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Abstract 

Common variant heritability is known to be concentrated in variants within cell-type-specific non-coding functional 

annotations, with a limited role for common coding variants. However, little is known about the functional 

distribution of low-frequency variant heritability. Here, we partitioned the heritability of both low-frequency (0.5% ≤ 

MAF < 5%) and common (MAF ≥ 5%) variants in 40 UK Biobank traits (average N = 363K) across a broad set of 

coding and non-coding functional annotations, employing an extension of stratified LD score regression to low-

frequency variants that produces robust results in simulations. We determined that non-synonymous coding variants 

explain 17±1% of low-frequency variant heritability (ℎ!"! ) versus only 2.1±0.2% of common variant heritability (ℎ!!), 

and that regions conserved in primates explain nearly half of ℎ!"!  (43±2%). Other annotations previously linked to 

negative selection, including non-synonymous variants with high PolyPhen-2 scores, non-synonymous variants in 

genes under strong selection, and low-LD variants, were also significantly more enriched for ℎ!"!  as compared to ℎ!!. 

Cell-type-specific non-coding annotations that were significantly enriched for ℎ!! of corresponding traits tended to be 

similarly enriched for ℎ!"!  for most traits, but more enriched for brain-related annotations and traits. For example, 

H3K4me3 marks in brain DPFC explain 57±12% of ℎ!"!  vs. 12±2% of ℎ!! for neuroticism, implicating the action of 

negative selection on low-frequency variants affecting gene regulation in the brain. Forward simulations confirmed 

that the ratio of low-frequency variant enrichment vs. common variant enrichment primarily depends on the mean 

selection coefficient of causal variants in the annotation, and can be used to predict the effect size variance of causal 

rare variants (MAF < 0.5%) in the annotation, informing their prioritization in whole-genome sequencing studies. 

Our results provide a deeper understanding of low-frequency variant functional architectures and guidelines for the 

design of association studies targeting functional classes of low-frequency and rare variants. 
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Introduction  

Common variant (minor allele frequency (MAF) ≥ 5%) heritability is known to be concentrated into non-coding 

functional annotations that are active in relevant cell types or tissues (such as immune-cell-specific annotations in 

autoimmune diseases or brain-specific annotations in psychiatric diseases), with a limited role for common coding 

variants1–9. However, little is known about the functional architecture of low-frequency variants, which can have 

larger per-allele effect sizes when impacted by negative selection10–16. Recent studies have implicated large 

functional enrichments for low-frequency coding variants17–20, but their contribution to trait heritability is currently 

unknown; the contribution of low-frequency variants in cell-type-specific non-coding annotations is also unknown. 

Dissecting low-frequency variant functional architectures can shed light on the action of negative selection across 

functional annotations and inform the design of low-frequency and rare variant association studies12,21. 

To investigate functional enrichments of low-frequency variants (defined here as 0.5% ≤ MAF < 5%), we 

extended stratified LD-score regression5 (S-LDSC) to partition the heritability of both low-frequency and common 

variants; our method produces robust (unbiased or slightly conservative) results in simulations. We applied our 

method to partition the heritability of low-frequency and common variants in 40 heritable traits from the UK 

Biobank22–24 (average N = 363K UK-ancestry samples, imputed using haplotypes from the Haplotype Reference 

Consortium25) across a broad set of coding and non-coding functional annotations5,7,26–31. We performed forward 

simulations to connect estimated low-frequency and common variant functional enrichments to the action of 

negative selection, and to predict the effect size variance of causal rare variants within each functional annotation.  
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Results 

Overview of methods 

S-LDSC5,31 is a method for partitioning the heritability causally explained by common variants across overlapping 

discrete or continuous annotations using genome-wide association study (GWAS) summary statistics for accurately 

imputed variants and a linkage disequilibrium (LD) reference panel. The method rests on the idea that if an 

annotation 𝑎 is associated to increased heritability, LD to variants with large values of 𝑎 will increase the 𝜒! statistic 

of a variant more than LD to variants with small values of 𝑎. Here, we extended S-LDSC to partition the heritability 

causally explained by low-frequency variants using GWAS summary statistics for accurately imputed and poorly 

imputed variants. We included separate annotations for low-frequency and common variants, and used WGS data 

from 3,567 UK10K samples17 as an LD reference panel to ensure accurate LD information for low-frequency 

variants in the UK-ancestry target samples analyzed in this study (see Online Methods).  

More precisely, the expected 𝜒! statistic of variant 𝑗 can be written as  
 

𝐸 𝜒!! := 𝑁 𝜏!𝑙 𝑗,𝑑
!

!!!

+ 𝑁𝑏 + 1 (1) 

where 𝑁 is the sample size of the GWAS study, 𝐷 is the total number of annotations in the model (including both 

low-frequency and common variant annotations), 𝜏! is the effect size of annotation d on per-variant heritability 

(jointly modeled with all other annotations), 𝑙 𝑗, 𝑑 = 𝑎!(𝑘)𝑟!"!!  is the LD score of variant 𝑗 with respect to 

continuous values 𝑎!(𝑘) of annotation d, 𝑟!"  is the correlation between variant 𝑗 and 𝑘 estimated from the LD 

reference panel (e.g. UK10K), and 𝑏 is a term that quantifies the contribution of confounding biases32. 

We included 34 main annotations from our “baseline-LD model”5,31 (27 overlapping binary and 7 continuous 

annotations, including LD-related annotations) and 6 new binary main annotations: synonymous, non-synonymous, 

phastCons26 conserved elements in vertebrates, mammals and primates, and flanking bivalent TSS/enhancers7. We 

also considered 100bp and 500bp windows around binary annotations, duplicated all annotations for low-frequency 

and common variants, respectively, and included 10 common variant MAF bins (as in the baseline-LD model), 5 

low-frequency variant MAF bins and one annotation containing all variants. We refer to the resulting set of 

annotations as the “baseline-LF model” (163 total annotations; Table S1 and Table S2; see Online Methods). We 

estimated the heritability causally explained by all low-frequency variants (ℎ!"! ) and the heritability causally 

explained by all common variants (ℎ!!); these computations did not include the heritability causally explained by rare 

variants (MAF < 0.5%). For the 33 main binary annotations, we computed their low-frequency variant enrichment 

(LFVE), defined as the proportion of ℎ!"!  causally explained by variants in the annotation divided by the proportion 

of low-frequency variants that lie in the annotation, and common variant enrichment (CVE), defined analogously. 

We note that the choice of denominator in functional enrichment estimates merits careful consideration33 (see Online 

Methods), as comparisons of enrichment estimates with inconsistent denominators can produce incorrect 

conclusions34 (see Supplementary Note). Standard errors were computed using a block jackknife, as in our previous 
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work5,31. Further details of the method are provided in the Online Methods section. We have released open-source 

software implementing the method, and have made our annotations publicly available (see URLs). 

 

Simulations to assess extension of S-LDSC to low-frequency variants 

Although S-LDSC has previously been shown to produce robust results for partitioning common variant heritability 

using overlapping binary and continuous annotations5,31,33, we performed additional simulations to assess our 

extension to low-frequency variants. We first confirmed that S-LDSC with the UK10K LD reference panel produced 

unbiased heritability estimates for variants with MAF ≥ 0.5% in simulations using UK10K target samples, so that 

LD in the target samples and LD reference panel perfectly match (see Figure S1, Table S3, and Online Methods). 

We subsequently performed more realistic simulations using target samples from the UK Biobank interim release22 

(N = 113,851 individuals with UK ancestry35, M = 1,023,655 variants from chromosome 1 with at least 5 minor 

alleles in UK10K), so that LD (and MAF) in the target samples and UK10K LD reference panel do not perfectly 

match. In detail, we (i) simulated quantitative phenotypes using integer-valued genotypes sampled from UK Biobank 

imputed dosages, (ii) computed summary statistics using UK Biobank imputed dosages (reflecting the impact of 

imputation uncertainty) and (iii) ran S-LDSC using our baseline-LF model and the UK10K LD reference panel (see 

Online Methods and Figure S2). S-LDSC was run either by restricting regression variants to accurately imputed 

variants (i.e. INFO score36 ≥ 0.99), as we recommended previously5, or by including all variants (regardless of INFO 

score). We focused our simulations on two representative annotations spanning roughly 1% of the genome: coding 

and ChromHMM/Segway weak-enhancer37 (enhancer), and considered various MAF-dependent architectures. 

Specifically, we simulated the variance of per-normalized genotype effect sizes proportional to 2𝑝 1 − 𝑝
!!!

 for a 

variant of minor allele frequency 𝑝 (ref. 38,39), and allowed for different 𝛼 values for variants inside and outside the 

coding/enhancer annotations; we conservatively specified our generative model to be different from the additive 

model assumed by S-LDSC (see Online Methods). For each of these two annotations, we simulated scenarios with 

no functional enrichment (“No Enrichment”) and scenarios with CVE roughly equal to 7x and lower LFVE (“Lower 

LFVE”), similar LFVE (“Same Enrichment”), or higher LFVE (“Higher LFVE”), respectively. For both coding and 

enhancer annotations, we observed that including all variants in the regression produced slightly conservative LFVE 

estimates and unbiased LFVE/CVE ratio estimates, while restricting to accurately imputed variants produced upward 

biases (Figure 1, Table S4); using other INFO score thresholds did not improve the results (Table S4). The slightly 

conservative ℎ!"!  and LFVE estimates are due to LD-dependent architectures (coding and enhancer variants have 

lower than average levels of LD, as do other enriched functional annotations31), as we observed nearly unbiased 

estimates when creating shifted annotations with average levels of LD (see Online Methods; Figure S3). We thus 

recommend including all variants in the regression when running S-LDSC using the baseline-LF model. Our 

simulations indicate that this method is robust (unbiased or slightly conservative) in estimating low-frequency and 

common variant functional enrichments and LFVE/CVE ratios across a wide range of genetic architectures, even in 

the presence of poorly imputed variants, a target sample that does not exactly match the UK10K LD reference panel, 
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and a MAF-dependent architecture that does not match the additive model assumed by S-LDSC; however, our 

estimates should not be viewed as rigorous lower bounds, as we have not simulated all possible genetic architectures.  

 

Partitioning low-frequency and common variant heritability of UK Biobank traits  

We applied S-LDSC with the baseline-LF model to 40 polygenic, heritable complex traits and diseases from the full 

UK Biobank release23 (average N = 363K; Table S5). Analyses were restricted to the set of 409K individuals with 

UK ancestry23 to ensure a close ancestry match with the UK10K LD reference panel, as LD patterns of low-

frequency variants are expected to vary across European populations40,41. Summary statistics were computed by 

running BOLT-LMM v2.3 (ref. 24) on imputed dosages, and made publicly available (see URLs). S-LDSC results 

were meta-analyzed across 27 independent traits (average N = 355K; see Online Methods). We observed a roughly 

linear relationship between estimates of ℎ!! and ℎ!"!  (Figure 2 and Table S5), with low-frequency variants explaining 

6.3±0.2x less heritability and having 4.0±0.1x lower per-variant heritability than common variants on average. These 

ratios are consistent with a model in which the variance of per-normalized genotype effect sizes is proportional to 

2𝑝 1 − 𝑝
!!!

 (ref. 38,39) with 𝛼 = -0.37 (95% confidence interval [-0.40; -0.34]; similar to previous 𝛼 estimates 

from raw genotype-phenotype data15,16), and consistent with a model in which low-frequency variants have smaller 

per-variant heritability but larger per-allele effect sizes15,16,31,38,39 (Figure S4). 

We compared the LFVE and CVE of the 33 main binary functional annotations of the baseline-LF model, 

meta-analyzed across traits (Figure 3, Table S6). LFVE were highly correlated to CVE (r = 0.79) and larger than 

CVE on average (regression slope = 1.85). We identified 9 main functional annotations with significantly different 

LFVE and CVE (Figure 3, Table S6). Non-synonymous variants had the largest LFVE and largest difference vs. 

CVE (5.0x ratio; LFVE = 38.2±2.3x, vs. CVE = 7.7±0.9x; P = 3 x 10-36 for difference). As non-synonymous variants 

comprise 0.45% of low-frequency variants vs. only 0.27% of common variants due to strong negative selection on 

non-synonymous mutations42–44 (see below), this difference is even larger when comparing the proportion of 

heritability they explain (8.2x ratio; 17.3±1.0% of ℎ!"! , vs. 2.1±0.2% of ℎ!!; P = 5 x 10-47). Non-synonymous variants 

predicted to be deleterious by PolyPhen-2 (ref. 27) had larger LFVE and LFVE/CVE ratio than non-synonymous 

variants predicted to be benign (Figure S5).  

We also observed LFVE significantly larger than CVE for coding variants (2.5x ratio; P = 1 x 10-18), 5’ UTR 

(2.5x ratio; P = 1 x 10-4) and the five main conserved annotations (three based on phastCons elements26, one based 

on a GERP RS scores28 ≥ 4, and one based on Lindblad-Toh et al.29; ratios 1.5x-2.2x; each P < 5 x 10-7; Figure 3, 

Table S6). Surprisingly, phastCons regions conserved in primates26 were more enriched than phastCons regions 

conserved in vertebrates or conserved in mammals26 (even though regions conserved in more distant species may be 

viewed as more biologically critical); the primates annotation explained nearly half of ℎ!"!  (2.8% of variants 

explaining 43.5±2.2% of ℎ!"! , LFVE = 15.4x vs. 2.1% of variants explaining 21.2±1.6% of ℎ!!, CVE = 10.0x; P = 1 x 

10-16). We observed that the significantly larger LFVE (compared to CVE) for all 5 conserved annotations is mainly 
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due to conserved regions that are coding, and that coding enrichments are similar for regions conserved across 

different species (Figure S6). On the other hand, the significantly larger LFVE and CVE for regions conserved in 

primates (compared to more distant species) is entirely due to conserved regions that are non-coding (Figure S6), 

consistent with the observation that many human enhancers have evolved recently45–47. Finally, we observed 

significantly smaller LFVE than CVE for intronic variants (0.85x ratio; P = 8 x 10-5). These results were generally 

consistent across the 40 UK Biobank traits analyzed: LFVE was larger than CVE for non-synonymous and regions 

conserved in primates in all 40 traits and for coding in 38 traits (non-significantly smaller for the other two traits), 

and LFVE was smaller than CVE for intronic variants in 33 traits (non-significantly larger for the other seven traits; 

Figure S7). We note that after removing the 9 annotations with significantly different LFVE and CVE, LFVE 

remained highly correlated to CVE (r = 0.83) and only slightly larger than CVE on average (regression slope = 

1.10).  

We also observed significantly larger enrichment/depletion for LFVE than for CVE in the first and/or last 

quintile of LD-related continuous annotations related to negative selection31 (Figure S8 and Table S7); our forward 

simulations from ref. 31 confirmed larger effects of low-frequency variants in these LD-related annotations (Table 

S8). Overall, our results suggest that LFVE is substantially larger than CVE only for annotations that are strongly 

constrained by negative selection, as the strongest differences were observed for coding and non-synonymous 

variants, which are known to be under strong negative selection42–44. A more detailed interpretation of the 

LFVE/CVE ratio is provided below (see Forward simulations).  

 

Cell-type-specific annotations dominate both low-frequency and common variant architectures 

We sought to investigate the contribution to low-frequency variant architectures of cell-type-specific (CTS) 

annotations1–9 (i.e. reflecting regulatory activity in a given cell type) with excess contributions to common variant 

architectures. For each of the 40 UK Biobank traits, we selected the subset of 396 CTS Roadmap annotations7 with 

statistically significant common variant enrichment after conditioning on (non-CTS annotations in) the baseline-LD 

model5,48 (see Online Methods). We selected a total of 637 trait-annotation pairs, with at least one CTS annotation 

for 36 of 40 traits (25 of 27 independent traits) (Table S9); the 637 CTS annotations contained 2.7% of common 

variants and 3.0% of low-frequency variants on average (Table S10). We analyzed each of these trait-annotation 

pairs using the baseline-LF model (Figure 4a and Table S10). For the 25 trait-annotation pairs with the most 

statistically significant CVE for each of the 25 independent traits (critical CTS annotations), LFVE and CVE were 

similar, with LFVE 1.12x (s.e. = 0.13x) larger than CVE on average (other definitions of critical CTS annotations 

produced similar conclusions; see Figure S9).  

We observed Bonferroni-significant differences (after correcting each trait for 1-53 annotations tested) for 

two traits, neuroticism and age of first birth in females. The most significant trait-annotation pairs were neuroticism 

and H3K4me3 in brain dorsolateral prefrontal cortex (4.4x ratio; LFVE = 30.8±6.4x, vs. CVE = 6.9±1.2x; P = 2 x 

10-4 for difference; 56.9±11.7% of ℎ!"! , vs. 11.7±2.0% of ℎ!!), and age of first birth in females and H3K4me3 in brain 
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germinal matrix (5.1x ratio; LFVE = 42.1±10.2x, vs. CVE = 8.3±1.5x; P = 0.001; 63.2±15.4% of ℎ!"! , vs. 11.1±2.0% 

of ℎ!!). Interestingly, these two annotations (and 55 of all 62 CTS annotations with LFVE/CVE > 2) are brain-

specific, implicating stronger selection against variants impacting gene regulation in brain tissues (see Forward 

simulations and Discussion).  

While CTS annotations generally have only moderately large LFVE (e.g. smaller than non-synonymous 

variants; Figure 4a), they often explain a large proportion of ℎ!"!  (e.g. larger than non-synonymous variants; Figure 

4b) due to large annotation size, as with common variant enrichment. In particular, H3K4me1 in regulatory T-cells 

(3.7% of low-frequency variants) explains 86.2±20.8% of ℎ!"!  for All autoimmune diseases (vs. 3.4% of common 

variants explaining 48.9±9.1% of ℎ!!), and H3K4me1 in primary monocytes (4.8% of low-frequency variants) 

explains 79.3±18.1% of ℎ!"!  for monocyte count (vs. 4.6% of common variants explaining 70.8±8.6% of ℎ!!; Figure 

4b and Table S10). Thus, CTS annotations often dominate low-frequency architectures, analogous to common 

variant architectures5,48.  

 

Non-synonymous variants in genes under strong selection are highly enriched for heritability 

Recent studies have identified gene sets that are depleted for non-synonymous variants30,49–51; these gene sets are 

enriched for ultra-rare non-synonymous mutations impacting complex traits52–54. To further investigate the 

connection between functional enrichment and negative selection, we stratified the CVE and LFVE of non-

synonymous variants (Figure 3a) based on the strength of selection on the underlying genes. We considered 5 bins of 

estimated values of selection coefficients for heterozygous protein-truncating variants30 (shet), with 3,073 protein-

coding genes per bin, and added annotations based on non-synonymous variants within each bin to the baseline-LF 

model (see Online Methods). We determined that both the LFVE and CVE of non-synonymous variants correlated 

strongly with the predicted strength of selection on the underlying genes (Figure 5 and Table S11). In particular, we 

observed extremely strong enrichments for non-synonymous variants in genes under the strongest selection (bin 1: 

LFVE = 102.0±7.9x and CVE = 41.5±4.8x). However, the LFCE/CVE ratio was smaller for non-synonymous 

variants in genes under the strongest selection (bin 1: 2.5x) than in genes under the weakest selection (bins 4+5: 

5.8x); we discuss this surprising result below (see Forward simulations). We obtained similar results when 

stratifying non-synonymous variants in genes under varying levels of selective constraint based on other related 

criteria49–51 (Figure S10).  

 

Forward simulations provide interpretation of low-frequency variant enrichments 

We hypothesized that the LFVE and CVE of different functional annotations would be informative for the action of 

negative selection, which constrains strongly selected variants to lower frequency10,12,15,16,55–58. To investigate this, 

we performed forward simulations59 using an out-of-Africa demographic model60 and a genetic architecture 

involving annotations mimicking non-synonymous variants (1% of the simulated genome), functional non-coding 

variants (1%), and ordinary non-coding variants (98%), with different respective distributions of selection 
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coefficients s (Figure S11). For each of these three annotations we specified the probability for a de novo variant to 

be deleterious (πdel), the mean selection coefficient for de novo deleterious variants (𝑠!") and the probability for a 

deleterious variant to be causal for the trait (πdel:causal); the probability for a de novo variant to be causal for the trait is 

π = πdel·πdel:causal. Per-allele trait effect sizes were specified to be proportional to 𝑠 !!" where 𝜏!" parameterizes the 

coupling between selection coefficient and trait effect size in the Eyre-Walker model10, implying that only 

deleterious variants have nonzero effects (see Online Methods). We investigated how the LFVE and CVE of the 

functional non-coding annotation varied as a function of the values of 𝑠!" and π for that annotation. To achieve a 

realistic simulation framework, we fixed the remaining values of πdel, 𝑠!" and π for the three annotations, as well as 

the value of 𝜏!", to values that we fit using our UK Biobank estimate of 4.0x larger per-variant heritability for 

common vs. low-frequency variants, as well as the LFVE and CVE of non-synonymous variants (38.2x and 7.7x, 

respectively). Specifically, we fixed πdel = 60% for the functional non-coding annotation (similar results for πdel = 

40%; see Online Methods); πdel = 80% (ref. 11), 𝑠!"  = -0.003 (ref. 11) and π = 8% for the non-synonymous annotation; 

πdel = 40%, 𝑠!"  = -0.0001 and π = 4% for the ordinary non-coding annotation; and 𝜏!" = 0.75. We note that our 

fitted value of 𝜏!" is larger than previous estimates11,14,15,58 (see Discussion). 

We determined that the CVE of the functional non-coding annotation in our simulations depends on both 𝑠!" 

and π (Figure 6a), while the LFVE/CVE ratio depends primarily on 𝑠!" (Figure 6b). When de novo deleterious 

variants are under strong selection (𝑠!" ≥ -0.0003, corresponding to LFVE/CVE ratio ≥ 1.2x; Figure 6b), the CVE 

depends primarily on π (Figure 6a), as the mean selection coefficient of deleterious common variants varies only 

weakly with 𝑠!" (since most deleterious common variants have s << 𝑠!" ; Figure 6c). Finally, we observed that 

functional non-coding annotations with similar CVE and LFVE tend to have causal variants with slightly stronger 

selection coefficients (i.e. 𝑠!" ≈ -0.0002) than ordinary non-coding causal variants (𝑠!" = -0.0001), for which LFVE 

is lower than CVE (Figure 6b). We note that the LFVE/CVE ratio can be used to infer the mean selection coefficient 

of deleterious causal variants as a function of MAF (see Figure 6c), because this ratio depends primarily on 𝑠!" and 

because the selection coefficients of de novo deleterious causal variants are drawn from a distribution with mean 𝑠!" . 

Our forward simulations provide an interpretation of the LFVE/CVE ratios of different functional 

annotations that we estimated for UK Biobank traits and annotations. First, they confirm that non-synonymous 

variants (which are strongly deleterious56: large πdel and 𝑠!" ) can have a limited contribution to common variant 

architectures (2.1% of ℎ!!) but a large contribution to low-frequency variant architectures (17.3% of ℎ!"! ) (Figure 3a). 

They are also consistent with stronger selection coefficients on 5’UTR variants and weaker selection coefficients on 

intronic variants (based on their LFVE/CVE ratios; Figure 3a). Second, they indicate that the proportion of causal 

variants (π) is larger for critical cell-type-specific (CTS) annotations than for non-synonymous variants (based on 

their CVE; Figure 4a), but that the causal variants in critical CTS annotations have only slightly larger selection 

coefficients than ordinary non-coding variants, except for some brain annotations that are under much stronger 

selection (much larger 𝑠!" , based on their LFVE/CVE ratios; Figure 4a). Third, they explain the extremely large 

CVE for non-synonymous variants inside genes predicted to be under strong negative selection30 (large shet; Figure 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/297572doi: bioRxiv preprint 

https://doi.org/10.1101/297572
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

5), which are expected to correspond to genes with an extremely large proportion of deleterious non-synonymous 

variants (large πdel, implying large π = πdel·πdel:causal). However, as noted above, this class of variants had a smaller 

LFVE/CVE ratio than that of non-synonymous variants inside genes predicted to be under weak selection (Figure 5), 

a surprising result that appears to suggest a smaller 𝑠!"  (Figure 6b) despite the extremely large value of πdel. We 

performed additional forward simulations to show that a larger 𝑠!"  does not produce larger LFVE/CVE ratios for 

annotations with extremely large values of πdel, due to more efficient background selection that decreases selection 

coefficients of low-frequency deleterious variants in such annotations (see Figure S12). 

Although our focus is primarily on low-frequency variants (0.5% ≤ MAF < 5%), we also used our forward 

simulation framework to draw inferences about rare variant (MAF < 0.5%) architectures of non-coding functional 

annotations, based on LFVE and CVE estimates from UK Biobank (Figure 4a). Specifically, we compared the mean 

squared per-allele effect size of rare causal variants in annotations mimicking functional non-coding variants and 

non-synonymous variants, respectively. We focused on simulations with π = 48% for the functional non-coding 

annotation, because the CVE and LFVE/CVE ratios for the CTS annotations in Figure 4a (between 5 and 20, and 

between 1 and 2, respectively) roughly correspond to π = 48% and 𝑠!" between 0.0002 and 0.0006 (Figure 6a-b). 

We inferred disproportionate causal effects of rare variants in annotations under very strong selection (𝑠!" = -0.003, 

similar to non-synonymous variants11), with mean squared causal effect sizes 11x, 26x and 60x larger than 

annotations with 𝑠!" = -0.0006, 𝑠!"  = -0.0003 and 𝑠!" = -0.0002, respectively (Figure 6d and Table S12; similar 

results for different choices of π, Figure S13). These results indicate that an annotation with large CVE needs to have 

even larger LFVE (e.g. LFVE/CVE ratio ≥ 2x, corresponding to 𝑠!" ≤ -0.0006; Figure 6b) in order to harbor rare 

causal variants with substantial mean squared effect sizes (e.g. only an order of magnitude smaller than rare causal 

non-synonymous variants; Figure 6d). Unfortunately, most of the non-brain CTS annotations that we analyzed do 

not achieve this ratio (Figure 4a), motivating further work on more precise non-coding annotations (see Discussion). 
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Discussion 

In this study, we partitioned the heritability of both low-frequency and common variants in 40 UK Biobank traits 

across numerous functional annotations, employing an extension of stratified LD score regression5,31 to low-

frequency and common variants that produces robust (unbiased or slightly conservative) results. Meta-analyzing 

functional enrichments across 27 independent traits, we highlighted the critical impact of low-frequency non-

synonymous variants (17.3% of ℎ!"! , LFVE = 38.2x) compared to common non-synonymous variants (2.1% of ℎ!!, 

CVE = 7.7x); furthermore, regions conserved in primates26 explained nearly half of ℎ!"!  (43.5%, LFVE = 15.4x). 

Other annotations previously linked to negative selection, including non-synonymous variants with high PolyPhen-2 

scores27, non-synonymous variants in genes under strong selection30, and LD-related annotations31, were also 

significantly more enriched for ℎ!"!  as compared to ℎ!!. Finally, at the trait level, we observed that CTS annotations7,48 

with significant CVE tend to have similar LFVE (or larger LFVE for brain-related annotations and traits; see below), 

implying that these annotations also dominate the low-frequency architecture.  

We showed via forward simulations that the CVE of an annotation depends primarily on its proportion of 

causal variants (π), while its LFVE/CVE ratio depends primarily on the mean selection coefficient for de novo 

deleterious variants (𝑠!"), and thus to the mean selection coefficient of causal variants (Figure 6). These conclusions 

provide an interpretation of the enrichments that we estimated for UK Biobank traits and annotations. First, they 

confirm that non-synonymous variants can have a limited contribution to common variant architectures but a large 

contribution to low-frequency variant architectures; they also confirm higher selection coefficients on 5’UTR 

variants and lower selection coefficients on intronic variants. Second, they indicate that the proportion of causal 

variants is often larger for critical CTS annotations than for non-synonymous variants, but that causal variants in 

these annotations generally have only slightly larger selection coefficients than ordinary non-coding variants—with 

the exception of brain CTS annotations, whose larger LFVE (vs. CVE) implicates stronger selection on variants 

affecting gene regulation in the brain. This observation is consistent with the observation that brain enhancers 

interact with genes under stronger purifying selection61, and with the excess of rare de novo mutations in regulatory 

elements active in fetal brain in patients with neurodevelopmental disorders62. Third, they indicate that the extremely 

large CVE for non-synonymous variants inside genes predicted to be under strong negative selection30 is due to the 

high proportion of deleterious variants inside those genes, while their reduced LFVE/CVE ratio is due to the effect 

of background selection. Overall, our work quantifies the relationship between the strength of selection in specific 

functional annotations (both coding and non-coding) and low-frequency and common variant enrichment for human 

diseases and complex traits. 

Our results on low-frequency variant functional architectures have several implications for downstream 

analyses. First, our results provide guidance for the design of association studies targeting low-frequency variants. 

Non-synonymous variants should be strongly prioritized at the low-frequency variant level20, as they explain a large 

proportion of ℎ!"!  and directly implicate causal genes (and specifically implicate core disease genes rather than 

peripheral genes63), avoiding the challenge of mapping non-coding variants to genes61,64–66. However, we observed 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/297572doi: bioRxiv preprint 

https://doi.org/10.1101/297572
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

that all coding and UTRs variants jointly explained only 26.8±1.9% of ℎ!"!  (Table S6), providing an indication of the 

proportion of low-frequency signal captured by whole-exome sequencing (WES) studies (we caution that this should 

not be viewed as a rigorous upper bound, as our estimates are slightly conservative in simulations; see Figure 1). 

This underscores the advantages of large GWAS (with imputed genotypes obtained using large reference panels such 

as HRC25), compared to WES or exome chip data, for querying low-frequency variation14. Furthermore, using 

functionally informed association tests that assign higher weight to low-frequency non-synonymous variants or CTS 

annotations should significantly improve power in these analyses4,19,67. Second, our results provide guidance for the 

design of association studies targeting rare (MAF < 0.5%) variants, which require large sequencing datasets12. While 

WES datasets have been successfully used to detect new coding variants, genes and gene sets associated to human 

diseases and complex traits14,52,53,68,69, there is an increasing focus on WGS that can capture rare non-coding 

variants17,70–72. However, our LFVE and CVE results for critical CTS annotations (Figure 4), coupled with our 

predictions of causal rare variant effect size variance (Figure 6d), suggest that in most instances these annotations do 

not harbor causal variants with large mean squared effect sizes (with brain-related annotations and traits as a notable 

exception; also see ref. 62), highlighting the need for more precise non-coding annotations for prioritization in WGS. 

As a first step towards this goal, we estimated the LFVE and CVE of annotations constructed using a wide range of 

recently developed non-coding variant prioritization scores73–77. We identified only one annotation, defined using the 

top 0.5% of Eigen scores75, with an LFVE/CVE ratio significantly larger than 1 (1.7x ratio; LFVE = 22.0±2.2x, vs. 

CVE = 13.0±1.4x; P = 7 x 10-4 for difference; Figure S14). However, even for this annotation, the LFVE/CVE ratio 

< 2 again implies that this annotation does not harbor causal variants with substantial mean squared effect sizes (only 

an order of magnitude smaller than rare causal non-synonymous variants; Figure 6d). Third, our results were 

consistent with strong coupling between selection coefficient and trait effect size (Eyre-Walker coupling parameter10 

𝜏!" = 0.75; robust to error bars in LFVE and CVE estimates, see Online Methods and Figure S15), implicating a 

larger impact of negative selection on complex traits than previously reported11,14,15,58 and much larger effect sizes 

for rare variants in functional annotations with strong selection coefficients. This can be explained by the fact that 

our inference procedure explicitly allows different distributions of selection coefficients for non-synonymous and 

non-coding variants (𝑠!" = -0.003 and 𝑠!" = -0.0001, respectively; Figure S16). Finally, the different LFVE/CVE 

ratios that we inferred for different functional annotations suggest that it may be appropriate to allow annotation-

specific 𝛼 values when using the 𝛼 model (per-normalized genotype effect size proportional to 2𝑝 1 − 𝑝
!!!

; ref. 
15,16,38,39). In the extreme case of non-synonymous variants, we explored different choices of 𝛼 values for non-

synonymous and other variants, and determined that a value of 𝛼 = -1.10 for non-synonymous variants and 𝛼 = -0.30 

for other variants provided the best fit to the UK Biobank estimated values of 4.0x larger per-variant heritability for 

common vs. low-frequency variants and LFVE = 38.2x and CVE = 7.7x of non-synonymous variants that we 

estimated in UK Biobank data (Table S13). 

Although our work has provided insights on low-frequency variant architectures of human diseases and 

complex traits, it has several limitations. First, our simulations indicate that S-LDSC (using all variants) produces 
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slightly conservative LFVE estimates for annotations with low levels of LD (Figure 1). However, this does not 

impact our main conclusions based on the LFVE/CVE ratio, for which S-LDSC produces unbiased estimates in our 

simulations (Figure 1). We further note that our S-LDSC model assumes a linear effect of each annotation and does 

not consider the effects of variants with MAF < 0.1% in the UK10K reference panel. Second, all of our analyses are 

based on UK-ancestry target samples and LD reference samples. Thus, more work is required to extend our approach 

to GWAS summary statistics from other European or non-European ancestries, together with available LD reference 

panels (such as the publicly available subset of HRC25 and TOPMed) that may not provide an exact match. Third, 

our method requires extremely large GWAS sample sizes with large matching LD reference panel, which are 

currently available only from the UK Biobank and UK10K data sets. Fourth, our method may sacrifice power by 

analyzing only GWAS summary statistics rather than the individual-level data that is readily available from UK 

Biobank. Although functional enrichment analyses of individual-level data can be performed using restricted 

maximum likelihood (REML) and its extensions78–80, those methods are applicable only to a small number of non-

overlapping functional annotations; to our knowledge, all current methods that are applicable to a large number of 

overlapping functional annotations are based on summary statistics81, whereas analyzing one annotation at a time can 

produce severely biased results (see Figure 2b of ref. 5). Fifth, many of our analyses were meta-analyzed across 27 

independent traits to maximize statistical power; this could mask trait-specific functional architectures, although 

results for non-CTS annotations were generally consistent across the 40 UK Biobank traits we analyzed (Figure S7). 

Sixth, the set traits that we analyzed includes only a limited number of diseases, due to the population-based design 

of UK Biobank (which limits power for diseases of lower prevalence); the analysis of larger case-control data sets 

would be of critical value, particularly for psychiatric disorders. Seventh, our inferences about negative selection and 

the effect size variance of causal rare variants in each annotation rely both on the Eyre-Walker model10 and a gamma 

distribution of selection coefficients82 (see Online Methods); large WGS datasets will be necessary to formally 

validate our extrapolation to rare variant architectures. Finally, our conclusions about CTS and non-coding 

annotations were limited by the availability and precision of regulatory annotations in relevant cell types. The 

generation of more comprehensive and more precise CTS annotations will aid our understanding of the non-coding 

genome and its role in human diseases and complex traits. Despite these limitations, our low-frequency and common 

variant enrichment results convincingly demonstrate and quantify the action of negative selection across coding and 

non-coding functional annotations.   
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Online Methods 

Extension of S-LDSC to low-frequency variants. 

S-LDSC5,31 is a method for partitioning heritability explained by common variants across overlapping annotations 

(both binary and continuous31) using GWAS summary statistics. More precisely, S-LDSC models the vector of per 

normalized genotype effect size 𝛽 as a mean-0 vector whose variance depends on 𝐷 continuous-valued annotations 

𝑎!,… , 𝑎!: 

 
𝑉𝑎𝑟 𝛽! = 𝑎!(𝑗)𝜏!

!

!!!

 (2) 

where 𝑎!(𝑗) is the value of annotation 𝑎! at variant 𝑗, and 𝜏! represents the per-variant contribution of one unit of 

the annotation 𝑎! to heritability. We can thus perform a regression to infer the values of 𝜏 using the following 

relationship with the expected 𝜒! statistic of variant 𝑗:  

 
𝐸 𝜒!! = 𝑁 𝜏!𝑙 𝑗,𝑑

!

!!!

+ 𝑁𝑏 + 1 (3) 

where 𝑙 𝑗, 𝑑 = 𝑎!(𝑘)𝑟!"!!  is the LD score of variant 𝑗 with respect to continuous values 𝑎!(𝑘) of annotation 𝑎!, 

𝑟!" is the correlation between variant 𝑗 and 𝑘 in an LD reference panel, 𝑁 is the sample size of the GWAS study, and 

𝑏 is a term that measures the contribution of confounding biases32. Then, the heritability causally explained by a 

subset of variants S can be estimated as ℎ!! = 𝑎!,!𝜏!!!∈! . We note that this definition, used here to define and 

estimate ℎ!! and ℎ!"! , is different from the definition of “SNP-heritability” ℎ!! (ref. 78), which refers to the heritability 

tagged by a set of genotyped and/or imputed variants. 

 To allow different effects for low-frequency and common variants inside a functional annotation 𝑎!, we 

modeled the variance of the per normalized genotype effect sizes using different 𝜏! for these two categories of 

variants. In a case where we consider 𝐷! functional annotations, we write: 

 
𝑉𝑎𝑟 𝛽! = 𝑎! 𝑗 . 1!∈(!")𝜏!

(!") + 1!∈(!)𝜏!
(!)

!!

!!!

 (4) 

where 1!∈(!") (resp. 1!∈(!)) is an indicator function with value 1 if variant j is a low-frequency (resp. common) 

variant, and 0 otherwise, 𝜏!
(!") (resp. 𝜏!

(!)) represents the per-variant contribution of one unit of the annotation 𝑎! to 

the heritability explained by low-frequency (resp. common) variants. These parameters can be estimated using S-

LDSC by writing equation (4) in the form: 

 
𝑉𝑎𝑟 𝛽! = 𝑎!

(!") 𝑗 . 𝜏!
(!") + 𝑎!

(!) 𝑗 . 𝜏!
(!)

!!

!!!

 (5) 

where 𝑎!
(!") 𝑗  (resp. 𝑎!

(!) 𝑗 ) is an annotation equals to 𝑎! 𝑗  if variant j is a low-frequency (resp. common) variant 

and 0 otherwise. In all analyses we also added one annotation containing all the variants, 5 MAF bins for low-

frequency variants, and 10 MAF bins for common variants in order to take into account MAF-dependent 
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effects31,80,83. For each functional binary annotation of interest 𝑎! , we compared its low-frequency variant 

enrichment (LFVE) and common variant enrichment (CVE), defined as the proportion of ℎ!"!  (resp. ℎ!!) explained by 

the annotation, divided by the proportion of low-frequency (resp. common) variants that are in the annotation. 

Standard errors were computed using a block jackknife procedure5.  

We emphasize that the choice of denominator (e.g. the proportion of low-frequency or common variants in 

an annotation) can have a large impact on the value of enrichment estimates, as demonstrated by two examples. 

First, coding regions are depleted for common variants (but less depleted for low-frequency variants), so that 

LFVE/CVE will be lower than (% of ℎ!"! )/(% of ℎ!!); the same may be true for other annotations impacted by 

negative selection (see Results). A second example demonstrating that comparisons of enrichment estimates with 

inconsistent denominators can produce incorrect conclusions34 is discussed in the Supplementary Note. 

Application of S-LDSC was performed using 3,567 unrelated individuals of UK10K data set17 (ALSPAC and 

TWINSUK cohorts) as an LD reference panel. This choice was made in order to ensure a close ancestry match 

between the target sample used to compute summary statistics (UK Biobank) and the LD reference panel (UK10K). 

We note that there is a difference between the LD reference panel (here UK10K, used to compute LD scores) and the 

imputation reference panel (here HRC, used to impute variants). Reference variants, used to estimate LD scores, 

were the set of 11,830,279 biallelic variants with MAF ≥ 0.1%. Regression variants, used to estimate annotation 

effect sizes 𝜏, were the set of 8,523,464 UK Biobank variants with MAF ≥ 0.5% in UK10K. These MAF thresholds 

for reference variants and regression variants were assessed via simulations (see below). Variants with very large 𝜒! 

association statistics (larger than 0.001𝑁), as well as variants in the major histocompatibility complex (MHC) region 

(chr6:25Mb-34Mb) were removed from all analyses. The main differences as compared to standard S-LDSC 

analyses on common variants are summarized Table S14. 

 

Baseline-LF model and functional annotations.  

We considered 34 main functional annotations from the baseline-LD model v1.1 (27 binary and 7 continuous 

annotations, including LD-related annotations; refs. 5,31,84,85), including coding, UTR, promoter and intronic regions, 

the histone marks monomethylation (H3K4me1) and trimethylation (H3K4me3) of histone H3 at lysine 4, 

acetylation of histone H3 at lysine 9 (H3K9ac) and two versions of acetylation of histone H3 at lysine 27 

(H3K27ac), open chromatin as reflected by DNase I hypersensitivity sites (DHSs), combined chromHMM and 

Segway predictions (which make use of many Encyclopedia of DNA Elements (ENCODE) annotations to produce a 

single partition of the genome into seven underlying chromatin states), three different conserved annotations, two 

versions of super-enhancers, FANTOM5 enhancers, typical enhancers, and 6 LD-related continuous annotations 

(predicted MAF-adjusted allele age, level of LD in African populations, recombination rate, nucleotide diversity, a 

background selection statistic and CpG-content) (see Table S1).  

In order to further dissect the set of coding variants, we annotated each coding variant using ANNOVAR86, 

and added one synonymous and one non-synonymous annotation (corresponding to “synonymous SNV” and 
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“stopgain” or “stoploss” ANNOVAR outputs, respectively) into our model. (We note that the coding annotation in 

our baseline model comes from the UCSC coding track and includes UTR variants of protein coding genes, implying 

that some variants in this annotation do not belong to the synonymous or non-synonymous annotations). We also 

considered 4 new annotations based on phastCons26 conserved elements (46 way) in vertebrates, mammals and 

primates, and one annotation based on flanking bivalent TSS/enhancers from Roadmap data7 (see Table S15 for 

more information on the choice of annotations, as well as URLs). These 6 new annotations led to a total of 33 main 

binary annotations (see Table S1). 

We included 500 bp windows around each binary annotation (except for annotations that are defined 

separately for each base pair) and 100 bp windows around four of the main annotations5, leading to a total of 74 

main functional annotations. Then, all annotations were duplicated for low-frequency and common variants as 

described in equation (5), except for the predicted allele age annotation87 (which had too many missing values for 

low-frequency variants). Finally, we included one annotation containing all variants, 5 MAF bins of low-frequency 

variants and 10 MAF bins of common variants (see Table S16 for MAF bin boundaries). We thus obtained a set of 

163 total annotations. We refer to this set of annotations as the “baseline-LF model” (see Table S2), which we used 

for all our S-LDSC analyses. 

 

Simulations using UK10K target samples to assess extension of S-LDSC to low-frequency variants. 

To obtain an initial assessment of the lowest MAF threshold for which S-LDSC with the UK10K LD reference panel 

might produce unbiased estimates, we first performed simple simulations using UK10K target samples (so that LD 

in the target samples and LD reference panel perfectly match) to investigate possible biases in ℎ!"!  estimates when 

using different MAF thresholds to define low-frequency variants. We simulated quantitative phenotypes from 

chromosome 1 of UK10K data17 (3,567 individuals and 1,041,378 variants with allele counts greater or equal to 5, 

i.e. MAF ≥ 0.07%) by setting trait heritability to ℎ! = 0.5, selecting 𝑀 = 100,000 causal variants, and simulating the 

variance of per-normalized genotype effect sizes proportional to 2𝑝 1 − 𝑝
!!!

 for a variant of frequency 𝑝. We 

considered three values of 𝛼: -0.25 (close to the -0.28 value previously estimated80), -0.50 and -0.75 (with the latter 

values giving higher weight to low-frequency variants), and performed 5,000 simulations for each value of 𝛼.  

To determine at which MAF thresholds we can accurately estimate heritability above the MAF threshold 

using UK10K as an LD reference panel, we constructed 6 different annotation models, with heritability variants 

(used to compute estimates of heritability and enrichment) and reference variants (used to compute LD scores) 

defined using MAF ≥ 0.1%, 0.2% or 0.5% (see Table S3 for the 6 different models). We estimated ℎ!! and ℎ!"!  using 

S-LDSC and three different sets of regression variants (included in the regression, see equation (1)), also defined 

using MAF ≥ 0.1%, 0.2% or 0.5%. We note that our set of reference variants did not contain causal variants with a 

MAF between 0.07% and the selected MAF threshold, consistent with a realistic scenario in which causal rare 

variants may be absent from the reference data set. We determined that in these simulations, restricting to regression 

variants with MAF ≥ 0.5%, reference variants with MAF ≥ 0.1%, and heritability variants with MAF ≥ 0.5% 
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provided unbiased estimates of ℎ!"!  (Figure S1; we observed upward bias when considering MAF thresholds of 0.1% 

or 0.2% for heritability variants, Table S3). We thus used these MAF thresholds for further simulations and 

applications to real data. 

 

Simulations using UK Biobank target samples to assess extension of S-LDSC to low-frequency variants. 

To assess possible biases in heritability and enrichment estimates under a more realistic scenario, we simulated 

quantitative phenotypes from chromosome 1 of UK Biobank interim release dataset with imputed variants from 

1000G and UK10K (113,851 unrelated individuals, 1,023,655 variants with allele counts greater or equal to 5 in 

UK10K). First, we randomly sampled integer-valued genotypes from UK Biobank imputation dosage data. Second, 

we set trait heritability to ℎ! = 0.5, selected 𝑀 = 100,000 causal variants, and performed simulations under a coding-

enriched architecture by simulating the variance of per-normalized genotype effect sizes proportional to 

1! !"!!!"#$%& 2𝑝 1 − 𝑝
!!!! + 𝑐 ∗ 1! !"#$%& 2𝑝 1 − 𝑝

!!!!"#$%& , where 1! !"#$%&  (resp. 1! !"!!!"#$%&)  is an 

indicator function taking the value 1 if variant j belongs (resp. does not belong) to the coding annotation, 𝑝 is the 

frequency of the causal variant in the simulated UK Biobank genotypes dataset, 𝛼! was set to -0.25, and c and 

𝛼!"#$%& were chosen to produce four different genetic architectures (see Table S4). We note that this generative 

model is different and more complex than the additive inference model implemented in S-LDSC, but may be more 

realistic as the effect size of coding variants depends now directly on their allele-frequency (and not or their low-

frequency/common status). We also performed simulations under an enhancer-enriched architecture by considering 

the baseline ChromHMM/Segway weak-enhancer37 annotation, which has similar properties as the coding annotation 

(2.28% of reference low-frequency variants versus 1.83% for coding, and elements with a mean length size of 249bp 

versus 315bp for coding). To investigate the impact of the LD-dependent architecture created by the enrichment of 

these two annotations (coding and weak-enhancer variants tend to have low levels of LD31), we randomly created 

100 shifted coding (resp. weak-enhancer) annotations, and selected the annotation with an average level of LD (i.e. 

the shifted annotation with the 50th smallest level of LD computed on low-frequency variants; see ref. 31 for a 

definition of level of LD). Third, we used version 2.3 of BOLT-LMM software24,88 (see URLs) to compute 

association statistics on UK Biobank dosage data to mimic the fact that we computed summary statistics on imputed 

data. Finally, we used S-LDSC with our baseline-LF model (except that the 6 new functional annotations were not 

included in the simulation analyses) with UK10K as an LD reference panel to estimate ℎ!!, ℎ!"! , and coding/enhancer 

CVE and LFVE. S-LDSC was run by restricting regression variants to accurately imputed variants (i.e. INFO score36 

≥ 0.99), as we suggested previously5, or to all variants (irrespective of INFO score). We also report results when 

using an INFO score threshold of 0.5 or 0.9 (see Table S4). We also considered including INFO score explicitly in 

the regression to down-weight poorly imputed variants (i.e. replacing equation (1) by 𝐸 𝜒!! := 𝐼!𝑁 𝜏!𝑙 𝑗, 𝑑!
!!! +

𝐼𝑁𝑏 + 1, where 𝐼!  is the INFO score of variant j and 𝐼 = !
!

𝐼!! ; this approximation assumes that genotype 

uncertainty decreases the association test statistics), but this did not improve the results, consistent with the fact that 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/297572doi: bioRxiv preprint 

https://doi.org/10.1101/297572
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

summary statistics computed from dosage data already down-weight poorly imputed variants (Table S4). Our 

simulation framework is summarized in Figure S2. We performed 1,000 simulations for each simulation scenario. In 

each case, we removed 0-3 outlier simulations in which the estimate of ℎ!"!  was below 0.0001; we did not observe 

any such outlier results in analyses of real traits (minimum ℎ!"!  = 0.004; Table S5).  

 

UK Biobank data set and choice of traits for main analyses and meta-analyses.   

We analyzed data from the UK Biobank22,23 consisting of 487,409 samples genotyped on ~800,000 markers and 

imputed to ~93 million SNPs using the Haplotype Reference Consortium dataset25 (N = 64,976 haplotypes from 

WGS data). We restricted our analyses to 408,963 individuals with UK ancestry23 and to variants with MAF ≥ 0.1% 

that were present in our UK10K LD reference panel (8,523,464 variants in total). Overall, the imputation quality was 

high even for low-frequency variants (median INFO score larger than 0.9 for variants with MAF between 0.5% and 

0.7%; Figure S17). For each investigated trait (see below), we computed mixed model association statistics using 

BOLT-LMM version 2.3 software24,88 with genotyping array (UK BiLEVE / UK Biobank), assessment center, sex, 

age, and age squared as covariates. We also included 20 principal components to correct for ancestry (provided with 

the UK Biobank data release23) according to guidelines of ref. 24. We included 672,292 directly genotyped SNPs in 

the mixed model (specifically, all autosomal biallelic SNPs with missingness < 10 %). 

We restricted our analyses to UK Biobank traits for which the z-score for nonzero ℎ!! computed using S-

LDSC with the baseline-LF model was at least 10, to maximize robustness of ℎ!"!  (Table S5). We selected 40 traits 

(average N = 363,166) with squared phenotypic correlation below 0.5 (except for diastolic and systolic blood 

pressure phenotypes, which are traditionally analyzed jointly; Table S17). In all meta-analyses, we excluded one of 

each pair of traits with squared phenotypic correlation larger than 0.1, prioritizing traits with larger z-score for 

nonzero ℎ!! (27 independent traits; average N = 354,892). All meta-analyses were performed using random-effects 

meta-analyses implemented in the R package rmeta. 

 

S-LDSC analyses of UK Biobank data.   

We applied S-LDSC with the baseline-LF model to 40 UK Biobank traits, estimated ℎ!!, ℎ!"! , and the ℎ!!/ℎ!"!  ratio 

using the 15 MAF bin annotations, and computed their standard errors using a jackknife procedure. We meta-

analyzed the ℎ!!/ℎ!"!  ratio, and multiplied it by the ratio of the number of low-frequency and common variants in the 

LD reference sample (i.e. 3,398,397/5,353,593) to convert it into a per-variant heritability ratio. To match these 

ratios to a model in which the variance of per-normalized genotype effect sizes is proportional to 2𝑝 1 − 𝑝
!!!

, 

we used low-frequency and common variants of our LD reference panel and computed the ℎ!!/ℎ!"!  ratio using 

different values of 𝛼. We note that BOLT-LMM uses a linear mixed model and achieved an effective sample size 

(Neff) higher than the true sample size (N) (ref. 24). This implies that S-LDSC overestimates per-variant heritability 

when using summary statistics generated by BOLT-LMM. We thus corrected ℎ!! and ℎ!"!  estimations by dividing 
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them by Neff/N, with Neff estimated by taking ratios of chi-square statistics computed by BOLT-LMM vs. linear 

regression at genome-wide significant SNPs (as in ref. 24). After this correction, our reported ℎ!! and ℎ!"!  estimates 

are only 1.15x and 1.16x higher than when applying S-LDSC to summary statistics computed using linear regression 

with 20 principal component covariates on N = 337,539 unrelated individuals with UK ancestry, and our ℎ!!/ℎ!"!  ratio 

estimates are nearly identical (ℎ!!/ℎ!"!  = 6.28x, s.e. = 0.23x with BOLT-LMM vs. ℎ!!/ℎ!"!  = 6.34x, s.e. = 0.26x with 

linear regression; Figure S18), confirming that our results are not impacted by the use of BOLT-LMM summary 

statistics. 

The CVE and LFVE of each functional annotation were compared using a z-test; these values are 

independent as they are computed using non-overlapping sets of variants. The regression slope of LFVE on CVE 

was computed with no intercept. As most of the 33 annotations are correlated, we did not attempt to assess the 

statistical significance of the regression slope, or of the corresponding correlation between CVE and LFVE.  

For CTS analyses, we analyzed the 396 Roadmap7 annotations constructed in Finucane et al.48 from narrow 

peaks in six chromatin marks (DNase hypersensitivity, H3K27ac, H3K4me3, H3K4me1, H3K9ac, and H3K36me3) 

in a subset of a set of 88 primary cell types/tissues. We selected CTS annotations for which common variants are 

disease relevant following Finucane et al.48 guidelines. First, we analyzed each CTS annotation in turn using default 

S-LDSC (i.e. not our extension to low-frequency variants) by conditioning on all the non-CTS annotations of the 

baseline-LD model v1.1, the union of annotations for each of the six chromatin marks, and the average of 

annotations for each mark (as performed in ref. 48). We note that our choice to switch from the baseline model5, as 

performed in ref. 48, to the baseline-LD model (which includes MAF bins and LD-related annotations in addition to 

new functional annotations) was motived by our observation that the baseline model can slightly overestimate 

functional enrichment due to unmodeled annotations31. We also decided to consider only non-CTS annotations and 

to remove the four enhancers annotations derived from Vahedi et al.89 (absent from the baseline model and added in 

the baseline-LD model) as they are T-cell specific and may impact the detection of relevant cell types for traits for 

which T cells are a relevant cell type (such as asthma and eczema; see Figure S19). We retained all the CTS 

annotations with a 𝜏 coefficient statistically larger than 0 (using P < 0.05/396), selecting a total of 637 trait-

annotation pairs with at least one CTS annotation for 36 of 40 traits (all traits except high light scatter reticulocyte 

count, high cholesterol, sunburn occasion, and age at menopause), including 25 of 27 independent traits (Table S9). 

Finally, we re-analyzed these 637 trait-annotation pairs using our extended S-LDSC with the baseline-LF model, the 

union of the six chromatin marks, and the average of annotations for each mark. In Figure 4, we report all 637 pairs 

for completeness, demonstrating the consistency between CVE and LFVE for CTS annotations (Table S10). 

However, as the 1-53 CTS annotations selected for each trait are often highly correlated with each other, we selected 

for each of the 25 independent traits the “most critical” CTS annotation, defined in the main text and Figure 4 as the 

CTS annotation with the most statistically significant CVE. For these 25 annotations, we regressed their LFVE on 

their CVE with no intercept. We also considered 4 alternative definitions of the “most critical” CTS annotation for 

each trait: 1) the CTS annotation with the highest CVE, 2) the CTS annotation that explains the higher proportion of 
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ℎ!!, 3) the CTS annotation with the most significant 𝜏 coefficient, or 4) the CTS annotation with the highest 

standardized 𝜏∗ coefficient (defined as the proportionate change in per-variant heritability associated to a one 

standard deviation increase in the value of the annotation31). We also computed 5) the mean LFVE and CVE across 

1-53 significant CTS annotations for each independent trait. For each of these definitions, LFVE were similar to 

CVE (Figure S9). Finally, when testing if a CTS annotation has a significantly larger LFVE than CVE, we used a 

trait-specific Bonferonni threshold (i.e. 0.05 divided by the number of CTS annotations retained for the trait). 

For gene set analyses based on the shet metric30, we divided variants into 5 bins containing the same number 

of genes (3,073; 3,072 for the last bin). For S-LDSC analyses, we added to the baseline-LF model two annotations 

for variants inside a protein coding gene (for low-frequency and common variants, respectively; we used the 17,484 

protein-genes from ref. 51), 10 annotations for variants inside the 5 gene sets, and 10 annotations for non-

synonymous variants inside the 5 gene sets (22 annotations in total). 

 

Forward simulations. 

To investigate the connection between LFVE, CVE and the distribution of fitness effects (DFE), we performed 

forward simulations under a Wright-Fisher model with selection using SLiM2 software59 (see URLs). We simulated 

1Mb regions of genetic length 1cM with a uniform recombination rate and a uniform mutation rate (2.36 x 10-8, as 

recommended in SLiM manual). De novo mutations had probability πdel to be deleterious with a dominance 

coefficient of 0.5 and a selection coefficient s drawn from a gamma distribution with mean 𝑠!" and shape 𝜃, and had 

probability 1 - πdel to be neutral (i.e. s = 0). We outputted a sample of 5,000 European genomes using the out-of-

Africa demographic model of Gravel et al.60 implemented in SLiM. Then, we used Eyre-Walker model10 to compute 

the per-allele effect size 𝑏! = 𝑐 4𝑁! 𝑠!
!!" 1 + 𝜀 , where c is a constant, 𝑁! is the effective population size, sj the 

selection coefficient of variant j, 𝜏!" is the coupling coefficient between selection and phenotypic effect, and 𝜀 is a 

normally distributed noise. Here, c was set to have a trait heritability ℎ! = 0.5 (i.e. 2𝑝!(1 − 𝑝!)𝑏!!! = 𝛽!!! = 0.5, 

where 𝑝! is the allele frequency of variant j), 𝑁!was set as the expected coalescent time90 of the European population 

of the Gravel et al. model (6,524), and 𝜀 was set to 0 for simplicity. We note that we focused here on per-variant 

heritability (i.e. 𝛽!!) and not directional effects, thus our conclusions are independent of the direction of the selection 

coefficient on the trait and are valid for traits that are either under direct or stabilizing selection. 

Unlike our previous forward simulation framework31, we designed these simulations to have a realistic DFE 

for annotations mimicking both non-synonymous and non-coding variants. We first performed simulations involving 

non-synonymous and non-coding variants, in order to fit appropriate parameter values for these annotations; 

subsequent simulations distinguishing functional non-coding and ordinary non-coding variants are described below. 

We created 50 non-synonymous elements with a realistic length 200bp (10kb in total, 1% of the 1Mb simulated 

genome) separated by non-coding elements of size 14.9kb (99% of the simulated genome; Figure S11a). To mimic 

non-synonymous elements, we used πdel = 80%, 𝑠!" = -3.16 x 10-3 and 𝜃 = 0.32, as previously estimated11. As the 
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DFE of non-coding regions has never been investigated (to our knowledge), we performed simulations using a wide 

range of non-coding DFE to find the best fit to observed patterns of enrichment. We varied πdel for non-coding 

variants between 5% and 80% (16 values in total using 5% incremental steps), 𝑠!" for non-coding variants between -

10-5 and -10-3 (7 values in total using logarithmic incremental steps), 𝜃 for non-coding variants between 0.05 and 1 

(5 values in total using logarithmic incremental steps), and 𝜏!" between 0.025 and 1.00 (40 values in total using 

0.025 incremental steps), leading to a total of 22,400 different scenarios (Table S18). We simulated 100 regions of 1 

Mb for each scenario and merged the outputted variants. We considered all deleterious variants as causal, generated 

per-allele and per normalized genotype effect size using the Eyre-Walker model, and removed scenarios in which 

our simulated values of per-variant heritability ratio between common and low-frequency variants, non-synonymous 

LFVE, and non-synonymous CVE were outside the 95% confidence intervals estimated by the meta-analysis of UK 

Biobank phenotypes (i.e. 3.99x [3.69; 4.29]), 38.25x [33.80; 42.70] and 7.72x [6.05; 9.39], respectively). After those 

filters, 11 scenarios remained; πdel were between 0.30 and 0.75, 10/11 scenarios had 𝑠!" = -0.0001, 9/11 scenarios 

had 𝜃 = 0.32, and 𝜏!" between 0.675 and 0.925. We selected the scenario in which the simulated values were closest 

to the values from the UK Biobank meta-analysis based on Euclidian distance (Table S19); more precisely, we 

retained the scenario where πdel = 40%, 𝑠!" = -1.00 x 10-4, 𝜃 = 0.32 for non-coding variants and 𝜏!" = 0.75 and 

obtained the values 4.07x, 36.27x and 7.73x for per-variant heritability ratio between common and low-frequency 

variants, non-synonymous LFVE, and non-synonymous CVE, respectively. These estimated parameter values 

suggest that a de novo non-coding mutation is only 2 times less likely to be deleterious than a de novo coding 

mutation, but on average has a selection coefficient 30 times smaller. They also predict a non-synonymous rare 

variant (MAF < 0.5%) enrichment of 74.27x (Table S19). However, we caution that the diversity patterns in this 

simulation scenario were not realistic. We observed a ratio between the number of low-frequency and common 

variants of 0.89, compared to 0.63 in UK10K data (3,398,397 low-frequency variants against by 5,353,593 common 

variants), and a ratio between the proportion of non-synonymous variants in low-frequency and common variants of 

1.38, compared to 1.65 in UK10K data (non-synonymous variants represent 0.45% of low-frequency variants and 

0.27% of common variants). Indeed, the Gravel et al. demographic model60 that we used is based solely on the site 

frequency spectrum of non-synonymous variants, which becomes unrealistic when considering other variants. 

However, we believe that this issue does not impact our conclusions, which are based on the per-variant heritability 

of an annotation rather than the proportion of heritability explained by the annotation. We also note that our 𝜏!" 

estimate (0.75) is much larger than previous estimates11,14,15,58, primarily due to the fact that we explicitly model 

different distributions of selection coefficient for non-synonymous and non-coding variants. To assess the robustness 

of this estimate, we randomly resampled the values of per-variant heritability ratio between common and low-

frequency variants, non-synonymous LFVE, and non-synonymous CVE from their estimated values and standard 

errors (1,000 resampling sets) and re-estimated 𝜏!" using a similar procedure. We observed that 𝜏!" estimates 

tended to be a slightly larger than 0.75 (Figure S15), confirming the high coupling coefficient between selection and 

effect sizes. 
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In most subsequent simulations, we fixed the probability of a deleterious variant to be causal (πdel:causal) at 

10%, so that the proportion of de novo non-synonymous variants that are causal (π, defined as π = πdel·πdel:causal) is 

8% (resp. 4% for non-coding variants). This allows non-synonymous variants to have LFVE and CVE on the same 

order of magnitude as the LFVE and CVE observed for the non-synonymous variants inside genes predicted to be 

under strong negative selection30 (102.0x and 41.4x, respectively; Figure 5). We note that we replicated our main 

results when using πdel:causal = 5% (Figure S20). 

 Next, we investigated the impact of 𝑠!" and π on a “functional non-coding” annotation. To do so, we 

alternately considered 200kb functional elements as non-synonymous elements (1% of the simulated genome) or as 

functional non-coding elements (1% of the simulated genome), separated by “ordinary non-coding” elements of size 

9.8kb (98% of the simulated genome; Figure S11b). For each functional non-coding element, we fixed πdel = 60% 

and 𝜃 = 0.32 (equal to the value of 𝜃 for non-synonymous and overall non-coding elements). We chose a value πdel 

in between the value for overall non-coding (πdel = 40%) and non-synonymous (πdel = 80%) annotations, as we 

hypothesized that enriched functional non-coding annotations in the human genome have a larger proportion of 

deleterious variants than the overall non-coding genome. However, we note that we obtained similar results when 

choosing πdel = 40% for the functional non-coding annotation (Figure S21). We varied 𝑠!" and πdel:causal (and thus π) 

of the functional non-coding annotation, while retaining πdel:causal = 10% for the variants in the non-synonymous and 

ordinary non-coding elements. (We varied 𝑠!"  on the logarithmic scale, and report truncated values in the 

manuscript for simplicity; for example, 𝑠!" = -0.003 stands for -3.1623 x 10-3; see Table S12 for exact 𝑠!" values). 

For each scenario, we simulated 1,000 regions of 1Mb for each scenario, merged the outputted variants, and 

considered 100 randomly chosen sets of causal variants. 
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Figures 

 
 
 

 
 

Figure 1: Simulations to assess low-frequency variant enrichment estimates. We report estimates of LFVE and 
LFVE/CVE ratio in simulations under a coding-enriched architecture (first row) or enhancer-enriched architecture 
(second row). We considered four different simulation scenarios (see main text). S-LDSC was run either by 
restricting regression variants to accurately imputed variants (S-LDSC – INFO ≥ 0.99), or by including all variants 
(S-LDSC – All variants). We do not report LFVE/CVE ratio for the No Enrichment simulation (CVE = LFVE = 1) 
due to unstable estimates; however, all analyses of real traits in this paper focus on annotations with significant CVE. 
Results are averaged across 1,000 simulations. Error bars represent 95% confidence intervals. Numerical results for 
ℎ!"! , ℎ!!, LFVE, CVE and LFVE/CVE ratio are reported in Table S4. 
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Figure 2: Common variant heritability (𝒉𝒄𝟐) and low-frequency variant heritability (𝒉𝒍𝒇𝟐 ) estimates for 40 UK 
Biobank traits. We report ℎ!! and ℎ!"!  estimated by S-LDSC with the baseline-LF model for 40 UK Biobank traits 
(for binary traits, estimates are on the liability scale), with 7 representative independent traits highlighted. Error bars 
represent 95% confidence intervals. The dashed black line represents the ratio between ℎ!"!  and ℎ!! meta-analyzed 
across 27 independent traits (1/6.3). Grey lines represent expected ratios for different values of 𝛼 (see main text). 
Error bars represent 95% confidence intervals. Numerical results are reported in Table S5. 
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Figure 3: Functional low-frequency and common variant architectures across 27 independent UK Biobank 
traits. We plot LFVE vs. CVE (log scale) for the 33 main functional annotations of the baseline-LF model (meta-
analyzed across the 27 independent traits), highlighting annotations for which LFVE is significantly different from 
CVE. Numbers in the legend represent the proportion of common / low-frequency variants inside the annotation, 
respectively. The first three conserved annotations are based on phastCons elements26, Conserved in mammals* is 
based on GERP RS scores28 (≥4), and Conserved in mammals** is based on Lindblad-Toh et al.41. The promoter 
flanking annotation has (non-significantly) negative LFVE and is not displayed for visualization purposes. The solid 
line represents LFVE = CVE; dashed lines represent LFVE = constant multiples of CVE. Error bars represent 95% 
confidence intervals. Numerical results are reported in Table S6.  
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Figure 4: Low-frequency and common variant architectures of cell-type-specific (CTS) annotations. For 637 
trait-annotation pairs with statistically significant common variant enrichment, we report (a) LFVE vs. CVE (log 
scale) and (b) proportion of ℎ!! vs. proportion of ℎ!"!  explained. The dashed black line in (a) represents the regression 
slope for 25 critical CTS annotations for independent traits (see main text). Brain-specific annotations are denoted in 
blue. Two trait-annotation pairs with LFVE significantly larger than CVE are denoted in dark blue (see main text); 
error bars represent 95% confidence intervals. The two arrows in (b) denote All autoimmune diseases (Regulatory T-
cells) and Monocyte count (Primary monocytes) (see main text). Results for coding and non-synonymous 
annotations (meta-analysis across 27 independent traits) are denoted in red; error bars represent 95% confidence 
intervals. Numerical results are reported in Table S10. 
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Figure 5: Low-frequency and common variant enrichments for non-synonymous variants vary with the 
strength of selection on the underlying genes. We report LFVE vs. CVE (log scale) for non-synonymous variants 
in 5 bins of shet (see main text), meta-analyzed across 27 independent UK Biobank traits; bins 4+5 are merged for 
visualization purposes. Numbers in the legend represent the proportion of common / low-frequency variants inside 
the annotation, respectively. The solid line represents LFVE = CVE; dashed lines represent LFVE = constant 
multiples of CVE. Error bars represent 95% confidence intervals. Numerical results for each bin are reported in 
Table S11. 
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Figure 6: Forward simulations enable inferences about negative selection and rare variant architectures. 
Results are based on forward simulations involving an annotation mimicking functional non-coding variants, as well 
as other annotations (see text). (a,b) We report the CVE (a) and LFVE/CVE ratio (b) of the functional non-coding 
annotation as a function of the mean selection coefficient for de novo deleterious variants (𝑠!") and the probability of 
a de novo variant to be causal (π) for this annotation. 𝑠!"  and π values for non-synonymous and ordinary non-coding 
annotations are described in the main text. (c) We report the mean absolute selection coefficient of deleterious 
variants in the functional non-coding annotation as a function of 𝑠!" and MAF (rare, low-frequency, common). (d) 
We report the mean squared per-allele effect size of causal variants in the functional non-coding annotation 
(normalized by the mean squared per-allele effect size of rare causal non-synonymous variants) as a function of 𝑠!" 
and MAF (rare, low-frequency and common). Red lines denote the value 𝑠!" = -0.003 used to simulate non-
synonymous variants, grey lines denote the value 𝑠!" = -0.0001 used to simulate ordinary non-coding variants (see 
main text). The value π = 48% used in (d) (see main text) is denoted via squares in (a) and (b). Numerical results are 
reported in Table S12. 
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URLs 

ldsc software, http://www.github.com/bulik/ldsc. 
baseline-LF annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/baselineLF. 
BOLT-LMM association statistics computed in this study will be made available for public download via the UK 
Biobank Data Showcase. 
phastCons elements, http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/phastConsElements46way*.txt.gz ;  
Flanking bivalent TSS/enhancers, 
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/fina
l/*_15_coreMarks_segments.bed. 
BOLT-LMM software, https://data.broadinstitute.org/alkesgroup/BOLT-LMM. 
SLiM2 software, https://messerlab.org/slim/. 
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