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ABSTRACT 

Obesity is a heterogeneous phenotype that is crudely measured by body mass index (BMI). 

More precise phenotyping and categorization of risk in large numbers of people with obesity 

is needed to advance clinical care and drug development. Here, we used non-targeted 

metabolome analysis and whole genome sequencing to identify metabolic and genetic 

signatures of obesity. We collected anthropomorphic and metabolic measurements at three 

timepoints over a median of 13 years in 1,969 adult twins of European ancestry and at a 

single timepoint in 427 unrelated volunteers. We observe that obesity results in a profound 

perturbation of the metabolome; nearly a third of the assayed metabolites are associated 

with changes in BMI. A metabolome signature identifies the healthy obese and also identifies 

lean individuals with abnormal metabolomes – these groups differ in health outcomes and 

underlying genetic risk. Because metabolome profiling identifies clinically meaningful 

heterogeneity in obesity, this approach could help select patients for clinical trials. 
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Introduction 

Obesity is one of the most widespread problems facing our society’s health today. Excessive 

weight significantly increases risk for conditions like diabetes mellitus and cardiovascular 

disease1,2. Worldwide, the prevalence of obesity has nearly tripled since 1975, with 39% of 

the world’s adults being overweight and 13% being obese3. The high prevalence can partially 

be attributed to increasing consumption of hypercaloric foods and sedentary lifestyles3. 

Previous studies have identified metabolic signatures associated with obesity, including 

increased levels of branched-chain and aromatic amino acids as well as glycerol and 

glycerophosphocholines4,5,6,7,8,9. However, prior work has been limited by focusing on a 

relatively small numbers of metabolites, individuals, or obesity phenotypes.  

The characterization of the metabolites that are associated with obesity can provide insights 

into the mechanisms that lead to this disease and associated consequences. Longitudinal 

assessment of weight gain and weight loss over time may indicate whether there are 

metabolomic changes that cause obesity—meaning that current metabolite levels could 

predict future weight changes—or whether all metabolite changes associated with obesity 

are a consequence of weight changes. Drawing genetics into this assessment allows the 

determination of whether genetic variation leads to metabolite changes that subsequently 

result in obesity, allowing the further delineation of the causal pathway to obesity. Finally, 

research in this area may identify biomarkers of obesity and of different types of obesity, 

for example biomarkers of so-called healthy obesity10. 

There are recent calls to improve phenotyping in very large numbers of obese people with 

the goals of understanding factors that make people susceptible to (or protected from) 

obesity, accompanied by a better elucidation of the factors that account for variability in 

success of different obesity treatments11. Here, in an effort to understand the relationship 

between metabolic perturbations and the obese state, we analyzed 2,396 individuals with 

longitudinal measurements of body mass index (BMI), anthropomorphic data, whole body 

DEXA scans and metabolome, combined with baseline genetic risk. The metabolome assay 

covered up to 1,007 metabolites at up to three distinct time points for each individual over 

the course of study. We identified associations between nearly a third of the metabolome 

and BMI, and we show that metabolite levels can explain ~40% of the variation in BMI and 
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can predict obesity status with ~80-90% specificity and sensitivity. The metabolome profile 

is a strong indicator of metabolic health compared to the polygenic risk assessment and 

anthropomorphic measurements of BMI.   

 

Results 

Profound perturbation of metabolome by obesity 

Metabolites associated with BMI. We compared the levels of individual metabolites to the 

BMIs of 832, 882, and 861 unrelated individuals of European ancestry in the TwinsUK 

cohort12 at three timepoints spanning a total range of 8-18 years. We identified 284 

metabolites that were significantly associated (p<5.5x10-5) with BMI at one or more 

timepoints (Table S1). We focused on metabolites that were significantly associated with 

BMI at all 3 timepoints and sought to replicate the associations in an independent sample 

of 427 unrelated individuals of European ancestry participating in the Health Nucleus 

cohort13. In total, our analyses identified 307 metabolites that were significantly associated 

with BMI in at least one cohort and timepoint (Table S1). We identified 83 metabolites that 

showed directions of effect that were consistent between the two cohorts, of which 49 were 

statistically significant replications (Figure 1 and Table 1).  

The 49 metabolites that associated with BMI were primarily lipids (n=23, accounting for 

7.5% of all lipids assayed across both cohorts) and amino acids (n=14, 9.3% of all amino 

acids) but also included nucleotides (n=3, 12.0% of all nucleotides), peptides (n=3, 12% of 

all peptides), and other categories (n=6, see Figure 1 and Table 1). The most significantly 

associated metabolite was urate (uric acid; p-value 1.2x10-40 for combined analysis of 

TwinsUK timepoint 1 and Health Nucleus data).  

 

Patterns in metabolite change according to BMI. The majority of the 49 BMI-associated 

metabolites increased with increasing BMI (n=35) (Figure 1, Table S1). This included glucose, 

and, notably, mannose, which has recently been highlighted as playing a role in insulin 

resistance14. Most metabolites change linearly (both proportionally and inversely) with BMI, 

though some diverge at higher BMIs, especially 2-methylbutyrylcarnitine (see cofactors 

panel in Figure 1C). Branched-chain and aromatic amino acids as well as metabolites related 
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to nucleotide metabolism like urate had the most rapid increases. Those that decreased 

(n=14) included phospholipids and lysolipids, as well as the amino acids asparagine and N-

acetylglycine and the xenobiotic cinnamoylglycine, which has been identified as a product 

of the microbiome15. Of particular interest was the association with cortisone, a metabolite 

of the steroid hormone cortisol. We identified lower levels among the obese individuals, 

which is consistent with previous reports16–19. We examined the overall composition of the 

distributions of these metabolites via principal component analysis and found complex 

underlying correlations; in particular, the first principal component explained ~20% of the 

total variation in the levels of these 49 metabolites (Figure S1). 

 

Modeling the metabolome of obesity. We used ridge regression to build a model that would 

predict BMI from the 49 BMI-associated metabolites (see Figure 2). We combined our data 

for the first visit of the TwinsUK cohort and the Health Nucleus cohort and trained with 10-

fold cross-validation on a random half of the population. In our test set of the other half of 

the data, we found that the model could explain 39.1% of the variation in BMI (Figure 2A). 

In predicting whether participants were obese (BMI>=30) or normal weight (BMI 18.5-25), 

the model had an area under the curve (AUC) of 0.922, specificity of 89.1% and sensitivity 

of 80.2% (Figure S2). The model based on the metabolite signature was thereafter used as 

a tool to define mBMI, the predicted BMI on the basis of metabolome.   

 

Identification and characterization of metabolic BMI outliers 

Having established a model to predict BMI using the metabolome (mBMI), we split the 

participants into 5 groups (Figure 2A). Three groups included individuals whose 

metabolome accurately predicted their BMI (residual between -0.5 and 0.5): they were 

characterized as having a normal BMI (18.5-25), overweight (25-30), or obese (>30). Two 

groups were characterized as outliers: these included individuals whose metabolome 

predicted a substantially lower mBMI than the actual BMI (mBMI<<BMI, residual <-0.5) or a 

substantially higher mBMI than the actual BMI (mBMI>>BMI, residual >0.5). While these 

two outlier groups had the same weight range distribution (Figure 2B), they had very 

different values for many of the phenotypes of metabolic health collected from these 

cohorts (Figure 2B&C). Individuals with a mBMI prediction that was substantially lower than 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/298224doi: bioRxiv preprint 

https://doi.org/10.1101/298224
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
6 

their actual BMI had levels of insulin resistance, blood pressure, waist/hip ratio, 

android/gynoid ratio, percent body fat, percent visceral fat, and percent subcutaneous fat 

that were similar to normal-weight individuals with healthy metabolomes. Individuals with 

a mBMI prediction that was substantially higher than their actual BMI had levels for these 

traits that were similar to those of obese individuals with obese metabolomes. Evaluating 

these data from a more clinical perspective, with individuals separated into clinical 

categories such as normal BMI with obese metabolome and obese BMI with healthy 

metabolome, generally confirmed these effects (Figure 3 and Figure S3). Our findings 

suggest that the metabolome can be used as a clinically meaningful instrument, where 

obesity is analyzed in the context of its metabolome perturbation rather than just on BMI 

alone. Thus, our results are important in the frame of the current debate on the 

metabolically “healthy” obese and also for the identification of individuals with normal BMI5 

but poor metabolic health20,21.  

 

Having characterized these outliers, we revisited their metabolome differences. As 

expected, those with mBMI<<BMI significantly differed in their metabolite levels from those 

with mBMI>>BMI for most of the 49 BMI-associated metabolites. However, two of the BMI-

associated metabolites did not differ between these two groups: asparagine and cortisone. 

We additionally investigated the association between each of the BMI-associated 

metabolites and insulin resistance, as many previously reported markers of obesity have 

also been markers of diabetes4,7. We had quantitative insulin resistance measurements for 

515 unrelated, European-ancestry participants. After controlling for BMI, we found that 12 

of the 49 BMI-associated metabolites were also significantly associated (correcting for 49 

tests requires p<0.001) with insulin resistance, all with positive directions of effect: tyrosine, 

alanine, kynurenate, gamma-glutamyltyrosine, 1-oleoyl-3-linoleoyl-glycerol (18:1/18:2), 

and six phospholipids, and as expected, glucose (see Table S1). Mannose, which recently 

underwent extensive study with regard to insulin resistance14, was nominally associated 

with insulin resistance after controlling for BMI in our study, p=0.004. 

 

Evolution of obesity and metabolome clinical profiles. Given recent work suggesting that 

obese individuals who are metabolically healthy may remain at higher risk of negative health 
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outcomes than are normal weight individuals who are metabolically healthy20, we next 

asked whether the outlier groups were more likely to become obese over time. Focusing on 

the 1,458 individuals from TwinsUK who had weight measurements at all three timepoints, 

we found that those who had a mBMI that was higher than their BMI were marginally more 

likely to gain weight and convert to an obese phenotype (BMI>30) over the 8-18 years of 

follow up. For example, 32.8% of those of normal weight but with an overweight or obese 

metabolome converted to being overweight or obese by timepoint 3 compared to 24.8% of 

those who were of normal weight and had a healthy metabolome (p=0.02, Figure 4 and 

Figure S4). Overall, the mBMI states of the individuals remained fairly stable with time and 

were a function of BMI changes (Figure 4 and Figure S4). For example, 68% of the individuals 

who began the study with an obese metabolome ended the study with an obese 

metabolome. When an individuals’ weight increased and then decreased, their mBMI 

followed suit, and no single metabolite was significantly predictive of subsequent BMI 

changes (Figure S4). In summary, our results are consistent with a favorable long-term 

health benefit for the overweight and obese individuals with a healthy metabolome.  

 

Cardiovascular disease outcomes. Obesity is considered a risk factor for cardiovascular 

disease and ischemic stroke22. The longitudinal nature of the TwinsUK study allowed the 

collection of clinical endpoints in these unselected participants. The age of participants at 

the first visit ranged from 33 to 74 years old (median 51); and 42 to 88 years old (median 

65) at the last visit. During the follow up (median 13 years), the study recorded 53 

cardiovascular events (myocardial infarct, angina, angioplasty) or strokes for 1573 

individuals. We calculated that our study had 80% power to identify effects with a hazard 

ratio of at least 1.5 for differences in cardiovascular event outcomes between the different 

mBMI/BMI groups. We found that participants with a healthy metabolome (normal BMI or 

obese) had 2 events per hundred individuals. Individuals with an obese metabolic profile, 

mBMI, had 3.7 (normal BMI) and 4.2 events (in obese individuals) per hundred individuals. 

Separated analysis of the various endpoints confirmed the trends, more accentuated for 

cardiovascular than for diagnosis of stroke (Figure S5). We then performed a formal survival 

analysis for participants to have any cardiovascular event after the first timepoint, and we 

found those with healthier metabolomes to have fewer/later cardiac events (p=0.02, Figure 
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4). 

 

Correlations between twins. Because twin studies are important to analyze the heritability 

of traits, we reassessed the BMI model predictions and obesity status of 350 sets of twins 

where either both twins had normal BMI (n=244), both twins were obese (n=67), or one was 

obese and the other had normal BMI (n=39). To keep the categories clear, individuals with 

BMIs between 25 and 30 (overweight) and their twins were excluded. As asserted by the 

model’s high specificity and sensitivity, the metabolite-based obesity predictions reflected 

the actual obesity status of the individuals. This was even the case when only one twin was 

obese: the obese twin was generally predicted by their metabolome to be obese, while the 

normal weight twin was not (Figure S2). The correlations between the metabolite-based 

obesity predictions was also substantially higher between the monozygotic twins than the 

dizygotic twins, as expected. Interestingly, we identified 3 sets of twins where both twins 

were predicted from the metabolome to be of normal weight, but both were obese, and 8 

sets of twins where the reverse was true. These outliers were thought to represent healthy 

obese and normal weight, metabolically unhealthy individuals described above. 

 

Genetic analyses 

Known genetics of obesity. We first investigated the known genetic factors contributing to 

high BMI. We calculated polygenic risk scores for BMI using known associations from the 

considerable literature of obesity and BMI GWAS23. As previously reported, we found that 

polygenic risk score only explained 2.2% of the variation in BMI at each of the three 

TwinsUK timepoints and in Health Nucleus for unrelated participants of European ancestry 

(Figure S6). We investigated whether unique individuals with the highest polygenic risk 

scores would have a significant perturbation of the metabolome and anthropomorphic, 

insulin resistance and DEXA measurements (Figure 5). While the data did not support a 

strong role for polygenic risk, there were trends for higher polygenic risk scores to be 

associated with a higher android/gynoid ratio (p=0.04) and waist/hip ratio (p=0.04). 

However, there was no statistical association between the polygenic score and mBMI 

(p=0.16).    
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Studies of rare variants in obesity have identified MC4R mutations as having effects large 

and clear enough to be appropriate for study in our dataset24. We therefore identified 

members of the study populations who were carrying rare (MAF<0.01%) coding variants in 

the known obesity gene melanocortin 4 receptor (MC4R). We identified 8 such carriers in 

the subset of unrelated participants (Table 2). Each variant was observed in one unrelated 

individual, and 5 of the 8 had already been annotated as causing obesity in clinical databases 

HGMD or ClinVar (Table 2). As a group, MC4R carriers had significantly higher BMI (p=0.02) 

than did non-carriers as well as non-significant trends toward a higher diastolic blood 

pressure, insulin resistance, and percent body fat (Figure 5). However, not all rare variants 

may be deleterious, and the metabolic impact could have been greater for the true subset 

of functional variants. The BMI data in the participants supported a pathogenic role for five 

of the variants (Met292fs, Arg236Cys, Ser180Pro, Ala175T, and Thr11Ala), but did not 

corroborate a role of Ile170V, which is defined in HGMD and ClinVar as pathogenic25,26. 

Importantly, of the five sets of twins who both carried the same MC4R variant, three sets 

included twins who were both overweight or obese. In the two cases where a carrier’s twin 

did not have the MC4R variant, their BMI was lower than their twin’s. We observed an 

enrichment of MC4R variant carriers among obese individuals with low polygenic risk scores 

(Figure S6).  Out of 31 participants who were obese with polygenic risk scores in the lowest 

quartile, 6.1% were MC4R variant carriers, while the carrier frequency was just 0.3% in those 

of normal weight.  

 

Genetics of the metabolically healthy obese. We obtained additional support of the 

decoupling of the genetics of high BMI versus the basis of obesity and predicted mBMI from 

the analysis of outliers. Individuals with a mBMI that was substantially lower than their 

actual BMI had a higher polygenic risk score for BMI than did other groups. In contrast, those 

whose mBMI was substantially higher than their actual BMI had low polygenic risk scores 

(Figure 2B; p=0.006 for a difference between these two groups). This result would support 

the notion that the polygenic risk score for BMI may capture an anthropomorphic 

phenotype (larger-framed individuals) rather than a unique association with obesity as a 

disease trait. 
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Genetics of metabolome differences. Last, we investigated whether obese individuals with 

different genetic backgrounds had different metabolomes from other obese individuals. We 

first searched for metabolites that could distinguish individuals with different BMI polygenic 

risk scores or MC4R variant carriers. Linear regression showed no significant associations 

between any single metabolites and polygenic risk or MC4R carrier status in either the entire 

population or in only the obese individuals. This result implies that metabolites are unlikely 

to be intermediate phenotypes that explain the underlying genetics of obesity. To check for 

more specific signals beyond the compiled polygenic risk score, we also performed separate 

analyses of each of the 97 variants that are used to calculate the polygenic risk score. We 

found no evidence for any of these known GWAS variants to be more strongly associated 

with a metabolite than with BMI itself, though our power for discovery was limited given 

the very small effect sizes of most individual GWAS variants. In summary, although it is 

known that there is a strong genetic component to metabolite levels27, most of the 

metabolic perturbations that occur in the obese state are a response to obesity as opposed 

to shared genetic mechanisms.  

 

Discussion 

The results of the present study highlight the profound disruption of the metabolome in 

obesity and identifies a metabolome signature that serves to examine metabolic health 

beyond anthropomorphic measurements. Nearly one third of the approximately 1000 

metabolites measured in the study were associated with BMI, and 49 were selected as a 

strong signature for the study of the relationship between BMI, obesity, metabolic disease 

and the genetics of BMI.  

 

Consistent with previous studies and earlier work in the TwinsUK cohort, branched-chain 

and aromatic amino acids, and metabolites involved in nucleotide metabolism, such as urate 

and pseudouridine, are strongly perturbed by obesity4,6,7,9. The underlying reason for the 

perturbation of branched-chain amino acid metabolism in obese individuals and those with 

insulin resistance is thought to be related to differences in the amino acid catabolism in 

adipose tissue28. The single metabolite with the most significant association with BMI was 
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urate, as we previously reported9. It is well known that uric acid increases with obesity, due 

to insulin resistance reducing the kidneys’ ability to eliminate uric acid, but previous work 

has not emphasized the power of urate to predict BMI6,7,29. We also found a strong signal 

for lipids to be associated with BMI, with an enrichment of associations found for glycerol 

lipids. These results are consistent with previous studies showing that sphingomyelins and 

diacylglycerols increase with BMI while lysophosphocholines decrease with BMI, with other 

various phosphatidylcholines having effects in both directions6,7,4. A number of BMI-

associated metabolites (12 of the 49-metabolite signature) were associated with insulin 

resistance after controlling for BMI. As previously observed20,30–32, the metabolome 

abnormalities associated with high BMI corrected with loss of weight. However, our study 

found that metabolite levels did not provide predictive power for future weight changes 

(Figure S4). Overall, the metabolome perturbations appear as a consequence of changes in 

weight as opposed to being a contributing factor.  

The metabolome signature identified individuals whose predicted mBMI was either 

substantially lower or higher than their actual BMI. These individuals include the 

metabolically healthy obese, but we also emphasize the importance of the metabolome 

anomalies in identifying unhealthy individuals with a normal BMI. These profiles were 

generally stable over the prolonged follow-up. An abnormal metabolome signature, 

irrespective of BMI, was associated in the present study with three-fold increase in 

cardiovascular events (Figure 6). Thus, while our findings are in line with the known 

relationships between metabolically healthy obese status and health-related traits like 

metabolic syndrome and body fat20,33,34, we extend this relationship to the broader category 

of metabolically healthy and unhealthy individuals on the basis of the disparity between 

mBMI and BMI. For example, we observed differences in waist/hip ratio, percent visceral 

fat, and blood pressure between mBMI/BMI outliers despite having the same BMI 

distribution. The fact that the metabolically healthy obese have a high BMI polygenic risk 

score also supports the concept that some of the genetic studies may capture 

anthropomorphic associations – body size - rather than obesity sensu stricto. Overall, the 

health consequences observed across the various mBMI groups indicate that there is a 

durable benefit of maintaining a healthy metabolome signature and points to an ongoing 
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risk for the individuals that have an unhealthy metabolome despite stability of BMI.  

In contrast with metabolomics analyses, the present study does not support a strong 

association between metabolome changes and the genetics of BMI defined by a 97-variant 

polygenic risk score23. This may be explained by the fact that known BMI GWAS loci explain 

only a small fraction (∼3%) of BMI heritability23. Despite this overall lack of explanatory 

power, there was a clear signal for individuals with higher polygenic risk scores to have 

greater rates of obesity. Because the genetic risk score does not include rare variants, we 

also identified individuals who carried rare functional variants in the known obesity gene 

MC4R, which is the single best example of a gene where rare coding variants have a large 

effect on obesity24. The carriers of these variants were often obese individuals, but their 

metabolome was not categorically different from that of other obese individuals. The lack 

of metabolome differences for carriers of variants in this gene is not surprising given that 

MC4R variants cause obesity by increasing appetite. However, we did find that obese 

carriers of MC4R variants often had low polygenic risk scores for obesity; out of 31 

participants who were obese with polygenic risk scores in the lowest quartile, 6.1% were 

MC4R variant carriers, while the carrier frequency was just 0.3% in those of normal weight. 

Thus, our study shows the interest of sequencing obese individuals with low polygenic risk 

scores because of the apparent enrichment for monogenic contributions. As we completed 

this study, a large consortium provided additional detail on the role of variants in pathways 

that implicate energy intake and expenditure in obesity24.  

In summary, the present study highlights the health risks of the perturbed metabolome. 

The study also decouples the genetics of BMI from metabolic health and serves to prioritize 

a subset of individuals for genetic analysis. The assessment of the metabolome and 

genome of BMI lays groundwork for future studies of the heterogeneity of obesity and 

treatment of its endophenotypes. Specifically, the metabolome signature can act as a 

biomarker of response to the new therapeutics that target patients with MC4R 

mutations35. In the future, metabolic profiling could help select patients for clinical trials 

beyond genetic sequencing, thus expanding drug utility11.  

 

STAR+ Methods 
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Samples and study design. Our study included 1,969 European ancestry twins enrolled in 

the TwinsUK registry, a British national register of adult twins12. We previously reported a 

detailed study of the genetic variants influencing the human metabolome in this cohort27. 

Serum samples were collected at three visits, 8-18 (median 13) years apart. The cohort is 

mainly composed of females (96.7%), and the sample set we used included 388 monozygotic 

twin pairs, 519 dizygotic twin pairs, and 155 unrelated individuals. The age of participants 

at the first timepoint ranged from 33 to 74 years old (median 51); 36 to 81 years old (median 

59) at the second timepoint; and 42 to 88 years old (median 65) at the third timepoint. The 

BMI values measured at each metabolome timepoint were taken within two years of the 

blood draw date. The twins study was approved by St. Thomas’ Hospital Research Ethics 

Committee, and all participants provided informed written consent. BMI data were available 

for 1743 participants within two years of the timepoint for metabolome timepoint 1, 1834 

for within two years of timepoint 2, and 1777 for up to 2 years before timepoint 3 or 4 years 

after this timepoint; 1,458 individuals had all three datapoints.  

For independent validation and studies of phenotypes correlated with metabolic BMI 

outliers, we enrolled 617 unselected adults more than 18 years old who were able to come 

to the Health Nucleus in La Jolla, CA for a clinical research protocol13. Participants 

underwent a verbal review of the institutional review board-approved consent (Western 

Institutional Review Board). Participants ranged in age from 18-89 years old (median 53), 

were 32.9% female, and had BMI data measured at one timepoint. 

 

Phenotyping. Individuals in the TwinsUK cohort and Health Nucleus both underwent DEXA 

imaging. The data from these scans were used to calculate android/gynoid ratio, percent 

body fat, visceral fat, and subcutaneous fat. TwinsUK cohort participants were additionally 

measured for circumference at the waist and hip using a measuring tip to calculate the 

waist/hip ratio. For a selected number of Health Nucleus participants, images of fat and 

water (imaging of muscle) were available from symmetrical chemical shift Magnetic 

Resonance Imaging (MRI) via the Dixon method. Quantitative insulin resistance 

(homeostatic model assessment, HOMA) was calculated as fasting insulin x fasting glucose 

/ 405, and being insulin resistant was defined by HOMA score >3 

(http://gihep.com/calculators/other/homa/)36. 
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Metabolite Profiling. The non-targeted metabolomics analysis of 901 metabolites in the 

TwinsUK cohort and 1,007 metabolites in the Health Nucleus cohort was performed at 

Metabolon, Inc. (Durham, North Carolina, USA) on a platform consisting of four independent 

ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) 

methods. The detailed descriptions of the platform can be found in our previous 

publications27,37. For the TwinsUK cohort, blood serum was used for analysis, and the 

resulting raw values were transformed to z scores using the mean and standard deviation. 

For the Health Nucleus cohort, blood plasma was used for analysis, and values from multiple 

experimental batches were normalized into Z-scores based on a reference cohort of either 

42 (n=457) or 300 (n=176) self-reported healthy individuals run with each batch. The 42 and 

300-normalized batches were converted to the same scale using linear transformation 

based on the values obtained from 7 runs that included both the 42 and 300 controls. 

Samples with metabolite measurements that were below the detection threshold were 

imputed as the minimum value for that metabolite.  

 

Genome sequencing and analysis. As previously described38, DNA samples were sequenced 

on an Illumina HiSeqX sequencer utilizing a 150 base paired-end single index read format. 

Reads were mapped to the human reference sequence build HG38. Variants were called 

using ISIS Analysis Software (v. 2.5.26.13; Illumina). A linear mixed model was applied to 

account for family structure in the cohort while testing for associations between genetic 

variants and the different phenotypes: BMI; BMI prediction model values and residuals after 

accounting for BMI, age, sex; and levels of the 49 BMI-associated metabolites. A genetic 

similarity matrix (GSM) was constructed from 301,556 variants that represented a random 

20% of all common (MAF>5%) variants genome-wide after linkage-disequilibrium (LD) 

pruning (r2 less than 0.6, window size 200 kb) and was used to model the random effect in 

the linear mixed model via a “leave-out-one-chromosome” method for each tested variant. 

Each of 97 known BMI-associated variants was tested independently using customized 

Python scripts wrapping the FaST-LMM package3923. Principal component axes were 

calculated to check ethnicity using plink, and the first principal component for those of 

European ancestry was used as a covariate in analyses of unrelated individuals in R 
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described below. Polygenic risk scores were calculated using genotypes for 97 variants 

whose associations and betas had been published previously23. Rare variants in the gene 

MC4R were defined as coding and splice variants with MAF<0.1%. 

 

Statistical analysis. R was used for the analysis and data manipulation. Bonferroni correction 

was used for all analyses. For each quantitative analysis of BMI or other traits, the subset of 

BMI values or other outcome variables used were rank-ordered and forced to a normal 

distribution. Analyses comparing metabolites to BMI were performed in R using the lm 

function, and age, sex, and the first genetic principal component were included as 

covariates. The obesity prediction model was built using ridge regression (alpha=0) with 

glmnet in R. The residuals used to separate participants into the five categories shown in 

Figure 2 were calculated using age, sex, and initial BMI.  Heatmaps were generated in R using 

the pheatmap package. Survival analysis was performed using coxph in R with age at first 

visit included as a covariate. Power calculation was performed using the power.stratify 

command in powerSurvEpi. 
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Table 1. Metabolite signature associated with BMI. 

Super 
pathway 

Metabolite Sub pathway Direction 
of effect 
(rank*) 

Nucleotide urate Purine Metabolism, 

(Hypo)Xanthine/Inosine containing 
↑ (1) 

N2,N2-dimethylguanosine Purine Metabolism, Guanine containing ↑ (6) 

N6-carbamoylthreonyladenosine Purine Metabolism, Adenine containing ↑ (28) 

Amino Acid glutamate Glutamate Metabolism ↑ (2) 

N-acetylglycine Glycine, Serine and Threonine 

Metabolism 
↓ (9) 

5-methylthioadenosine (MTA) Polyamine Metabolism ↑ (10) 

valine Leucine, Isoleucine and Valine 

Metabolism 
↑ (11) 

aspartate Alanine and Aspartate Metabolism ↑ (16) 

N-acetylvaline Leucine, Isoleucine and Valine 

Metabolism 

↑ (18) 

kynurenate Tryptophan Metabolism ↑ (19) 

alanine Alanine and Aspartate Metabolism ↑ (23) 

asparagine Alanine and Aspartate Metabolism ↓ (26) 

N-acetylalanine Alanine and Aspartate Metabolism ↑ (31) 

tyrosine Phenylalanine and Tyrosine Metabolism ↑ (34) 

leucine Leucine, Isoleucine and Valine 

Metabolism 

↑ (37) 

N-acetyltyrosine Phenylalanine and Tyrosine Metabolism ↑ (40) 

2-methylbutyrylcarnitine (C5) Leucine, Isoleucine and Valine 

Metabolism 
↑ (41) 

Lipid 1-(1-enyl-palmitoyl)-2-oleoyl-

GPC (P-16:0/18:1) 

Plasmalogen ↓ (3) 

1-stearoyl-2-dihomo-linolenoyl-

GPC (18:0/20:3n3 or 6) 
Phospholipid Metabolism ↑ (4) 

1-eicosenoyl-GPC (20:1) Lysolipid ↓ (5) 

1-arachidoyl-GPC (20:0) Lysolipid ↓ (7) 

1-(1-enyl-stearoyl)-2-oleoyl-

GPC (P-18:0/18:1) 
phospholipid ↓ (8) 

propionylcarnitine Fatty Acid Metabolism (also BCAA 

Metabolism) 
↑ (12) 

1-nonadecanoyl-GPC (19:0) Lysolipid ↓ (14) 

1-linoleoyl-GPC (18:2) Lysolipid ↓ (15) 

sphingomyelin (d18:1/18:1, 

d18:2/18:0) 
Sphingolipid Metabolism ↑ (20) 

1-palmitoyl-2-dihomo-

linolenoyl-GPC (16:0/20:3n3 or 

6) 

Phospholipid Metabolism ↑ (21) 

1-(1-enyl-palmitoyl)-2-

linoleoyl-GPC (P-16:0/18:2) 

Phospholipid Metabolism ↓ (22) 
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1-palmitoyl-3-linoleoyl-glycerol 

(16:0/18:2) 
Phospholipid Metabolism ↑ (24) 

1-oleoyl-2-linoleoyl-GPC 

(18:1/18:2) 

Phospholipid Metabolism ↓ (27) 

1-(1-enyl-stearoyl)-2-

docosahexaenoyl-GPC (P-

18:0/22:6) 

Phospholipid Metabolism ↓ (29) 

1-oleoyl-3-linoleoyl-glycerol 

(18:1/18:2) 
Diacylglycerol ↑ (30) 

carnitine Carnitine Metabolism ↑ (33) 

1-palmitoyl-2-linoleoyl-glycerol 

(16:0/18:2) 
Phospholipid Metabolism ↑ (36) 

1-oleoyl-2-linoleoyl-glycerol 

(18:1/18:2) 
Diacylglycerol ↑ (38) 

1,2-dilinoleoyl-GPC (18:2/18:2) Phospholipid Metabolism ↓ (39) 

1-palmitoleoyl-2-oleoyl-glycerol 

(16:1/18:1) 

phospholipid ↑ (42) 

1-palmitoleoyl-3-oleoyl-glycerol 

(16:1/18:1) 
phospholipid ↑ (45) 

1-palmitoyl-2-adrenoyl-GPC 

(16:0/22:4) 
Phospholipid Metabolism ↑ (47) 

cortisone Steroid ↓ (49) 

Energy  succinylcarnitine TCA Cycle ↑ (13) 

Carbohydrate mannose Fructose, Mannose and Galactose 

Metabolism 

↑ (17) 

glucose Glycolysis, Gluconeogenesis, and 

Pyruvate Metabolism 
↑ (48) 

Xenobiotics cinnamoylglycine Food Component/Plant ↓ (43) 

Cofactors 
and Vitamins 

gulonic acid Ascorbate and Aldarate Metabolism ↑ (46) 

quinolinate Nicotinate and Nicotinamide 

Metabolism 
↑ (44) 

Peptide N-acetylcarnosine Dipeptide Derivative ↑ (25) 

gamma-glutamylphenylalanine Gamma-glutamyl Amino Acid ↑ (32) 

gamma-glutamyltyrosine Gamma-glutamyl Amino Acid ↑ (35) 

*Rank indicates order of significance of association with BMI. 
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Table 2. Variants identified in MC4R in unrelated participants of European ancestry. 

Variant Protein 

change 

Study 

MAF 

Global 

gnomad 

MAF 

Known obesity 

annotation 

Carrier 

BMI 

Carrier  

twin 

BMI 

Twin 

non-

carrier 

BMI 

Twin 

zygosity 

chr18:60371541 

G/A 

p.Ser270Phe 0.036% 0.003% None 25.7 24.8 N/A MZ 

chr18:60372307 

G/A 

p.Leu15Phe 0.036% 0.000% None 23 22.6 N/A MZ 

chr18:60371474 

CA/C 

p.Met292fs 0.036% <0.003% None 32.8 N/A 28.8 DZ 

chr18:60371644 

G/A 

p.Arg236Cys 0.036% 0.003% HGMD highC DM 34.5 34.5 N/A DZ 

chr18:60371812 

A/G 

p.Ser180Pro 0.036% <0.003% ClinVar LP 34.2 34.4 N/A DZ 

chr18:60371827 

C/T 

p.Ala175Thr 0.036% 0.019% ClinVar P and HGMD 

highC DM 

29 28.5 N/A MZ 

chr18:60371842 

T/C 

p.Ile170Val 0.036% 0.013% ClinVar P and HGMD 

highC DM 

22.6 N/A 21.3 DZ 

chr18:60372319 

T/C 

p.Thr11Ala 0.036% <0.003% HGMD lowC DM 36 N/A N/A N/A 

MAF = minor allele frequency; HGMD highC DM = Human Gene Mutation Database high-confidence disease-
causing mutation; lowC = low-confidence; LP = likely pathogenic; P = pathogenic; MZ = monozygotic; DZ = 
dizygotic. Each variant was only seen once in the unrelated participants of this study. 
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Figure 1. Pathway categories of metabolites associated with BMI. Shown are the pathway categories 

of (A) the 307 metabolites significantly associated with BMI and (B) the 49-metabolite signature. (C) The 

values of each of the 49 BMI-associated metabolites are plotted with a Loess curve against the BMI for 

timepoint 1 in TwinsUK. Only unrelated individuals of European ancestry are included, and the small 

number of individuals with BMI below 20 (n=31) or above 40 (n=10) are removed to keep the ends of 

the graphs from being skewed.  
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Figure 2. Variables associated with BMI and predicted BMI from the metabolome. (A) Correlation 

between ridge regression model prediction of BMI and actual BMI for all unrelated individuals of 

European ancestry in the TwinsUK and HN dataset. The identification of outliers is defined below: the 

pink box shows individuals with a much lower predicted BMI (mBMI) than actual BMI, and the yellow box 

shows individuals with a much higher mBMI than actual BMI. (B) Factors associated with being a mBMI 

outlier. Participants were split into 5 groups: those whose metabolome accurately predicted their BMI 

(residual after accounting for age, sex and BMI between -0.5 and 0.5) whose BMIs were either normal 

(18.5-25), overweight (25-30), or obese (>30); and those whose metabolome predicted a substantially 

higher mBMI than the actual BMI (residual <-0.5) or a substantially lower mBMI than the actual BMI 

(residual >0.5). All y-axis values are scaled to a range from 0-1 to allow comparison across groups. The 

same process is used in (C) to show DEXA imaging values associated with metabolic BMI outliers. The 

unexpectedly low mBMI and unexpectedly high mBMI groups had a comparable measured BMI; however, 

these two groups were statistically significantly different from each other (p<0.01) for all modalities 

except blood pressure. 
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Figure 3. Body composition profiles from Dixon Magnetic Resonance Imaging for four outlier 

individuals: (A) Correlation between ridge regression model prediction of BMI and actual BMI for all 

unrelated individuals of European ancestry in the TwinsUK and HN dataset. Outliers highlighted in panels 

B and C are marked with corresponding colors. All individuals highlighted are from the outlier mBMI >> 

BMI or mBMI << BMI categories shown in Figure 2. (B) Body composition profiles (Red = Visceral Adipose 

Tissue, Yellow = Subcutaneous Adipose Tissue, Cyan = Muscle). (C) Waist to hip cross sections (Hip = Mid 

femoral head; Waist = Top of ASIS). (C) Identity of the individuals depicted in panels A and B. 
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Figure 4. Progression of different mBMI/BMI categories. A) Alluvial plot showing the proportion of 

participants who remained in the same weight category or transitioned to a different weight category 

over the course of the 8-18 years of the TwinsUK study. Red individuals have an obese metabolome, 

orange individuals have an overweight metabolome, and grey individuals have a normal metabolome. B) 

Alluvial plot showing the proportion of participants who remained in the same mBMI category or 

transitioned to a different mBMI category over the course of the 8-18 years of the TwinsUK study. Red 

individuals begin the study with an obese BMI, orange overweight, and grey normal weight. C) Survival 

plot showing age until cardiac event (infarction, angina, or angioplasty). The plot is divided into those 

whose mBMI corresponds with their BMI (normal weight, overweight, and obese categories) as well as 

the two outlier groups: those with mBMI << BMI and those with mBMI >> BMI (p=0.02 for a difference 

between these categories in cardiovascular outcomes). 
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Figure 5. Genetic risk compared to BMI-relevant variables. (A) Correlation between polygenic risk score 

(PG) category, MC4R carrier status, and BMI and anthropomorphic and clinical measurements for all 

unrelated individuals of European ancestry in the TwinsUK and HN dataset. All y-axis values are scaled to 

a range from 0-1 to allow comparison across groups. The same process is used in (B) to show DEXA 

imaging values. While there was a trend for genetic risk to be associated with various measurements, the 

polygenic risk score achieved nominal p<0.05 for BMI, waist/hip ratio and android/gynoid ratio, and 

MC4R carrier status achieved nominal p<0.05 for BMI.  
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Figure 6. Representative clinical phenotypes of mBMI/BMI outliers. While there is a continuum of 

obesity and metabolic perturbations, there are four representative extant phenotypes that are 

schematically represented in the figure. Indicated are salient features of these groups: rates of insulin 

resistance (IR) at timepoint 1, high BMI genetic risk (GR, top decile of polygenic risk or MC4R carrier), 

and rates of cardiovascular events (CV) during the study follow up. 
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