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Abstract 19 
 20 
Patch-seq, combining patch-clamp electrophysiology with single-cell RNA-sequencing 21 
(scRNAseq), enables unprecedented single-cell access to a neuron’s transcriptomic, 22 
electrophysiological, and morphological features. Here, we present a systematic review and re-23 
analysis of scRNAseq profiles from 4 recent patch-seq datasets, benchmarking these against 24 
analogous profiles from cellular-dissociation based scRNAseq. We found an increased 25 
likelihood for off-target cell-type mRNA contamination in patch-seq, likely due to the passage of 26 
the patch-pipette through the processes of adjacent cells. We also observed that patch-seq 27 
samples varied considerably in the amount of mRNA that could be extracted from each cell, 28 
strongly biasing the numbers of detectable genes. We present a straightforward marker gene-29 
based approach for controlling for these artifacts and show that our method improves the 30 
correspondence between gene expression and electrophysiological features. Our analysis 31 
suggests that these technical confounds likely limit the interpretability of patch-seq based single-32 
cell transcriptomes. However, we provide concrete recommendations for quality control steps 33 
that can be performed prior to costly RNA-sequencing to optimize the yield of high quality 34 
samples. 35 
 36 
Introduction 37 
 38 
Linking gene expression to a neuron’s electrical and morphological features has long been a 39 
goal of cellular neuroscience. To this end, one strategy is to use the same patch-clamp 40 
electrode for electrophysiological characterization for mRNA sampling, for example, by 41 
aspirating the cell’s cytosol into the patch-pipette (Eberwine et al., 1992; Sucher and Deitcher, 42 
1995; Toledo-Rodriguez et al., 2004; Toledo-Rodriguez and Markram, 2014; Kodama et al., 43 
2012; Rossier et al., 2014). The aspirated mRNA transcripts can then be detected and 44 
quantified using RT-PCR (Eberwine et al., 1992; Sucher and Deitcher, 1995; Cauli et al., 1997; 45 
Toledo-Rodriguez et al., 2004; Kodama et al., 2012; Rossier et al., 2014) or other methods 46 
(Subkhankulova et al., 2010), allowing the quantification of multiple genes or transcripts.  47 
 48 
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Recently, a number of groups have published protocols for patch-seq that extend previous RT-49 
PCR-based methods by quantifying patch-pipette sampled cellular mRNA transcripts using 50 
next-generation RNA-sequencing (Cadwell et al., 2015; Fuzik et al., 2016; Földy et al., 2016; 51 
Bardy et al., 2016; Cadwell et al., 2017b, 2017a). These protocols make use of recent technical 52 
improvements in single-cell RNA-sequencing (scRNAseq) that enable gene expression 53 
quantification from very low starting volumes of mRNA (Poulin et al., 2016; Tasic et al., 2017), 54 
such as those present in a single-cell or single-nucleus.  55 
 56 
Patch-seq mRNA sample collection differs from standard single-cell or single-nucleus RNAseq,  57 
in two major ways (Cadwell et al., 2017b, 2017a). First, as opposed to relying on dissociating 58 
cells into suspension, the micropipette used for electrical recording is used for mRNA extraction 59 
via aspiration. While guiding the patch pipette to (or from) the soma of a cell of interest, the 60 
pipette often must travel through the processes of other cells, presenting an opportunity for 61 
contamination. Second, the effectiveness of cell content aspiration is difficult to control, so the 62 
amount of mRNA extracted may tend to vary from cell to cell.  63 
 64 
Here, our goal was to investigate the quality of scRNAseq data profiled using patch-seq. Our 65 
strategy was to compare patch-seq derived scRNAseq data with analogous data sampled using 66 
cellular-dissociation based methods, from which multiple large and high-quality single-cell 67 
transcriptomic datasets are available (Tasic et al., 2016; Zeisel et al., 2015). Our findings 68 
suggest that sampling cellular mRNA using a patch-pipette induces technical artifacts that tend 69 
not to be present to the same degree in cellular-dissociation based scRNAseq data. Based on 70 
our findings, we provide approaches for detecting these technical issues and discuss strategies 71 
for generating high-quality patch-seq datasets in the future. 72 
 73 
Methods 74 

Dataset overview 75 
 76 
We made use of 4 previously published patch-seq datasets (Cadwell, Földy, Fuzik, Bardy) 77 
(Bardy et al., 2016; Cadwell et al., 2015; Földy et al., 2016; Fuzik et al., 2016) , reflecting, to our 78 
knowledge, all of the published patch-seq datasets as of January 2018. We compared these to 79 
2 cellular dissociation-based single-cell RNAseq datasets (Tasic, Zeisel) (Tasic et al., 2016; 80 
Zeisel et al., 2015). We downloaded single-cell transcriptomic data from each study from 81 
accessions provided in Table 1 and Supplementary Table 1 or by contacting the authors directly. 82 
We obtained patch-seq-based electrophysiological data for the Cadwell and Fuzik datasets from 83 
the authors. For all patch-seq datasets, electrophysiological data were provided as a 84 
spreadsheet containing a set of summarized electrophysiological features per cell (e.g., input 85 
resistance, resting membrane potential, etc.). Electrophysiological data from the Allen Institute 86 
Cell Types database (celltypes.brain-map.org) were obtained and processed as described 87 
previously (Tripathy et al., 2017). 88 
 89 
Transcriptome data pre-processing 90 
 91 
We reprocessed transcriptomic data for the Cadwell, Földy, and Tasic datasets directly from 92 
Gene Expression Omnibus (GEO) or Array Express. Data from GEO was downloaded using 93 
fastq-dump version 2.8.2 from the Sequence Read Archive Toolkit. Technical reads such as 94 
barcodes and primers were filtered out during extraction. Adapter sequences were clipped from 95 
the raw reads. The list of option used is as follows: '--gzip --skip-technical --readids --dumpbase 96 
--split-files --clip'. Data from ArrayExpress was downloaded and used directly as prepared by 97 
the European Bioinformatics Institute.  98 
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 99 
The reference mouse transcriptome was produced using the 'rsem-prepare-reference' script 100 
provided by the RSEM RNA-Seq transcript quantifier (Li and Dewey, 2011). The assembly 101 
version used was Ensembl GRCm38, packaged by Illumina for the iGenomes collection. 102 
Alignment was performed using STAR (Dobin et al., 2013) version 2.4.0h, provided as the 103 
aligner to RSEM v1.2.31. Default parameters were used (with the exception of parallel 104 
processing and logging related options). Transcript definitions used to detect ERCC spike-ins 105 
were obtained from the ERCC92 version fasta and GTF files. Spike-ins were concatenated to 106 
the GRCm38 assembly before applying rsem-prepare-reference, and independently to create a 107 
standalone ERCC assembly. Both the concatenated and standalone spike-ins assemblies 108 
showed highly comparable proportions of spike-in expression. For the Fuzik and Zeisel 109 
datasets, we made use of the quantified summarized unique molecule counts (UMIs) made 110 
available at GEO. For the Bardy dataset, we used the summarized count matrices directly 111 
provided by the authors. 112 
 113 
Mapping of mouse patch-seq cell types onto taxonomies derived from dissociated cells 114 
 115 
Using descriptions for cellular identities provided in the original patch-seq publications, we 116 
manually mapped each of the cell types represented across the three mouse patch-seq 117 
datasets onto transcriptomically-defined cellular clusters reported in the two dissociated cell 118 
datasets (shown in Supplementary Table 2). For example, given that the elongated 119 
neurogliaform cells and single bouquet cells characterized in Cadwell are both cortical layer 1 120 
cells, we manually mapped these to the layer 1 cells defined in Tasic as Ndnf cells. Similarly, we 121 
mapped the hippocampal regular-spiking interneurons characterized in Foldy to the Sncg cluster 122 
from Tasic (personal communication with Csaba Földy). To align cell subtype clusters between 123 
Tasic and Zeisel, we used mappings provided by MetaNeighbor (Crow et al., 2018) (shown in 124 
Supplementary Table 2). The mappings between broad cell types in Tasic with Zeisel are 125 
provided in Supplementary Table 3. As with our previous work mapping cells and cell types 126 
across datasets (Mancarci et al., 2017; Tripathy et al., 2017), we note that these cross-dataset 127 
mappings are approximate and ideally would be guided by the use methods for unambiguously 128 
aligning cell types across experiments (e.g., transgenic mouse lines with specific cell types 129 
labeled by fluorescent proteins). 130 
 131 
Identification of cell type-specific marker genes 132 
 133 
For this study, we defined two classes of marker genes, termed “on” and “off” markers. The first 134 
class, “on” markers, are genes that are highly and ubiquitously expressed in the cell type of 135 
interest with enriched expression relative to other cell types. The second class, “off” markers, 136 
are expected to be expressed at low levels in a given patch-seq cell type. These are genes that 137 
are specifically expressed in a single cell type (e.g., microglia) and, if expressed, are an 138 
indicator of possible cellular contamination. To identify marker genes, we employed two recent 139 
surveys of mouse cortical diversity from Tasic et al. and Zeisel et al. (Tasic et al., 2016; Zeisel et 140 
al., 2015). 141 
 142 
To identify “on” marker genes, we initially used the Tasic dataset, and selected genes whose 143 
average expression in the chosen cell type was >10 times relative all other cell types in the 144 
dataset, with an average expression in the cell type of >100 TPM. From this initial gene list, we 145 
next filtered these genes to only include those that were expressed >10 TPM/cell in >75% of all 146 
cells of that type in Tasic, and >1 UMI/cell in >50% of all cells of that type in Zeisel. Using the 147 
Tasic nomenclature, we defined “on” markers for Ndnf, Sncg, Pvalb, and Pyramidal cell types. 148 
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 149 
To identify “off” marker genes for broad cell types (shown in Supplementary Table 3), as an 150 
initial listing we used the set of cell type-specific marker genes for broad cell classes in the 151 
mouse cortex, defined in our previous work using the NeuroExpresso database (Tasic et al., 152 
2016). Specifically, we used the set of cortical markers derived from single-cell RNA-seq for 153 
astrocytes, endothelial cells, microglia, oligodendrocytes, oligodendrocyte precursor cells, and 154 
pyramidal cells. From this list, we first filtered out lowly expressed genes that were expressed 155 
<10 TPM/cell in >50% of all cells of that type in Tasic, and <1 UMI/cell in >50% of all cells of 156 
that type in Zeisel. Next, we filtered genes too broadly expressed in our patch-seq cell types of 157 
interest by assessing the expression of these genes in the Ndnf, Sncg, Pvalb, and Pyramidal 158 
cell types, removing genes that were expressed at a level greater than >10 TPM/cell in >33% of 159 
all cells of that type in Tasic, and >2 UMI/cell in >33% of all cells of that type in Zeisel.  160 
 161 
When defining on and off marker genes for inhibitory cell subtypes (e.g., the Ndnf cell type), we 162 
did not compare these cells to other GABAergic cells. For example, when defining “on” markers 163 
for Ndnf cells, we did not compare these cells’ expression to Pvalb or Sst cells. We note that 164 
this choice limits our ability to identify inhibitory-to-inhibitory cell contamination, for example, an 165 
Ndnf cell contaminated by Sst-cell specific markers. To define an initial set of “off” markers for 166 
GABAergic inhibitory cells, we first obtained a list of genes based on Tasic where in GABAergic 167 
cells had average expression >10 times all other non-GABAergic cells in the dataset and with 168 
an average expression of at least 100 TPM. 169 
 170 
The final list of filtered mouse cell type specific marker genes used in this study are provided in 171 
Supplementary Table 4. 172 
 173 
To obtain a list of human cell type specific marker genes for use for the Bardy dataset, we made 174 
use of classic cell-type specific markers for astrocytes and microglia, based on human purified 175 
cell types shown in Figure 4A of reference (Zhang et al., 2016).  176 
 177 
Summarizing cell type-specific marker expression 178 
 179 
When directly comparing expression values from patch-seq data to dissociated cell data, we 180 
compared the Cadwell and Földy datasets to Tasic, as these all were quantified using TPM and 181 
employed Smart-seq-based methods. Similarly, we compared Fuzik dataset to Zeisel, as these 182 
both used C1-STRT and were quantified using unique molecule identifiers (UMIs), normalized 183 
as UMI counts per million. We summarized a single-cell sample’s expression of multiple cell 184 
type-specific markers using the sum of the log2 normalized expression values. Given a patch-185 
seq sample of cell type identity A (e.g., a pyramidal cell) and wanting to quantify its normalized 186 
expression of “off” markers for cell type B (e.g., microglial markers), we used the dissociated cell 187 
data to estimate the median expression of cell type B’s “markers in cells of type A (e.g., median 188 
expression level of microglial markers in pyramidal cells) and the median expression of cell type 189 
B’s markers in cells of type B (e.g., median expression level of microglial markers in microglia 190 
cells). Specifically, we normalized expression to a value of approximately 0 to 1, as follows: 191 
 192 
(PatchSeqCellTypeA_markersB – median(DissocCellTypeA_markersB) )/  193 
(median(DissocCellTypeB_markersB) - median(DissocCellTypeA_markersB)) 194 
 195 
where we set all negative values to 0. Next, to obtain a single contamination index per single 196 
cell, we summed all contamination scores for all broad cell types, excluding the patch-seq cell’s 197 
assigned broad cell type. 198 
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 199 
Lastly, to obtain a scalar quality score for transcriptomic data from patch-seq samples (e.g., for 200 
analysis of electrophysiological data), we used the Spearman correlation of each patch-seq 201 
sample’s expression of “on” and “off” marker genes to the average expression profile of 202 
dissociated cells of the same cell type (shown in Supplement Figure 3). For example, for an 203 
Ndnf patch-seq sample from Cadwell, we first calculated the average expression profile of Ndnf 204 
cells from Tasic across the set of all “on” and “off” marker genes (i.e., Ndnf markers, pyramidal 205 
cell markers, astrocyte markers, etc.), and then calculated the correlation between the patch-206 
seq cell’s marker expression to the mean dissociated cell expression profile. Since these 207 
correlations could potentially be negative, we set quality scores to a minimum of 0.1. A 208 
convenient feature of this quality score is that it yields low correlations for samples with 209 
relatively high contamination as well as those where contamination is largely undetected but 210 
expression of endogenous “on” markers is also low (Supplement Figure 3). 211 
 212 
Analysis of factors influencing the numbers of genes detected per cell 213 
 214 
We analyzed how the following factors influenced the numbers of genes detected per cell: 215 
library size, defined as the total numbers of reads sequenced per cell; spike-in ratio, defined as 216 
the number of reads mapping to ERCC spike-ins divided by total sequenced reads; the 217 
unmapped ratio, defined as the ratio of reads not mapping to the exonic reference divided by all 218 
non-ERCC sequenced reads; and cellular contamination indices, as defined in the previous 219 
section. For the Cadwell, Tasic, and ERCC-containing subsets of the Földy, and Bardy 220 
datasets, we fit a linear model (implemented using the ‘lm’ function in R) for numbers of 221 
detected genes per each cell as follows:  222 
 223 
num_genes ~ log10(library_size) + spike-in_ratio + unmapped_ratio + contam_index 224 
 225 
where each term above was first scaled to z-scores, yielding standardized beta coefficients.  226 
 227 
Combined analysis of transcriptomic and electrophysiological features 228 
 229 
We analyzed correlations between transcriptomic and electrophysiological features using an 230 
approach similar to our previous work (Tripathy et al., 2017). For each patch-seq dataset, we 231 
first filtered for genes whose average expression was > 30th percentile relative to all genes in 232 
the dataset. We analyzed electrophysiological features overlapping with our previous analysis, 233 
specifically, input resistance (Rin), resting membrane potential (Vrest , action potential threshold 234 
(APthr) , action potential amplitude (APamp) , action potential half-width (APhw), membrane 235 
time constant (Tau), after-hyperpolarization amplitude (AHPamp), rheobase (Rheo), maximum 236 
firing rate (FRmax), and capacitance (Cm). We calculated Pearson correlations between the set 237 
of electrophysiology features and gene expression values, both without weighting cells by their 238 
overall quality scores (based on correlation of markers to dissociated cell samples), and after 239 
weighting cells using their quality scores.  240 
 241 
We performed an analogous analysis for comparison of pooled-cell correlations based on the 242 
AIBS/Tasic dataset, where we computationally merged different groups of cells characterized 243 
using dissociated cell scRNAseq (based on Tasic et al, (Tasic et al., 2016)) with cells 244 
characterized using patch-clamp electrophysiology (Teeter et al., 2018) based on the overlap of 245 
same mouse transgenic lines and coarse cortical layers (i.e., upper vs lower mouse visual 246 
cortex). For example, we merged 14 QC-passing scRNAseq samples from the Sst-IRES-cre 247 
mouse line from visual cortex dissections specific to lower layers with 89 patch-clamp samples 248 
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from the same mouse line from cortical layers 4 through 6b. After merging single-cells into cell 249 
types, we averaged expression and electrophysiological values; since cell types tended to be 250 
represented by differing numbers of cells, in our gene-electrophysiology correlation analyses we 251 
weighted cell types based on the numbers of cells available using the square root of the 252 
harmonic mean of the number of cells characterized by electrophysiology and 253 
electrophysiology. 254 
 255 
Statistical information 256 
We used the R weights toolbox (v0.85) to calculate weighted Pearson correlations and raw p-257 
values. We used the Benjamini-Hochberg False Discovery Rate (FDR) to account for analysis of 258 
multiple correlations. 259 
 260 
Computer code and data availability 261 
 262 
All computational code and associated data has been made accessible at 263 
https://github.com/PavlidisLab/patchSeqQC and code for the RNAseq pipeline is accessible at 264 
https://github.com/PavlidisLab/rnaseq-pipeline. 265 
 266 
 267 
Results 268 
 269 
To quantitatively assess the influence of patch-seq specific technical confounds, we performed 270 
a re-analysis of four recently published patch-seq datasets. We focused our analyses on three 271 
datasets obtained from mouse acute brain slices (Cadwell et al., 2015; Földy et al., 2016; Fuzik 272 
et al., 2016) and contrast these against one dataset obtained from human stem-cell derived 273 
neurons and astrocytes in culture (Bardy et al., 2016) (Table 1).  274 
 275 

Dataset Description Preparation RNA 
amplification 

Number 
of cells Accession 

Cadwell 
(Cadwell 

et al., 
2015) 

Cortical layer 1 
interneurons 

Acute mouse 
slices Smart-seq2 58 E-MTAB-4092 

Fuzik 
(Fuzik et 
al., 2016) 

Cortical layer 1/2 
interneurons and 
pyramidal cells 

Acute mouse 
slices 

STRT-C1 (with 
unique molecule 

identifiers) 
80 GSE70844 

Földy 
(Földy et 
al., 2016) 

Hippocampal CA1 and 
Subiculum pyramidal cells 

and regular- and fast-
spiking interneurons 

Acute mouse 
slices SMARTer 93 GSE75386 

Bardy 
(Bardy et 
al., 2016) 

Stem-cell derived neurons 
and astrocytes 

Differentiated 
human cells in 

culture 
SMARTer 56 NA* 

Table 1: Description of patch-seq datasets re-analyzed in this study. *Expression data obtained by contacting the authors 276 
directly. 277 

Expression of off-target cell type marker genes in patch-seq samples 278 
 279 
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We first assessed if patch-seq based single-cell transcriptomes might have been contaminated 280 
by mRNA from other cells adjacent to the patched cell (Figure 1A, B), termed off-target cell-type 281 
contamination (Okaty et al., 2011). For example, is there paradoxical expression of genes 282 
specific to microglia in the scRNAseq profile of a recorded pyramidal cell? To address this 283 
question, we made use of the fact that the broad identities of the recorded cells can be 284 
ascertained from morphological and electrophysiological features without relying on the 285 
transcriptomic data (see Methods). Furthermore, we used multiple mouse forebrain scRNAseq 286 
datasets collected from dissociated cells to define lists of marker genes specific to various 287 
cortical and hippocampal cell types (Supplementary Table 4) (Mancarci et al., 2017; Tasic et al., 288 
2016; Zeisel et al., 2015). 289 
 290 
We detected that some of the single cell samples from the three mouse datasets collected from 291 
acute brain slices expressed markers for multiple distinct cell types (Figure 1, Supplement 292 
Figure 1). For example, some of the cortical layer 1 elongated neurogliaform cells (eNGCs) 293 
characterized in the Cadwell dataset appeared to also express multiple marker genes specific to 294 
pyramidal cells (Figure 1C), such as Slc17a7, the vesicular glutamatergic transporter VGLUT1. 295 
Similarly, many of the cells identified as hippocampal regular spiking GABAergic interneurons in 296 
the Földy dataset also expressed microglial and pyramidal cell markers (Figure 1H).  297 
 298 
We sought to quantify the extent of off-target cell type contamination in the mouse patch-seq 299 
samples. We directly compared the patch-seq-based expression profiles to cellular dissociation-300 
based transcriptomes from two recent surveys of mouse cortical diversity from Tasic et al. and 301 
Zeisel et al. (Tasic et al., 2016; Zeisel et al., 2015). After matching cell type identities across 302 
studies (shown in Supplementary Table 2), we found that compared to dissociated cells, patch-303 
seq-based samples expressed markers for multiple cell types at considerably higher levels 304 
(Figure 1C, H, J; Supplement Figure 2A, B). We defined a simple contamination index, 305 
providing a scalar value for greater than expected off-target cell type marker expression across 306 
multiple classes of broad cell types, by comparison to analogous cells from the dissociated-cell 307 
reference (see Methods). Importantly, patch-seq-based samples with larger contamination 308 
indices also expressed markers of their own cell type at lower levels (Supplement Figure 3). 309 
We note that we saw less off-target cell type marker expression in the Fuzik dataset relative to 310 
the Cadwell and Földy datasets (Supplement Figure 2), suggesting either less contamination 311 
in these cells or that the lower gene detection rate in this dataset (Figure 3B) obscures our 312 
ability to use expression profiles to identify cellular contamination. 313 
 314 
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 315 
Figure 1: Expression of cell type-specific marker genes in mouse single-cell samples collected using patch-seq. A, B) 316 
Schematic illustrating manipulation of patch-pipette towards cell of interest (A) and aspiration of cellular mRNA into 317 
the patch-pipette (B). C) Gene expression profiles for GABAergic elongated neurogliaform cells (eNGCs, similar to 318 
layer 1 Ndnf cellular subtype) for various cell type-specific markers. Each column reflects a single-cell sample. D) 319 
Summed expression of cell type-specific marker genes for Pyramidal cell (y-axis) and Layer 1 Ndnf cell (x-axis) 320 
markers. Dots reflect Pyramidal (turquoise) and Ndnf (red) single cells collected in Tasic dataset, based on 321 
dissociated scRNAseq. Dashed lines reflect 95% intervals of marker expression for each cell type. E) Same as D, but 322 
showing summed marker expression for eNGC cells shown in A based on patch-seq data. Arrow shows single-cell 323 
marked in C. F,G) Same as D and E, but for microglial cell markers. H-L) Same as C-G, but for hippocampal 324 
GABAergic regular spiking interneurons (RS INT cells, similar to Sncg cells from in Tasic) characterized in Földy 325 
dataset. 326 

We next assessed the degree of off-target cell type contamination in the Bardy patch-seq 327 
dataset of human stem-cell derived neurons and astrocytes obtained from cultured cells (Bardy 328 
et al., 2016). Since the cells in this dataset were cultured relatively sparsely, allowing the 329 
processes of each cultured cell to be easily visualized (personal communication with Cedric 330 
Bardy), we wondered if this dataset would show less off-target cell type marker expression 331 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/298133doi: bioRxiv preprint 

https://doi.org/10.1101/298133
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

compared to the three mouse acute brain slice datasets. Indeed, when assessing astrocyte 332 
marker expression in the population of electrophysiologically-mature neurons (with markers 333 
based on purified human cells (Zhang et al., 2016)), we found these neurons showed some, but 334 
overall very little, expression of astrocyte markers relative to the mature astrocytes also profiled 335 
in this dataset (Figure 2A, B). In addition, both neurons and astrocytes showed almost no 336 
expression of microglia markers (Figure 2A), perhaps unsurprisingly, since microglial cells are 337 
not present in these cultures (Bardy et al., 2016). This example provides suggestive evidence 338 
that the density of processes of adjacent cells might contribute to off-target mRNA 339 
contamination. 340 
 341 

 342 
Figure 2. Expression of cell type-specific marker genes in patch-seq samples obtained from human astrocytes and neurons 343 
differentiated in culture from the Bardy dataset. A) Gene expression profiles for differentiated astrocytes (green) and 344 
electrophysiologically-mature neurons (red) for astrocyte and microglial-specific (grey) marker genes. Each column 345 
reflects a single-cell sample. Two astrocyte cells were removed because they expressed fewer than 3 astrocyte 346 
markers. B) Summed astrocyte marker expression for astrocyte and mature neuron single-cells, for the same cells 347 
shown in part A.  348 

Technical factors strongly influence the numbers of genes detected per cell 349 
 350 
Next, we wondered if there are identifiable technical factors that can help explain the large 351 
ranges in the numbers of genes detected per cell in each dataset, from 6000-13000 genes/cell 352 
in Cadwell to 800-7000 genes/cell in Fuzik (Figure 3B). Because patch-seq mRNA collection 353 
requires the experimenter to manually aspirate cellular mRNA into the patch-pipette, we 354 
reasoned that mRNA harvesting would be difficult to consistently control from cell to cell, leading 355 
there to be different amounts of extracted mRNA per cell. To estimate how much cellular mRNA 356 
was extracted per cell, we made use of ERCC spike-ins (Tasic et al., 2017), which are synthetic 357 
control mRNAs that are added to single-cell samples prior to library preparation and sequencing 358 
(Figure 3A). Specifically, since the same amount of ERCC spike-in mRNAs are added to each 359 
sample, we can use the ratio of spike-in reads to the total count of sequenced reads to estimate 360 
the relative amount of extracted mRNA per cell (Lun et al., 2017; Vallejos et al., 2017). Here, 361 
every cell in the Cadwell and Tasic datasets and a subset of cells in the Földy and Bardy 362 
datasets contained ERCC spike-ins. 363 
 364 
We used a multivariate regression approach to ask how various technical factors contribute to 365 
the numbers of genes detected per cell in the Cadwell, Földy, and Bardy patch-seq datasets 366 
and the Ndnf cell subset of the Tasic dissociated-cell dataset (Figure 3C; the Fuzik dataset did 367 
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not include spike-ins). Library size (the number of sequenced reads per cell) was positively 368 
correlated with detected gene counts in the Tasic and Cadwell datasets (Figure 3C, D). 369 
Similarly, cells with a larger ratio of spike-in reads to total sequenced reads (i.e., with lower 370 
initial amounts of cellular mRNA; Figure 3A), had lower numbers of detected genes across all of 371 
the datasets (Figure 3D), pointing to the importance of mRNA extraction efficiency. In addition, 372 
we saw considerably greater ranges in the spike-in ratio in the patch-seq datasets relative to the 373 
Tasic dataset (Cadwell: 3-17%, Bardy: 3-37%, Tasic: .4-4%). 374 
 375 
Next, we reasoned that though many mRNA transcripts might be extracted from a cell, not all of 376 
these would be sufficiently high quality to map to the reference (e.g., they might reflect 377 
degraded mRNAs (Cadwell et al., 2017b, 2017a), other contaminants, etc.). To account for this 378 
possibility, we calculated the ratio of unmapped to mapped reads, after excluding reads 379 
mapping to spike-ins. Cells with very large ratios of unmapped to mapped reads had fewer 380 
genes detected (Figure 3C). This technical factor was especially important in the Földy and 381 
Bardy datasets, with some cells in the Földy dataset having fewer than 10% of reads mapped to 382 
the transcriptome (Figure 3G). Lastly, we further wondered if cells showing greater amounts of 383 
off-target cell type contamination would also have a greater number of detected genes. We 384 
found that cells with greater contamination indices from the Cadwell and Földy datasets (i.e., the 385 
acute slice-based patch-seq datasets) had more genes detected, consistent with previous 386 
reports (Ilicic et al., 2016; Vallejos et al., 2017). In total, these simple technical factors explain 387 
between 50-85% of the cell-to-cell variance in the detected gene counts per patch-seq datasets 388 
(Figure 3I). 389 
 390 

 391 
Figure 3. Patch-seq experimental confounds affect the numbers of genes detected per cell. A) Schematic illustrating 392 
how spike-in mRNAs can be used to estimate how much mRNA was extracted per cell. B) Violin plots showing 393 
numbers of protein-coding genes detected per cell across patch-seq datasets or the Ndnf subset of the Tasic 394 
dissociated-cell dataset. C) Technical factors associated with numbers of genes detected per cell across datasets 395 
(dataset color shown in B). Bars show standardized beta model coefficients with y-axis in units of standard 396 
deviations, allowing comparison of effects across factors and across datasets. Error bars indicate coefficient standard 397 
deviations. Positive (negative) coefficients indicate factor is correlated with increased (decreased) gene counts. 398 
Regression models calculated using only cells containing mRNA spike-ins. D-H) Examples of univariate relationships 399 
between technical factors and detected gene count per cell (dots) across patch-seq datasets. Grey line shows best fit 400 
line. D) Library size (count of sequenced reads per cell). F) Spike-ins as a fraction of all sequenced reads per cell. 401 
Samples with lower cellular mRNA content (indicated by higher spike-in ratios) have lower gene counts. G) 402 
Unmapped ratio, calculated as the ratio of exonic reads to all other reads (excluding spike-ins). H) Cellular 403 
contamination index, quantified by summing normalized contamination values across tested cell types (arbitrary 404 
units). F) Overall percent variance explained by each dataset-specific statistical model shown in E. 405 
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Accounting for technical factors improves the correspondence with electrophysiological features 406 
 407 
Lastly, we performed an integrated analysis of gene expression and electrophysiological 408 
features for the 3 mouse-based patch-seq datasets, reasoning that more lower quality patch-409 
seq samples would be less informative of relationships between cellular electrophysiology and 410 
gene expression (Tripathy et al., 2017). We first calculated a quality score for each patch-seq 411 
sample, based on the similarity of its marker expression to dissociated cells of its same type 412 
(see Methods; Supplement Figure 3). After statistically down-weighting lower quality cells, we 413 
observed a modest improvement in the correspondence between gene expression and 414 
electrophysiology, as evidenced by an increase in the number of genes significantly correlated 415 
with electrophysiological features (FDR < 0.1, Figure 4A, B). In addition, after correction, we 416 
found more genes overlapping with those identified in our previous gene-electrophysiology 417 
correlation analysis based on pooled cell types (Tripathy et al., 2017) (Figure 4C). While the 418 
biological implications of these correlations require further investigation, this analysis suggests 419 
that controlling for these technical factors can help improve the interpretability of patch-seq data. 420 
 421 

 422 
Figure 4. Adjusting for patch-seq experimental confounds improves the correspondence with electrophysiological 423 
measures. A) Comparison of gene expression (Nek7; x-axis) with electrophysiological features (action potential half-424 
width; APhw; y-axis). Left panel shows single-cell samples (circles) from the Földy dataset. Middle panel shows same 425 
data as left, but size of circles proportional to each sample’s quality score, defined as the similarity of marker 426 
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expression to dissociated cell-based reference data. Right panel shows cell type-level analysis based on pooled cell 427 
type data from Allen Institute cell types database (AIBS/Tasic), where scRNAseq and electrophysiology were 428 
performed on different cells from same type (Tripathy et al., 2017). Each open circle reflects one cell type and circle 429 
size is proportional to the number of cells representing each cell type. Inset illustrates calculation of action potential 430 
half-width (schematic). B) Count of genes significantly correlated (FDR < 0.1) with various electrophysiological 431 
properties before (grey) and after (black) correcting for contamination. C) Comparison of genes significantly 432 
correlated (BH FDR < 0.1) with electrophysiological features based on patch-seq data with analogous correlations 433 
based on AIBS/Tasic dataset, pooled to the level of cell types based on cre-lines. Bars indicate count of overlapping 434 
genes between patch-seq and AIBS/Tasic pooled-cell data without correcting for contamination and with correction. 435 
No maximum firing rate (FRmax) electrophysiological features were originally calculated for cells in the Cadwell 436 
dataset. 437 

Discussion 438 
 439 
The patch-seq technique reflects a considerable leap in our ability to interrogate a neuron 440 
across multiple features of its activity. However, across our analyses of multiple patch-seq 441 
datasets, we noticed several technical issues that appeared to be shared across experiments. 442 
First, in the three mouse datasets collected from acute brain slices (Cadwell et al., 2015; Földy 443 
et al., 2016; Fuzik et al., 2016), we observed that many single cell samples appeared to strongly 444 
express marker genes from off-target cell types. We interpret this as mRNA contamination from 445 
cells adjacent to the recorded cell, but note that there are alternative explanations. Second, we 446 
observed that mRNA extraction efficiency differs between sampled cells, leading to varying 447 
numbers of genes detected even among cells of the same broad type. These technical artifacts 448 
can be mitigated in part through post hoc analyses, such as our attempt to weight single-cells by 449 
the similarity of their marker gene expression to analogous dissociated cells of the same broad 450 
cell type.  451 
 452 
To detect off-target cell type contamination, our main approach was to compare patch-seq 453 
based single-cell transcriptomes to dissociated-cell based reference scRNAseq data from 454 
similar cell types. We used these reference data to identify cell type-specific marker genes as 455 
well as to determine approximately how much off-target marker expression would be expected 456 
in each cell type. We note that there are obvious methodological differences between 457 
dissociated-cell scRNAseq and patch-seq (Cadwell et al., 2017b, 2017a), such as the strain 458 
induced by dissociating cells (Wu et al., 2017) or that patch-seq might be more likely to sample 459 
transcripts from distal cellular processes. Thus we cannot conclusively rule out that some of the 460 
off-target cell type marker expression might reflect a true biological signal, as opposed to mRNA 461 
contamination from adjacent cells. However, we note that the use of marker genes to identify 462 
suspected off-target contamination is a routine quality control step in cell type-specific gene 463 
expression analyses (Mancarci et al., 2017; Okaty et al., 2011), including recent methods for 464 
identifying suspected “doublets” or multi-cell contamination in droplet-based scRNAseq (Zeisel 465 
et al., 2018). 466 
 467 
We speculate that the sources of off-target contamination are the processes of cells adjacent to 468 
the patch-pipette. For example, while there are relatively few cell bodies in layer 1 of the 469 
neocortex, there are processes of other cell types like pyramidal cells, and it is well established 470 
that these processes contain mRNA transcripts (Glock et al., 2017). In addition, we noticed that 471 
we routinely observed expression of microglial markers in the mouse patch-seq samples. This is 472 
interesting because the presence of even 1 mM ATP in the patch-pipette is sufficient to induce 473 
rapid chemotaxis of microglial processes towards the pipette (Madry et al., 2018). Patch-clamp 474 
intracellular solutions usually use 2 or 4 mM ATP (Tebaykin et al., 2017), including those of the 475 
patch-seq datasets here (Bardy et al., 2016; Cadwell et al., 2015; Földy et al., 2016; Fuzik et al., 476 
2016). At present, it is unclear whether this suspected off-target contamination might occur 477 
while the pipette is actively manipulated under positive pressure towards the recorded cell. 478 
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Alternatively, such contamination might take place following mRNA extraction during the 479 
retraction of the pipette from the neuropil and recording chamber. Assuming that neuropil is the 480 
major source of off-target contamination, this suggests that there may be advantages to 481 
performing patch-seq on sparsely cultured or acutely dissociated cells (Bardy et al., 2016; 482 
Kodama et al., 2012; Schulz et al., 2006).  483 
 484 
Our analyses identified several technical factors that influence the numbers of genes detected 485 
per cell. First, to obtain a sufficient number of detected genes, it is essential to extract a large 486 
amount of mRNA from the targeted cell. However, this itself is not sufficient, as other factors, 487 
such as mRNA degradation can lead the extracted transcripts being too low quality to map to 488 
the genomic reference (Cadwell et al., 2017b, 2017a). Second, given sufficient extraction of 489 
non-degraded transcripts, because of the extremely high sensitivity of modern ultra-low mRNA 490 
capture kits (Poulin et al., 2016; Tasic et al., 2017), any off-target cell-type contamination will 491 
inflate the numbers of genes detected per cell. This suggests that the detected gene count, 492 
often used as a proxy for the quality of scRNAseq data, should not be the only quality control 493 
metric for single-cell transcriptomes sampled using patch-seq.  494 
 495 
The effect of these technical confounds on downstream analyses of patch-seq data is likely 496 
context specific. For example, the presence of a small degree of off-target contamination is 497 
likely to be of little consequence if the patch-seq data is used as a “Rosetta stone”, to help 498 
connect cellular classifications based on different methodologies, such as transcriptomically-499 
defined cell clusters with electrophysiological clusters (Fuzik et al., 2016; Tasic, 2018). 500 
However, accurately quantifying single-cell transcriptomes is likely to be much more important 501 
when using these data to investigate how transcriptomic heterogeneity gives rise to subtle cell 502 
to cell variability in physiological features (Cadwell et al., 2015; Schulz et al., 2006; Tripathy et 503 
al., 2017). 504 
 505 
Our analyses point to quality control steps that can improve the yield of high-quality patch-seq 506 
samples. An advantage of patch-seq over traditional dissociated-cell based scRNA-seq is that a 507 
cell’s electrophysiological and morphological features are often sufficient to determine its broad 508 
cell type (Cadwell et al., 2015; Földy et al., 2016; Fuzik et al., 2016). We argue that knowing a 509 
cell’s broad type can help quality control its sampled transcriptome: the cell should express 510 
marker genes of its own type, including highly expressed markers as well as more lowly 511 
expressed markers, such as some transcription factors and long non-coding RNAs (Mancarci et 512 
al., 2017). In addition, the cell should not express marker genes specific to other cell types. This 513 
quality control step can be performed following RNAseq, as we pursue here. However, this 514 
quality control could also be performed after library preparation and amplification but prior to 515 
costly sequencing, for example, using qPCR to detect the expression of a small number of 516 
expected and unexpected marker genes (Bardy et al., 2016). 517 
 518 
To summarize, though patch-seq provides a powerful method for multi-modal neuronal 519 
characterization (Bardy et al., 2016; Cadwell et al., 2017b; Földy et al., 2016; Fuzik et al., 2016), 520 
it is susceptible to a number of methodology-specific technical artifacts, such as an increased 521 
likelihood of mRNA contamination from adjacent cells. These artifacts strongly bias traditional 522 
scRNAseq quality metrics such as the numbers of genes detected per cell. By leveraging high-523 
quality reference atlases of single-cell transcriptomic diversity (Tasic et al., 2016; Zeisel et al., 524 
2015), we argue that inspection of cell type-specific marker expression should be an essential 525 
patch-seq quality control step prior to downstream analyses. 526 
 527 
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 662 
Supplemental Figures 663 
 664 
 665 

 666 

Supplement Figure 1. Expression of cell type-specific marker genes in patch-seq samples from Fuzik. A) Gene 667 
expression profiles for sampled pyramidal cells for various cell type-specific markers. B) Summed expression of cell 668 
type-specific marker genes for Pyramidal cell (x-axis) and Astrocyte (y-axis) markers. Dots reflect cortical Pyramidal 669 
cell (turquoise) and Astrocyte (green) single cells collected in the Zeisel dataset, based on dissociated scRNAseq. 670 
Dashed lines reflect 95% intervals of marker expression for each cell type. C) Same as B, but showing summed 671 
marker expression for Pyramidal cells shown in A based on patch-seq data. Arrow denotes the same single-cell 672 
highlighted in A. D,E) Same as B and C, but showing comparison of microglial marker expression. 673 

 674 
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Supplement Figure 2. Summarized marker gene expression in patch-seq samples for broad cell classes. A) Cortical 675 
Layer 1 elongated neurogliaform cells (eNGCs) from Cadwell; B) Hippocampus regular spiking (RS) GABAergic 676 
interneurons from Földy; C) Cortical Pyramidal cells from Fuzik. Each column reflects a single-cell sample and 677 
columns are sorted as in Figure 1 and Supplement Figure 1. Heatmap colors show cell type-specific marker 678 
expression, normalized to expected expression based on dissociated cell reference datasets (Tasic, A, B; Zeisel, C). 679 
0 indicates little-to-no detected off cell-type marker contamination (relative to dissociated cells) and 1 indicates strong 680 
expression of off-cell-type markers. Oligodendrocyte precursor cells not available in C because this cell type was not 681 
explicitly annotated in the Zeisel dataset.  682 

 683 
Supplement Figure 3. Relationship between inferred contamination and endogenous marker expression. A) Summed 684 
expression of endogenous “on”-cell type cellular markers (x-axis) versus normalized contamination indices (y-axis, 685 
summing across normalized contamination values across broad cell types) for individual Ndnf cells from the Cadwell 686 
dataset (dots). B, C) Examples of “on”- and “off”-cell type marker expression for two single-cell patch-seq samples 687 
indicated in A. X-axis shows expression of marker genes (dots) in an individual patch-seq sampled cell and y-axis 688 
shows the average expression of the same markers in Ndnf-type dissociated cells from Tasic. Solid line is unity line, 689 
dashed line shows best linear fit, and rs denotes Spearman correlation between patch-seq and mean dissociated cell 690 
marker expression. Cell Ndnf.1 (shown in B) illustrates a patch-seq sample with high expression of “on”-type 691 
endogenous markers and relatively little “off”-cell type marker expression whereas cell Ndnf.2 (shown in C) expresses 692 
endogenous markers less strongly (relative to dissociated cells of same type) and higher levels “off”-cell type marker 693 
expression. D-F) Same as A-C, but for hippocampal GABAergic regular spiking interneurons (i.e., Sncg cells) 694 
characterized in Földy dataset. 695 
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Supplementary Tables 697 
 698 
 699 

Dataset Experiment type Preparation  Description Accession Number 
of cells 

Tasic 
(Tasic et 
al., 2016) 

dissociated cell 
scRNAseq Dissociated cells Visual cortex neurons and 

glia GSE71585 1366 

Zeisel 
(Zeisel et 
al., 2015) 

dissociated cell 
scRNAseq Dissociated cells 

Somatosensory cortex 
and hippocampus 
neurons and glia 

GSE60361 3005 
 

Allen 
Institute 

Cell 
Types 

(Teeter et 
al., 2018) 

patch-clamp 
electrophysiology Acute mouse slices Visual cortex neurons celltypes.brain-

map.org 952 

Supplementary Table 1: Description of dissociated-cell scRNAseq datasets and patch-clamp 700 
electrophysiological datasets used. For RNA amplification, the Tasic scRNAseq dataset 701 
employed SMARTer (i.e., Smart-seq based, consistent with the Cadwell, Foldy, and Bardy 702 
datasets) whereas the Zeisel dataset employed C1-STRT (consistent with the Fuzik dataset). 703 

 704 

Patch-seq 
dataset 

Cell type 
(patch-seq) 

Matched cell type 
(dissociated cell; Tasic) 

Matched cell type 
(dissociated cell; Zeisel) 

Cadwell 
Cortex Layer 1 elongated 

neuragliaform cell 
(eNGC) 

Ndnf cluster (Ndnf Car4, 
Ndnf Cxcl14) Int12, Int15 

Cadwell Cortex Layer 1 single 
bouquet cells (SBC) 

Ndnf cluster (Ndnf Car4, 
Ndnf Cxcl14) Int12, Int15 

Földy Hippocampus regular-
spiking (RS) interneurons Sncg Int 5 

Földy Hippocampus CA1 and 
Subiculum Pyramidal cells Pyramidal cluster Pyramidal cluster 

(excluding CA1PyrInt) 

Földy Hippocampus fast-spiking 
(FS) interneurons 

Pvalb cluster (Pvalb Gpx3, 
Pvalb Wt1, Pvalb Tacr3, Int 3 
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Pvalb Tpbg, Pvalb Cpne5, 
Pvalb Rspo2, Pvalb Obox3) 

Fuzik Cortex Layer 1 and 2 
interneurons 

Ndnf cluster (Ndnf Car4, 
Ndnf Cxcl14) Int12, Int15 

Fuzik Cortex Pyramidal cells Pyramidal cluster Pyramidal cluster 
(excluding CA1PyrInt) 

Supplementary Table 2: Matching of patch-seq cell types to dissociated cell reference atlases. 705 

 706 
Broad cell type Tasic subtypes Zeisel subtypes 

Astrocyte Astro Gja1 Astro2, Astro1 
Endothelial Endo Myl9, Endo Tbc1d4 Vsmc 

Inhibitory 

Vip Chat, Vip Parm1, Vip Mybpc1, Vip Gpc3, 
Pvalb Gpx3, Ndnf Cxcl14, Vip Sncg, Ndnf Car4, 
Sst Myh8, Sst Th, Sst Chodl, Sst Tacstd2, Sst 

Cdk6, Pvalb Wt1, Sncg, Sst Cbln4, Pvalb Tacr3, 
Igtp, Smad3, Pvalb Tpbg, Pvalb Cpne5, Pvalb 

Rspo2, Pvalb Obox3 

Int10, Int6, Int9, Int2, Int4, Int1, 
Int3, Int13, Int16, Int14, Int11, 

Int5, Int7, Int8, Int12, Int15 

Microglia Micro Ctss Mgl1, Mgl2 

Oligodendrocyte Oligo Opalin, Oligo 96_Rik Oligo1, Oligo3, Oligo4, Oligo2, 
Oligo6, Oligo5 

OPC OPC Pdgfra * 

Pyramidal 

L2/3 Ptgs2, L2 Ngb, L4 Ctxn3, L4 Scnn1a, L5a 
Batf3, L5a Pde1c, L6a Mgp, L6b Serpinb11, L6b 
Rgs12, L5a Hsd11b1, L4 Arf5, L5a Tcerg1l, L6a 

Sla, L6a Syt17, L6a Car12, L5b Cdh13, L5 
Ucma, L5b Tph2, L5 Chrna6 

S1PyrL4, ClauPyr, S1PyrL5, 
S1PyrL23, S1PyrDL, S1PyrL5a, 

SubPyr, CA1Pyr1, S1PyrL6b, 
S1PyrL6, CA1Pyr2, CA2Pyr2 

Supplementary Table 3. Mapping of broad cell types between Tasic and Zeisel dissociated cell 707 
reference datasets. * denotes oligodendrocyte precursor cell type not being explicitly labelled in 708 
Zeisel. 709 

 710 
Supplementary Table 4: List of cell type-specific markers based on re-analysis of published 711 
dissociated cell-based scRNAseq experiments from mouse brain.  712 
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