1	Full Title:
2	RAB-35 aids apoptotic cell clearance by regulating cell corpse recognition and
3	phagosome maturation
4	
5	Short Title:
6	Regulation of cell corpse recognition and phagosome maturation by RAB-35
7	
8	Ryan C. Haley ¹ , Ying Wang ¹ , and Zheng Zhou ^{1,2}
9	
10	¹ Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College
11	of Medicine, Houston, TX 77030
12	
13	² Corresponding author, <u>zhengz@bcm.tmc.edu</u> , 713-798-6489
14	
15	
16	
17	
18	
19	
20	
21	
22 23	
24	
25	
26	

27 Abstract:

28 In metazoans, apoptotic cells are swiftly engulfed by phagocytes and degraded 29 inside phagosomes. Multiple small GTPases in the Rab family are known to function in 30 phagosome maturation by regulating vesicle trafficking. We discovered rab-35 as a new 31 gene important for apoptotic cell clearance using an RNAi screen targeting putative Rab 32 GTPases in *Caenorhabditis elegans*. We further identified TBC-10 as a putative GTPaseactivating protein (GAP), and FLCN-1 and RME-4 as two putative Guanine Nucleotide 33 34 Exchange Factors (GEFs), for RAB-35. RAB-35 function was found to be required for 35 the incorporation of early endosomes to phagosomes and for the timely degradation of 36 apoptotic cell corpses. More specifically, RAB-35 facilitates the switch of phagosomal 37 membrane phosphatidylinositol species from $PtdIns(4,5)P_2$ to PtdIns(3)P and promotes 38 the recruitment of the small GTPase RAB-5 to phagosomal surfaces, processes that are 39 essential for phagosome maturation. Interestingly, we observed that CED-1 performs 40 these same functions, and to a much larger extent than RAB-35. Remarkably, in addition 41 to cell corpse degradation, RAB-35 also facilitates the recognition of cell corpses 42 independently of the CED-1 and CED-5 pathways. RAB-35 localizes to extending 43 pseudopods and is further enriched on nascent phagosomes, consistent with its dual roles in regulating cell corpse-recognition and phagosome maturation. Epistasis analyses 44 indicate that *rab-35* represents a novel third genetic pathway that acts in parallel to both 45 46 of the canonical *ced-1/6/7* and *ced-2/5/10/12* engulfment pathways. We propose that 47 RAB-35 acts as a robustness factor, leading a pathway that aids the canonical pathways 48 for the engulfment and degradation of apoptotic cells.

50 **Introduction:**

51	During the development of metazoans, cells that undergo apoptosis are
52	internalized and degraded by other cells that are referred to as engulfing cells or
53	phagocytes $(1-3)$. The phagocytic removal of apoptotic cells is an evolutionarily
54	conserved event that supports normal tissue turnover and homeostasis, facilitates wound
55	resolution and tissue regeneration, and prevents inflammatory and auto-immune
56	responses induced by the release of dead cell contents (3,4). Throughout the
57	development of Caenorhabditis elegans hermaphrodites, 300-500 of germ cells and 131
58	somatic cells undergo apoptosis (5–7). The temporal and spatial parameters of these cell
59	death events are highly consistent between embryos (5). Apoptotic cells exhibit a
60	"button-like" and highly refractive morphology under the Differential Interference
61	Contrast (DIC) microscope, and are rapidly engulfed and degraded by multiple types of
62	neighboring cells (5–8). Genetic screens and further characterizations of mutations that
63	result in the "cell death abnormal" (Ced) phenotype, characterized by the accumulation of
64	persistent cell corpses, have identified a number of genes that act in the recognition,
65	engulfment, or degradation of cell corpses (9,10).

The Rab family of small GTPases play critical roles in membrane trafficking events, including endocytosis and exocytosis, autophagy, and phagosome maturation (11,12). A well-known mode of action is that Rab GTPases and their effectors serve as docking factors that facilitate the attachment and fusion of different membrane compartments and/or vesicles (11). Multiple mammalian and *C. elegans* Rab proteins play essential roles for phagosome maturation by facilitating the incorporation of intracellular organelles to phagosomes, an action that delivers digestive enzymes to the

73	phagosomal lumen and that may also aid in the acidification of the lumen (13,14). C.
74	elegans and mammalian RAB-5 are required for the recruitment and incorporation of
75	early endosomes to phagosomes (15–17), while C. elegans and mammalian RAB-7 are
76	critical for the incorporation of lysosomes to phagosomes (18,19). In C. elegans, both
77	RAB-5 and RAB-7 function downstream of a signaling pathway that promotes
78	phagosome maturation; this pathway is initiated by the phagocytic receptor CED-1 and
79	mediated by the large GTPase DYN-1 (8,15,18,20). C. elegans RAB-2 and RAB-14 also
80	make important contributions to the phagosomal degradation of cell corpses (21–23).
81	The signaling pathway led by CED-1 initiates phagosome maturation not only by
82	recruiting Rab proteins to phagosomal surfaces, but also by initiating the production of
83	PtdIns(3)P, a phosphorylated phosphatidylinositol species and an important second
84	messenger, on phagosomal membranes (16,18). PtdIns(3)P recruits multiple effectors to
85	phagosomes, including membrane remodeling factors and docking factors that facilitate
86	the recruitment and fusion of intracellular vesicles (13,24). Consequently, phagosome
87	maturation events are largely dependent on the presence of PtdIns(3)P and certain Rab
88	GTPases (15,16). Interestingly, the presence of RAB-5 and PtdIns(3)P on phagosomal
89	surfaces displays a co-dependent relationship (15,16).
90	Two PI3-kinases, PIKI-1 and VPS-34, catalyze the production of PtdIns(3)P on
91	phagosomal surfaces (16,25). PIKI-1 and VPS-34 are functionally opposed by MTM-1,

92 a PI3-phosphatase that dephosphorylates PtdIns(3)P and in this matter counteracts PI3-

- kinase activities (16). Throughout the phagosome maturation process, PtdIns(3)P is
- 94 present on phagosomal surfaces in a two-wave oscillation pattern, a pattern coordinately
- 95 regulated by PIKI-1, VPS-34, and MTM-1 (16). MTM-1 is recruited to the surface of

96	extending pseudopods as an effector of $PtdIns(4,5)P_2$, another phosphorylated
97	phosphatidylinositol species that is enriched on the surface of growing pseudopods
98	during engulfment (25). The initial appearance of PtdIns(3)P on phagosomes correlates
99	not only with the recruitment of PIKI-1 to phagosomal surfaces by the CED-1 pathway
100	(16), but also with the simultaneous disappearance of MTM-1 from nascent phagosomes,
101	which is implicated to be a result of the disappearance of $PtdIns(4,5)P_2$ from phagosomal
102	surfaces (25). Whether the CED-1 signaling pathway also regulates the turnover of
103	PtdIns $(4,5)$ P ₂ has not yet been tested.
104	The phagocytic receptor CED-1 provides a link between the engulfment of
105	apoptotic cells and the subsequent maturation of nascent phagosomes (8). During
106	engulfment, CED-1 recognizes phosphatidylserine (PS), an "eat me" signal exposed on
107	the surface of apoptotic cells, and defines one of the two canonical parallel pathways that
108	stimulate pseudopod extension and cell corpse internalization (26–28). Several other key
109	components act in this engulfment pathway alongside CED-1: CED-7, a homolog of
110	mammalian ABC transporters that exposes PS on the surface of apoptotic cells; CED-6,
111	an adaptor for CED-1; and DYN-1, an ortholog of the large GTPase dynamin that
112	promotes "focal exocytosis" during pseudopod extension and stabilizes the cytoskeleton
113	underneath extending pseudopods in response to CED-1 activation (8,29,30). In the other
114	canonical engulfment pathway, CED-2 regulates the activity of the CED-5/CED-12
115	complex, presumably through its N-terminus that contains SH2 and SH3 domains
116	(31,32). The CED-5/CED-12 complex, in turn, functions as a bipartite nucleotide
117	exchange factor to activate the Rac GTPase CED-10 (33). CED-10 promotes the
118	reorganization of the actin cytoskeleton and the extension of pseudopods around cell

119 corpses (34,35). However, residual engulfment activity persists after inactivating both 120 the *ced-1/-6/-7/dyn-1* and *ced-2/-5/-10/-12* pathways, suggesting that there are yet 121 unknown pathways that play significant roles in cell-corpse engulfment (8,36). Although 122 other proteins – such as alpha and beta integrins – are also reported to contribute to cell 123 corpse engulfment, their effects are mild in comparison (37,38).

124 In addition to the putative missing pathways, many other ambiguities still 125 surround the molecular mechanisms that control apoptotic cell clearance. For example, 126 although many Rab GTPases have been implicated in the regulation of any clearance 127 events, it remains unclear whether this is an exhaustive list. The C. elegans genome 128 contains 30 genes that encode close homologs of mammalian Rab GTPases, 23 of which 129 have been assigned names as *rab* genes (39). To determine which of these *rab* genes 130 function in apoptotic cell clearance, we screened for any Rab GTPases that participate in 131 cell corpse clearance using RNAi knockdown, excluding previously examined candidates 132 such as rab-2, -5, -7, and -14. We discovered that inactivation of rab-35, which encodes 133 a homolog of mammalian Rab35, caused a moderate yet significant Ced phenotype, 134 indicating that RAB-35 functions in apoptotic cell clearance. Further characterizations 135 revealed novel features and functions of RAB-35. Unlike RAB-5 and RAB-7, which are 136 enriched on the surface of phagosomes and facilitate specific maturation events, RAB-35 137 weakly localizes at the extending pseudopods during engulfment, exhibits an ephemeral 138 surge of localization on nascent phagosomes, and regulates multiple steps throughout 139 apoptotic cell clearance. To facilitate the initiation of phagosome maturation, RAB-35 140 promotes the turnover of $PtdIns(4,5)P_2$ and the recruitment of RAB-5, indirectly enabling 141 phagosomal PtdIns(3)P production. Our findings further indicate that RAB-35 represents

142	a clearance pathway that functions in parallel to the CED-1 and CED-5 pathways, yet in
143	many ways resembles the mechanisms and functions of the CED-1 pathway. We thus
144	propose that RAB-35 acts as a robustness factor and defines a new pathway that ensures
145	the stability of apoptotic cell clearance.
146	
147	<u>Results:</u>
148	Inactivation of rab-35 results in an increased number of persistent cell corpses
149	The C. elegans genome contains 30 genes that encode close homologs of
150	mammalian Rab GTPases, 23 of which have been assigned gene names (40). Among
151	these 23 putative rab genes, rab-2, rab-5, rab-7, and rab-14 have been reported to act in
152	the clearance of apoptotic cells (13). To determine if any other Rab proteins are involved
153	in the same process, we individually knocked down the expression of 19 <i>rab</i> genes in <i>C</i> .
154	elegans using the RNA interference (RNAi) treatment, and scored the number of germ
155	cell corpses in the gonad of adult hermaphrodites (Materials and Methods). In addition,
156	we scored the number of germ cell corpses in the rab-10 deletion mutant (Materials and
157	Methods). RNAi of <i>rab-1</i> and <i>rab-11.1</i> cause lethality before the worms develop into
158	adults. Among the remaining 17 genes subject to RNAi treatment and the rab-
159	10(ok1494) mutants, only 6 had more than four times the number of germ cell corpses
160	compared to the wild-type control (Fig 1A). Of these 6, rab-35(RNAi) worms exhibited
161	the highest number of persistent germ cell corpses, indicating the strongest defect in the
162	clearance of germ cell corpses, characteristic of the Ced phenotype (Fig 1A). To verify
163	this Ced phenotype, we examined two putative rab-35 null alleles – the nonsense

164	mutation $b1013$ and the deletion allele $tm2058$ (Fig 1B) (41). Both $rab-35(b1013)$ and
165	rab-35(tm2058) mutants exhibit identical Ced phenotypes in embryos in mid- (1.5-fold,
166	~420 min-post 1 st cleavage) and late- (late 4-fold, 700-800 min-post 1 st cleavage) stage
167	embryos and the 48 hour post-L4 adult gonads (Fig. 1C-D), confirming the RNAi results.
168	To determine whether the button-like objects observed under DIC optics in rab-
169	35(b1013) mutants are actually cell corpses, we probed them for the exposure of PS on
170	their surfaces, a distinct characteristic of cells undergoing apoptosis (27). Using MFG-
171	E8::mCherry – a secreted PS-binding reporter (27), we detected bright mCherry signal
172	specifically on the surface of the button-like objects (Fig 1E), indicating that they are
173	indeed apoptotic cells. In addition, we expressed the rab-35 cDNA, as an N-terminal
174	GFP-tagged form, specifically in engulfing cells under the control of the ced-1 promoter
175	(P _{ced-1} gfp::rab-35) (26), and found that it completely rescued the Ced phenotype in rab-
176	35(b1013) mutants (Fig 1F). This result suggests that the activity of RAB-35 in
177	engulfing cells promotes cell corpse clearance.
178	RAB-35 is known to act in receptor-mediated endocytosis and endocytic
179	recycling in C. elegans (41,42). We confirmed that the rab-35 mutants have a
180	characteristic excess of yolk in the pseudocoelom due to their inability to traffic yolk into
181	oocytes as previously described (41,42) (Fig S1).
182	
183	RAB-35 localizes to developing pseudopods and must cycle between GDP- and GTP-

184 <u>bound states to function</u>

185	Using time-lapse microscopy, we monitored the localization of GFP::RAB-35
186	expressed in engulfing cells ($P_{ced-1}gfp::rab-35$), which rescues the Ced phenotype of <i>rab</i> -
187	35(b1013) mutants. We tracked the clearance process of three apoptotic cells on the
188	ventral surface: C1, engulfed by ABplaapppa; C2, engulfed by ABpraapppa; and C3,
189	engulfed by ABplaapppp, using our previously established protocol (Fig 2A) (43). C1,
190	C2, and C3 undergo apoptosis shortly after the initiation of ventral enclosure (~320-330
191	minutes post-first cleavage) (43). GFP::RAB-35 labels the extending pseudopods
192	throughout engulfment; moreover, GFP::RAB-35 exhibits an ephemeral burst of
193	enrichment on nascent phagosomes that lasts for 2-4 minutes (Fig 2B). Afterwards, the
194	phagosomal GFP signal rapidly declines to the background level by approximately 15-20
195	minutes after the initiation of engulfment (Fig 2C). This dynamic enrichment pattern
196	suggests that RAB-35 might participate in multiple events during apoptotic cell
197	clearance.

198 We introduced S24N and Q69L, two point mutations previously established to 199 convert Rab GTPases into the GDP-locked and GTP-locked forms (41), respectively, 200 individually into the P_{ced-1} gfp::rab-35 reporter constructs. Overexpression of RAB-35(S24N) produced a Ced phenotype in the wild-type background as strong as that 201 202 displayed by rab-35 null mutants (Fig 2D), verifying its predicted dominant-negative 203 effect (41). Moreover, GFP::RAB-35(S24N) failed to enrich on the surfaces of extending 204 pseudopods or nascent phagosomes (Fig 2E), suggesting that it is a non-functional form. 205 Remarkably, overexpression of RAB-35(Q69L), the presumed GTP-locked form, failed 206 to rescue the Ced phenotype of *rab-35* mutants (Fig 2D), although it displayed persistent 207 enrichment on the phagosomal membrane (Fig 2E). Together, the altered localization

208	patterns and the lack of rescuing activity observed in both mutant forms of RAB-35
209	suggest that the cycling of RAB-35 between the GDP-bound and GTP-bound states is
210	required for its proper localization and function during apoptotic cell clearance.
211	
212	Determining the putative GAP and GEFs for RAB-35 for apoptotic cell clearance
213	To better understand how the cycling of RAB-35 between the GDP- and GTP-
214	bound forms is regulated, we examined C. elegans orthologs of known GAPs and GEFs
215	of mammalian Rab35 to determine which ones function in the context of apoptotic cell
216	clearance. We first studied the loss-of-function alleles of <i>rme-4</i> and <i>flcn-1</i> , which encode
217	the C. elegans orthologs of the mammalian GEFs connecdenns $1/2/3$ and folliculin,
218	respectively (44). The <i>flcn-1(ok975)</i> null mutation resulted in a Ced phenotype that is
219	slightly weaker than that of rab-35(b1013) mutants (Fig 2F). Furthermore, the flcn-
220	1(ok975); rab-35(b1013) double mutants exhibited a Ced phenotype identical to that of
221	rab-35(b1013) mutants, placing both <i>flcn-1</i> and <i>rab-35</i> in the same genetic pathway (Fig
222	2F). These results suggest that <i>flcn-1</i> might act as a GEF for RAB-35, but also that it
223	may be working in tandem with another GEF.
224	RME-4 was previously reported to act as a GEF for RAB-35 during its function in
225	endocytic trafficking (41). Interestingly, although rme-4(tm1865) single mutants did not
226	exhibit any statistically significant Ced phenotype, the <i>flcn-1(ok975)</i> ; <i>rme-4(tm1865)</i>
227	double mutants exhibited a Ced phenotype more severe than that displayed by the <i>flcn</i> -
228	1(ok975) single mutants and identical in severity to that of rab-35(b1013) mutants (Fig

229 2F), suggesting that RME-4 might also function as a GEF for RAB-35 in the context of

230	apoptotic cell clearance. Compared to FLCN-1, however, the contribution of RME-4 to
231	apoptotic cell clearance is relatively minor and redundant.

232	We subsequently probed deletion mutant alleles of the genes <i>tbc-7</i> , <i>tbc-10</i> , and
233	tbc-13 (www.wormbase.org), which encode the C. elegans orthologs of TBC1D24,
234	TBC1D10A/B/C, and TBC1D13, known GAPs for mammalian Rab35, respectively (41)
235	(Fig S2). We found considerable evidence that TBC-10 acts as the sole GAP for RAB-35
236	in the context of cell corpse clearance. Firstly, a loss-of-function mutant of tbc-10, but
237	not those of <i>tbc-7</i> or <i>tbc-13</i> , exhibits a Ced phenotype identical to that of <i>rab-35(b1013)</i>
238	mutants (Fig 2G). These results are also consistent with our previous observation that
239	RAB-35 must cycle between its GTP- and GDP-bound forms to function, as inactivating
240	its putative GAP (tbc-10) also appears to disable RAB-35. If the GTP-locked form of
241	RAB-35 was its active form, tbc-10 mutants would instead lock RAB-35 in a
242	constitutively active form and thus fail to exhibit a Ced phenotype. Secondly, when we
243	tracked the localization of GFP::RAB-35 throughout the clearance of C1, C2, and C3 in
244	tbc-10 mutants, we found that – relative to wild-type – RAB-35 localized to extending
245	pseudopods and nascent phagosomes normally, but that its removal from phagosomal
246	surfaces was delayed (Fig 2H). This pattern is similar to that of GFP::RAB-35(Q69L) in
247	a wild-type background (Fig 2E), indicating that GFP::RAB-35 is locked in the GTP-
248	bound form in <i>tbc-10</i> mutants. Finally, the <i>tbc-10(tm2790); rab-35(b1013)</i> double
249	mutants did not enhance the Ced phenotype over either single mutant, confirming that
250	<i>tbc-10</i> is in the same genetic pathway as <i>rab-35</i> , as would be expected for a putative
251	GAP for RAB-35 (Fig 2G).

rab-35 loss of function causes delays in phagosomal maturation

254	C. elegans RAB-2, RAB-5, and RAB-7 all play important roles in the maturation
255	of phagosomes that contain apoptotic cells (13). To determine whether RAB-35 is
256	involved in this process, we measured how fast phagosomes degraded the cell corpses
257	C1, C2, or C3 in <i>rab-35</i> mutant embryos. The lifetime of a phagosome is measured using
258	a combination of a GFP::moesin reporter, which specifically labels the polymerized actin
259	filaments underneath the extending pseudopods (28), and CTNS-1::mRFP, a lysosomal
260	membrane marker that is enriched on the surface of phagosomes during maturation (18).
261	These two reporters are co-expressed in engulfing cells under the control of the P_{ced-1}
262	promoter (18,28). GFP::moesin is used to determine when pseudopods fuse to form a
263	nascent phagosome, providing a way to determine the time point when phagosomal
264	maturation begins and to measure the initial diameter of a nascent phagosome. CTNS-
265	1::mRFP is then used to track and measure the diameter of a phagosome throughout
266	maturation (Fig 3A). We defined phagosomal lifetime as how long it takes for the
267	phagosome to shrink to one-third of its original radius after the initiation of phagosome
268	maturation. Using this assay, we found that $rab-35(b1013)$ mutants exhibited a
269	significantly longer phagosomal lifetime than their wild-type counterparts; 75% of
270	phagosomes in rab-35 mutants had a lifetime longer than 60 minutes, compared to only
271	13.3% of phagosomes in wild-type embryos (Fig 3B). These results indicate that RAB-
272	35 is important for the efficient degradation of phagosomal contents.

rab-35 mutants are defective in the incorporation of early endosomes to phagosomes

275	During the degradation of cell corpses, two kinds of intracellular organelles –
276	early endosomes and lysosomes - are recruited to the surface of phagosomes and
277	subsequently fuse to the phagosomal membrane, depositing their contents into the
278	phagosomal lumen (13). The recruitment and fusion of early endosomes to the
279	phagosome was probed using HGRS-1::GFP, an established early endosomal surface
280	marker expressed in engulfing cells (8). Starting from the birth of a nascent phagosome,
281	HGRS-1::GFP appears on the surface of a phagosome as puncta (Fig 3D). The
282	continuous accumulation of the puncta over time generates a GFP ring around the
283	phagosomal surface (Fig 3D). In rab-35 mutant embryos, this GFP ring appears much
284	slower relative to wild-type embryos, suggesting that RAB-35 function is required for the
285	efficient recruitment of early endosomes (Fig 3C-D).
286	Likewise, CTNS-1::mRFP was used to visualize the recruitment of lysosomes to
287	the surface of phagosomes. CTNS-1::mRFP first appeared on phagosomal surfaces as
288	puncta, with the accumulating puncta gradually forming a mRFP ring on the phagosomal
289	surface over time (18). Time-lapse recording and quantitative analysis found that rab-
290	35(b1013) mutants had no statistically significant delays in the recruitment of lysosomes
291	(Fig S3B). To further determine if the fusion of lysosomes to phagosomes was normal in
292	rab-35 mutants, we monitored the entry of a NUC-1::mRFP reporter (expressed in
293	engulfing cells under P_{ced-1}) into the phagosomal lumen. NUC-1 is an endonuclease that
294	specifically resides in the lysosomal lumen (45). Similar to CTNS-1::mRFP, NUC-
295	1::mRFP is recruited to phagosomal surfaces as mRFP ⁺ puncta (45); however, unlike
296	CTNS-1, the fusion of lysosomes to the phagosome causes NUC-1::mRFP to enter the
297	phagosomal lumen (Fig S3A). In $rab-35(b1013)$ embryos, the entry of the NUC-

298 1::mRFP signal occurred on an timescale identical to that of wild-type embr	298	1::mRFP signal	occurred on an	timescale identical	l to that of	f wild-type	embryos
---	-----	----------------	----------------	---------------------	--------------	-------------	---------

suggesting that inactivating *rab-35* has no effect on phagolysosomal fusion (Fig S3C).

300

301 <u>RAB-35 promotes the initiation of phagosomal maturation by facilitating the</u>

302 <u>PtdIns(4,5)P₂ to PtdIns(3)P shift</u>

303	The rapid enrichment of RAB-35 during the formation of a nascent phagosome
304	(Fig 2B) suggests that RAB-35 may function during the initiation of phagosome
305	maturation. At this same time, the predominant phosphatidylinositol species on the
306	phagosomal surface switches from $PtdIns(4,5)P_2$ to $PtdIns(3)P$, a process necessary for
307	the progression of phagosome maturation and cell corpse degradation (16,18,28). We
308	monitored the dynamic localization pattern of RAB-35 relative to those patterns of
309	PtdIns(4,5)P ₂ and PtdIns(3)P. This was done by co-expressing our own RAB-35
310	reporters with previously established reporters for PtdIns(4,5)P ₂ (PH::GFP) or PtdIns(3)P
311	(2xFYVE::mRFP) (18,28) (Fig 4A-B). We observed that RAB-35 enrichment
312	corresponded exactly with both the loss of $PtdIns(4,5)P_2$ and the gain of $PtdIns(3)P$ on
313	the surface of a nascent phagosome (Fig 4A-B).
314	Because PtdIns(3)P is essential for phagosome maturation (see Introduction), and
514	because I tunis(5)1 is essential for phagosome maturation (see introduction), and
315	because the disappearance of $PtdIns(4,5)P_2$ from phagosomal surfaces is correlated with
316	the production of PtdIns(3)P on phagosomes (25), we examined whether RAB-35
317	regulates the dynamic pattern of $PtdIns(4,5)P_2$ and $PtdIns(3)P$ on phagosomes. We first
318	monitored $PtdIns(4,5)P_2$ dynamics on the surface of phagosomes in a series of mutant
319	embryos (Fig 4C). We found that in <i>rab-35(b1013)</i> and <i>ced-1(n1506)</i> mutants, but not

 $ced-5(n1812) \text{ mutants, PtdIns}(4,5)P_2 \text{ persists longer on phagosomal surfaces (Fig 4C-D).}$ $ced-1(n1506) \text{ mutants exhibited a longer delay in PtdIns}(4,5)P_2 \text{ disappearance than } rab-$ 35(b1013) mutants, and rab-35(b1013); ced-1(n1506) double mutants exhibited a muchmore severe delay than either single mutant (Fig 4D(a)). These results suggest that RAB-35 and CED-1 act in a partially redundant fashion for the removal of PtdIns}(4,5)P_2 from phagosomal surfaces.

326 The phagocytic receptor CED-1 was previously demonstrated to play an essential 327 role in initiating PtdIns(3)P synthesis on the surface of nascent phagosomes (18). In rab-328 35 mutant embryos, the appearance of the initial peak of PtdIns(3)P was significantly 329 delayed relative to wild-type, although the defect was not as strong as that observed in 330 ced-1 mutant embryos (Fig 5A+B(a)). rab-35; ced-1 double mutants have a stronger 331 delay in the PtdIns(3)P appearance compared to either single mutant (Fig 5B(a)), again 332 suggesting that RAB-35 and CED-1 act in a partially redundant fashion for the generation 333 of PtdIns(3)P on phagosomal surfaces. However, because ced-5 mutants fail to exhibit 334 any delay in PtdIns(3)P production, and because the severity of the delay of PtdIns(3)P 335 displayed by the *rab-35*; *ced-5* double mutants is equivalent to that of the *rab-35* single 336 mutants, we conclude that *ced-5* is not involved in the regulation of PtdIns(3)P production (Fig 5A+B(b)). 337

PtdIns(3)P typically appears on the phagosomal surface in two distinct waves (16),
as exhibited in Figure 5A (time-lapse strip of a wild-type embryo, white and yellow
arrows). We thus quantified whether the first and second waves of PtdIns(3)P were
present in each of the aforementioned mutants. In stark contrast to wild-type embryos,
where every phagosome exhibited both PtdIns(3)P waves, 21.7% of phagosomes in *rab*-

343	35(b1013) mutants failed to produce the first wave of PtdIns(3)P, while 33.3% of
344	phagosomes in <i>ced-1(n1506)</i> mutants failed to produce either the first or second wave
345	(Fig 5C). rab-35(b1013); ced-1(n1506) double mutants exhibited more severe defects
346	than either single mutant (Fig 5C). Together, our observations indicate that RAB-35 and
347	CED-1 act in parallel to promote the production of PtdIns(3)P on the surface of nascent
348	phagosomes.

349

350 <u>RAB-35 is required for the efficient removal of MTM-1 from phagosomal surfaces</u>

351	To further explore how loss of function of <i>rab-35</i> delays PtdIns(3)P production,
352	we characterized the localization of PtdIns(3)P kinases and phosphatases using time-lapse
353	recording of phagosomes containing C1, C2, and C3. Although both PIKI-1 and VPS-34
354	function as PI3-kinases during phagosome maturation, only PIKI-1 is observed when the
355	nascent phagosome seals and initiates the PtdIns(4,5)P ₂ to PtdIns(3)P shift, while VPS-34
356	functions later on in maturation (16). Therefore, we monitored the phagosomal dynamics
357	of PIKI-1, as well as MTM-1, the PI3-phosphatase it largely antagonizes (16,25). rab-
358	35(b1013) mutants exhibited normal recruitment of PIKI-1::GFP; the enrichment of
359	PIKI-1::GFP was observed on the surface of every phagosome, and the level of
360	enrichment was comparable to that observed in wild-type embryos (Fig S4). In contrast,
361	MTM-1::GFP persists on the surface of phagosomes approximately twice as long in rab-
362	35(b1013) mutants – and more than thrice as long in <i>ced-1(n1056)</i> mutants – compared to
363	wild-type embryos (Fig 6A). These results indicate that both RAB-35 and CED-1 are
364	required for the timely removal of MTM-1 from phagosomal surfaces. Furthermore, rab-
365	35(b1013); ced-1(n1506) double mutants display an even longer delay in MTM-1::GFP

366	removal, indicating that <i>rab-35</i> and <i>ced-1</i> function partially redundantly to regulate
367	MTM-1 removal (Fig 6C). The timing of $PtdIns(4,5)P_2$ disappearance and MTM-1
368	removal from phagosomal surfaces are similar in all backgrounds analyzed (Fig 4D+6C),
369	consistent with the fact that MTM-1 is a $PtdIns(4,5)P_2$ effector (25). In addition, it
370	suggests that, in <i>rab-35</i> mutants, the persistent presence of PtdIns(4,5)P ₂ on phagosomal
371	surfaces causes MTM-1 to remain on phagosomes as well.
372	
373	RAB-35 promotes the recruitment of SNX-1, a PtdIns(3)P effector, to phagosomal
374	surfaces
375	Sorting nexins SNX-1 and LST-4, two PtdIns(3)P effectors and membrane
376	remodeling factors, are recruited to phagosomal surfaces by PtdIns(3)P (46). SNX-
377	1::GFP and LST-4::GFP were visualized using time lapse microscopy to characterize
378	their localization to phagosomal surfaces. SNX-1::GFP is found on 100% of phagosomes
379	in wild-type embryos; moreover, it forms a continuous ring on the surface in >90% of
380	phagosomes, a pattern suggesting the presence of a large enough number of the SNX-
381	1::GFP molecules to cover the entire surface of a phagosome (Figure 6B+D(a)). In
382	contrast, only 73.3% of phagosomes rab-35(b1013) mutants recruit SNX-1::GFP; of
383	these phagosomes, more than half recruit SNX-1::GFP as isolated puncta instead of as a
384	continuous ring (Fig 6B+D(a)). These results suggest that RAB-35 is important for the
385	efficient recruitment of SNX-1::GFP to phagosomes, consistent with the defects in
386	PtdIns(3)P production previously observed in rab-35 mutants. However, continuous
387	rings of LST-4::GFP were observed on 100% of phagosomes in both rab-35(b1013)
388	mutants and wild-type embryos (Fig 6D(b)). Given that our lab has previously shown

389	that the recruitment of LST-4 is mediated in part through DYN-1 (46), this suggests that
390	RAB-35 may also recruit SNX-1 through a more direct mechanism rather than just
391	indirectly through PtdIns(3)P production.

392

393 *rab-35* recruits RAB-5 to phagosomes and acts in the same genetic pathway as *rab-5*

394 <u>during phagosomal maturation</u>

395 Given that rab-35(b1013) mutants are defective in production of PtdIns(3)P, and 396 that the recruitment of RAB-5 and the production of PtdIns(3)P on phagosomal surfaces 397 are co-dependent processes (16), we investigated the functional relationship between 398 RAB-35 and RAB-5. We made a number of observations that indicate that RAB-35 399 functions upstream of RAB-5 in the regulation of phagosome maturation. Firstly, the 400 enrichment of mRFP::RAB-35 on the surface of nascent phagosomes precedes that of 401 GFP::RAB-5 by approximately 30-60 seconds (Fig 7A). Secondly, inactivation of rab-5 402 using RNAi treatment in wild-type embryos results in the presence of extra cell corpses; 403 moreover, the rab-35 null mutation does not further enhance the Ced phenotype caused 404 by rab-5(RNAi) treatment (Fig 7C), suggesting rab-35 and rab-5 act in the same genetic 405 pathway. Thirdly, rab-35(b1013) mutants exhibit a delay in the recruitment of RAB-5 to 406 the phagosome (Fig 7B+D). This delays resembles that caused by the *ced-1* mutation 407 (Fig 7B+D), although it is not as severe. Additionally, rab-35(b1013); ced-1(n1506) 408 double mutants display a stronger delay than either single mutant (Fig 7B+D), suggesting that *rab-35* and *ced-1* function in parallel to recruit RAB-5 to the phagosome. 409

410

411 During cell corpse internalization, RAB-35 plays a specific role in the recognition of cell 412 corpses

413 The initial enrichment of GFP::RAB-35 on extending pseudopods (Fig 2B) 414 suggests that in addition to phagosome maturation, RAB-35 might function in other steps 415 of cell-corpse clearance. To determine whether RAB-35 plays any role in the recognition 416 and/or the engulfment of cell corpses, we took advantage of CED-1 Δ C::GFP, a GFP 417 tagged and truncated form of CED-1 that is missing its C-terminal intracellular domain 418 (26). This reporter, when expressed in ced-1(+) strains, first clusters to the contact site 419 between the engulfing and dying cell, subsequently spreads to the extending pseudopods, 420 and, when engulfment is complete, finally forms a ring around the nascent phagosome 421 (28). Unlike native CED-1, CED-1 Δ C::GFP stays on the surface of a phagosome until it 422 is completely degraded (28). Thus, cell corpses labeled with complete CED-1 Δ C::GFP 423 rings must have been previously engulfed, while cell corpses in the middle of being engulfed are labeled with partial GFP⁺ rings that represent phagocytic cups. Cell corpses 424 425 that are not recognized by an engulfing cell fail to be labeled by a GFP signal (Fig 8A). We first analyzed all cell corpses in mid-stage (1.5-fold stage) embryos. In rab-426 427 35(b1013) embryos, a significantly lower percentage of engulfed cell corpses were 428 observed compared to wild-type embryos (Fig 8B), suggesting that the rab-35 mutation 429 causes defects in the internalization of cell corpses. Such a failure in cell corpse 430 internalization may result from defects in the recognition or the actual engulfment of the

431 cell corpse. To distinguish which of these is the case, we monitored the generation and

extension of pseudopods around dying cells C1, C2, and C3 using the CED-1 Δ C::GFP

433 reporter. In this assay, a delay in the clustering of GFP signal on the site of contact

434	between a cell corpse and its engulfing cell indicates a delay in the recognition of the cell
435	corpse. To further discern the precise moment that pseudopod extension initiates, we
436	took advantage of the temporal consistency of C. elegans development between embryos,
437	marking the moment when the two ventral hypodermal cells ABplaapppp and
438	ABpraapppp begin to extend towards the ventral midline as the "0" time point (Fig 8C).
439	Because P_{ced-1} ced-1 ΔC ::gfp is expressed in embryonic hypodermal cells and localizes to
440	the plasma membrane, the GFP signal allows us to accurately record this moment (Fig
441	8D).

We observed that the recognition of cell corpses was delayed in *rab-35(b1013)* 442 443 mutant embryos (Fig S5). In wild-type embryos, 40% of the cell corpses are recognized 444 within the first 10 minutes of ventral enclosure, yet in rab-35(b1013) mutants, only 6.7% 445 cell corpses are recognized within that same time period (Fig S5A(a)). Additionally, in 446 rab-35(b1013) mutants, 20% of the cell corpses are recognized between 21-30 minutes 447 after the start of ventral enclosure, whereas only 6.7% of cell corpses take that long to be recognized in wild-type embryos (Fig S5A(a)). Conversely, rab-35 loss of function 448 449 causes no observable delays in pseudopod extension or phagosome sealing once the cell corpse is recognized (Fig S5B). Together, these results indicate that during the cell-450 451 corpse internalization process, RAB-35 specifically regulates the recognition of cell 452 corpses.

453

454 <u>RAB-35 acts in a pathway separate from the CED-1 or CED-5 pathways to promote the</u>
 455 recognition of cell corpses

456	We found that null mutants of <i>ced-1</i> and <i>ced-5</i> , two engulfment genes that each
457	represents one of the two parallel pathways for engulfment (8,47,48), display
458	significantly greater delays in cell corpse recognition relative to rab-35(b1013) null
459	mutants (S5A(a-c)), indicating that both CED-1 and CED-5 are essential for the timely
460	recognition of apoptotic cells. The ced-1; ced-5 double null mutant embryos suffer
461	greater recognition delay than each single mutant strain (Fig S5A(b-d)), supporting this
462	conclusion. We further observed that in double mutant combinations, $rab-35(b1013)$
463	mutants enhanced the recognition delay of both $ced-1(n1506)$ and $ced-5(n1812)$ mutants
464	(Fig S5A(b-c)), suggesting that <i>rab-35</i> acts in a previously unknown pathway separate
465	from the <i>ced-1</i> or <i>ced-5</i> pathways in the context of cell corpse recognition. The <i>ced-1</i> ;
466	rab-35; ced-5 triple null mutants suffer from a stronger recognition delay than any of the
467	respective double mutants, with 63.2% of cell corpses being recognized more than 40
468	minutes after ventral enclosure started (Fig S5A(d)), further supporting our hypothesis.
460	

469

470 <u>RAB-35 represents a third genetic pathway that facilitates the clearance of cell corpses in</u> 471 parallel to the CED-1/6/7 and CED-2/5/10/12 pathways

We have identified the functions of RAB-35 in two distinct cell-corpse clearance events: (I) the recognition and (II) the degradation of cell corpses. In both of these events, RAB-35 appears to function independently of both CED-1 and CED-5. To further determine whether *rab-35* represents a third pathway in addition to the *ced-1* and *ced-5* pathways to regulate apoptotic cell clearance, we performed a thorough epistasis analysis between *rab-35* and the two canonical pathways, the *ced-1/ced-6/ced-7* pathway and the *ced-2/ced-5/ced-10/ced-12* pathway (48). This epistasis analysis was performed

479	by quantifying the number of cell corpses in double mutant combinations between the
480	null allele $rab-35(b1013)$ and null alleles of representative genes in each of the two
481	canonical engulfment pathways. Remarkably, <i>rab-35</i> was found to be parallel to multiple
482	components of both the ced-1/ced-6/ced-7 pathway (ced-1 and ced-6) and the ced-2/ced-
483	5/ced-10/ced-12 pathway (ced-5, ced-10, and ced-12); rab-35 loss of function
484	tremendously enhances the Ced phenotype of each of these mutants in 1.5-fold embryos,
485	4-fold embryos, and the 48-hour post-L4 adult gonad (Fig 9A-B). In rab-35(b1013);
486	ced-1(n1506); ced-5(n1812) triple mutants, 4-fold embryos contain nearly as many
487	apoptotic cell corpses as 1.5-fold embryos, suggesting that cell corpses produced
488	throughout embryogenesis persist until hatching; this behavior is indicative of a near
489	complete block of apoptotic cell clearance (Fig 9A-B).

490

491 **Discussion:**

492 The study of apoptotic cell clearance is still relatively nascent, and a number of important components - such as C. elegans RAB-35 - are in the process of being 493 494 discovered. Rab35 is a multifunctional GTPase that plays important roles in a wide variety of biological processes. Mammalian Rab35 has been implicated in events 495 496 including, but not limited to: exocytosis (49,50), endocytic recycling (51–54), cytokinesis 497 (55,56), cytoskeleton rearrangement (56-61), and autophagy (62). Recently, Rab35 was 498 found to be an oncogene that promotes proliferation by activating the PI3K/AKT signaling pathway (63). Like its mammalian homolog, C. elegans RAB-35/RME-5, as 499

well as its GEF RME-4, were found to act in endocytic recycling and yolk uptake in thedeveloping oocytes (41).

502	Mammalian and Drosophila Rab35 have been implicated in phagocytosis and
503	phagosome maturation, two processes that are closely linked with apoptotic cell
504	clearance. Inactivating Rab35 reduces the internalization efficiency of macrophages
505	against erythrocytes, zymosan particles, and microbes (57,64–66). In addition,
506	overexpression of dominant negative Rab35(S22N) inhibits the maturation of
507	phagosomes carrying pathogenic bacteria (67). However, besides finding that Rab35
508	facilitates phagocytic cup formation through the ARF6 GTPase, which in turn regulates
509	the actin cytoskeleton (64,65), not much else is known about the molecular mechanisms
510	employed by Rab35 to support phagosome formation and maturation. In addition,
511	whether Rab35 plays any role in the clearance of apoptotic cells was not known.
512	Our work in C. elegans has discovered that RAB-35 regulates multiple cell corpse
513	clearance events (Fig 9C). We have uncovered a novel role in the recognition of cell
514	corpses by RAB-35, a process that enables engulfment and the formation of a nascent
515	phagosome. RAB-35 then helps to initiate the maturation of this nascent phagosome
516	through novel molecular mechanisms that promote the $PtdIns(4,5)P_2$ to $PtdIns(3)P$ switch
517	on phagosomes and aid in the recruitment of RAB-5 to the phagosomal surface.
518	Furthermore, RAB-35 leads a genetic pathway in parallel to the two known pathways for
519	apoptotic cell clearance, establishing mechanisms that promote robustness and ensure
520	efficiency throughout clearance.

522 <u>RAB-35 function depends on its cycling between GDP- and GTP-bound forms, a process</u>

523 <u>facilitated by the GAP TBC-10 and the GEFs FLCN-1 and RME-4</u>

For many Rab small GTPases, such as Rab7, the GTP- and GDP-bound forms are their active and inactive forms, respectively (18,68,69). Other small GTPases, such as RAB-5, need to cycle between the GTP- and GDP-bound forms in order to function (70). Our characterization of the presumed GTP- and GDP-locked mutant forms of RAB-35 has revealed that the specific function of RAB-35 in apoptotic cell clearance depends on the cycling between its GTP- and GDP-bound forms, resembling the dynamics observed in RAB-5.

Among three C. elegans homologs of mammalian proteins known to act as Rab35 531 GAPs (71), we have identified TBC-10 as the GAP for RAB-35 in the context of 532 533 apoptotic cell clearance. In *tbc-10* deletion mutants, where RAB-35 supposedly is locked in the GTP-bound state, GFP::RAB-35 persists on the surfaces of phagosomes, yet 534 535 apoptotic cell clearance is defective in a manner akin to *rab-35* null mutants. These 536 observations support the hypothesis that RAB-35 must cycle between its GTP- and GDP-537 bound forms to properly function, although the reasons behind this phenomena are yet 538 unclear.

Although the *in vitro* GEF activity of folliculin towards mammalian Rab35 has been detected (72), and folliculin was reported to activate Rab35 in order to mediate EGF receptor recycling in a cancer cell line (73), the functional relationship between folliculin and Rab35 under physiological conditions in an animal context has not been reported. We found that *flcn-1*, the *C. elegans* homolog of folliculin, acts in the same genetic pathway as *rab-35* does to promote cell-corpse clearance, suggesting that FLCN-1 is a

545	putative GEF for RAB-35 during cell-corpse clearance. This is the first time that
546	folliculin has been implicated as a GEF for RAB-35 during animal development.
547	While <i>flcn-1</i> and <i>rab-35</i> act in the same genetic pathway, the Ced phenotype
548	displayed by the <i>flcn-1</i> null mutants is slightly weaker than that of the <i>rab-35</i> null
549	mutants. We observed that C. elegans RME-4, a homolog of the connecdenns
550	DENND1A-C and a GEF for RAB-35 in yolk receptor recycling (41), activates RAB-35
551	alongside FLCN-1 during apoptotic cell clearance. However, the rme-4 null mutation
552	does not cause a significant defect in clearance by itself, suggesting that FLCN-1 acts as
553	the predominant GEF for RAB-35 in the context of apoptotic cell clearance, while RME-
554	4 only plays a minor role. Our results are consistent with the observation that, as a
555	multifunctional GTPase, RAB-35 is regulated by different GEFs in each cellular event
556	that it is involved (44).

557

558 RAB-35 modulates the initiation of phagosome maturation by regulating

559 phosphatidylinositol dynamics and RAB-5 recruitment

Phosphorylated forms of phosphatidylinositol species are second messengers that play essential roles leading the formation and degradation of phagosomes (24). During apoptotic cell clearance in *C. elegans*, a process known as the PtdIns(4,5)P₂ to PtdIns(3)P switch occurs immediately after the sealing of pseudopods and the formation of nascent phagosomes. During this shift, PtdIns(4,5)P₂ – which had been enriched on extending pseudopods – rapidly disappears from phagosomal surfaces, while PtdIns(3)P – essential

566	for the initiation of phagosome maturation – subsequently appears on phagosomal
567	surfaces at a high level and oscillates in a biphasic pattern (16,25).

568	We have observed that once engulfment starts, GFP::RAB-35 becomes enriched
569	on the surface of extending pseudopods. The pseudopod localization pattern overlaps
570	with that of $PtdIns(4,5)P_2$ and can be explained by its membrane-anchoring prenylation
571	motif typical of Rab GTPases (74) as well as by an evolutionarily conserved polybasic
572	region that has a high affinity for negatively charged phosphatidylinositol species such as
573	PtdIns(4,5)P ₂ (75–77). Immediately after engulfment, RAB-35 is further transiently
574	enriched on the surface of the nascent phagosome. On nascent phagosomes, the initiation
575	of this RAB-35 enrichment coincides perfectly with both the turnover of $PtdIns(4,5)P_2$
576	and the appearance of PtdIns(3)P. This unique pattern is consistent with a role of RAB-
577	35 in the switch of phagosomal phosphatidylinositol species from $PtdIns(4,5)P_2$ to
578	PtdIns(3)P.

Furthermore, we found that *rab-35* mutants suffer significant delays in both the 579 disappearance of $PtdIns(4,5)P_2$ and the appearance of the first wave of PtdIns(3)P on 580 phagosomal membranes. Interestingly, we found no defects in the recruitment of the PI3-581 582 kinase PIKI-1. However, we discovered that the PI3-phosphatase MTM-1, a 583 PtdIns(4,5)P₂ effector that dephosphorylates PtdIns(3)P and in this way counteracts the 584 function of PI3-kinases, persists on the surface of nascent phagosomes much longer in 585 rab-35 mutants. Together, the above evidence indicates that RAB-35 promotes the turnover of PtdIns(4,5)P₂ on phagosomal membranes, which in turn removes MTM-1 and 586 consequently suppresses PI3-phosphatase activity. We have also found that RAB-35 587 contributes to RAB-5 recruitment on phagosomal surfaces. As RAB-5 promotes the 588

589	production of PtdIns(3)P on phagosomal surfaces (16), we propose that RAB-35
590	facilitates the robust production of PtdIns(3)P on phagosomal surfaces through two
591	separate activities, the removal of $PtdIns(4,5)P_2$ and the recruitment of RAB-5 (Fig 9C).
592	This delay of the robust production of PtdIns(3)P observed in rab-35 mutants is
593	associated with numerous defects in phagosome maturation: (I) The degradation of cell
594	corpses as a whole is delayed; (II) The recruitment of early endosomes, an intracellular
595	organelle that is incorporated into phagosomes and is essential for phagosome maturation
596	(13), is also delayed; and (III) SNX-1, a sorting nexin and a PtdIns(3)P effector known to
597	promote phagosome maturation (46), is recruited to the phagosomal surface less
598	efficiently. Considering that SNX-1 is necessary for the recruitment of early endosomes
599	to phagosomes (46), we propose that this defect in SNX-1 recruitment observed in <i>rab-35</i>
600	mutants causes a defect in the recruitment of early endosomes. Our findings thus
601	uncover a novel molecular mechanism employed by RAB-35 for cell-corpse degradation
602	and delineates a novel pathway led by RAB-35 that is responsible for regulating the
603	PtdIns(4,5)P ₂ to PtdIns(3)P switch, an event essential for the initiation of phagosome
604	maturation.
605	

What we report suggests that RAB-35 promotes phagosome maturation primarily through the removal of PtdIns(4,5)P₂ on phagosomal surfaces. In addition, inactivation of mammalian Rab35 results in the accumulation of PtdIns(4,5)P₂ on intracellular vacuoles and other structures (55,58), suggesting that the timely turnover of PtdIns(4,5)P₂ is a conserved activity of Rab35. How, then, does the localization and activation of RAB-35 on the surface of a nascent phagosome cause the disappearance of PtdIns(4,5)P₂? The level of PtdIns(4,5)P₂ is known to be determined by two antagonizing activities, the

612	phosphorylation of PtdIns(4)P or PI(5)P by PtdIns kinases and the dephosphorylation of
613	PtdIns(4,5) P_2 by PtdIns phosphatases (78). OCRL, a 5-phosphatase that
614	dephosphorylates PtdIns(4,5)P ₂ , physically interacts with the GTP-bound form of Rab35
615	and was reported to function as a Rab35 effector that regulates $PtdIns(4,5)P_2$ turnover
616	during cytokinesis (58). OCRL-1, its C. elegans homolog, was reported to play an active
617	role in modulating $PtdIns(4,5)P_2$ turnover on the surfaces of pseudopods and
618	phagosomes, and its inactivation results in a strong Ced phenotype indicative of a cell
619	corpse clearance defect (25). Thus, we propose that OCRL-1 is a promising candidate
620	linking RAB-35 with $PtdIns(4,5)P_2$ levels on the phagosomal surface; however, whether
621	RAB-35 regulates the activity and/or subcellular localization of OCRL-1 has yet to be
622	investigated.
623	

RAB-35 acts as a robustness factor and defines a novel third cell corpse-clearance pathway

626 The phagocytic receptor CED-1 and its adaptor CED-6 lead a phagosome 627 maturation pathway in addition to their known role in the recognition of cell corpses (13). 628 This pathway promotes PtdIns(3)P production on – and Rab GTPase recruitment to – phagosomal surfaces (13). We observed that all of the defects in phagosome maturation 629 630 displayed by *rab-35* null mutants, including the persistence of PtdIns $(4,5)P_2$ and its 631 effector MTM-1 on nascent phagosomes, the delay in phagosomal PtdIns(3)P production, 632 the various defects in the recruitment of SNX-1 and RAB-5, and the delay of the incorporation of early endosomes to phagosomes, are also displayed by *ced-1* null 633 634 mutants (8,20,46) (Figs 4-6). However, all of these defects are much more severe in *ced*-

635	1 mutants; for instance, phagosomal PtdIns(3)P production, the incorporation of early
636	phagosomes, and phagosome degradation are frequently blocked (8,18), whereas in rab-
637	35 mutants they are merely delayed. To determine whether RAB-35 functions as a
638	component of the CED-1 pathway during phagosome maturation, we analyzed rab-35;
639	ced-1 double mutants. To our surprise, the double mutants display enhanced defects
640	relative to their single mutants in all of the assays mentioned above, indicating that RAB-
641	35 initiates phagosome maturation in a manner independent of the CED-1 pathway.
642	Given that CED-1 controls other events such as the incorporation of lysosomes to
643	phagosomes in addition to those events regulated by RAB-35 (18), our observations
644	suggest that this novel RAB-35 pathway acts redundantly to the CED-1 pathway in some,
645	but not necessarily all, functions of phagosome maturation.
646	Two parallel pathways, the <i>ced-1/-6/-7</i> and <i>ced-2/-5/-10/-12</i> pathways, are known
647	to control the recognition and engulfment of cell corpses (18,48,79). The $rab-35(b1013)$
648	null mutation also causes a delay during this process, but this defect is not as severe as
649	that observed with either the ced-1 or ced-5 null mutations. While rab-35 mutants
650	exhibit no defects in either pseudopod extension or phagosome sealing, rab-35 loss of
651	function enhances the defect in cell corpse recognition observed in ced-1 mutants,
652	suggesting that RAB-35 and CED-1 function in parallel on engulfing cells to recognize
653	apoptotic cells. Furthermore, when we perform epistasis analysis to measure the overall
654	clearance defect by counting the number of persistent cell corpses in double and triple
655	mutant embryos, we found that <i>rab-35</i> defines a novel third pathway by acting in parallel
656	to both the ced-1/-6/-7 and ced-2/-5/-10/-12 pathways. Currently, the identity of the
657	phagocytic receptor(s) acting in this third pathway remains unknown, although we

strongly suspect transmembrane receptors known as integrins because they have been
previously implicated in apoptotic cell clearance in both mammals and *C. elegans*(37,38,80,81). Further investigation is needed to determine whether any integrins act in
the *rab-35* pathway.

662 Given that all phenotypes observed in *rab-35* single mutants are relatively 663 modest, what is the purpose of this novel *rab-35* pathway during apoptotic cell clearance? 664 We propose that RAB-35 acts as a robustness factor that provides a "buffer" to maintain 665 the stability and effectiveness of cell corpse clearance. Robustness factors are important 666 in maintaining system stability when animals encounter genetic or environmental 667 changes. Indeed, after rab-35 mutant embryos are subject to heat treatment, the Ced 668 phenotype is further enhanced (Fig S6), indicating that RAB-35 helps to keep the 669 mechanisms behind apoptotic cell clearance stable when the system is stressed. When 670 both the CED-1 and CED-5 pathways are intact, missing RAB-35 activity only causes 671 modest defects, much weaker than missing either of the two canonical pathways; 672 however, when one or both of the two canonical pathways is inactivated or when under 673 stress, the RAB-35 pathway provides the necessary activity to support cell corpse 674 clearance activity. Considering that diseases can be thought of a subversion of the 675 "robust yet fragile" nature of optimized and complex biological systems (82–84), we 676 postulate that RAB-35 plays a critical role in health. This effect is likely enhanced in 677 aging individuals that experience an increased incidence of autoimmunity and cancer 678 (85,86), which are associated with defects in apoptotic cell clearance and RAB-35 679 function (3,63,71,87). Further exploring this physiological role for RAB-35 will help 680 broaden our view of the function of Rab GTPases in both development and diseases.

681

682 Materials and Methods:

683	Mutations,	strains, and	l transgenic	arrays

684	<i>C. elegans</i> strains v	vere grown at 20°C as	previously described (88)	. The N2
-----	-----------------------------	-----------------------	---------------------------	----------

Bristol strain was used as the reference wild-type strain. Mutations and integrated arrays

are described by Riddle et al. (1997) and the Worm Base (http://www.wormbase.org),

- 687 except when noted otherwise: LGI, *ced-1(n1506)*, *ced-12(n3261)*, *rab-2/unc-108(n3263)*,
- 688 rab-10(ok1494), unc-75(e950); LGII, flcn-1(ok975), rab-7(ok511); LGIII, ced-6(n2095),
- 689 *rab-35(b1013, tm2058), tbc-10(tm2790)*; LGIV, *ced-5(n1812), ced-10(n1993)*; LGV,
- 690 unc-76(e911); LGX, rme-4(ns410), tbc-13(ok1812). All ok alleles were generated by the
- 691 C. elegans Gene Knockout Consortium and distributed by Caenorhabditis Genetics
- 692 Center (CGC). All *tm* alleles were generated and provided by the National Bioresource
- 693 Project of Japan. Transgenic lines were generated by microinjection as previously
- described (89). Plasmids were injected alongside the coinjection marker pUNC76 [unc-
- 695 76(+)] into *unc-76(e911)* mutant adult hermaphrodites as previously described (90), with

696 non-Unc animals being identified as transgenic animals.

697

698 Plasmid construction

The cDNAs for *rab-11.1, -18, -19, -30. -33, -35, glo-1, and nuc-1* were amplified
from a mixed-stage *C. elegans* cDNA library (Z. Zhou and H.R. Horvitz, unpublished
data) using polymerase chain reaction (PCR). The cDNAs for *rab-11.1, -18, -19, -30. - 33, -35, glo-1* were cloned into RNAi-by-feeding vector L4440 to generate RNAi

703	constructs. P_{ced-1} gfp::rab-35 was constructed by cloning the rab-35 cDNAs into the
704	XmaI and KpnI sites of pZZ956 (P_{ced-1} gfp). P_{ced-1} mrfp::rab-35 was constructed by
705	replacing the <i>gfp</i> cDNA in P_{ced-1} <i>gfp::rab-35</i> with <i>mrfp</i> cDNA. The (S24N) and (Q69L)
706	mutations were introduced into P _{ced-1} gfp::rab-35 using the QuickChange Site-directed
707	Mutagenesis Kit (Stratagene, La Jolla, CA) to generate P _{ced-1} gfp::rab-35(S24N) and P _{ced-}
708	1 gfp::rab-35(Q69L), respectively. Using the same kit, the S33N mutation was
709	introduced into $P_{hsp-16/2}$ rab-5 and $P_{hsp-16/41}$ rab-5. $P_{hsp-16/2}$ gfp::rab-5(S33N) and $P_{hsp-16/41}$
710	<i>gfp::rab-5(S33N)</i> were produced by inserting the gfp cDNA into $P_{hsp-16/2}$ rab-5(S33N)
711	and $P_{hsp-16/41}$ rab-5(S33N), respectively. The nuc-1 cDNA was inserted into the BamHI
712	and XmaI sites of pZZ829 ($P_{ced-1} gfp$) to generate $P_{ced-1} nuc-1$::gfp. $P_{ced-1} nuc-1$::gfp was
713	generated by replacing the gfp cDNA with the mrfp cDNA. All plasmids contain an unc-
714	54 3' UTR.

715

RNA interference (RNAi) 716

717 RNAi screen of the candidate *rab* genes was performed using the feeding protocol 718 as previously described (91). The RNAi feeding constructs for rab-11.1, -18, -19, -30, -719 33, -35, and glo-1 were produced by our lab, while the remaining constructs came from a 720 C. elegans RNAi library (92,93). Mid-L4 stage hermaphrodites were placed on plates 721 seeded with E. coli containing the RNAi feeding construct. After 48 hrs, the numbers of 722 germ cell corpses per gonad arm were scored using a DIC microscope.

RNAi of *rab-5*, *ina-1*, *pat-2* was performed using the same feeding protocol as 723 724 above using constructs from the same library except that, 24 hrs after L4-stage

725	hermaphrodites were placed on RNAi feeding plates, these adults were transferred to a
726	second RNAi plate. After an additional 24 hours, the numbers of cell corpses in 1.5-fold
727	and late 4-fold stage embryos were scored using a DIC microscope.
728	
729	Nomarski DIC microscopy
730	DIC microscopy was performed using an Axionplan 2 compound microscope
731	(Carl Zeiss, Thornwood, NY) equipped with Nomarski DIC optics, a digital camera
732	(AxioCam MRm; Carl Zeiss), and imaging software (AxioVision; Carl Zeiss).
733	Previously established protocols were used to score cell corpses under DIC microscopy
734	(8,43). Somatic embryonic cell corpses were scored in the head region of embryos at
735	various developmental stages (comma, 1.5-fold, 2-fold, late 4-fold, and early L1). Germ
736	cell corpses were scored in one of the two gonadal arms of adult hermaphrodites 24 or 48
737	hrs after the mid-L4 stage. Yolk analysis was performed by characterizing the amount of
738	yolk found in the pseudocoelom near the gonads of adult hermaphrodites 24 or 48 hrs
739	after the L4 stage.
740	
741	Fluorescence microscopy and quantification of cell corpse clearance events

An Olympus IX70-Applied Precision DeltaVision microscope equipped with a DIC imaging apparatus and a Photometris Coolsnap 2 digital camera was used to capture fluorescence and DIC images, while Applied Precision SoftWoRxV software was utilized for image deconvolution and processing (43). To quantify the number of engulfed cell corpses in 1.5-fold to 2-fold stage embryos expressing CED-1 Δ C::GFP, both DIC and

GFP images of 40 serial z-sections at a 0.5-µm were recorded for each embryo. Engulfed
cell corpses were those labeled with a full GFP⁺ circle. Unengulfed cell corpses were
those that display the refractive appearance under DIC optics yet were either labeled with
a partial GFP⁺ circle or not labeled at all.

751 The dynamics of various GFP, mRFP, and mCherry reporters during the 752 engulfment and degradation of cell corpses C1, C2, and C3 were examined using an 753 established time-lapse recording protocol (18,43). Ventral surfaces of embryos were 754 initially monitored 300-320 minutes post-first cleavage. Recordings typically lasted 60-755 180 minutes, with an interval of 30 secs to 2 mins. At each time point, 10-16 serial z-756 sections at a 0.5-µm interval were recorded. Signs such as embryo elongation and 757 embryo turning prior to comma stage were closely monitored under DIC to ensure that 758 the embryo being recorded was developing normally. The moment of cell corpse 759 recognition is the time when CED-1 Δ C:GFP first clusters to the region where an 760 engulfing cell contacts a cell corpse, measured relative to the moment ventral enclosure 761 begins; the initiation of ventral enclosure is defined as the time point when hypodermal 762 cells ABplaapppp and ABpraapppp begin to extend across the ventral surface. The time 763 period of pseudopod extension is the time interval between when budding pseudopods 764 labeled with CED-1 Δ C::GFP are first observed and when the two pseudopods join and 765 seal to form a nascent phagosome. The life span of a phagosome is defined as the time 766 interval between when pseudopods seal to form the nascent phagosome and when the 767 phagosome shrinks to one-third of its original radius.

768

769 Acknowledgements:

770	We thank K.	Venken for reagents for	Gibson cloning.	We thank D. Reiner, S.
-----	-------------	-------------------------	-----------------	------------------------

- 771 Sazer, K. Venken, M. Wang, and T. Wensel for advice and helpful comments. We thank
- the Caenorhabditis Genetics Center (CGC) and the National BioResource Project in
- 773 Japan (Shohei Mitani) for providing mutant strains.
- 774

775 <u>Author Contributions:</u>

- The author(s) have made the following declarations about their contributions:
- 777 Conceived and designed the experiments: RH ZZ. Performed the experiments: RH YW
- 778 ZZ. Analyzed the data: RH YW ZZ. Wrote the paper: RH ZZ.

779

780 **<u>References:</u>**

- Lockshin RA, Williams CM. Programmed cell death—II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1964 Aug 1;10(4):643–9.
- Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics. Br J Cancer. 1972 Aug;26(4):239–57.
- 7863.Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and787disease. J Cell Biol. 2010 Jun 28;189(7):1059–70.
- Nagata S. Apoptosis and Clearance of Apoptotic Cells. Annu Rev Immunol [Internet]. 2018
 [cited 2018 Apr 3];36(1). Available from: https://doi.org/10.1146/annurev-immunol 042617-053010
- 7915.Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the792nematode Caenorhabditis elegans. Dev Biol. 1983 Nov 1;100(1):64–119.
- 7936.Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis794elegans. Dev Biol. 1977 Mar 1;56(1):110–56.

795 796 797	7.	Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development. 1999 Mar 1;126(5):1011–22.
798 799 800	8.	Yu X, Odera S, Chuang C-H, Lu N, Zhou Z. C. elegans Dynamin Mediates the Signaling of Phagocytic Receptor CED-1 for the Engulfment and Degradation of Apoptotic Cells. Dev Cell. 2006 Jun;10(6):743–57.
801 802 803 804	9.	Zhou Z, Mangahas PM, Yu X. The Genetics of Hiding the Corpse: Engulfment and Degradation of Apoptotic Cells in C. elegans and D. melanogaster. In: Current Topics in Developmental Biology [Internet]. Academic Press; 2004 [cited 2017 Dec 1]. p. 91–143. Available from: http://www.sciencedirect.com/science/article/pii/S0070215304630043
805 806	10.	Conradt B, Wu Y-C, Xue D. Programmed Cell Death During Caenorhabditis elegans Development. Genetics. 2016;203(4):1533–62.
807 808	11.	Stenmark H, Olkkonen VM. The Rab GTPase family. Genome Biol. 2001;2(5):reviews3007.1-reviews3007.7.
809 810	12.	Szatmári Z, Sass M. The autophagic roles of Rab small GTPases and their upstream regulators: a review. Autophagy. 2014 Jul;10(7):1154–66.
811 812	13.	Lu N, Zhou Z. Membrane Trafficking and Phagosome Maturation During the Clearance of Apoptotic Cells. Int Rev Cell Mol Biol. 2012;293:269–309.
813 814	14.	Gutierrez MG. Functional role(s) of phagosomal Rab GTPases. Small GTPases. 2013 Sep;4(3):148–58.
815 816 817	15.	Kinchen JM, Doukoumetzidis K, Almendinger J, Stergiou L, Tosello-Trampont A, Sifri CD, et al. A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol. 2008 May;10(5):556.
818 819 820	16.	Lu N, Shen Q, Mahoney TR, Neukomm LJ, Wang Y, Zhou Z. Two PI 3-kinases and one PI 3- phosphatase together establish the cyclic waves of phagosomal PtdIns(3)P critical for the degradation of apoptotic cells. PLoS Biol. 2012 Jan;10(1):e1001245.
821 822 823	17.	Mallo GV, Espina M, Smith AC, Terebiznik MR, Alemán A, Finlay BB, et al. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol. 2008 Aug 25;182(4):741–52.
824 825 826	18.	Yu X, Lu N, Zhou Z. Phagocytic Receptor CED-1 Initiates a Signaling Pathway for Degrading Engulfed Apoptotic Cells. PLoS Biol [Internet]. 2008 Mar [cited 2017 Nov 22];6(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267821/
827 828 829	19.	Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S. Phagosomes Fuse with Late Endosomes and/or Lysosomes by Extension of Membrane Protrusions along Microtubules: Role of Rab7 and RILP. Mol Cell Biol. 2003 Sep 15;23(18):6494–506.

020 20	
830 20. 831 832 833	He B, Yu X, Margolis M, Liu X, Leng X, Etzion Y, et al. Live-Cell Imaging in Caenorhabditis elegans Reveals the Distinct Roles of Dynamin Self-Assembly and Guanosine Triphosphate Hydrolysis in the Removal of Apoptotic Cells. Mol Biol Cell. 2010 Feb 15;21(4):610–29.
834 21. 835	Lu Q, Zhang Y, Hu T, Guo P, Li W, Wang X. C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development. 2008 Mar 15;135(6):1069–80.
836 22. 837	Mangahas PM, Yu X, Miller KG, Zhou Z. The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans. J Cell Biol. 2008 Jan 28;180(2):357–73.
838 23. 839 840	Guo P, Hu T, Zhang J, Jiang S, Wang X. Sequential action of Caenorhabditis elegans Rab GTPases regulates phagolysosome formation during apoptotic cell degradation. Proc Natl Acad Sci. 2010 Oct 19;107(42):18016–21.
841 24. 842	Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev. 2016;273(1):156–79.
843 25. 844 845	Cheng S, Wang K, Zou W, Miao R, Huang Y, Wang H, et al. PtdIns(4,5)P2 and PtdIns3P coordinate to regulate phagosomal sealing for apoptotic cell clearance. J Cell Biol. 2015 Aug 3;210(3):485–502.
846 26. 847	Zhou Z, Hartwieg E, Horvitz HR. CED-1 Is a Transmembrane Receptor that Mediates Cell Corpse Engulfment in C. elegans. Cell. 2001 Jan 12;104(1):43–56.
848 27. 849 850	Venegas V, Zhou Z. Two Alternative Mechanisms That Regulate the Presentation of Apoptotic Cell Engulfment Signal in Caenorhabditis elegans. Mol Biol Cell. 2007 Aug;18(8):3180–92.
851 28. 852 853	Shen Q, He B, Lu N, Conradt B, Grant BD, Zhou Z. Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans. Development. 2013 Aug 1;140(15):3230–43.
854 29. 855	Liu QA, Hengartner MO. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell. 1998 Jun 12;93(6):961–72.
856 30. 857	Wu YC, Horvitz HR. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell. 1998 Jun 12;93(6):951–60.
858 31. 859 860	Gumienny TL, Brugnera E, Tosello-Trampont A-C, Kinchen JM, Haney LB, Nishiwaki K, et al. CED-12/ELMO, a Novel Member of the CrkII/Dock180/Rac Pathway, Is Required for Phagocytosis and Cell Migration. Cell. 2001 Oct 5;107(1):27–41.
861 32. 862 863	Kang Y, Xu J, Liu Y, Sun J, Sun D, Hu Y, et al. Crystal structure of the cell corpse engulfment protein CED-2 in Caenorhabditis elegans. Biochem Biophys Res Commun. 2011 Jul 1;410(2):189–94.
864 33. 865	Reddien PW, Horvitz HR. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in <i>Caenorhabditis elegans</i> . Nat Cell Biol. 2000 Mar;2(3):131–6.

866 867 868	34.	Chen W, Chen S, Yap SF, Lim L. The Caenorhabditis elegans p21-activated kinase (CePAK) colocalizes with CeRac1 and CDC42Ce at hypodermal cell boundaries during embryo elongation. J Biol Chem. 1996 Oct 18;271(42):26362–8.
869 870 871	35.	Wu YC, Tsai MC, Cheng LC, Chou CJ, Weng NY. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev Cell. 2001 Oct;1(4):491–502.
872 873	36.	Mangahas PM, Zhou Z. Clearance of apoptotic cells in Caenorhabditis elegans. Semin Cell Dev Biol. 2005 Apr 1;16(2):295–306.
874 875	37.	Hsu T-Y, Wu Y-C. Engulfment of Apoptotic Cells in C. elegans Is Mediated by Integrin α/SRC Signaling. Curr Biol. 2010 Mar 23;20(6):477–86.
876 877 878	38.	Hsieh H-H, Hsu T-Y, Jiang H-S, Wu Y-C. Integrin α PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apoptotic Cells in Caenorhabditis elegans. PLOS Genet. 2012 May 17;8(5):e1002663.
879 880	39.	WormBasell: Nematode Information Resource [Internet]. [cited 2017 Dec 6]. Available from: http://www.wormbase.org/#012-34-5
881 882 883	40.	Gallegos ME, Balakrishnan S, Chandramouli P, Arora S, Azameera A, Babushekar A, et al. The C. elegans Rab Family: Identification, Classification and Toolkit Construction. PLOS ONE. 2012 Nov 21;7(11):e49387.
884 885 886	41.	Sato M, Sato K, Liou W, Pant S, Harada A, Grant BD. Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO J. 2008 Apr 23;27(8):1183–96.
887 888 889 890	42.	Rompay LV, Borghgraef C, Beets I, Caers J, Temmerman L. New genetic regulators question relevance of abundant yolk protein production in C. elegans. Sci Rep [Internet]. 2015 Nov 10 [cited 2018 Mar 28];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639837/
891 892	43.	Lu N, Yu X, He X, Zhou Z. Detecting apoptotic cells and monitoring their clearance in the nematode Caenorhabditis elegans. Methods Mol Biol Clifton NJ. 2009;559:357–70.
893 894	44.	Chaineau M, Ioannou MS, McPherson PS. Rab35: GEFs, GAPs and Effectors. Traffic. 2013 Nov 1;14(11):1109–17.
895 896 897	45.	Liu B, Du H, Rutkowski R, Gartner A, Wang X. LAAT-1 is the Lysosomal Lysine/Arginine Transporter that Maintains Amino Acid Homeostasis. Science. 2012 Jul 20;337(6092):351–4.
898 899 900	46.	Lu N, Shen Q, Mahoney TR, Liu X, Zhou Z. Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling. Mol Biol Cell. 2011 Feb 1;22(3):354–74.

901 902	47.	Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986 Mar 28;44(6):817–29.
903 904	48.	Reddien PW, Horvitz HR. The engulfment process of programmed cell death in caenorhabditis elegans. Annu Rev Cell Dev Biol. 2004;20:193–221.
905 906 907	49.	Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A– C. J Cell Biol. 2010 Apr 19;189(2):223–32.
908 909	50.	Biesemann A, Gorontzi A, Barr F, Gerke V. Rab35 protein regulates evoked exocytosis of endothelial Weibel-Palade bodies. J Biol Chem. 2017 14;292(28):11631–40.
910 911 912	51.	Patino-Lopez G, Dong X, Ben-Aissa K, Bernot KM, Itoh T, Fukuda M, et al. Rab35 and Its GAP EPI64C in T Cells Regulate Receptor Recycling and Immunological Synapse Formation. J Biol Chem. 2008 Jun 27;283(26):18323–30.
913 914 915	52.	Walseng E, Bakke O, Roche PA. Major Histocompatibility Complex Class II-Peptide Complexes Internalize Using a Clathrin- and Dynamin-independent Endocytosis Pathway. J Biol Chem. 2008 May 23;283(21):14717–27.
916 917 918	53.	Gao Y, Balut CM, Bailey MA, Patino-Lopez G, Shaw S, Devor DC. Recycling of the Ca2+- activated K+ Channel, KCa2.3, Is Dependent upon RME-1, Rab35/EPI64C, and an N- terminal Domain. J Biol Chem. 2010 Jun 4;285(23):17938–53.
919 920 921	54.	Sheehan P, Zhu M, Beskow A, Vollmer C, Waites CL. Activity-Dependent Degradation of Synaptic Vesicle Proteins Requires Rab35 and the ESCRT Pathway. J Neurosci Off J Soc Neurosci. 2016 17;36(33):8668–86.
922 923 924	55.	Kouranti I, Sachse M, Arouche N, Goud B, Echard A. Rab35 Regulates an Endocytic Recycling Pathway Essential for the Terminal Steps of Cytokinesis. Curr Biol. 2006 Sep 5;16(17):1719–25.
925 926 927	56.	Chesneau L, Dambournet D, Machicoane M, Kouranti I, Fukuda M, Goud B, et al. An ARF6/Rab35 GTPase Cascade for Endocytic Recycling and Successful Cytokinesis. Curr Biol. 2012 Jan 24;22(2):147–53.
928 929 930	57.	Shim J, Lee S-M, Lee MS, Yoon J, Kweon H-S, Kim Y-J. Rab35 mediates transport of Cdc42 and Rac1 to the plasma membrane during phagocytosis. Mol Cell Biol. 2010 Mar;30(6):1421–33.
931 932 933	58.	Dambournet D, Machicoane M, Chesneau L, Sachse M, Rocancourt M, Marjou AE, et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol. 2011 Aug;13(8):981.
934 935 936	59.	Chevallier Julien, Koop Charles, Srivastava Archana, Petrie Ryan J., Lamarche-Vane Nathalie, Presley John F. Rab35 regulates neurite outgrowth and cell shape. FEBS Lett. 2009 Mar 14;583(7):1096–101.

937 938 939	60.	Marat AL, McPherson PS. The Connecdenn Family, Rab35 Guanine Nucleotide Exchange Factors Interfacing with the Clathrin Machinery. J Biol Chem. 2010 Apr 2;285(14):10627– 37.
940 941	61.	Zhang J, Fonovic M, Suyama K, Bogyo M, Scott MP. Rab35 controls actin bundling by recruiting fascin as an effector protein. Science. 2009 Sep 4;325(5945):1250–4.
942 943	62.	Minowa-Nozawa A, Nozawa T, Okamoto-Furuta K, Kohda H, Nakagawa I. Rab35 GTPase recruits NDP52 to autophagy targets. EMBO J. 2017 15;36(18):2790–807.
944 945	63.	Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL. Identification of an oncogenic RAB protein. Science. 2015 Oct 9;350(6257):211–7.
946 947 948	64.	Egami Y, Fukuda M, Araki N. Rab35 regulates phagosome formation through recruitment of ACAP2 in macrophages during FcγR-mediated phagocytosis. J Cell Sci. 2011 Nov 1;124(21):3557–67.
949 950 951 952	65.	Egami Y, Fujii M, Kawai K, Ishikawa Y, Fukuda M, Araki N. Activation-Inactivation Cycling of Rab35 and ARF6 Is Required for Phagocytosis of Zymosan in RAW264 Macrophages [Internet]. Journal of Immunology Research. 2015 [cited 2017 Dec 6]. Available from: https://www.hindawi.com/journals/jir/2015/429439/
953 954	66.	Stroschein-Stevenson SL, Foley E, O'Farrell PH, Johnson AD. Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. 2006 Jan;4(1):e4.
955 956 957	67.	Smith AC, Heo WD, Braun V, Jiang X, Macrae C, Casanova JE, et al. A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. J Cell Biol. 2007 Jan 29;176(3):263–8.
958 959 960	68.	Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell. 2007 May;12(5):671–82.
961 962	69.	Kinchen JM, Ravichandran KS. Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature. 2010 Apr 1;464(7289):778–82.
963 964 965	70.	Li W, Zou W, Zhao D, Yan J, Zhu Z, Lu J, et al. C. elegans Rab GTPase activating protein TBC-2 promotes cell corpse degradation by regulating the small GTPase RAB-5. Development. 2009 Jul 15;136(14):2445–55.
964	70. 71.	Li W, Zou W, Zhao D, Yan J, Zhu Z, Lu J, et al. C. elegans Rab GTPase activating protein TBC-2 promotes cell corpse degradation by regulating the small GTPase RAB-5.
964 965 966		Li W, Zou W, Zhao D, Yan J, Zhu Z, Lu J, et al. C. elegans Rab GTPase activating protein TBC-2 promotes cell corpse degradation by regulating the small GTPase RAB-5. Development. 2009 Jul 15;136(14):2445–55. Klinkert K, Echard A. Rab35 GTPase: A Central Regulator of Phosphoinositides and F-actin

973 974	74.	Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol. 2004 Nov;5(11):886–96.
975 976 977	75.	Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science. 2006 Dec 1;314(5804):1458–61.
978 979 980	76.	Gavriljuk K, Itzen A, Goody RS, Gerwert K, Kötting C. Membrane extraction of Rab proteins by GDP dissociation inhibitor characterized using attenuated total reflection infrared spectroscopy. Proc Natl Acad Sci. 2013 Aug 13;110(33):13380–5.
981 982 983	77.	Li F, Yi L, Zhao L, Itzen A, Goody RS, Wu Y-W. The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting. Proc Natl Acad Sci. 2014 Feb 18;111(7):2572–7.
984 985	78.	Kwiatkowska K. One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane. Cell Mol Life Sci CMLS. 2010 Dec;67(23):3927–46.
986 987 988	79.	Ellis RE, Jacobson DM, Horvitz HR. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics. 1991 Sep 1;129(1):79–94.
989 990	80.	D'mello V, Birge RB. Apoptosis: Conserved Roles for Integrins in Clearance. Curr Biol. 2010 Apr 13;20(7):R324–7.
991 992 993	81.	Neukomm LJ, Zeng S, Frei AP, Huegli PA, Hengartner MO. Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in <i>C. elegans</i> . Cell Death Differ. 2014 Jun;21(6):845.
994 995	82.	Carlson JM, Doyle J. Complexity and robustness. Proc Natl Acad Sci U S A. 2002 Feb 19;99 Suppl 1:2538–45.
996	83.	Kitano H. Cancer robustness: tumour tactics. Nature. 2003 Nov 13;426(6963):125.
997	84.	Kitano H. Biological robustness. Nat Rev Genet. 2004 Nov;5(11):826–37.
998 999	85.	Rovenský J, Tuchynová A. Systemic lupus erythematosus in the elderly. Autoimmun Rev. 2008 Jan;7(3):235–9.
1000 1001	86.	Thakkar JP, McCarthy BJ, Villano JL. Age-specific cancer incidence rates increase through the oldest age groups. Am J Med Sci. 2014 Jul;348(1):65–70.
1002 1003	87.	Erwig L-P, Henson PM. Immunological Consequences of Apoptotic Cell Phagocytosis. Am J Pathol. 2007 Jul 1;171(1):2–8.
1004	88.	Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94.
1005 1006	89.	Jin Y. C elegans: A Practical Approach. Hope I, editor. New York: Oxford University Press; 1999. 69–96 p. (Transformation).

1007 1008 1009	90.	Bloom L, Horvitz HR. The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3414–9.
1010 1011 1012	91.	Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2001;2(1):RESEARCH0002.
1013 1014 1015	92.	Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003 Jan 16;421(6920):231–7.
1016 1017	93.	Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods San Diego Calif. 2003 Aug;30(4):313–21.
1018		

1019 **Figure Legends:**

1020 Fig 1. *rab-35(b1013)* mutants are defective in the clearance of apoptotic cells.

1021 All p-values were measured relative to wild-type. The student t-test was used for data

1022 analysis: *, 0.001 < p < 0.05; **, 0.00001 < p <0.001; ***, p <0.00001; ns, no significant

1023 difference. (A) The numbers of germ cell corpses were scored in 48-hour post-L4 adult

1024 gonads. A minimum of 15 animals were scored. Germ cell corpses were counted (a)

after RNAi treatment of 17 C. elegans genes encoding RAB proteins, and (b) in wild-type

and rab-10(ok1494) mutant strains. (B) The locations of the two null alleles of rab-35 in

1027 the *rab-35* gene structure. Black rectangles mark exons. The blue rectangle indicates the

location of the deletion in the *tm2058* allele. The arrow marks the position of the

1029 nonsense mutation carried in the b1013 allele. (C) The numbers of cell corpses were

scored at various developmental stages: 1.5-fold embryos, 4-fold embryos, and the 48-

1031 hour post-L4 adult gonad. For each data point, at least 15 animals were scored. Mean

1032 numbers were presented as bars. Error bars indicate standard deviation (sd). (D)

1033	Differential interference contrast (DIC) microscopy images of adult gonads of (a) wild-
1034	type and (b) <i>rab-35(b1013)</i> mutants. White arrows mark germ cell corpses. (E) The
1035	ventral surface of an <i>rab-35(b1013)</i> embryo that expresses MFG-E8::mcherry was
1036	visualized using both the mCherry (a) and DIC (b) channels at ~330 minutes post-first
1037	cleavage. White arrows mark the presence of MFG-E8::mcherry on C1, C2, and C3 in
1038	(a), and the cell corpses C1, C2, and C3 in (b). (F) The <i>gfp::rab-35</i> transgene expressed
1039	in engulfing cells is able to rescue the <i>rab-35</i> mutant phenotype. The mean numbers of
1040	cell corpses in 1.5-fold stage embryos in strains carrying or not carrying P _{ced-1} gfp::rab-35
1041	were presented in the bar graph For each data point, at least 15 animals were scored.
1042	Error bars represent sd.

Fig 2. RAB-35 is localized to extending pseudopods and further enriched on nascent phagosomes.

1046 All GFP reporters are expressed in engulfing cells under the control of P_{ced-1}. All p-

1047 values were measured relative to wild-type. The student t-test was used for data analysis:

1048 *, 0.001 ; **, <math>0.00001 ; ***, <math>p < 0.00001; ns, no significant

1049 difference. (A) Diagram illustrating the features that allow for the visualization of ventral

1050 enclosure and apoptotic cell clearance. The start of ventral enclosure is defined as the

1051 moment the two ventral hypodermal cells (ABpraapppp and ABplaapppp) start extending

to the ventral midline. Both the position of cell corpses C1, C2, and C3 (brown dots) as

- 1053 well as the identity of their engulfing cells are shown. (B) Time-lapse recording of
- 1054 GFP::RAB-35 during the engulfment and degradation of cell corpse C3 in a wild-type
- 1055 embryo. "0 min" indicates the formation of the nascent phagosome. Arrowheads mark

1056	the extending pseudopods. A whole arrow marks the nascent phagosome. (C) Graph
1057	showing the relative GFP::RAB-35 signal intensity over time on the surface of
1058	pseudopods and the phagosome in images shown in B. The fluorescence intensity of
1059	GFP was measured on the phagosomal surface and in the surrounding cytoplasm every 2
1060	minutes, starting from the "0 min" time point. The phagosomal / cytoplasmic signal ratio
1061	over time was presented. Data is normalized relative to the signal ratio at the "0 min"
1062	time point. (D) The mean numbers of apoptotic cell corpses scored in 1.5-fold stage
1063	wild-type or $rab-35(b1013)$ mutant embryos, in the presence or absence of transgenes
1064	overexpressing dominant negative GFP::RAB-35(S24N) or constitutively active
1065	GFP::RAB-35(Q69L), were presented in this bar graph. For each data point, at least 15
1066	animals were scored. Error bars indicate sd. (E) The localization of GFP::RAB-
1067	35(S24N) and GFP::RAB-35(Q69L) during the engulfment of C3 and the early stage of
1068	phagosome maturation is presented in time-lapse images. "0 min" indicates the
1069	formation of the nascent phagosome. Arrowheads indicate extending pseudopods. A
1070	white arrow marks the nascent phagosome. Regions with enriched GFP::RAB-35(Q69L)
1071	signal on the phagosomal membrane are marked by yellow arrows. (F) Epistasis analysis
1072	between rab-35 and genes that encode candidate GAP proteins for RAB-35. The mean
1073	numbers of apoptotic cell corpses scored in 1.5-fold stage wild-type and various single
1074	and double mutant combinations are presented in this bar graph. <i>tbc-7</i> was inactivated by
1075	RNAi. For each data point, at least 15 animals were scored. Error bars indicate sd. (G)
1076	Epistasis analysis between rab-35 and genes that encode candidate GEF proteins for
1077	RAB-35. The mean numbers of apoptotic cell corpses scored in 1.5-fold stage wild-type
1078	and various single and double mutant combinations are presented in this bar graph. For

1079	each data point, at least 15 animals were scored. Error bars indicate sd. (H) Time-lapse
1080	recording of GFP::RAB-35 during the engulfment and degradation of cell corpse C3 in
1081	tbc-10(tm2790) mutant embryos. "0 min" indicates the formation of the nascent
1082	phagosome. Arrowheads mark the extending pseudopod. A white arrow marks the
1083	nascent phagosome. Regions with enriched GFP::RAB-35 signal on the phagosomal
1084	membrane are marked by yellow arrows.

Fig 3. *rab-35* mutants exhibit delays in the recruitment of early endosomes, but not lysosomes, to phagosomes.

(A) Diagram outlining the experiment strategy to measure the life span of a phagosome. 1088 1089 GFP::moesin(aa299-578), which labels pseudopods, serves to mark the "0 min" time 1090 point of the formation of a nascent phagosome, while CTNS-1::mRFP, a lysosome 1091 marker, acts to track the recruitment and fusion of lysosomes to the phagosome as well as 1092 to label the phagosome during the subsequent digestion of the cell corpse. (B) Histogram 1093 displaying the life span of phagosomes bearing cell corpses C1, C2, and C3 in wild-type 1094 and *rab-35(b1013)* embryos. The life span of a phagosome is defined as the time interval 1095 between the "0 min" time point when a nascent phagosome is initially formed and the 1096 time point when a phagosome shrinks to one-third of its measured radius at "0 min". For 1097 each genotype, at least 15 phagosomes were scored. (C) Histogram displaying the range 1098 of time it takes for early endosomes to be recruited to the phagosomal surface in wild-1099 type and *rab-35(b1013)* embryos. Phagosomes bearing cell corpses C1, C2, and C3 were 1100 scored. The time span of early endosome recruitment is measured as the time interval 1101 between "0 min" and the time point when the accumulating early endosomes first form a

1102	continuous ring around a phagosome. For each genotype, at least 15 phagosomes were
1103	scored. (D) Time-lapse images monitoring the recruitment of early endosomes (reporter:
1104	HGRS-1::GFP) to the phagosomal surface after a phagosome forms (the "0 min" time
1105	point). The monitored cell corpses (white arrows) are visualized using DIC microscopic
1106	images. Arrowheads indicate extending pseudopods. The GFP ring, when it is first
1107	completed around the phagosome, is labeled with a yellow arrow. (E) Time-lapse image
1108	series showing the processes of the engulfment and the degradation process of a
1109	phagosome bearing the cell corpse C3 in each of the wild-type and <i>rab-35(b1013)</i>
1110	embryos, using GFP::moesin(aa299-578) as the pseudopod reporter and CTNS-1::mRFP
1111	as a lysosome marker. "0 min" indicates the formation of the nascent phagosome.
1112	Arrowheads indicate extending pseudopods. A white arrow marks the nascent
1113	phagosome.

1115 Fig 4. RAB-35 is enriched on phagosomal surfaces during the PtdIns(4,5)P, to

1116 PtdIns(3)P shift and functions in PtdIns(4,5)P, removal.

- 1117 (A) Time-lapse images during and after the formation of a phagosome carrying C3 in a
- 1118 wild-type embryo co-expressing P_{ced-1} mKate2::rab-35 and the PtdIns(4,5)P₂ marker P_{ced-1}
- 1119 $_{1}$ PH(hPLC γ)::gfp. "0 min" indicates the formation of the nascent phagosome.
- 1120 Arrowheads indicate extending pseudopods. White arrows mark the nascent phagosome,
- 1121 while yellow arrows mark both the gain of mKate2::RAB-35 and the loss of
- 1122 PH(hPLC γ)::GFP from the phagosomal surface. (B) Time-lapse images during and after
- the formation of a phagosome carrying C3 in a wild-type embryo co-expressing P_{ced-1}

1124	<i>gfp::rab-35</i> and the PtdIns(3)P marker P_{ced-1} 2xFYVE::mRFP. "0 min" indicates the
1125	formation of the nascent phagosome. Arrowheads indicate extending pseudopods. White
1126	arrows mark the nascent phagosome, while yellow arrows mark both the gain of
1127	GFP::RAB-35 and the loss of 2xFYVE::mRFP. (C) Time-lapse images during and after
1128	the formation of a phagosome carrying C3 in embryos of different genotypes expressing
1129	$P_{ced-1} PH(hPLC\gamma)::gfp.$ "0 min" indicates the formation of the nascent phagosome.
1130	Arrowheads indicate extending pseudopods. White arrows mark the nascent phagosome,
1131	while yellow arrows mark the first time point when $PtdIns(4,5)P_2$ is no longer observed
1132	on the phagosome surface. (D) Histograms displaying the range of time it takes for the
1133	disappearance of $PtdIns(4,5)P_2$ from the surface of phagosomes bearing C1, C2, and C3
1134	in embryos of various genotypes. rab-35 mutants are coupled with null mutations in ced-
1135	1 (a) and <i>ced-5</i> (b). The time span of PtdIns(4,5) P_2 disappearance is scored as the time
1136	interval between the formation of a nascent phagosome ("0 min") and the first time point
1137	that the PH(hPLC γ)::GFP signal is no longer enriched on the phagosomal surface. For
1138	each genotype, at least 15 phagosomes were scored.
1139	

Fig 5. *rab-35* and *ced-1* function in parallel to produce PtdIns(3)P on the phagosomal membrane.

- 1142 (A) Time-lapse images during and after the formation of a phagosome carrying C3 in
- embryos of different genotypes expressing $P_{ced-1}2xFYVE::mRFP$. "0 min" indicates the
- 1144 formation of the nascent phagosome, determined using the pseudopod marker
- 1145 GFP::moesin(aa299-578) [not shown]. White arrows indicate the time point when 1st

	1146	wave of PtdIns(3)P appears on the nascent phag	osome. Yellow arrows mark the time
--	------	--	------------------------------------

- 1147 point when the 2nd wave of PtdIns(3)P appears on the phagosome. (B) Histogram
- displaying the range of time it takes for the 1st peak of PtdIns(3)P to appear on
- 1149 phagosomes in wild-type, rab-35(b1013), and either ced-1(n1506) and rab-35(b1013);
- 1150 ced-1(n1506) (a) or ced-5(n1812) and rab-35(b1013); ced-5(n1812) (b) embryos.
- 1151 Phagosomes bearing cell corpses C1, C2, and C3 were scored. "0 min" indicates the
- 1152 formation of the nascent phagosome. This time interval is defined as that between the
- 1153 formation of a nascent phagosome ("0 min") and the first time point that the 1st wave of
- 1154 PtdIns(3)P appears on the phagosome surface. For each genotype, at least 15
- 1155 phagosomes were scored. (C) The frequency of appearance of the 1^{st} and 2^{nd} peaks of
- 1156 PtdIns(3)P on phagosomes carrying C1, C2, and C3 in wild-type, rab-35(b1013), ced-
- 1157 I(n1506), and rab-35(b1013); ced-1(n1506) embryos. For each genotype, at least 15
- 1158 phagosomes were scored.
- 1159

1160 Fig 6. The *rab-35(b1013)* mutation impairs MTM-1 removal from, and SNX-1

- 1161 recruitment to, phagosomal surfaces.
- 1162 (A) Time-lapse images during and after the formation of a phagosome carrying C3 in
- embryos of different genotypes expressing $P_{ced-1}mtm-1$::gfp. "0 min" indicates the
- 1164 formation of the nascent phagosome. Arrowheads indicate extending pseudopods. White
- arrows and yellow arrows indicate the time points when MTM-1::GFP first and last
- appear on the phagosome surface, respectively. (B) Time-lapse images during and after
- the formation of a phagosome carrying C3 in embryos of different genotypes expressing
- 1168 P_{ced-1} snx-1::gfp. "0 min" indicates the formation of the nascent phagosome. Arrowheads

1169	indicate extending pseudopods. White arrows mark the regions on the phagosomal
1170	surface that have an enriched GFP signal. (C) Histogram displaying the range of time
1171	that MTM-1 persists on phagosomes in wild-type and <i>rab-35(b1013)</i> embryos.
1172	Phagosomes bearing cell corpses C1, C2, and C3 were scored. "0 min" indicates the
1173	formation of the nascent phagosome. This time interval is defined as that between the
1174	formation of a nascent phagosome ("0 min") and the first time point that MTM-1 is no
1175	longer found on the phagosome. For each genotype, at least 15 phagosomes were scored.
1176	(D) The efficiency of recruitment of SNX-1::GFP (a) and LST-4::GFP (b) to the surface
1177	of phagosomes carrying C1, C2, and C3 was scored in various genotypes. SNX-1::GFP
1178	is enriched onto phagosomal surfaces in two different patterns, either distributed onto the
1179	entire phagosomal surface evenly ("continuous") or attached to phagosomal surfaces as
1180	puncta ("punctate") (a), whereas LST-4::GFP is enriched onto phagosomes only in the
1181	"continuous" pattern (b). For each genotype, at least 15 phagosomes were scored.

Fig 7. *rab-35* functions upstream of and promotes the phagosomal localization of *rab-5*.

1185 (A) Time-lapse images after the formation of a phagosome carrying C3 in a wild-type 1186 embryo co-expressing P_{ced-1} mrfp::rab-35 and P_{ced-1} gfp::rab-5. "0 min" indicates the 1187 formation of the nascent phagosome. A whole arrow marks the nascent phagosome. (B) 1188 Time-lapse images during and after the formation of a phagosome carrying C3 in a wild-1189 type embryo expressing P_{ced-1} gfp::rab-5. "0 min" indicates the formation of the nascent 1190 phagosome. Arrowheads indicate extending pseudopods. White arrows mark the 1191 nascent phagosome, while yellow arrows mark the first time point when RAB-5 localizes

1192	to the phagosome. (C) Epistasis analysis was performed between <i>rab-5</i> and <i>rab-35</i> ,
1193	using RNAi to inactivate <i>rab-5</i> . To analyze the effect of reducing <i>rab-5</i> gene dosage, <i>E</i> .
1194	coli carrying the rab-5 RNAi construct was diluted by mixing with E. coli carrying an
1195	empty vector. After RNAi treatment, the numbers of apoptotic cell corpses were scored
1196	in the F1 progeny at the 1.5-fold embryonic stage. For each data point, at least 15
1197	embryos were scored. *, $0.001 ; **, 0.00001 ; ***, p < 0.00001; ns,$
1198	no significant difference. (D) Histograms displaying the range of time it takes for the
1199	appearance of RAB-5 on the surface of phagosomes bearing C1, C2, and C3 in embryos
1200	of various genotypes. The histograms exhibit the effect of rab-35 loss of function in
1201	wild-type (a) and $ced-1(n1506)$ (b) backgrounds. The time span of RAB-5 appearance is
1202	scored as the time interval between the formation of a nascent phagosome ("0 min") and
1203	the first time point that the GFP::RAB-5 signal becomes enriched on the phagosomal
1204	surface. For each genotype, at least 15 phagosomes were scored.

Fig 8. RAB-35, CED-1, and CED-5 function in parallel to engulf apoptotic cell corpses.

- 1208 (A) Images of part of a 1.5-fold stage embryo expressing $P_{ced-1}ced-1 \Delta C$::gfp. CED-
- 1209 $1\Delta C$::GFP is utilized to determine whether a cell corpse is engulfed. DIC morphology is
- 1210 used to mark cell corpses. Red arrows indicate an engulfed cell corpse, which is
- surrounded by a CED-1 Δ C::GFP ring. Yellow arrows indicate an unengulfed cell corpse,
- 1212 which lacks CED-1 Δ C::GFP on its surface. (B) In 1.5-fold to 2-fold stage embryos of
- various genotypes, the fraction of cell corpses that had been engulfed was measured using
- 1214 the CED-1 Δ C reporter. For each genotype, at least 15 embryos were scored. (C)

1215 Diagram outlining the assays used to determine the moments of cell corpse recognition 1216 and internalization utilizing the CED-1 Δ C::GFP reporter. The moment of recognition is 1217 defined as the first time point GFP is seen enriched in a region in contact between the 1218 engulfing and dying cell, with the moment of ventral enclosure used as a reference point 1219 ("0 min"). The period of pseudopod extension is defined as the time span between the 1220 moment of recognition and the moment when the nascent phagosome forms. (D) Time-1221 lapse images before and after the formation of a phagosome carrying C3 in embryos of 1222 different genotypes expressing $P_{ced-1}ced-1\Delta C$::gfp. "0 min" indicates the initiation of 1223 ventral enclosure. Arrowheads indicate extending pseudopods. A white arrow marks the 1224 nascent phagosome. Yellow arrows label the extending ventral hypodermal cell ABpraapppp. For each genetic background, a single asterisk marks the time point when 1225 1226 recognition is first observed, while two asterisks marks the time point when the nascent 1227 phagosome is formed.

1228

Fig 9. *rab-35* represents a third engulfment pathway independent of both the *ced-1/-*6/-7 and *ced-2/-5/-10/-12* pathways.

The average numbers of cell corpses in 1.5-fold stage embryos of various genotypes are presented as bars in the bar graphs. Error bars indicate sd. The student *t*-test was used for data analysis: *, 0.001 ; **, <math>0.00001 ; ***, <math>p < 0.00001; ns, no significant difference. For each data point, at least 15 animals were scored. (A) Results of epistasis analysis performed between *rab-35* and components of the *ced-1/-6/-7* pathway. Null alleles [*rab-35(b1013)*, *ced-1(n1506)*, and *ced-6(n2095)*] were used. (B) Results of epistasis analysis performed between *rab-35* and components of the *ced-2/-5/-*

1238	10/-12 pathway.	Null alleles [ced-5(n1812]) and $ced-12(n3261)$] were used; however,
------	-----------------	----------------------------	---

- null alleles of ced-10 (C. elegans ortholog of mammalian Rac1) are embryonic lethal, so
- 1240 a severe loss-of-function allele (n1993) was used instead. (C) Diagram illustrating the
- role of RAB-35 in the engulfment and degradation of cell corpses in *C. elegans*. Please
- see Discussion for more details. RAB-35 functions in parallel with the *ced-1/-6/-7/dyn-1*
- and *ced-2/-5/-10/-12* pathways in the recognition of cell corpses, while RAB-35 and
- 1244 CED-1 function in parallel during phagosome maturation. RAB-35 helps to recruit RAB-
- 1245 5, which promotes the production of PtdIns(3)P. Furthermore, RAB-35 stimulates the
- 1246 turnover of both PtdIns(4,5)P₂ and its effector MTM-1, a PI-3 phosphatase. In turn,
- 1247 PtdIns(3)P promotes the recruitment of the sorting nexins SNX-1, SNX-6, and LST-4 as
- 1248 well as the Rab GTPases RAB-2, RAB-5, and RAB-7, allowing for the progression of
- 1249 phagosome maturation and cell corpse degradation. Among the three sorting nexins, *rab*-
- 1250 35 mutants are defective in the recruitment of SNX-1 but not LST-4/SNX-9 to
- 1251 phagosomes, suggesting that the effect might be too weak to measure and/or that other
- 1252 factors may be involved in their recruitment.

1254 Supplemental Figure Legends:

Fig S1. Loss of function of *rab-35* causes the appearance of excess yolk in the pseudocoelom.

- 1257 (A) Differential interference contrast (DIC) microscopy images of adult gonads of (a)
- 1258 wild-type and (b) *rab-35(b1013)* mutants. White arrows mark pools of yolk. *rab-*
- 1259 35(b1013) mutants contain excess yolk in the pseudocoelom compared to wild-type. (B)

1260 Wild-type and *rab-35(b1013)* mutant worms were visualized as adults using DIC

1261 microscopy, characterized based on the yolk coverage, and separated into four distinct

groups. (C) Wild-type and *rab-35(b1013)* were scored as 24-hour and 48-hour post-LA

adults based on yolk coverage.

1264

Fig S2. TBC-10, RME-4, and FLCN-1 are orthologs of mammalian TBC1D10A, connecdenn 1/2/3, and folliculin, respectively.

1267 (A) Homology between TBC-10 and its human ortholog, TBC1D10A. TBC-10 and

1268 TBC1D10A share 29.6% identity and 42.3% similarity overall, and share 61.6% identity

and 73.5% similarity within the highly conserved TBC (Tre-2/Bub2/Cdc16) GAP

1270 domain. The TBC domain is highlighted in yellow. All alignments were performed

1271 using EMBOSS Needle. Asterisks (*) indicate identical amino acids, colons (:) indicate

similar substitutions, periods (.) indicate non-similar substitutions, and dashes (-) indicate

1273 areas where no alignment was possible. The residues absent in tbc-10(tm2790) mutants

1274 are highlighted in red, while residues absent in tbc-10(tm2907) are highlighted in blue.

1275 (B) Homology between the first 500 residues of RME-4 and its human orthologs,

1276 DENND1A/connecdenn 1, DENND1B/connecdenn 2, and DENND1C/connecdenn 3

1277 [only DENND1A is shown]. RME-4 shares 22.5% identity and 34.9% similarity overall

1278 with DENND1A; 23.6% identity and 37.4% with DENND1B; and 26.4% identity and

1279 40.2% similarity with DENND1C. Within the more highly conserved DENN

1280 (differentially expressed in normal and neoplastic tissue) GEF domain, these values

- increase to 41.0% identity/67.6% similarity; 40.3% identity/66.9% similarity; and
- 1282 41.7%/65.5%, respectively. The uDENN (upstream of DENN) domain is highlighted in

1283	blue, the DENN domain is highlighted in yellow, and the dDENN (downstream of
1284	DENN) domain is highlighted in green. The residues absent in <i>rme-4(tm1865)</i> mutants
1285	are highlighted in red. (C) Homology between FLCN-1 and its human ortholog
1286	folliculin. FLCN-1 and folliculin have non-canonical DENN domains, and unlike their
1287	counterparts found within RME-1 and DENND1A/B/C, they are not specifically
1288	conserved during evolution. FLCN-1 and human folliculin share 23.4% identity and
1289	39.9% similarity overall, and 21.8% identity and 37.0% similarity with their DENN
1290	domains. The residues absent in <i>flcn-1(ok975)</i> mutants are highlighted in red.
1291	
1292	Fig S3. In <i>rab-35(b1013)</i> mutants, recruitment of lysosomes to phagosomes is
1293	normal.
1294	(A) Time-lapse images monitoring the recruitment and fusion of lysosomes to the
1295	phagosomal surface (white arrows) after a phagosome forms (the "0 min" time point).
1296	Lysosomal fusion is monitored using a mcherry-tagged lysosomal lumen marker [NUC-
1297	1::mcherry]. The GFP-tagged PH domain of human phospholipase Cy
1298	[PH(hPLC γ)::GFP], which labels PtdIns(4,5)P ₂ and extending phagosomes, is used to
1299	indicate the "0 min" time point when a phagosome forms. (B) Histogram displaying the
1300	range of time it takes for lysosomes to be recruited to the phagosomal surface in wild-
1301	type and <i>rab-35(b1013)</i> embryos. Phagosomes bearing cell corpses C1, C2, and C3 were
1302	scored. This time interval is defined as that between the "0 min" time point when a
1303	nascent phagosome is initially formed and the time point when a continuous CTNS-
1304	1::mRFP signal is observed on the phagosome. For each genotype, at least 15
1305	phagosomes were scored. (C) Histogram displaying range of time it takes for lysosomes

to fuse to phagosomes in wild-type and *rab-35(b1013)* embryos. Phagosomes bearing
cell corpses C1, C2, and C3 were scored. The time span of lysosome fusion is measured
as the time interval between "0 min" and the time point when the NUC-1::mCherry signal
completely fills the phagosomal lumen. For each genotype, at least 15 phagosomes were
scored.

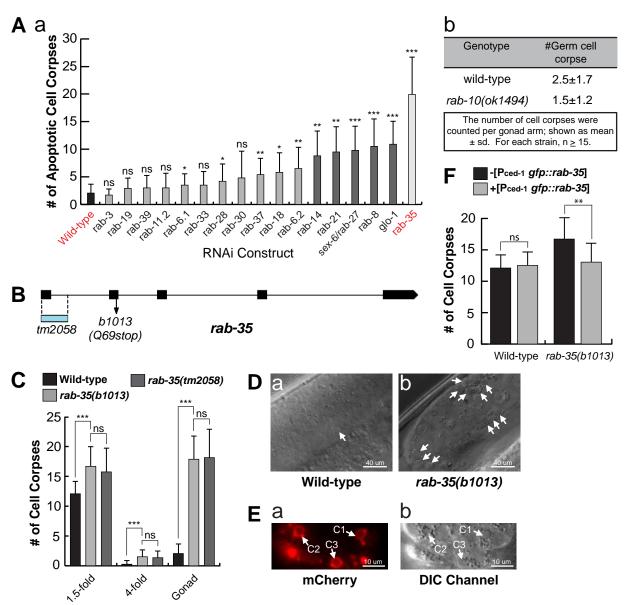
1311

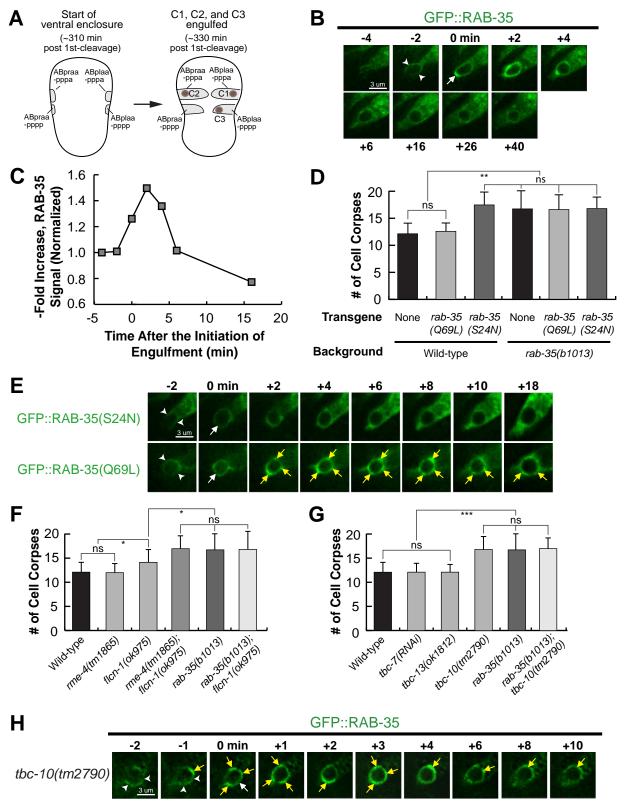
1312 Fig S4. PIKI-1 recruitment to the phagosome is normal in *rab-35(b1013)* mutants. 1313 (A) Recruitment of the GFP-tagged class II PtdIns(3)P kinase GFP::PIKI-1 to nascent 1314 phagosomes was measured using live imaging of C1, C2, and C3 in wild-type and *rab*-35(b1013) mutant embryos at the 1.5-fold stage. The presence or absence of PIKI-1 on 1315 1316 the phagosomes was scored on each phagosome and reported as a percentage for each 1317 genetic background. There was no significant decrease in the frequency of PIKI-1 1318 recruitment in rab-35(b1013) mutants. (B) The intensity of PIKI-1 recruitment was 1319 measured in C1, C2, and C3. For each phagosome, the intensity of PIKI-1 signal was 1320 measured on the phagosome membrane and in the surrounding cytoplasm at the time 1321 point of maximal PIKI-1 phagosomal signal and expressed as a ratio. No statistically 1322 significant increase in PIKI-1 phagosomal intensity was observed in *rab-35(b1013)* 1323 mutants.

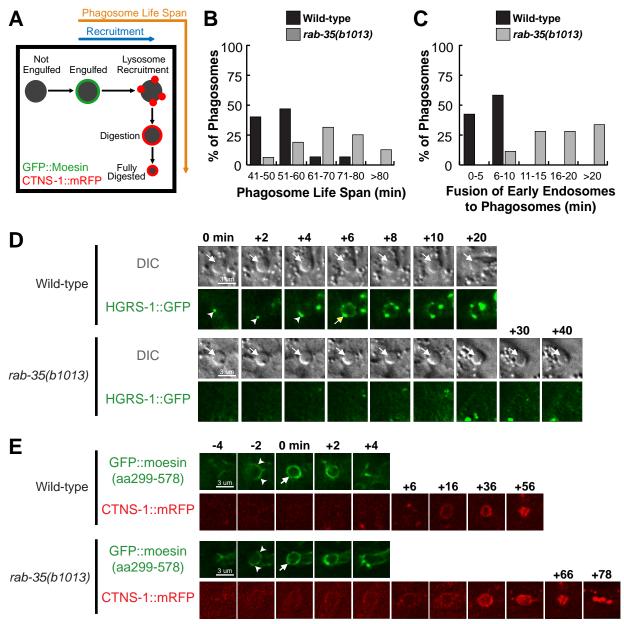
1324

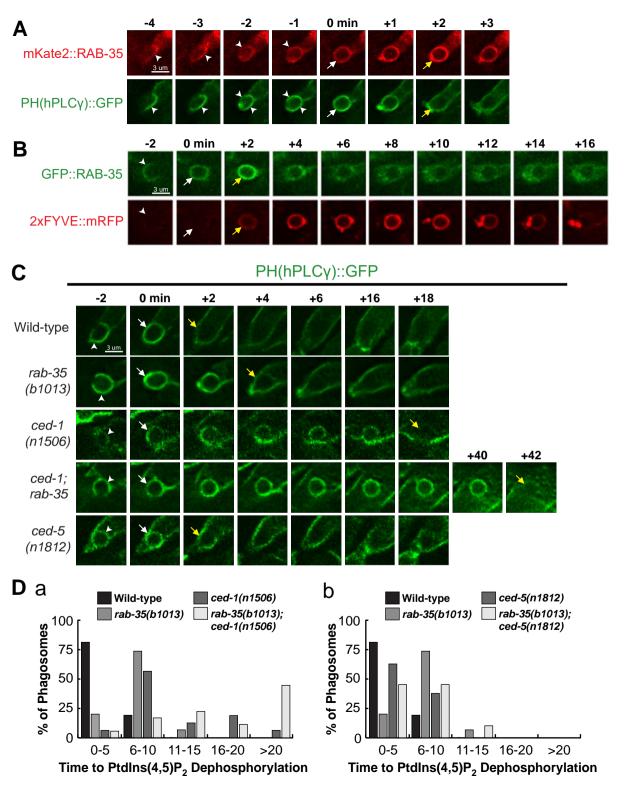
Fig S5. *rab-35(b1013)* mutants display defects in apoptotic cell corpse recognition,
but are normal for pseudopod extension.

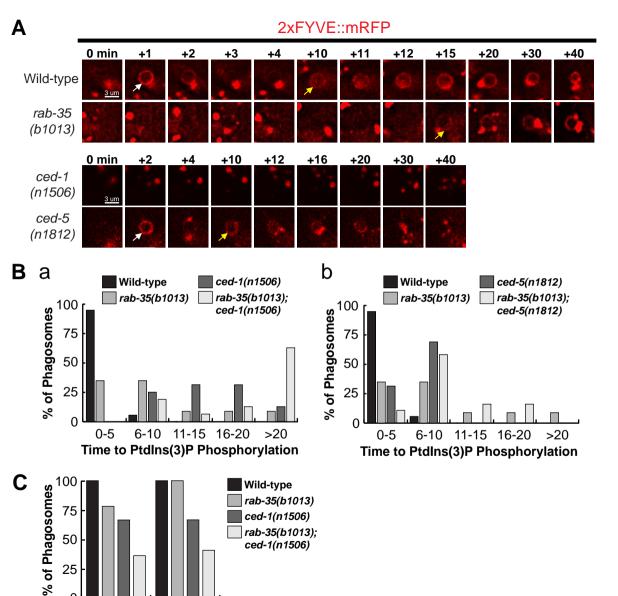
55

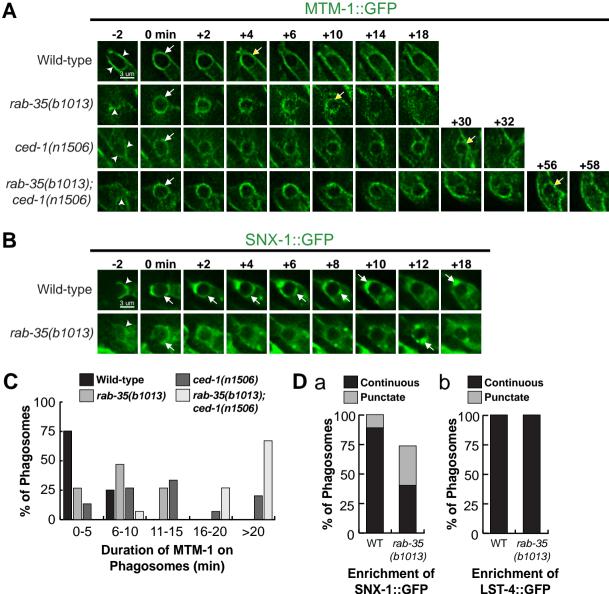

1327	(A) The time it takes for engulfing cells to recognize cell corpses C1, C2, or C3 was
1328	determined in embryos of different genotypes using the GFP::CED-1 Δ C reporter. The
1329	moment of recognition is defined as the first time point GFP is seen enriched in a region
1330	in contact between the engulfing and dying cell, with the moment of ventral enclosure
1331	used as a reference point ("0 min"). Histograms (a-d) and the summary (e-f) statistics are
1332	presented. For each strain, at least 15 engulfment events were scored. (B) The time it
1333	takes for C1, C2, or C3 to be internalized after they are recognized by the engulfing cells
1334	was determined in embryos of different genotypes using the GFP::CED-1 Δ C reporter.
1335	Internalization is defined as the time interval between recognition of the dying cell by
1336	engulfing cells ("0 min") and the time point that the nascent phagosome is formed.
1337	Histograms (a-d) and the summary (e-f) statistics are presented. For each strain, at least
1338	15 engulfment events were scored.


Fig S6. *rab-35(b1013)* mutants display an enhanced Ced phenotype in response to heat shock treatment.

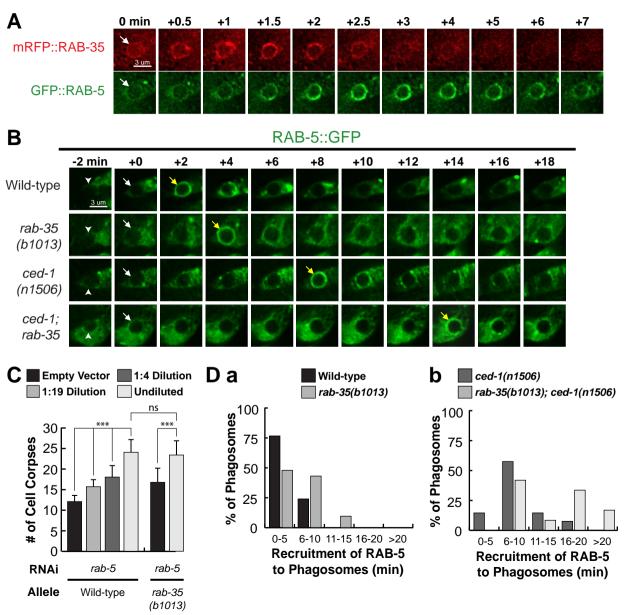

1342 The mean numbers of apoptotic cell corpses were scored in 1.5-fold stage wild-type or

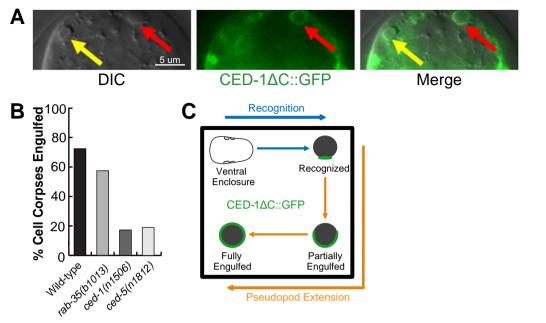

1343 rab-35(b1013) mutant embryos. The scoring was performed either with or without heat


- 1344 shock as well as in the presence or absence of transgenes overexpressing dominant
- 1345 negative GFP::RAB-5(S33N) under a heat shock promoter. For each data point, at least
- 1346 15 animals were scored. Error bars indicate sd.



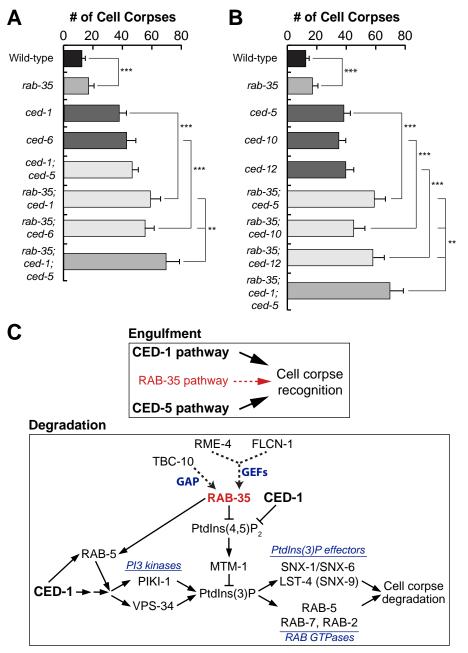
First


Wave


Second

Wave

SNX-1::GFP



D

CED-1∆C::GFP

	0 min	+6	+10*	+12	+14	+16**	+18	+20	+24	+28	
Wild-type	치 <u>3 um</u>	×	Š.	**	1	10	0	ø	0	0	
rab-35(b1013)	, ≯ <u>3 um</u>	X	×	A	*	, Ar	S.	0	0	ø	
	0 min	+6	+10	+12	+14	+16*	+18	+20**	+24	+28	
	0 min	+6	+12	+18*	+20	+22	+26	+30**	+40	. 50	+60
	• • • • • • • • •	<u>+0</u>	<u>+12</u>	+10	+20	+22	+20	+30	+40	+50	+00
ced-1(n1506)		**	×12		+20	+22	-20	10	0	+50	400
ced-1(n1506) ced-5(n1812)	*	1	a.d		+20	+22					

