL-ATMAYPYDVPDYA

V E | - E F). The constructs were generated by PCR and sub-cloned into the multi-cloning site
of pBTM116 vector by EcoRI and Pstl sites. All constructs were sequenced by Eurofins
Genomics. Further detailed information about constructs, primer sequences are available on
the request.

Assessment of enzyme activities

The B-galactosidase activity was determined in the ystasin L40 41,42. The strain L40 has
integrated the lacZ reporter driven by the lexA operator. In all hybrid assays, we used 2u
vector pBTM116 for generation of the LexA hybrids. The yeast strain L40, the
Saccharomyces cerevisiae Genotype: MATa ade2 his3 leu2 trpl LYS::lexA-HIS3
URAS::lexA-LacZ, is deposited at ATCC (#MYA-3332). FogRalactosidase assays on paper
stick, the cells were dropped on Watman paper, lysed by two free/thaw cycle (-20°C), soaked
in about 400liof 100 mM phosphate buffer pH7 with 10 mM KCI, MWMgSO4 and 0.4%

X-gal, incubated at 37°C (in a plastic well) until the positive control turned in blue and dried

on tissue paper. For standarg#@lactosidase assays, overnight cultures propagatéeD

medium (1% yeast extract, 2% bactopeptone, 2% glucose) were diluted to an A600 of 0.3 and
further cultivated for two hours and collected by centrifugation. The crude extracts were
prepared by vortexing with glass beads for 3 minutes. The assay was done with 10 ul crude
extract in 1ml of 100 mM phosphate buffer pH7 with 10 mM KCI, 1 mM MgSO4 and 0.2%
2-Mercaptoethanol; reaction was started by 200 ul 0.4% ONPG and stopped by 500 ul 1 M
CaCOa3. The average value of thgdlactosidase activities from three independent

experiments is presented as a percentage of the reference with the standard deviation (means
and plusmn; SD; n = 3). We standardized all results to previously reported Gal4 construct
HaY including Gal4 activation domain 9aaTAD with the activity set to 100% 1.

Western Blot Analysis

The crude cell extracts were prepared in a buffer containing 200 mM Tris-HCI, pH 8.0, 1 mM
EDTA, 10% glycerol (v/v), separated by SDS-PAGE, and blotted to nitrocellulose. The
immuno-detection of proteins was carried out using mouse anti-HA antibody (#26183,
ThermoFisher Sci) or mouse anti-LexA (#306-719, EMD Millipore Corp). The secondary
antibodies used were anti-mouse IgG antibodies conjugated with horseradish peroxidase
(#A9044, Sigma Aldrich). The proteins were visualized using Pierce ECL (#32106,
ThermoFisher Sci) according to the manufacturer’s instructions.
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Source of Photographs

Wikipedia commons download: C. elegans,Zeynep F. Altun, Editor of www.wormatlas.org,
https://commons.wikimedia.org/wiki/File:Adult_Caenorhabditis_elegans.jpg, Anemone,
Nhobgood, Nick Hobgood,
https://upload.wikimedia.org/wikipedia/commons/6/64/Striped_colonial_anemone.jpg,
Daphnia pulex,Paul Hebert, doi:10.1371/journal.pbio.0030219,
https://commons.wikimedia.org/wiki/File:Daphnia_pulex.png, Octopus,Nick Hobgood,
https://commons.wikimedia.org/wiki/File:Octopus_shell.jpg, Drosophila,André Karwath aka
Aka, https://commons.wikimedia.org/wiki/File:Drosophila_melanogaster - side (aka).jpg,
Seven-spot ladybird,Dominik Stodulski, Graphic Processing: Math Knight,
https://commons.wikimedia.org/wiki/File:7-Spotted-Ladybug-Coccinella-septempunctata-
sqgl.jpg, Ctenophore,Image courtesy of Arctic Exploration 2002, Marsh Youngbluth,
NOAA/OER, https://commons.wikimedia.org/wiki/File:Bathocyroe_fosteri.jpg.
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Figure Legends

Figurel

Predicted activation domains 9aaTAD in the C.elegans NHR-49 and human HNF4a
nuclear hormone receptors are activator s of transcription

The presence inhibitory domains and interference of NHR-49 V411E with the inhibition was
monitored. The DNA binding domain of LexA were used with parts of NHR-49 for generation

of hybrid constructs (BTM116 backbone, standard LexA hybrid assaypwgtiactosidase
reporter). The average values of flagalactosidase activities from duplicates experimane
presented as a percentage of the reference with standard deviation (substrate ONPG, means and
plusmn; SD; n = 3). We standardized all results to the construct NHR-49 F, including activation
domain 9aaTAD and both adjacent domains H11 and F, which activity was set to 100%. The
construct DD with deleted Gal4 activation domain served as negative control (sequence shown
in Figure 3).

Figure2

Predicted activation domains 9aaTAD in the human nuclear hormone receptor are
universal activators of transcription

The DNA binding domain of LexA were used with putative activation domains for generation

of hybrid constructs (BTM116 backbone, standard LexA hybrid assaypwgtiactosidase
reporter). The average values of flagalactosidase activities from duplicates experimane
presented as a percentage of the reference with standard deviation (substrate ONPG, means and
plusmn; SD; n = 3). Thp-galactosidase was previewed by using 0,5 % X-gdlliem paper

(no value are available) and show for demonstration. We standardized all results to the
previously reported strong Gal4 activator of transcription, construct HaY including LexA and
Gal4 activation domain 9aaTAD, which activity was set to 100%. The construct DD with
deleted Gal4 activation domain served as negative control. The activity of the LexA-p53
constructs 1p53, 6p53 and 8p53 are shown as extended positive controls and comparable
activation domain sequences.

Figure3
Sequence alignment of the nuclear hor mone receptor Family

The C-terminal sequences of selected nuclear hormone receptorS.élegans and humans

were aligned. Those activation domains were cloned and tested for activation of transcription
(shown in Figure 3) are blue labelled. The structural domains H10, H11 and H12 are clustered.
The amino acids in H11, which are like to provide interaction with H12 are bolded. The
predicted activation domains 9aaTAD are coloured for fast orientation. The end of sequences
are marked with single dots.
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Figure4
RARa activation and inhibitory domain - Screening strategy for small molecule.

The DNA binding domain of LexA were used with RARa activation domains with and without
inhibitory domains for generation of hybrid constructs (BTM116 backbone, standard LexA
hybrid assay witlff-galactosidase reporter). The average values @tatactosidase activities

from duplicates experiments are presented as a percentage of the reference with standard
deviation (substrate ONPG, means and plusmn; SD; n = 3). The Screening strategy for small
molecule are schematically shown.

Figure5
Structures of the human nuclear hormone receptors HNF4a and RARa

The activation domains 9aaTAD are shown and selected residua are coloured. Thesggsidue |
in HNF4a, which corresponds tos/ in NHR-49, is labelled purple. The HNF4a residue
critical for interaction with NCoA ks3z and Kio4 are labelled red and purple.

Figure 6
Evolution in the nuclear hormone receptor family

Schema of the conventional (canonical) activation of transcription in ancient nuclear hormone
receptor NHR-49, which is strait forward and is provided by general mediator of transcription

MED15, but highly complex and diversified in the modern hormone system with specific NCoA

adaptors (in yellow). The activation domains 9aaTAD are coloured for fast orientation. For
details see text.
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Expression level of the constructs Suppl. Figure

C.elegans HNR-49 human HNF4
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Suppl. Figure S1. Expression of the construct3.he protein level produced from the constructs were monitored by Western blotting. The
proteins comprise of LexA DNA binding domain. The peptides shown were tested in the reporter assay with hybrid Lex DNA binding domain fo
the capacity to activate transcription.
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9aaTAD Inhibition

Suppl. Figure

Hadzopoulou-Cladaras et al.
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Suppl. Figure S2. Activation of transcription by HNF4 constructs.The schema of human HNF4 constructs from Hadzopoul ou-Cladaras et
1997 and our constructs from Figure 1 are aligned and their functional domains are graphically organised according structural domain H11 and
H12, originally domain A to F and activation of transcription are shown in percent. Our HNF4 construct 9aaTAD+ID correspond to reported

construct CD7 and therefore correspond to activity of 10%. The activation domains 9aaTAD are coloured for fast orientation. The proximal ami
acid 1357 corresponding to V411 in C.elegans NHR-49 is in purple. The arrows indicated two lost of functional domain betwenn two construct
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