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Abstract

Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal
dynamics. While the output of recurrent network models can learn to perform various tasks, the possible
range of recurrent dynamics that emerge after learning remains unknown. Here we show that modify-
ing the recurrent connectivity with a recursive least squares algorithm provides sufficient flexibility for
synaptic and spiking rate dynamics of spiking networks to produce a wide range of spatiotemporal activ-
ity. We apply the training method to learn arbitrary firing patterns, stabilize irregular spiking activity of
a balanced network, and reproduce the heterogeneous spiking rate patterns of cortical neurons engaged
in motor planning and movement. We identify sufficient conditions for successful learning, characterize
two types of learning errors, and assess the network capacity. Our findings show that synaptically-
coupled recurrent spiking networks possess a vast computational capability that can support the diverse
activity patterns in the brain.

Introduction
Neuronal populations exhibit diverse patterns of recurrent activity that can be highly irregular or well-
structured when learning or performing a behavioral task1–5. An open question is whether learning-
induced synaptic rewiring is sufficient to give rise to the observed wide range of recurrent spiking dy-
namics that encodes and processes information.

It has been shown that a network of recurrently connected neuron models can be trained to perform
complex motor and cognitive tasks. In this approach, synaptic connections to the outputs are rewired to
generate a desired population-averaged signal, while the activity of individual neurons emerges in a self-
organized way. The recurrent dynamics resulting from such learning schemes have harnessed chaotic
temporally irregular activity of a network of rate-based neurons6 that is made repeatable either through
direct feedback from the outputs7,8 or through training of the recurrent connections directly9. The re-
sulting irregular yet stable dynamics provides a rich reservoir from which complex motor commands can
be extracted by output neurons that sum over the network linearly10,11.

Extending this idea to spiking networks poses a challenge because it is difficult to coordinate the
spiking dynamics of many neurons, especially, if spike times are variable as in a balanced network.
Some success has been achieved by training spiking networks directly with a feedback loop12 or using a
rate-based network as an intermediate step13,14. A different top-down approach is to build networks that
emit spikes optimally to correct the discrepancy between the actual and desired network outputs15,16.
This optimal coding strategy in a tightly balanced network can be learned with a local plasticity rule17

and is able to generate arbitrary network output18,19. Although these studies demonstrate that network
outputs can perform universal computations7, the possible repertoire of the recurrent activity has not
been extensively explored. Various network models have been developed to explain certain important
features of recurrent dynamics (e.g. fixed point attractor20, synchrony21–23, sequential activity3,4,24,
stable chaos25, motor planning26, and variable spiking27–30). However, we still lack an understanding of
the scope of recurrent dynamics that spiking networks are capable of generating.

Here we show that a network of spiking neurons is capable of supporting arbitrarily complex coarse-
grained recurrent dynamics provided the spatiotemporal patterns of the recurrent activity are diverse, the
synaptic dynamics are fast, and the number of neurons in the network is large. We give a theoretical
basis for how a network can learn and show various examples, which include stabilizing strong chaotic
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rate fluctuations in balanced networks and constructing a recurrent network that reproduces the spiking
rate patterns of a large number of cortical neurons involved in motor planning and movement. Our study
suggests that individual neurons in a recurrent network have the capability to support near universal
dynamics.

Results

1 Spiking networks can learn complex recurrent dynamics
We consider a network of N quadratic integrate-and-fire neurons that are recurrently connected with
spike-activated synapses weighted by a connectivity matrix W . We show below that our results do not
depend on the spiking mechanism. We focus on two measures of coarse-grained time-dependent neuron
activity: 1) the synaptic drive ui(t) to neuron i which is given by the W -weighted sum of low-pass
filtered incoming spike trains, and 2) the time-averaged spiking rateRi(t) of neuron i. The goal is to find
a weight matrix W that can autonomously generate desired recurrent target dynamics when the network
of spiking neurons connected by W is stimulated briefly with an external stimulus (Fig. 1a). The target
dynamics are defined by a set of functions f1(t), f2(t), ..., fN (t) on a time interval [0, T ]. Learning of
the recurrent connectivity W is considered successful if ui(t) or Ri(t) evoked by the stimulus matches
the target functions fi(t) over the time interval [0, T ] for all neurons i = 1, 2, ..., N .

Previous studies have shown that recurrently connected rate units can learn chaotic trajectories that
the initial network could already generate9, trajectories from a different network31, and sequential ac-
tivity derived from imaging data32. Our study expands these results by showing that recurrent dynamics
of spiking networks can be trained and the repertoire of recurrent dynamics that can be encoded is vast.
To train the recurrent connectivity, we modified the Recursive Least Squares (RLS) algorithm developed
in rate models, which minimizes a quadratic cost function between the activity measure and the target
together with a quadratic regularization term8,9,33 (see Methods).

As a first example, we trained the network to produce synaptic drive patterns that matched a set of
sine functions and the spiking rate to match the positive part of the same sine functions. The initial con-
nectivity matrix has connection probability p = 0.3 and the coupling strength is drawn from a Normal
distribution with mean 0 and standard deviation σ. Prior to training, the synaptic drive fluctuates irreg-
ularly, but as soon as the RLS algorithm is instantiated, the synaptic drives follow the target with small
error; rapid changes in W quickly adjust the recurrent dynamics towards the target8 (Fig. 1b, c). As a
result, the population spike trains exhibit reproducible patterns across training trials. A brief stimulus
precedes each training session to reset the network to a specific state. If the training is successful, the
trained response can be elicited whenever the same stimulus is applied regardless of the network state.
We were able to train a network of rate-based neurons to learn arbitrarily complex target patterns using
the same learning scheme (Supplementary Fig. S1).

Training the spiking rate is more challenging than training the synaptic drive because small changes
in recurrent connectivity do not immediately affect the spiking activity if the effect is below the spike-
threshold. Therefore, the spike trains may not follow the desired spiking rate pattern during the early
stage of training, and the population spike trains no longer appear similar across training trials (Fig. 1d).
This is also reflected in relatively small changes in recurrent connectivity and the substantially larger
number of training runs required to produce desired spiking patterns (Fig. 1e). However, by only ap-
plying the training when the total input to a neuron is suprathreshold, the spiking rate can be trained
to reproduce the target patterns. The correlation between the actual filtered spike trains and the target
spiking rate increases gradually as the training progresses.

In contrast to training the network read-out, where it is proposed that the initial network needs to be
at the “edge of chaos” to learn successfully8,12,14,34,35, the recurrent connectivity can learn to produce the
desired recurrent dynamics regardless of the initial network dynamics and connectivity. Even when the
initial network has no synaptic connections, the brief stimulus preceding the training session is sufficient
to build a fully functioning recurrent connectivity that captures the target dynamics. The RLS algorithm
can grow new synapses or tune existing ones as long as some of the neurons become active after the
initial stimulus (Supplementary Fig. S2).

Learning was not limited to one set of targets; the same network was able to learn multiple sets of
targets. We trained the network to follow two independent sets of targets, where each target function was
a sine function with random frequency. Every neuron in the network learned both activity patterns after
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Figure 1: Synaptic drive and spiking rate of neurons in a recurrent network can learn complex patterns. (a) Schematic
of network training. Blue square represents the external stimulus that elicits the desired response. Black curves
represent target output for each neuron. Red arrows represent recurrent connectivity that is trained to produce desired
target patterns. (b) Synaptic drive of 10 sample neurons before, during and after training. Pre-training is followed by
multiple training trials. An external stimulus (blue) is applied prior to training for 100 ms. Synaptic drive (black) is
trained to follow the target (red). If the training is successful, the same external stimulus can elicit the desired response.
Bottom shows the spike rater of 100 neurons. (c) Top, The Pearson correlation between the actual synaptic drive and
the target output during training trials. Bottom, The matrix (Frobenius) norm of changes in recurrent connectivity
normalized to initial connectivity during training. (d) Filtered spike train of 10 neurons before, during and after
training. As in (b), external stimulus (blue) is applied immediately before training trials. Filtered spike train (black)
learns to follow the target spiking rate (red) with large errors during the early trials. Applying the stimulus to a
successfully trained network elicits the desired spiking rate patterns in every neuron. (e) Top, Same as in (c) but
measures the correlation between filtered spike trains and target outputs. Bottom, Same as in (c).

training, and, when stimulated with the appropriate cue, the network recapitulated the specified trained
pattern of recurrent dynamics, regardless of initial activity. The synaptic drive and the spiking rate were
both able to learn multiple target patterns (Fig. 2).

1.1 Learning arbitrary patterns of activity

To demonstrate that spiking networks can encode recurrent dynamics that have arbitrary spatiotemporal
patterns, we considered targets generated from various families of functions; examples include complex
periodic functions, chaotic trajectories, and Ornstein-Uhlenbeck (OU) noise. We randomly selected N
different target patterns from one of the families to create a set of heterogeneous targets, and trained the
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a b

Figure 2: Learning multiple target patterns. (a) The synaptic drive of neurons learns two different target outputs. Blue
stimulus evokes the first set of target outputs (red) and the green stimulus evokes the second set of target outputs (red).
(b) The spiking rate of individual neurons learns two different target outputs.

synaptic drive of a network consisting of N neurons to learn the target dynamics.
As we will show more rigorously in Section 2, we identified two sufficient conditions on the dy-

namical state and spatiotemporal structure of target dynamics that ensure a wide repertoire of recurrent
dynamics can be learned. The first is a “quasi-static” condition that stipulates that the dynamical time
scale of target patterns must be slow enough compared to the synaptic time scale and average spiking
rate. The second is a “heterogeneity” condition that requires the spatiotemporal structure of target pat-
terns to be diverse enough. We will quantify these conditions below. The target patterns considered in
Figure 3 had slow temporal dynamics in comparison to the synaptic time constant (τs = 20 ms) and
the patterns were selected randomly to promote diverse structure. After training each neuron’s synaptic
drive to produce the respective target pattern, the synaptic drive of every neuron in the network followed
its target.

To verify the quasi-static condition, we compared the actual and a quasi-static approximation of the
spiking rate and synaptic drive. The spiking rates of neurons were approximated using the current-to-
rate transfer function with time-dependent synaptic input, and the synaptic drive was approximated by
a weighted sum of the presynaptic neurons’ spiking rates. We elicited the trained patterns over multiple
trials starting at random initial conditions to calculate the trial-averaged spiking rates. The quasi-static
approximations of the synaptic drive and spiking rate closely matched the actual synaptic drive (Fig. 3a)
and trial-averaged spiking rates (Fig. 3b).

To examine how the heterogeneity of target patterns may facilitate learning, we created sets of target
patterns where the fraction of randomly generated targets was varied systematically. For non-random
targets, we used the same target pattern repeatedly. Networks trained to learn target patterns with strong
heterogeneity showed that a network is able to encode target patterns with high accuracy if there is
a large fraction of random targets (Fig. 3c). Networks that are trained on too many repeated target
patterns failed to learn. Beyond a certain fraction of random patterns, including additional patterns did
not improve the performance, suggesting that the set of basis functions was over-complete. We probed
the stability of over-complete networks under neuron loss by eliminating all the synaptic connections
from a fraction of neurons. A network was first trained to learn target outputs where all the patterns
were selected randomly (i.e. fraction of random targets equals 1) to ensure that the target patterns form
a set of a redundant basis functions. Then, we elicited the trained patterns after removing a fraction of
neurons from the network, which entails eliminating all the synaptic connections from the lost neurons.
A trained network with 5% neuron loss was able to generate the trained patterns perfectly, 10% neuron
loss resulted in a mild degradation of network response, and trained patterns completely disappeared
after 40% neuron loss (Fig. 3d).

The target dynamics considered in Figure 3 had population spiking rates of 9.1 Hz (periodic), 7.2
Hz (chaotic) and 12.1 Hz (OU) within the training window. To examine how population activity may
influence learning, we trained networks to learn target patterns whose average amplitude was reduced
gradually across target sets. The networks were able to learn when the population spiking rate of the
target dynamics was as low as 1.5 Hz. However, the performance deteriorated as the population spiking
rate decreased further (Supplementary Fig. 2). To demonstrate that learning does not depend on the
spiking mechanism, we trained the synaptic drive of spiking networks using different neuron models. A
network of leaky integrate-and-fire neurons, as well as a network of Izhikevich neurons whose neuron
parameters were tuned to have five different firing patterns, successfully learned complex synaptic drive
patterns (Supplementary Fig. 3).
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Figure 3: Quasi-static and heterogeneous patterns can be learned. Example target patterns include complex periodic
functions (product of sines with random frequencies), chaotic rate units (obtained from a random network of rate
units), and OU noise (obtained by low pass filtering white noise with time constant 100 ms). (a) Target patterns (red)
overlaid with actual synaptic drive (black) of a trained network. Quasi-static prediction (equation (1)) of synaptic drive
(blue). (b) Spike trains of trained neurons elicited multiple trials, trial-averaged spiking rate calculated by the average
number of spikes in 50 ms time bins (black), and predicted spiking rate (blue). (c) Performance of trained network as
a function of the fraction of randomly selected targets. (d) Network response from a trained network after removing
all the synaptic connections from 5%, 10% and 40% of randomly selected neurons in the network.

1.2 Stabilizing rate fluctuations in balanced networks

A random network with balanced excitation and inhibition is a canonical model for a cortical circuit
that produces asynchronous single unit activity6,27–29,36. The chaotic activity of balanced rate models6

has been harnessed to accomplish complex tasks by including a feedback loop8, stabilizing chaotic
trajectories9 or introducing low-rank structure to the connectivity matrix37. Balanced spiking networks
have been shown to possess similar capabilities12–14,16,35, but it is unknown if it is possible to make use
of the heterogeneous fluctuations of the spiking rate in the strong coupling regime36. Here, we extend
the work of Laje and Buonomano9 to spiking networks and show that strongly fluctuating single neuron
activities can be turned into dynamic attractors by adjusting the recurrent connectivity.

We take a network with randomly connected excitatory and inhibitory neurons that respects Dale’s
Law. Prior to training, the synaptic and spiking activity of individual neurons show large variations
across trials because small discrepancies in the initial network state lead to rapid divergence of network
dynamics. When simulated with two different initial conditions, the synaptic drive to neurons deviates
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strongly from each other (Fig. 4a), and the spiking activity of single neurons is uncorrelated across
trials and the trial-averaged spiking rate has little temporal structure (Fig. 4b). The balanced network
exhibited sensitivity to small perturbation; the microstate of two identically prepared networks diverged
rapidly if one spike is deleted from one of the networks (Fig. 4c). It has been previously questioned as to
whether the chaotic nature of the balanced state could be utilized to perform reliable computations25,38.

As in Laje and Buonomano9, we sought to tame the chaotic trajectories of single neuron activities
when the coupling strength is strong enough to induce large and irregular spiking rate fluctuations in time
and across neurons36. We initiate the untrained network with random initial conditions to harvest innate
synaptic activity, i.e. a set of synaptic trajectories that the network already knows how to generate. Then,
the recurrent connectivity is trained so that the synaptic drive of every neuron in the network follows the
innate pattern when stimulated with an external stimulus. To respect Dale’s Law, the RLS learning rule
is modified such that it does not update synaptic connections if there are changes in their signs.

After training, the synaptic drive to every neuron in the network is able to track the innate trajectories
in response to the external stimulus within the trained window and diverge from the target pattern outside
the trained window (Fig. 4d). When the trained network is stimulated to evoke the target patterns, the
trial-averaged spiking rate develops a temporal structure that is not present in the untrained network
(Fig. 4e). To verify the reliability of learned spiking patterns, we simulated the trained network twice
with identical initial conditions but deleted one spike 200 ms after evoking the trained response from
one of the simulations. Within the trained window, the relative deviation of the microstate is markedly
small in comparison to the deviation observed in the untrained network. Outside the trained window,
however, two networks diverge rapidly again, which demonstrates that training the recurrent connectivity
creates an attracting flux tube around what used to be chaotic spike sequences25 (Fig. 4f, g). Analyzing
the eigenvalue spectrum of the recurrent connectivity reveals that the distribution of eigenvalues shifts
towards zero and the spectral radius decreases as a result of training, which is consistent with the more
stable network dynamics found in trained networks.

To demonstrate that learning the innate trajectories works well when a balanced network satisfies
the quasi-static condition, we scanned the coupling strength J (see Figure Methods for definition of J)
and synaptic time constant τs over a wide range and evaluated the accuracy of the quasi-static approx-
imation in untrained networks. We find that increasing either J or τs promotes strong fluctuations in
spiking rates36,39, hence improving the quasi-static approximation (Fig. 4i). Learning performance was
correlated with adherence to the quasi-static approximation, resulting in better performance for strong
coupling and long synaptic time constants.

1.3 Generating an ensemble of in-vivo spiking patterns

We next investigated if the training method applies to actual spike recordings of a large number of
neurons. In a previous study, a network of rate units was trained to match sequential activity imaged
from posterior parietal cortex as a possible mechanism for short-term memory3,32. Here, we aimed
to construct recurrent spiking networks that capture heterogeneous spiking activity of cortical neurons
involved in motor planning and movement1,2,5.

The in-vivo spiking data was obtained from the publicly available data of Li et al.5, where they
recorded the spike trains of a large number of neurons from the anterior lateral motor cortex of mice
engaged in planning and executing directed licking over multiple trials. We compiled the trial-average
spiking rate of Ncor = 227 cortical neurons from their data set40, and trained a recurrent network model
to reproduce the spiking rate patterns of all theNcor neurons autonomously in response to a brief external
stimulus. We only trained the recurrent connectivity and did not alter single neuron dynamics or external
inputs.

First, we tested if a recurrent network of size Ncor is able to generate the spiking rate patterns of
the same number of cortical neurons. This network model assumes that the spiking patterns of Ncor
cortical neurons can be self-generated within a recurrent network. After training, the spiking rate of
neuron models captured the overall trend of spiking rate, but not the rapid changes that may be pertinent
to the short term memory and motor response (Fig. 5b). We hypothesized that the discrepancy may be
attributed to other sources of input to the neurons not included in the model, such as recurrent input from
other neurons in the local population or input from other areas of the brain, or the neuron dynamics that
cannot be captured by our neuron model. We thus sought to improve the performance by adding Naux
auxiliary neurons to the recurrent network to mimic the spiking activity of unobserved neurons in the
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Figure 4: Learning innate activity in balanced networks. (a) Synaptic drive of sample neurons starting at random initial
conditions in response to external stimulus prior to training. (b) Spike raster of sample neurons evoked by the same
stimulus over multiple trials with random initial conditions. (c) Single spike perturbation of an untrained network.
(d)-(f) Synaptic drive, multi-trial spiking response and single spike perturbation in a trained network. (g) The average
phase deviation of theta neurons due to single spike perturbation. (h) Left, distribution of eigenvalues of the recurrent
connectivity before and after training as a function their absolution values. Right, Eigenvalue spectrum of the recurrent
connectivity; gray circle has unit radius. (i) The accuracy of quasi-static approximation in untrained networks and the
performance of trained networks as a function of coupling strength J and synaptic time constant τs. Color bar shows
the Pearson correlation between predicted and actual synaptic drive in untrained networks (left) and innate and actual
synaptic drive in trained networks (right).

local population, and trained the recurrent connectivity of a network of size Ncor + Naux (Fig. 5a). The
auxiliary neurons were trained to follow spiking rate patterns obtained from an OU process and provided
heterogeneity to the overall population activity patterns. When Naux/Ncor ≥ 2, the spiking patterns of
neuron models accurately fit that of cortical neurons (Fig. 5c), and the population activity of all Ncor
cortical neurons was well captured by the network model (Fig. 5d). The fit to cortical activity improved
gradually as a function of the fraction of auxiliary neurons in the network due to increased heterogeneity
in the target patterns (Fig. 5e)

To verify that the cortical neurons in the network model are not simply driven by the feedforward
inputs from the auxiliary neurons, we randomly shuffled a fraction of recurrent connections between
cortical neurons after a successful training. The fit to cortical data deteriorated as the fraction of shuf-
fled synaptic connections between cortical neurons was increased, which confirmed that the recurrent
connections between the cortical neurons played a role in generating the spiking patterns (Fig. 5f).
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Figure 5: Generating in-vivo spiking activity in a subnetwork of a recurrent network. (a) Network schematic showing
cortical (black) and auxiliary (white) neuron models trained to follow the spiking rate patterns of cortical neurons
and target patterns derived from OU noise, respectively. Multi-trial spike sequences of sample cortical and auxiliary
neurons in a successfully trained network. (b) Trial-averaged spiking rate of cortical neurons (red) and neuron models
(black) when no auxiliary neurons are included. (c) Trial-averaged spiking rate of cortical and auxiliary neuron models
when Naux/Ncor = 2. (c) Spiking rate of all the cortical neurons from the data (left) and the recurrent network model
(right) trained with Naux/Ncor = 2. (e) The fit to cortical dynamics improves as the number of auxiliary neurons
increases. (f) Random shuffling of synaptic connections between cortical neuron models degrades the fit to cortical
data. Error bars show the standard deviation of results from 10 trials.

2 Sufficient conditions for learning
Here we quantify the sufficient conditions the target patterns need to satisfy in order to be successfully
encoded in a network. The first condition is that the target patterns must be sufficiently slow compared
to the dynamical time scale of both neurons and synapses, such that targets can be considered constant
(quasi-static) on a short time interval. As we show below, this is not overly restrictive. In terms of
network dynamics, the quasi-static condition implies that the synaptic and neuron dynamics operate as
if in a stationary state even though the stationary values change as the network activity evolves in time.
In this quasi-static state, we can use a mean field description of the spiking dynamics to derive a self-
consistent equation that captures the time-dependent synaptic and spiking activity of neurons22,36,41 (see
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Supplementary Notes). Under the quasi-static approximation, the synaptic drive satisfies

Ui(t) =

N∑
j=1

Wijφ(Uj(t) + Ij), (1)

and the spiking rate Ri = φ(Ui + Ii) satisfies

Ri(t) = φ
( N∑
j=1

WijRj(t)
)
, (2)

where φ is the current-to-rate transfer (i.e. gain) function and Ii is a constant external input.
The advantage of operating in a quasi-static state is that both measures of network activity become

conducive to learning new patterns. First, equation (1) is closed in terms of U , which implies that
training the synaptic drive is equivalent to training a rate-based network. Second, the RLS algorithm can
efficiently optimize the recurrent connectivity W , thanks to the linearity of equation (1) in W , while the
synaptic drive closely follows the target patterns as shown in Fig. 1b. The spiking rate also provides
a closed description of the network activity, as described in equation (2). However, due to nonlinearity
in W , it learns only when the total input to a neuron is supra-threshold, i.e. the gradient of φ must be
positive. For this reason, the learning error cannot be controlled as tightly as the synaptic drive and
requires additional trials for successful learning as shown in Fig. 1d.

The second condition requires the target patterns to be sufficiently heterogeneous in time and across
neurons. Such complexity allows the ensemble of spiking activity to have a rich spatiotemporal struc-
ture to generate the desired activity patterns of every neuron within the network. In the perspective of
“reservoir computing”8,11,42, every neuron in a recurrent network is considered to be a read-out, and, at
the same time, part of the reservoir that is collectively used to produce desired patterns in single neu-
rons. The heterogeneity condition is equivalent to having a set of complete (or over-complete) basis
functions, i.e. φ(Uj + Ij), j = 1, ..., N in equation (1) and Rj , j = 1, ..., N in equation (2), to generate
the target patterns, i.e. the left hand side of equations (1) and (2). The two conditions are not necessarily
independent. Heterogeneous targets also foster asynchronous spiking activity that support quasi-static
dynamics.

We note that, although equations (1) and (2) describe the dynamical state in which the learning works
well, merely finding W that satisfies one of the equations does not guarantee that a spiking network with
recurrent connectivity W will produce the target dynamics. The recurrent connectivity W needs to be
trained iteratively as the network dynamics unfold in time to ensure that the target dynamics can be
generated in a stable manner8. Moreover, the equations explain how the target dynamics can be learned,
but does not address how recurrent spiking networks are able to encode such dynamic patterns.

2.1 Characterizing learning error

Learning errors can be classified into two categories. There are tracking errors, which arise because
the target is not a solution of the true spiking network dynamics and sampling errors, which arise from
encoding a continuous function with a finite number of spikes. We quantified these learning errors as
a function of the network and target time scales. The intrinsic time scale of spiking network dynamics
is the synaptic decay constant τs, and the time scale of target dynamics is the decay constant τc of OU
noise. We used target patterns generated from OU noise since the trajectories have a predetermined time
scale and their spatio-temporal patterns are sufficiently heterogeneous.

We systematically varied τs and τc from fast AMPA-like (∼ 1ms) to slow NMDA-like synaptic
transmission (∼ 100ms) and trained the synaptic drive of networks with synaptic time scale τs to learn
a set of OU trajectories with time scale τc. The parameter scan reveals a learning regime, where the
networks successfully encode the target patterns, and two error-dominant regimes. The tracking error
is prevalent when synapses are slow in comparison to target patterns, and the sampling error dominates
when the synapse is fast (Fig. 6a).

A network with a synaptic decay time τs = 200 ms fails to follow rapid changes in the target patterns,
but still captures the overall shape, when the target patterns have a faster time scale τc = 100 ms (Fig.
6b, Tracking error). This prototypical example shows that the synaptic dynamics are not fast enough to
encode the target dynamics in the tracking error regime. With a faster synapse τs = 30 ms, the synaptic
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Figure 6: Sampling and tracking errors. Synaptic drive was trained to learn 1 s long trajectories generated from OU
noise with decay time τc. (a) Performance of networks of size N = 500 as a function of synaptic decay time τs and
target decay time τc. (b) Examples of trained networks whose responses show sampling error, tracking error, and
successful learning. The target trajectories are identical and τc = 100 ms. (c) Inverted “U”-shaped curve as a function
of synaptic decay time. Error bars show the s.d. of five trained networks of size N = 500. (d) Inverted “U”-shaped
curve for networks of sizes N = 500 and 1000 for τc = 100 ms. (e) Network performance shown as a function of
τs/τc where the range of τs is from 30 ms to 500 ms and the range of τc is from 1 ms to 500 ms and N = 1000. (f)
Network performance shown as a function of 1/

√
Nτs where the range of τs is from 1 ms to 30 ms, the range of N is

from 500 to 1000 and τc = 100 ms.

drive is able to learn the identical target trajectories with high accuracy (Fig. 6b, Learning). However,
when the synapse is too fast τs = 5 ms, the synaptic drive fluctuates around the target trajectories with
high frequency (Fig. 6b, Sampling error). This is a typical network response in the sampling error
regime since discrete spikes with narrow width and large amplitude are summed to “sample” the target
synaptic activity.

To better understand how network parameters determine the learning errors, we mathematically an-
alyzed the errors assuming that (1) target dynamics can be encoded if the quasi-static condition holds,
and (2) the mean field description of the target dynamics is accurate (see Supplementary Notes). The
learning errors were characterized as a deviation of these assumptions from the actual spiking network
dynamics. We found that the tracking errors εtrack are substantial if the quasi-static condition is not valid,
i.e. synapses are not fast enough for spiking networks to encode targets, and the sampling errors εsample
occur if the mean field description becomes inaccurate, i.e. discrete representation of targets in terms of
spikes deviates from their continuous representation in terms of spiking rates. The errors are estimated
to scale with

εtrack ∼ τs/τc, εsample ∼ 1/
√
τsN, (3)

which imply that tracking error can be controlled as long as synapses are relatively faster than target
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Figure 7: Capacity as a function of network size. (a) Performance of trained networks as a function of target length
T for networks of size N = 500 and 1000. Target patterns were generated from OU noise with decay time τc = 100
ms. (b) Networks of fixed sizes trained on a range of target length and correlations. Color bar shows the Pearson
correlation between target and actual synaptic drive. The black lines show the function Tmax = T̃maxτc where T̃max

was fitted to minimize the least square error between the linear function and maximal target length Tmax that can be
successfully learned at each τc. (c) Learning capacity T̃max shown as a function of network size.

patterns, and the sampling error can be controlled by either increasing τs to stretch the width of individual
spikes or increasing N to encode the targets with more input spikes. The error estimates reveal the
versatility of recurrent spiking networks to encode arbitrary patterns since εtrack can be reduced by tuning
τs to be small enough and εsample can be reduced by increasing N to be large enough.

We examined the performance of trained networks to verify if the theoretical results can explain the
learning errors. The learning curve, as a function of τs, has an inverted U-shape when both types of
errors are present (Fig. 6c, d). Successful learning occurs in an optimal range of τs, and, consistent
with the error analysis, the performance decreases monotonically with τs on the right branch due to the
tracking error while increases monotonically with τs on the left branch due to the sampling error. The
tracking error is reduced if target patterns are slowed down from τc = 50 ms to τc = 200 ms, hence
decrease the ratio τs/τc. Then, the learning curve becomes sigmoidal, and the performance remains high
even when τs is in the slow NMDA regime (Fig. 6c). On the other hand, the sampling error is reduced
if the network size is increased from N = 500 to 1500, which lifts the left branch of the learning curve
(Fig. 6d). Note that when two error regimes are well separated, changes in target time scale τc does not
affect εsample, and changes in network size N does not affect εsample, as predicted.

Finally, we condensed the training results over a wide range of target time scales in the tracking
error regime (Fig. 6e), and similarly condensed the training results over different network sizes in the
sampling error regime (Fig. 6f) to demonstrate that τs/τc and Nτs explain the overall performance in
the tracking and sampling error regimes, respectively.

2.2 Learning capacity increases with network size

It has been shown that a recurrent rate network’s capability to encode target patterns deteriorates as a
function of the length of time9, but increase in network size can enhance its storage capacity32,43,44. Con-
sistent with these results, we find that the performance of recurrent spiking networks to learn complex
trajectories decreases with target length and improves with network size (Fig. 7a).

To assess the storage capacity of spiking networks, we evaluated the maximal target length that can be
encoded in a network as a function of network size. It was necessary to define the target length in terms
of its “effective length” to account for the fact that target patterns with the same length may have different
effective length due to their temporal structures; for instance, OU noise with short temporal correlation
times has more structure to be learned than a constant function. For target trajectories generated from
an OU process with decay time τc, we rescaled the target length T with respect to τc and defined the
effective length T̃ = T/τc. The capacity of a network is the maximal T̃ that can be successfully encoded
in a network.

To estimate the maximal T̃ , we trained networks of fixed size to learn OU trajectories while varying
T and τc (each panel in Fig. 7b). Then, for each τc, we find the maximal target length Tmax that can
be learned successfully, and estimate the maximal T̃ by finding a constant T̃max that best fits the line
Tmax = T̃maxτc to training results (black lines in Fig. 7b). Figure 7c shows that the learning capacity
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T̃max increases monotonically with the network size.
We can illustrate why this may be the case with a simple albeit non-rigorous counting argument.

Successful learning is achieved for the synaptic drive when equation (1) is satisfied. If we artificially
discretize time into P “quasi-static” bins then we can consider Ui(t) as a N × P matrix that satisfies a
matrix equation U = WV , where we treat V ≡ φ(U+I) as an independent matrix. If we operate on the
matrix equation with V T we find that a solution to this artificial system is possible if the matrix V V T is
invertible, which is possible if the rank of V V T is full. This argument then shows how increasing pattern
heterogeneity, which makes the rows of V less correlated, is beneficial for learning, and that learning
capability will decline as P increases, with a steep decline for P > N . If we ascribe quasi-static bin to
some fraction of the pattern correlation time then P will scale with the length of the time interval. In this
way, we can intuitively visualize the temporal storage capacity.

Discussion
We have shown that the synaptic drive and spiking rate of a network of spiking neurons can be trained
to follow any arbitrary spatiotemporal patterns. The necessary ingredients for learning are that the spike
train inputs to a neuron are weakly correlated (i.e. heterogeneous target patterns), the synapses are fast
enough (i.e. small tracking error), and the network is large enough (i.e. small sampling error and large
capacity). We demonstrated that (1) a balanced network consisting of excitatory and inhibitory neurons
can learn to track its strongly fluctuating innate synaptic trajectories, and (2) a recurrent spiking network
can learn to reproduce the spiking rate patterns of an ensemble of cortical neurons involved in motor
planning and movement.

Our scheme works because the network quickly enters a quasi-static state where the instantaneous
firing rate of a neuron is a fixed function of the inputs. Learning fails if the synaptic time scale is
slow compared to the time scale of the target, in which case the quasi-static condition is violated and the
tracking error becomes large. There is a trade-off between tracking error and sampling noise; fast synapse
can decrease the tracking error, but it also increases the sampling noise. Increasing the network size can
decrease sampling noise without affecting the tracking error. Therefore, by adjusting the synaptic time
scale and network size, it becomes possible to learn arbitrarily complex recurrent dynamics.

An important structural property of our network model is that the synaptic inputs are summed lin-
early, which allows the synaptic activity to be trained using a recursive form of linear regression8. Linear
summation of synaptic inputs is a standard assumption for many spiking network models21,22,27–29 and
there is physiological evidence that linear summation is prevalent45,46. Training the spiking rate, on the
other hand, does not take full advantage of the linear synapse due to the nonlinear current-to-transfer
function. The network is capable of following a wide repertoire of patterns because even though the
network dynamics are highly nonlinear, the system effectively reduces to a linear system for learning.
Moreover, learning capacity can be estimated using a simple solvability condition for a linear system.
However, nonlinear dendritic processing has been widely observed47,48 and may have computational
consequences14,49,50. It requires further investigation to find out whether a recurrent network with non-
linear synapses can be trained to learn arbitrary recurrent dynamics.

We note that our training scheme does not teach precise spike timings; it either trains the spiking
rate directly or trains the synaptic drive which in turn trains the spiking rate. The spike times can be
divergent from instance to instance, hence our learning scheme supports rate coding as opposed to spike
coding; we demonstrated that the same learning scheme can be used to train the recurrent dynamics of
rate-based networks. We find that spike trains that have temporally irregular structure across neurons
enhance the rate coding scheme by providing sufficient computational complexity to encode the target
dynamics. All neurons in the network can be trained to follow the same synaptic drive patterns as long as
there is sufficient heterogeneity, e.g. noisy external input, that decorrelates the spike trains of the neurons
(Supplementary Fig. S5).

Although our results confirm that recurrent spiking networks have the capability to generate a wide
range of repertoire of recurrent dynamics, it is unlikely that a biological network is using this particular
learning scheme. The learning rule derived from recursive least squares algorithm is very effective but
is nonlocal in time, i.e. it uses the activity of all presynaptic neurons within the train time window to
update synaptic weights. Moreover, each neuron in the network is assigned with a target signal and the
synaptic connections are updated at a fast time scale as the error function is computed in a supervised
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manner. It would be of interest to find out whether more biologically plausible learning schemes, such
as reward-based learning51–53, can lead to similar performance.

Our study provided conditions under which a spiking network can learn a wide range of target dy-
namics. Previous studies investigated the mathematical relationship between the patterns of stored fixed
points and the recurrent connectivity in simple network models54,55. It remains an open question to
classify possible target patterns that can be encoded in a spiking network and identify the class of con-
nectivity matrices that generates the target patterns in a dynamically stable manner.

Methods

1 Network of spiking neurons
We considered a network of N randomly and sparsely connected quadratic integrate-and-fire neurons
given by

τ v̇i = Ii(t) + ui(t) + v2
i (4)

where vi is a dimensionless variable representing membrane potential, Ii(t) is an applied input, ui(t) is
the total synaptic drive the neuron receives from other neurons in the recurrent network, and τ = 10 ms
is a neuron time constant. The threshold to spiking is zero input. For negative total input, the neuron is
at rest and for positive input, vi will go to infinity or “blow up” in finite time from any initial condition.
The neuron is considered to spike at vi =∞ whereupon it is reset to −∞56,57.

To simulate the dynamics of quadratic integrate-and-fire neurons, we used its phase representation,
i.e. theta neuron model, that can be derived by a simple change of variables, vi = tan(θi/2); its
dynamics are governed by

τ θ̇i = 1− cos θi + (Ii(t) + ui(t))(1 + cos θi), (5)

where a spike is emitted when θ(t) = π. The synaptic drive to a neuron obeys

τsu̇i(t) = −ui(t) +

N∑
j=1

Wijsj(t), (6)

where sj(t) =
∑
tkj<t

δ(t − tkj ) is the spike train neuron j generates up to time t, and τs is a synaptic
time constant.

The recurrent connectivity Wij describes the synaptic coupling from neuron j to neuron i. It can be
any real matrix but in many of the simulations we use a random matrix with connection probability p,
and the coupling strength of non-zero elements is modeled differently for different figures.

2 Training recurrent dynamics
To train the synaptic and spiking rate dynamics of individual neurons, it is more convenient to divide the
synaptic drive equation (6) into two parts; one that isolates the spike train of single neuron and computes
its synaptic filtering

τsṙi(t) = −ri(t) + si(t), (7)

and the other that combines all the presynaptic neurons’ spiking activity and computes the synaptic drive

ui(t) =

N∑
j=1

Wijrj(t). (8)

The synaptic drive ui and the filtered spike train ri are two measures of spiking activity that have been
trained in this study. Note that equations (7) and (8) generate synaptic dynamics that are equivalent to
equation (6).

Training procedure. We select N target trajectories f1(t), ..., fN (t) of length T ms for a recurrent
network consisting of N neurons. We train either the synaptic drive or spiking rate of individual neuron
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i to follow the target fi(t) over time interval [0, T ] for all i = 1, ..., N . External stimulus Ii with
amplitude sampled uniformly from [−1, 1] is applied to neuron i for all i = 1, 2, ..., N for 100 ms
immediately preceding the training to situate the network at a specific state. During training, the recurrent
connectivity W is updated every ∆t ms using a learning rule described below in order to steer the
network dynamics towards the target dynamics. The training is repeated multiple times until changes in
the recurrent connectivity stabilize.

2.1 Training synaptic drive

We modify the recurrent learning rule that was developed to train the recurrent connectivity of a network
of rate units using Recursive Least Squares (RLS) algorithm8,9. Our learning rule extends the RLS
algorithm to training the recurrent connectivity of spiking networks.

When learning the synaptic drive patterns, the objective is to find recurrent connectivity W that
minimizes the cost function

C[W ] =

∫ T

0

1

2
‖f(t)− u(t)‖2L2

dt+
λ

2
‖W‖2L2

, (9)

which measures the mean-square error between the targets and the synaptic drive over the time interval
[0, T ] plus a quadratic regularization term. To derive the learning rule, we use equation (8) to express u
as a function of W , view the synaptic connections Wi1, ...,WiN to neuron i to be the read-out weights
that determine the synaptic drive ui, and apply the learning rule to the row vectors of W . To keep the
recurrent connectivity sparse, learning occurs only on synaptic connections that are non-zero prior to
training (see Supplementary Notes for details).

Let wi(t) be the reduced row vector of W (t) consisting of elements that have non-zero connections
to neuron i prior to training. Similarly, let ri(t) be a (column) vector of filtered spikes of presynaptic
neurons that have non-zero connections to neuron i. The synaptic update to neuron i is

wi(t)
T = wi(t−∆t)T + ei(t)P (t)ri(t), (10)

where the error term is

ei(t) = fi(t)−wi(t−∆t)ri(t) (11)

and the inverse of the correlation matrix of filtered spike trains is

P (t) = P (t−∆t)− P (t−∆t)ri(t)ri(t)
TP (t−∆t)

1 + ri(t)TP (t−∆t)ri(t)
, P (0) = λ−1I. (12)

Finally, W (t) is obtained by concatenating the row vectors wi(t), i = 1, ..., N .

2.2 Training spiking rate

To train the spiking rate of neurons, we approximate the spike train si(t) of neuron i with its spiking rate
φ(ui(t) + Ii) where φ is the current-to-rate transfer function of theta neuron model. For constant input,

φ1(x) = π−1
√

[x]+ where [x]+ = max(x, 0), (13)

and for noisy input

φ2(x) =
1

π

√
c log(1 + ex/c). (14)

Since φ2 is a good approximation of φ1 and has a smooth transition around x = 0, we used φ ≡ φ2 with
c = 0.158. The objective is to find recurrent connectivity W that minimizes the cost function

C[W ] =

∫ T

0

1

2
‖f(t)− φ(Wr(t) + I)‖2L2

dt+
λ

2
‖W‖2L2

. (15)
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If we define wi and ri as before, we can derive the following synaptic update to neuron i

wT
i (t) = wT

i (t−∆t) + ei(t)P (t)r̃i(t), (16)

where the error term is

ei(t) = fi(t)− φ(wi(t−∆t)ri(t) + Ii) (17)

and

P (t) = P (t−∆t)− P (t−∆t)r̃i(t)r̃i(t)
TP (t−∆t)

1 + r̃i(t)TP (t−∆t)r̃i(t)
, P 0 = λ−1I. (18)

(see Supplementary Notes for details). Note that the nonlinear effects of the transfer function is included
in

r̃i(t) = φ′(ui(t) + Ii)ri(t), (19)

which scales the spiking activity of neuron i by its gain function φ′.
As before, W (t) is obtained by concatenating the row vectors wi(t), i = 1, ..., N .

3 Simulation parameters
Computer code. Example code is available at http://github.com/chrismkkim/SpikeLearning

Figure 1. A network of N = 200 neurons was connected randomly with probability p = 0.3 and the
coupling strength was drawn from a Normal distribution with mean 0 and standard deviation σ/

√
Np

with σ = 4. In addition, the average of all non-zero synaptic connections to a neuron was subtracted from
the connections to the neuron such that the summed coupling strength was precisely zero. Networks with
balanced excitatory and inhibitory connections produced highly fluctuating synaptic and spiking activity
in all neurons. The synaptic decay time was τs = 20 ms.

The target functions for the synaptic drive (Fig. 1b) were sine waves f(t) = A sin(2π(t − T0)/T1)
where the amplitude A, initial phase T0, and period T1 were sampled uniformly from [0.5, 1.5], [0, 1000
ms] and [300 ms, 1000 ms], respectively. We generated N distinct target functions of length T = 1000
ms. The target functions for the spiking rate (Fig. 1d) were π−1

√
[f(t)]+ where f(t) were the same

synaptic drive patterns that have been generated.
Immediately before each training loop, every neuron was stimulated for 50 ms with constant external

stimulus that had random amplitude sampled from [−1, 1]. The same external stimulus was used across
training loops. The recurrent connectivity was updated every ∆t = 2 ms during training using the
learning rule derived from RLS algorithm and the learning rate was λ = 1. After training, the network
was stimulated with the external stimulus to evoke the trained patterns. The performance was measured
by calculating the average Pearson correlation between target functions and the evoked network response.

Figure 2. The initial network and target functions were generated as in Figure 1 using the same param-
eters, but now the target functions consisted of two sets of N sine waves. To learn two sets of target
patterns, the training loops alternated between two patterns, and immediately before each training loop,
every neuron was stimulated for 50 ms with constant external stimuli that had random amplitudes, using
a different stimulus for each pattern. Each target pattern was trained for 100 loops (i.e. total 200 training
loops), synaptic update was every ∆t = 2 ms, and the learning rate was λ = 10. To evoke one of the
target patterns after training, the network was stimulated with the external stimulus that was used to train
that target pattern.

Figure 3. The network consisted of N = 500 neurons. The initial connectivity was sparsely connected
with connection probability p = 0.3 and coupling strength was sampled from a Normal distribution with
mean 0 and standard deviation σ/

√
Np with σ = 1. The synaptic decay time was τs = 20 ms.

We considered three families of target functions with length T = 1000 ms. The complex periodic
functions were defined as a product of two sine waves f(t) = A sin(2π(t−T0)/T1) sin(2π(t−T0)/T2)
whereA, T0, T1 and T2 were sampled randomly from intervals [0.5, 1.5], [0, 1000 ms], [500 ms, 1000 ms],
and [100 ms, 500 ms], respectively. The chaotic rate activity was generated from a network of N ran-
domly connected rate units, τ ẋi = −xi +

∑N
j=1Mijh(xj) where τ = 40 ms, h(x) = π−1

√
[x]+ and
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Mij is non-zero with probability p = 0.3 and is drawn from Gaussian distribution with mean zero and
standard deviation g/

√
Np with g = 5. The Ornstein-Ulenbeck process was obtained by simulating,

τcẋ = −x + sξ(t), N times with random initial conditions and different realizations of the white noise
ξ(t) satisfying 〈ξ〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′). The decay time constant was τc = 200 ms, and the
amplitude of target function was determined by s = 0.3.

The recurrent connectivity was updated every ∆t = 2 ms during training, the learning rate was
λ = 1, and the training loop was repeated 30 times.

Figure 4. A balanced network had two populations where the excitatory population consisted of (1 −
f)N neurons and the inhibitory population consisted of fN neurons with ratio f = 0.2 and network
size N = 1000. Each neuron received p(1 − f)N excitatory connections with strength J and pfN
inhibitory connections with strength −gJ from randomly selected excitatory and inhibitory neurons.
The connection probability was set to p = 0.1 to have sparse connectivity. The relative strength of
inhibition to excitation g was set to 5 so that the network was inhibition dominant22. In Figure 4a-h,the
initial coupling strength J = 6 and synaptic decay time τs = 60 ms were adjusted to be large enough,
so that the synaptic drive and spiking rate of individual neurons fluctuated strongly and slowly prior to
training.

After running the initial network that started at random initial conditions for 3 seconds, we recorded
the synaptic drive of all neurons for 2 seconds to harvest target trajectories that are innate to the balanced
network. Then, the synaptic drive was trained to learn the innate trajectories, where synaptic update
occurred every 10 ms, learning rate was λ = 10 and training loop was repeated 40 times. To respect
Dale’s Law while training the network, we did not modify the synaptic connections if the synaptic
update reversed the sign of original connections, either from excitatory to inhibitory or from inhibitory
to excitatory. Moreover, the synaptic connections that attempted to change their signs were excluded
in subsequent trainings. In Figure 4h, the initial and trained connectivity matrices were normalized by
a factor

√
[(1− f)J2 + f(gJ)2](1− p) so that the spectral radius of the initial connectivity matrix is

approximately 1, then we plotted the eigenvalue spectrum of the normalized matrices.
In Figure 4i, the coupling strength J was scanned from 1 to 6 in increments of 0.25, and the synaptic

decay time τs was scanned from 5 ms to 100 ms in increments of 5 ms. To measure the accuracy of
quasi-static approximation in untrained networks, we simulated the network dynamics for each pair of
J and τs, then calculated the average Person correlation between the predicted synaptic drive (equation
(1)) and the actual synaptic drive. To measure the performance of trained networks, we repeated the
training 10 times using different initial network configurations and innate trajectories, and calculated the
Pearson correlation between the innate trajectories and the evoked network response for all 10 trainings.
The heat map shows the best performance out of 10 trainings for each pair, J and τs.

Figure 5. The initial connectivity was sparsely connected with connection probability p = 0.3 and the
coupling strength was sampled from a Normal distribution with mean 0 and standard deviation σ/

√
Np

with σ = 1. The synaptic decay time was τs = 50 ms. There were in total N neurons in the network
model, of which Ncor neurons, called cortical neurons, were trained to learn the spiking rate patterns of
cortical neurons, and Naux neurons, called auxiliary neurons, were trained to learn trajectories generated
from OU process.

We used the trial-averaged spiking rates of neurons recorded in the anterior lateral motor cortex of
mice engaged in motor planning and movement that lasted 4600 ms5. The data was available from the
website CRCNS.ORG40. We selected Ncor = 227 neurons from the data set, whose average spiking rate
during the behavioral task was greater than 5 Hz. Each cortical neuron in the network model was trained
to learn the spiking rate pattern of one of the real cortical neurons.

To generate target rate functions for the auxiliary neurons, we simulated an OU process, τcẋ(t) =
−x(t) + sξ(t), with τc = 800 ms and s = 0.1, then converted into spiking rate φ([x(t)]+) and low-pass
filtered with decay time τs to make it smooth. Each auxiliary neuron was trained on 4600 ms-long target
rate function that was generated with a random initial condition.

Figures 6, 7. Networks consisting of N = 500 neurons with no initial connections and synaptic decay
time τs were trained to learn OU process with decay time τc and length T . In Figure 6, target length
was fixed to T = 1000 ms while the time constants τs and τc were varied systematically from 100 ms to
5 · 102 ms in log-scale. The trainings were repeated 5 times for each pair of τs and τc to find the average
performance. In Figure 7, the synaptic decay time was fixed to τs = 20 ms and T was scanned from
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250 ms to 5000 ms in increments of 250 ms, τc was scanned from 25 ms to 500 ms in increments of 25
ms, and N was scanned from 500 to 1000 in increments of 50.

To ensure that the network connectivity after training is sparse, synaptic learning occurred only on
connections that were randomly selected with probability p = 0.3 prior to training. Recurrent connec-
tivity was updated every ∆t = 2 ms during training, learning rate was λ = 1, and training loop was
repeated 30 times. The average Pearson correlation between the target functions and the evoked synaptic
activity was calculated to measure the network performance after training.
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Learning to represent signals spike by spike. arXiv preprint arXiv:1703.03777, 2017.

[18] Ralph Bourdoukan and Sophie Deneve. Enforcing balance allows local supervised learning in
spiking recurrent networks. In Advances in Neural Information Processing Systems, pages 982–
990, 2015.
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Supplementary notes

1 Training recurrent dynamics
Here, we derive the synaptic update rules for the synaptic drive and spiking rate trainings, (10) and (16).
We use RLS algorithm33 to learn target functions fi(t), i = 1, 2, ..., N defined on a time interval [0, T ],
and the synaptic update occurs at evenly spaced time points, 0 = t0 ≤ t1... ≤ tK = T .

In the following derivation, super-script k on a variable Xk
i implies that X is evaluated at tk, and the

sub-script i implies that X pertains to neuron i.

1.1 Training synaptic drive

The cost function measures the discrepancy between the target functions fi(t) and the synaptic drive
ui(t) for all i = 1, ..., N at discrete time points t0, ..., tK ,

C [W ] =
1

2

K∑
k=0

‖fk − uk‖2L2
+
λ

2
‖W‖2L2

. (20)

The Recursive Least Squares (RLS) algorithm solves the problem iteratively by finding a solution Wn

to (20) at tn and updating the solution at next time step tn+1. We do not directly find the entire matrix
Wn, but find each row of Wn, i.e. synaptic connections to each neuron i that minimize the discrepancy
between ui and fi, then simply combine them to obtain Wn.

To find the ith row ofWn, we denote it by wn
i and rewrite the cost function for neuron i that evaluates

the discrepancy between fi(t) and ui(t) on a time interval [0, tn],

C [wn
i ] =

1

2

n∑
k=0

(fki −wn
i · rk)2 +

λ

2
‖wn

i ‖2L2
. (21)

Calculating the gradient and setting it to 0, we obtain

0 = ∇wn
i
C = −

n∑
k=1

(ûki −wn
i · rk)rk + λwn

i

We express the equation concisely as follows.[
Rn + λI

]
wn
i = qn

Rn =

n∑
k=1

rk(rk)T , qn =

n∑
k=1

ûki r
k.

(22)

To find wn
i iteratively, we rewrite equation (22) up to tn−1,[

Rn−1 + λI
]
wn−1
i = qn−1, (23)

and subtract equations (22) and (23) to obtain[
Rn + λI

]
[wn

i −wn−1
i ] + rn(rn)Twn−1

i = ûni r
n. (24)

The update rule for wn
i is then given by

wn
i = wn−1

i + eni
[
Rn + λI

]−1
rn, (25)

where the error term is

eni = fni − rn ·wn−1
i . (26)

The matrix inverse Pn = [Rn + λI]−1 can be computed iteratively

Pn = Pn−1 − Pn−1rn(rn)TPn−1

1 + (rn)TPn−1rn
, P 0 = λ−1I,

using the matrix identity

(A+ rrT )−1 = A−1 − A−1rrTA−1

1 + rTA−1r
.
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1.2 Training spiking rate

To train the spiking rate of neurons, we approximate the spike train si(t) of neuron i with its spiking rate
φ(ui(t) + Ii) where φ is the current-to-rate transfer function of theta neuron model. For constant input,

φ1(x) = π−1
√

[x]+ where [x]+ = max(x, 0), (27)

and for noisy input

φ2(x) =
1

π

√
c log(1 + ex/c). (28)

Since φ2 is a good approximation of φ1 and has a smooth transition around x = 0, we used φ ≡ φ2 with
c = 0.158.

If the synaptic update occurs at discrete time points, t0, ..., tK , the objective is to find recurrent
connectivity W that minimizes the cost function

C[W ] =
1

2

K∑
k=0

‖fk(t)− φ(Wrk(t) + I)‖2L2
+
λ

2
‖W‖2L2

. (29)

As in training the synaptic drive, we optimize the following cost function to train each row of Wn

that evaluates the discrepancy between the spiking rate of neuron i and the target spiking rate fi over a
time interval [0, tn],

C[wn
i ] =

1

2

n∑
k=1

(fki − φ(wn
i · rk + Iki ))2 +

λ

2
|wn

i |2. (30)

Calculating the gradient and setting it to zero, we obtain

0 = ∇wn
i
C = −

n∑
k=1

[fki − φ(wn
i · rk + Iki )]r̃ki + λwn

i . (31)

where

r̃ki = φ′(uki + Iki )rk (32)

is the vector of filtered spike trains scaled by the gain of neuron i. Note that when evaluating φ′ in
equation (32), we use the approximation uki ≈ wn

i · rk to avoid introducing nonlinear functions of wn
i .

To find an update rule for wn
i , we rewrite equation (31) up to tn−1,

0 = −
n−1∑
k=1

[fki − φ(wn−1
i · rk + Iki )]r̃ki + λwn−1

i , (33)

and subtract equations (31) and (33) and obtain

0 =

n∑
k=1

[
φ(wn

i · rk + Iki )− φ(wn−1
i · rk + Iki )

]
r̃ki

−
[
fni − φ(wn−1

i · rn + Ini )
]
r̃ki + λ[wn

i −wn−1
i ].

(34)

Since wn−1
i is updated by small increment, we can approximate the first line in equation (34),

φ(wn
i · rk + Iki )− φ(wn−1

i · rk + Iki ) ≈ [wn
i −wn−1

i ] · r̃ki (35)

where we use the approximation uki ≈ wn
i · rk as before to evaluate the derivative φ′. Substituting

equation (35) to equation (34), we obtain the update rule

wn
i = wn−1

i + eni [Rn + λI]−1r̃ni , (36)
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where the error is

eni = fni − φ(wn−1
i · rn + Ini ), (37)

and the correlation matrix of the normalized spiking activity is

Rn =

n∑
k=1

r̃ki (r̃ki )T . (38)

As shown above, the matrix inverse Pn = [Rn + λI]−1 can be computed iteratively,

Pn = Pn−1 − Pn−1r̃ni (r̃ni )TPn−1

1 + (r̃ni )TPn−1r̃ni
, P 0 = λ−1I.

2 Mean field description of the quasi-static dynamics
We say that a network is in a quasi-static state if the synaptic drive to a neuron changes sufficiently slower
than the dynamical time scale of neurons and synapses. Here, we use a formalism developed by Buice
and Chow41 and derive equations (1) and (2), which provide a mean field description of the synaptic and
spiking rate dynamics of neurons in the quasi-static state.

First, we recast single neuron dynamic equation (5) in terms of the empirical distribution of neuron’s
phase ηi(θ, t) = δ(θi(t) − θ). Since the number of neurons in the network is conserved, we can write
the Klimontovich equation for the phase distribution

∂tηi(θ, t) + ∂θ[F (θ, ui + Ii)ηi(θ, t)] = 0 (39)

where F (θ, I) = 1− cos θ + I(1 + cos θ). The synaptic drive equation (6) can be written in the form

τsu̇i(t) = −ui(t) + 2

N∑
j=1

Wijηj(π, t) (40)

since sj(t) = ηj(π, t)θ̇|θj=π and θ̇j |θj=π = 2 for a theta neuron model. Equation (39), together with
(40), fully describes the network dynamics.

Next, to obtain a mean field description of the spiking dynamics, we take the ensemble average
prepared with different initial conditions and ignore the contribution of higher order moments resulting
from nonlinear terms 〈uiηi〉. Then we obtain the mean field equation

∂tρ(θ, t) + ∂θ[F (θ, Ui + Ii)ρi(θ, t)] = 0 (41)

τsU̇i = −Ui + 2

N∑
j=1

Wijρj(π, t). (42)

where 〈ui〉 = Ui and 〈ηi〉 = ρi. We note that the mean field equations (41) and (42) provide a good
description of the trained network dynamics becauseW learns over repeatedly training trials and starting
at random initial conditions, to minimize the error between target trajectories and actual neuron activity.

Now, we assume that the temporal dynamics of synaptic drive and neuron phase can be suppressed
in the quasi-static state,

τsU̇i ≈ 0, ∂tρ ≈ 0. (43)

Substituting (43) to equation (41), but allowing U(t) to be time-dependent, we obtain the quasi-static
solution of phase density

ρi(θ, t) =

√
[Ui(t) + Ii]+

π[1− cos θ + (Ui(t) + Ii)(1 + cos θ)]
, (44)

which has been normalized such that
∫ π
−π ρi(θ)dθ = 1, and the spiking rate of a neuron is given by

φ(Ui(t) + Ii) = 2ρi(π, t) =
√

[Ui(t) + Ii]+/π, (45)
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the current-to-rate transfer function of a theta neuron model. Substituting (43) and (45) to equation (42),
we obtain a quasi-static solution of the synaptic drive

Ui(t) =

N∑
j=1

Wijφ(Uj(t) + Ij). (46)

If we define the spiking rate of a neuron as Ri(t) = φ(Ui + Ii), we immediately obtain

Ri(t) = φ
( N∑
j=1

WijRj + Ii

)
. (47)

3 Analysis of learning error
In this section, we identify and analyze two types of learning errors, assuming that for sufficiently het-
erogeneous targets, (1) the learning rule finds a recurrent connectivityW that can generate target patterns
if the quasi-static condition holds, and (2) the mean field description of the spiking network dynamics is
accurate due to the error function and repeated training trials. These assumptions imply that equations
(46) and (47) hold for the target patterns Ui(t) and the trained W . We show that learning errors arise
when our assumptions become inaccurate, hence the network dynamics described by equations (46) and
(47) deviate from the actual spiking network dynamics. As we will see, tracking error is prevalent if the
target is not an exact solution of the mean field dynamics (i.e. quasi-static approximation fails), and the
sampling error dominates if the discrete spikes do not accurately represent continuous targets (i.e. mean
field approximation fails).

Suppose we are trying to learn a target ûi which obeys an Ornstein-Ulenbeck process(
τc
d

dt
+ 1

)
ûi = ξi(t) (48)

on a time interval 0 < t < T where ξi(t) are independent white noise with zero mean and variance
σ2. The time constant τc determines the temporal correlation of a target trajectory. In order for perfect
training, the target dynamics (48) needs to be compatible with the network dynamics (6); in other words,
there must exist a recurrent connectivity W such that the following equation(

τs
d

dt
+ 1

)
ûi(t) =

N∑
j=1

Wijs[ûj(t)] (49)

obtained by substituting the solution of (48) into (6) must hold for 0 < t < T . Here, s[ûj(t)] maps the
synaptic drive ûj(t) to the entire spike train sj(t).

It is very difficult to findW that may solve equation (49) exactly since it requires fully understanding
the solution space of a high dimensional system of nonlinear ordinary differential equations. Instead, we
assume that the target patterns are quasi-static and the learning rule finds a recurrent connectivity W that
satisfies

ûi(t) =

N∑
j=1

Wijφ(ûj(t)). (50)

We then substitute equation (50) to equation (49) to estimate how the quasi-static mean field dynamics
deviate from the actual spiking network dynamics. A straightforward calculation shows that

ûi(t)−
N∑
j=1

Wijφ(ûj(t)) + εtrack + εsample = 0 (51)

where we define the tracking and sampling errors as

εtrack = τs
dûi
dt

(52)
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and

εsample =

N∑
j=1

Wij(φ(ûj(t))− s[ûj(t)]) (53)

on the time interval 0 < t < T .

Tracking error. From its definition, εtrack captures the deviation of the quasi-static solution (50) from
the exact solution of the mean field description obtained when εsample = 0. εtrack becomes large if the
quasi-static condition (43) fails and, in such network state, the synaptic dynamic is not able to “track”
the target patterns, thus learning is obstructed. In the following, we estimate εtrack in terms of two time
scales τs and τc.

First, we take the Fourier transform of equation (52) and obtain

F [εtrack](ω) = iτsω · F [û](ω). (54)

Next, normalize F [εtrack] with respect to F [û] to estimate the tracking error for target patterns with
different amplitudes, then compute the power of normalized tracking error.

1

Ω

∫ Ω

0

∥∥∥∥F [εtrack]

F [û]

∥∥∥∥ dω =
1

2
τsΩ

∣∣∣
Ω=Ωc

=
1

4π

τs
τc

(55)

where Ωc = 1/(2πτc) is the cut-off frequency of the power spectrum of a Gaussian process, SGP (ω) =
σ2τ2

c /(1 + 4π2τ2
c ω). Thus, the tracking error scales with τs/τc.

Sampling error. εsample captures how the actual representation of target patterns in terms of spikes
deviates from their continuous representation in terms of rate functions. In the following, we estimate
εsample in terms of τs andN under the assumption that the continuous representation provides an accurate
description of the target patterns.

We low-pass filtered εsample to estimate the sampling error since the synaptic drive (i.e. the target
variable in this estimate) is a W weighted sum of filtered spikes with width that scales with τs. If the
spike trains of neurons are uncorrelated (i.e. cross product terms are negligible),

Var[εfiltered
sample] =

N∑
j=1

W 2
ij〈(r̄j − rj(t))2〉 (56)

where rj(t) is the filtered spike train and r̄j = 〈rj(t)〉 = 1
∆t

∫ tk+1

tk
rj(s)ds is the empirical estimate of

mean spiking rate on a short time interval.
First, we calculate the fluctuation of filtered spike trains under the assumption that a neuron generates

spikes sparsely, hence the filtered spikes are non-overlapping. Let sj(t) =
∑
k δ(t− tkj ) be a spike train

of neuron j and the filtered spike train rj(t) = 1
τs

∑
k exp(−(t − tkj )/τs)H(t − tkj ). Then, the rate

fluctuation of neuron j is

〈(rj(t)− r̄j)2〉 = 〈r2
j (t)〉 − r̄2 (57)

=
1

τ2
s

∑
k

〈exp(−2(t− tkj )/τs)H(t− tkj )〉 − r̄2 (58)

= r̄j

( 1

2τs
− r̄j

)
(59)

where k is summed over the average number of spikes, r̄j∆t, generated in the time interval of length ∆t.
Next, to estimate the effect of network size on the sampling error, we examined equation (50) and ob-

served thatO(W ) ∼ 1/N . This follows from that, for pre-determined target patterns,O(U), O(φ(U)) ∼
1 regardless of the network size, henceO(W ) must scale with 1/N in order for both sides of the equation
to be compatible. If the network is dense, i.e. the number of synaptic connections to a neuron is pN on
average, then the sampling error scales as follows.

O
(

Var[εfiltered
sample]

)
∼

N∑
j=1

O(W 2
ij)O(〈(r̄j − rj(t))2〉) ∼ 1

τsN
(60)
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Supplementary figures

a Pre-training

300 ms

b Post-training

300 ms

Figure S1: Learning arbitrarily complex target patterns in a network of rate-based neurons. The network dynamics
obey τ ẋi = −xi +

∑N
j=1Wijrj + Ii where rj = tanh(xj). The synaptic current xi to every neuron in the network

was trained to follow complex periodic functions f(t) = A sin(2π(t− T0)/T1) sin(2π(t− T0)/T2) where the initial
phase T0 and frequencies T1, T2 were selected randomly. The elements of initial connectivity matrix Wij were drawn
from a Gaussian distribution with mean zero and standard deviation σ/

√
Np where σ = 2 was strong enough to

induce chaotic dynamics; Network size N = 500, connection probability between neurons p = 0.3, and time constant
τ = 10 ms. External input Ii with constant random amplitude was applied to each neuron for 50 ms (blue) and was set
to zero elsewhere. (a) Before training, the network is in chaotic regime and the synaptic current (black) of individual
neurons fluctuates irregularly. (b) After learning to follow the target trajectories (red), the synaptic current tracks the
target pattern closely in response to the external stimulus.
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Figure S2: Training a network that has no initial connections. The coupling strength of the initial recurrent connectivity
is zero, and, prior to training, no synaptic or spiking activity appears beyond the first few hundred milliseconds. (a)
Training synaptic drive patterns using the RLS algorithm. Black curves show the actual synaptic drive of 10 neurons
and red curves show the target outputs. Blue shows the 100 ms external stimulus. (b) Correlation between synaptic
drive and target function (top) and the Frobenius norm of changes in recurrent connectivity normalized to initial
connectivity during training (botom). (c)-(d) Same as in (a) and (b), but spiking rate patterns are trained.
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Figure S3: Learning target patterns with low population spiking rate. The synaptic drive of networks consisting of 500
neurons were trained to learn complex periodic functions f(t) = A sin(2π(t−T0)/T1) sin(2π(t−T0)/T2) where the
initial phase T0 and frequencies T1, T2 were selected randomly from [500 ms, 1000 ms]. (a) The amplitude A = 0.1,
resulting in population spiking rate 2.8 Hz in trained window. (b) The amplitude A = 0.05, resulting in population
spiking rate 1.5 Hz in trained window. (c) The amplitude A = 0.01, resulting in population spiking rate 0.01 Hz in
trained window and learning fails.
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Figure S4: Learning recurrent dynamics with leaky integrate-and-fire and Izhikevich neuron models. Synaptic drive
of a network of spiking neurons were trained to follow 1000 ms long targets f(t) = A sin(2π(t−T0)/T1) sin(2π(t−
T0)/T2) where T0, T1 and T2 were selected uniformly from the interval [500 ms, 1000 ms]. (a) Network consisted
of N = 200 leaky integrate-and-fire neuron models, whose membrane potential obeys v̇i = −(vi − Ii)/τ + ui with
a time constant τ = 10 ms; the neuron spikes when vi exceeds spike threshold vthr = −50 mV then vi is reset to
vres = −65 mV. Red curves show the target pattern and black curves show the voltage trace and synaptic drive of
a trained network. (b) Spike rastergram of a trained leaky integrate-and-fire neuron network generating the synaptic
drive patterns. (c) Network consisted ofN = 200 Izhikevich neurons, whose dynamics are described by two equations
v̇i = 0.04v2

i + 5vi + 140−wi + Ii + ui and ẇi = a(bvi −wi); the neuron spikes when vi exceeds 30 mV, then vi is
reset to c and wi is reset to wi+d. Neuron parameters a, b, c and d were selected as in the original study59 so that there
were equal numbers of regular spiking, intrinsic bursting, chattering, fast spiking and low threshold spiking neurons.
Synaptic current ui is modeled as in equations (6) for all neuron models with synaptic decay time τs = 30 ms. Red
curves show the target patterns and black curves show the voltage trace and synaptic drive of a trained network. (d)
Spike rastergram of a trained Izhikevich neuron network showing the trained response of different cell types.
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Figure S5: Synaptic drive of a network of neurons is trained to learn an identical sine wave while external noise
generated independently from OU process is injected to individual neurons. The same external noise (gray curves)
is applied repeatedly during and after training. (a)-(b) The amplitude of external noise is varied from (a) low , (b)
medium to (c) high. The target sine wave is shown in red and the synaptic drive of neurons are shown in black. The
raster plot in (c) shows the ensemble of spike trains of a successfully trained network with strong external noise.

30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2018. ; https://doi.org/10.1101/297424doi: bioRxiv preprint 

https://doi.org/10.1101/297424
http://creativecommons.org/licenses/by/4.0/

