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Abstract 7 

Adverse drug reactions have been linked with genetic polymorphisms in HLA genes in numerous 8 

different studies. HLA proteins have an essential role in the presentation of self and non-self peptides, 9 

as part of the adaptive immune response. Amongst the associated drugs-allele combinations, anti-HIV 10 

drug Abacavir has been shown to be associated with the HLA-B*57:01 allele, and anti-epilepsy drug 11 

Carbamazepine with B*15:02, in both cases likely following the altered peptide repertoire model of 12 

interaction. Under this model, the drug binds directly to the antigen presentation region, causing 13 

different self peptides to be presented, which trigger an unwanted immune response. There is growing 14 

interest in searching for evidence supporting this model for other ADRs using bioinformatics 15 

techniques. In this study, in silico docking was used to assess the utility and reliability of well-known 16 

docking programs when addressing these challenging HLA-drug situations. Four docking programs: 17 

SwissDock, ROSIE, AutoDock Vina and AutoDockFR, were used to investigate if each software 18 

could accurately dock the Abacavir back into the crystal structure for the protein arising from the 19 

known risk allele, and if they were able to distinguish between the HLA-associated and non-HLA-20 

associated (control) alleles. The impact of using homology models on the docking performance and 21 

how using different parameters such as including receptor flexibility affected the docking 22 

performance, were also investigated to simulate the approach where a crystal structure for a given 23 

HLA allele may be unavailable. The programs that were best able to predict the binding position of 24 

Abacavir were then used to recreate the docking seen for Carbamazepine with B*15:02 and controls 25 

alleles.  26 
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It was found that the programmes investigated were sometimes able to correctly predict the binding 27 

mode of Abacavir with B*57:01 but not always. Each of the software packages that were assessed 28 

could predict the binding of Abacavir and Carbamazepine within the correct sub-pocket and, with the 29 

exception of ROSIE, was able to correctly distinguish between risk and control alleles. We found that 30 

docking to homology models could produce poorer quality predictions, especially when sequence 31 

differences impact the architecture of predicted binding pockets. Caution must therefore be used as 32 

inaccurate structures may lead to erroneous docking predictions.  Incorporating receptor flexibility 33 

was found to negatively affect the docking performance for the examples investigated. Taken 34 

together, our findings help characterise the potential but also the limitations of computational 35 

prediction of drug-HLA interactions. These docking techniques should therefore always be used with 36 

care and alongside other methods of investigation, in order to be able to draw strong conclusions from 37 

the given results.  38 

1. Introduction 39 

An adverse drug reaction (ADR) is a harmful or unpleasant reaction, resulting from the use of 40 

medicinal products. Type A reactions are those that are dose-related. Idiosyncratic drug reactions 41 

(IDRs) or Type B hypersensitivity reactions are dose-independent, occurring in some but not all 42 

people [1]. The incidence of ADRs have increased globally from 2.2 million in 1994 to 10 million in 43 

2014 [2]. This is therefore a very important issue which needs to be addressed. 44 

These ADRs have been linked with specific Human Leukocyte Antigens (HLA) in numerous studies, 45 

whereby individuals carrying particular alleles of HLA genes are at higher risk of developing adverse 46 

reactions to particular drugs [3-5]. HLA gene products play a key role in the adaptive immune 47 

response, presenting peptides (self and non-self) to a T cell complex to elicit a response when needed. 48 

The HLA system is highly variable, both in individuals and in populations. Individuals carry multiple 49 

HLA genes with similar functions: A, B, C in class I, or DRA, DRB, DQA, DQB and others in class 50 

II. Class I gene products are responsible for presentation of peptides from pathogens internal to cells, 51 

such as viruses. Class II gene products present peptides from extracellular pathogens. 52 

HLA alleles are given a unique identifier, following a detailed and well-established nomenclature 53 

system, such as ‘HLA-B*57:01’. The identifier always has the prefix HLA- and then the gene 54 
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identifier (A, B, C for class I HLA genes, or DRA, DRB, DQA, DQB and others for class II HLA 55 

genes) followed by a “*” separator and a set of numbers separated into groups. The first two numbers 56 

after the ‘*’ separator give the allele group, originally defined by serotyping, and the next two 57 

numbers following ‘:’ are unique for the specific HLA protein sequence. Further sets of digits are 58 

possible after additional colon separators i) to identify alleles different at the exon (DNA)-level but 59 

causing no change to the protein sequence (synonymous substitutions), and then ii) for substitutions in 60 

intronic regions e.g. ‘HLA-B*57:01:01:01’. For consideration of HLA-ADRs, four digit resolution 61 

(i.e. resolved to the protein sequence level only) is generally considered sufficient [6]. 62 

The role of HLA in ADRs has been hypothesised in three main ways. The Hapten model predicts that 63 

the drug binds covalently to a self protein, and is processed via HLA molecules to the presented 64 

peptide; this drug-protein combination then being recognised as being non-self and initiating an 65 

immune response. The Pharmacological Interaction (PI) model predicts that the drug binds non-66 

covalently, directly to the immune receptors; mainly T-cell receptors or HLA. The Altered Peptide 67 

Repertoire model states that the drug interacts with the HLA molecule directly and non-covalently, 68 

leading to a different self-peptide set being presented, which is recognised as foreign, and thus 69 

eliciting the immune reaction [7]. Illing et al. showed that the Abacavir modifies the anchor residue 70 

for the binding peptide in the F-pocket, altering the binding specificity for peptides in B*57:01 but not 71 

B*57:03 [8]. 72 

ADRs are associated with different HLA alleles for numerous different drugs. The ‘HLA and Adverse 73 

Drug Reactions’ database on the Allele Frequency Net Database website [9, 10] allows users to search 74 

for studies showing associations between different HLA alleles and ADRs. The current, most strongly 75 

associated ADR is that of Abacavir (an anti-retroviral drug) with HLA-B*57:01. If certain alleles 76 

have been significantly associated with ADRs, patients can be screened prior to being given the drug 77 

to predict if an ADR is likely to occur. Mallal et al. showed how screening for HLA-B*57:01 alleles 78 

can reduce the risk of hypersensitivity reactions in patients receiving Abacavir [11]. While there is 79 

still some disagreement which of the models best explains how they interact with drugs to cause 80 

ADRs, Illing at al. have demonstrated the Altered Peptide Repertoire model with high confidence for 81 

Abacavir, including a crystal structure of Abacavir bound to the antigen presenting region of HLA-82 

B*57:01, as well as proteomics evidence for different peptides being presented than in the unbound 83 
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case. As a result, many researchers investigating ADRs now work under the assumption that this 84 

hypothesis explains a high proportion of HLA ADRs observed, although much debate continues. 85 

There is therefore considerable and growing interest in searching for evidence supporting this mode 86 

for other ADRs using modelling and bioinformatics techniques, for example using in silico molecular 87 

docking [8, 12-15]. 88 

Molecular docking is used to predict the preferred orientation of a molecule when bound to another in 89 

a stable complex. Most docking programs assume the target to be rigid and allow ligand flexibility 90 

[16]. Protein-ligand docking can be used to aid understanding of biological processes and drug design 91 

[17, 18]. Docking gives a prediction of the structure of the ligand-receptor complex using 92 

computational methods by first sampling the conformations of the ligand in the active site and then 93 

ranking these conformations using a scoring function as a proxy for the free energy of interaction 94 

[19]. 95 

Molecular docking is being used increasingly commonly for investigating HLA-mediated ADRs [8, 96 

12, 13, 15, 20-25]. The HLA structure presents unusual challenges for molecular docking protocols. 97 

HLAs bind peptides in a long hydrophobic cleft formed between the α-helices and β-sheet platform. 98 

This cleft is much larger than the naturally evolved binding sites that proteins have for small organic 99 

molecules. The polymorphic residues located along this cleft determine the size and stereochemistry 100 

of the subsites [26]. The peptide binding groove contains six subsites (Fig 1). The specificity of 101 

peptide binding is determined by the interactions between anchor residues on the peptide side chains 102 

and two or more of these subsites [27]. Therefore care must be taken when using docking methods to 103 

investigate these complex cases. The purpose of this exercise is to compare multiple docking 104 

programs to assess their performance on the challenging HLA-ADR cases. 105 

Fig 1. Organisation of the subsites along the HLA peptide binding groove. The peptide-binding 106 

groove of the HLA molecule is separated into 6 different pockets (A-F) [28, 29] , as shown here. 107 

Image created using PyMOL [30]. 108 

Four different freely available and commonly used programs were used for docking the compounds 109 

with the target alleles – SwissDock, ROSIE, AutoDock Vina and AutoDockFR, as follows. 110 
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The SwissDock [31] server is an online tool based on the EADock DSS [32] engine. Target and 111 

ligand structures can be automatically prepared for docking through the server. Target structures can 112 

be selected via PDB records, or user-defined structures can be uploaded in various supported formats. 113 

Ligands can be selected through the ZINC database or by uploading structure files. A range of 114 

docking parameters can be set, including docking type, enabling the user to select a desired docking 115 

time and exhaustiveness, and defining the search space [31]. Due to it being an online tool, it is very 116 

accessible and can be used without the technical knowledge required for some of the more complex 117 

software. 118 

The Rosetta Online Server that Includes Everyone (ROSIE) is an online version of the Rosetta 3 119 

software. The server includes different Rosetta protocols, including RosettaLigand which allows small 120 

molecules to be docked into proteins. The target structure must be provided in PDB format. For best 121 

results, residues that Rosetta does not natively recognise (e.g. waters, co-factors or metal ions) should 122 

be removed prior to submission. An SDF file containing the conformers of a single ligand should also 123 

be provided. The approximate location of the binding site should also be specified, as RosettaLigand 124 

cannot perform binding site detection. Again, multiple parameters can be selected [33, 34]. 125 

Finally, two versions of AutoDock were also used, both tools that can be installed and run locally. 126 

AutoDock Vina was shown to be a strong competitor against six other programs when tested against a 127 

virtual screening benchmark [35]. The latest AutoDock software, AutoDockFR was also used. 128 

AutoDockFR uses a genetic algorithm and scoring function based on the AutoDock4 scoring function. 129 

This program differs from the others as it takes into account receptor flexibility by allowing the user 130 

to specify flexible residues within the target structure, this allows the program to simulate induced fit 131 

caused by ligand binding where changes occur mainly in the residues side chains. This software was 132 

shown to outperform AutoDock Vina for tested datasets [36]. For both of the AutoDock versions, 133 

target and ligand structures are to be provided in PDBQT format. The search space, including the 134 

binding site, must also be specified with other optional parameters also available. AutoDock is 135 

commonly used for in-silico docking of associated drugs with HLA alleles. It is therefore important to 136 

assess the reliability of the different versions of this program when using the complex HLA structure 137 

examples. 138 
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Two drugs were investigated. Abacavir, an anti-retroviral drug used to supress HIV replication, is the 139 

most widely investigated drug associating ADRs with HLA. It has been shown that there is a genetic 140 

association between HLA-B*57:01 and Abacavir [4, 37, 38]. The ADR is thought to be driven by the 141 

activation of CD8+ T cells [39]. The mechanism of Abacavir binding has been experimentally 142 

validated by X-ray crystallography and shown to correspond with the altered peptide repertoire 143 

model. Abacavir binds directly and non-covalently with the HLA-B*57:01 binding cleft in the F-144 

pocket (Fig 1) of the peptide-binding groove [40]. This binding results in an alteration of the 145 

physicochemical parameters and topography of the binding groove, altering the presented peptides 146 

and eliciting a polyclonal T-cell response leading to the Abacavir hypersensitivity reaction. 147 

Alterations at key residues within the binding cleft have been shown to prevent the Abacavir 148 

association, by testing closely related allotypes (e.g. HLA-B*57:03) and comparing the resulting 149 

hypersensitivity reactions seen in the risk B*57:01 allele [41].  150 

The second drug investigated was Carbamazepine, an anti-epileptic drug, which has been strongly 151 

associated with Stevens-Johnson syndrome / toxic epidermal necrolysis (SJS/TEN), with patients 152 

having the B*15:02 allele showing hypersensitivity [5].  It is thought that the binding of 153 

Carbamazepine alters the self-presented peptides, through direct binding to the HLA molecule, similar 154 

to the Abacavir mechanism. These peptides are then recognised as foreign, leading to an immune 155 

response. Although the binding has not been experimentally validated, in silico modelling predicted 156 

the binding of Carbamazepine to HLA-B*15:02. It was predicted that the Carbamazepine binds in the 157 

D-pocket of B*15:02, adjacent to residue 156 of the HLA molecule [8]. This is one of the residues 158 

where the HLA-B*15:01 and HLA-B*15:02 alleles differ. As hypersensitivity is only seen in patients 159 

with the HLA-B*15:02 allele but not HLA-B*15:01, it is likely that this residue plays an important 160 

role in the ADR. A separate study has also predicted the binding site both through site-directed 161 

mutagenesis and in silico docking. The results of the site-directed mutagenesis implicated Asn63, 162 

Ile95 and Leu156, found in the D-pocket, in Carbamazepine presentation and T-cell activation as 163 

mutations at these positions (N63E, I95L or L156W) showed reduced binding affinity for 164 

Carbamazepine. In silico modelling conducted in the same study showed consistent binding near to 165 

the Arg62 residue located in the D-pocket of the peptide binding groove [14, 41]. These examples can 166 
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therefore be used to test if the docking methods used predict the same binding position shown in these 167 

previous independent studies. 168 

In this work, we used the Abacavir example for which a crystal structure of the complex exists, as a 169 

benchmark for the docking software. By using molecular docking, the binding position of the 170 

Abacavir within the B*57:01 risk allele HLA structure and, for comparison, with the non-risk control 171 

allele structures was predicted. Controls were chosen from B alleles shown to be non-risk (B*57:03) 172 

and common HLA-B and HLA-A alleles (B*07:02 and A*01:01). We work under the assumption that 173 

for (control) alleles that have not been associated with an ADR, that this is due to drug not binding 174 

sufficiently strongly to affect peptide presentation. Illing et al. showed that Abacavir interacts non-175 

covalently with the B*57:01 risk allele but not with B*57:03 control [8]. The docking results were 176 

then compared to the known binding position to estimate the reliability of the docking protocol. In 177 

addition, we assessed to what extent the docking could distinguish between the HLA-associated and 178 

non-HLA-associated alleles. The same methods were used to test if the Carbamazepine binding 179 

position previously seen can be reliably replicated, using the programs showing the most accurate 180 

results for the Abacavir example. Due to there being more evidence available for the Abacavir 181 

example, including a crystal structure of the drug bound in complex, our investigations favour this 182 

example. For the Carbamazepine example, we are comparing our results against a previous prediction 183 

using similar methods.   184 

This work sheds light on the utility and reliability of well-known docking programs used to address 185 

the challenging HLA-drug situation. These docking methods may help us to understand the 186 

mechanisms behind ADRs and identify genetic polymorphisms that may be influencing the binding 187 

seen in the risk but not control alleles. 188 

2. Methods 189 

2.1. Homology Modelling: Obtaining target structures 190 

For the Abacavir example, B*57:01 has been shown to be a risk allele and B*57:03 not associated. 191 

For Carbamazepine B*15:02 was found to be the risk allele, with B*15:01 not being associated. These 192 

non-associated alleles were therefore used as controls along with a common HLA-B allele (B*07:02) 193 
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and HLA-A allele (A*01:01) which could be assumed to not be associated as they are seen at a high 194 

frequency across European origin (Caucasian) populations (average frequencies obtained from AFND 195 

using gold standard populations [9]: B*57:01 = 0.03, B*07:02=0.10 and A*01:01=0.14). 196 

The allele structures were obtained from the PDB database, where available. Models were made for 197 

those alleles where the structure is not publicly available (Table 1). Target and template sequences 198 

were aligned with ClustalX [42]. For each modelling exercise, ten models were generated using 199 

Modeller 9.9 automodel class and the model with the lowest objective function score was chosen as 200 

the model for docking. This objective function is a score generated from the spatial restraints and the 201 

CHARMM energy terms, reflecting stereochemistry within the structure [43].In these simple cases 202 

there was no need to explore alternative target-template alignments since sequences could be aligned 203 

unambiguously with no insertions or deletions.  204 

Table 1. Structures of risk and control HLA alleles used in docking experiments. To distinguish 205 

between crystal structures and those created by homology models in the rest of the text, we add 206 

labels with suffix “sN” and “mN” where s means crystal structure and m means homology 207 

model, N is an integer where multiple models have been created. 208 

Drug Risk 

Allele 

Risk Allele Structure Control Allele Control Allele Structure 

Abacavir B*57:01 3VRI [8] (B5701_s) B*57:03 2BVP [44] (B5703_s) 

  Homology model using B*52:01 

(3W39 [45]) and B*58:01 (5IM7 

[46]) as templates (B5701_m) 

 Homology model using B*57:01 

as a template (B5703_m) 

Homology model using B*57:01 

and B*07:02 (B5703_m2) 

 2RFX [39] (B5701_s2) B*07:02 4U1H [47] (B0702_s) 

   A*01:01 3BO8[48] (A0101_s) 

Carbamazepine B*15:02 Homology model using B*15:01 B*15:01 1XR9 [49] (B1501_s) 
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  as template (B1502_m) B*07:02 4U1H [47] (B0702_s) 

  A*01:01 3BO8 [48] (A0101_s) 

The Abacavir risk and control alleles were used to evaluate the homology modelling as the known 209 

structures are available for each allele investigated and so can be compared with the model structure 210 

and docking results. Two models were created for B*57:03, one with one template allele (B5703_m) 211 

and another with two template alleles (B5703_m2). These models could then be compared to the 212 

known structure of B*57:03 (B5703_s), as could the docking predictions, to understand the influence 213 

of these steps when employed in a typical docking protocol. The structure of B*57:01 was also 214 

modelled (B5701_m), from two similar sequences identified to make similar comparisons and 215 

evaluate the reliability of using homology modelling. 216 

For the Carbamazepine risk associated allele B*15:02, there are four differing residues with control 217 

allele B*15:01. Three of these lie in the peptide binding groove, with only one of these being vital to 218 

the D-pocket architecture, where the Carbamazepine is predicted to bind (pos 156). Only a single 219 

template, the structure of B*15:01, was therefore used to model B*15:02 (B1502_m). 220 

The quality of each model was investigated using Ramachandran plots and QMEAN scores. For the 221 

B5701_m and B5703_ m and m2, RMSDs were used to give a measure of how well the models 222 

represent the known structures. The percentage sequence identity for each of the templates used for 223 

each model are shown in S1 Table.  224 

2.1.1. Conformational sampling of receptor protein structures 225 

In order to identify the flexible side chains for the target structure, the relax function of Rosetta was 226 

used to explore the conformational properties of each residue. By looking at 10 different relaxed 227 

structures for each target, flexible residues can be identified. This allows us to consider the flexibility 228 

of the target structure when using AutoDockFR. When using the ROSIE server, a similar sampling is 229 

incorporated into the docking procedures [34]. 230 

2.2. Docking 231 

2.2.1. SwissDock 232 
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Using SwissDock [31], the default parameters search the whole target structure but by setting the 233 

search space parameters, it is possible to restrict binding to perform a local docking assay using the 234 

known binding pocket. Here, the area of interest is the peptide binding groove, including residues 1-235 

180 of the alpha chain. The search space was therefore restricted to this area of interest. The file was 236 

processed to ensure it was in the correct format to be uploaded to SwissDock. This included removing 237 

the ligand and peptide from the structure. The PDB was then passed through the Prepdock server [50] 238 

to prepare the structure for docking. This prepared file was then submitted to SwissDock with the 239 

relevant known drug structures. SwissDock used the ZINC database to obtain the known structures of 240 

compounds (Abacavir ZINC ID: 2015928, Carbamazepine ZINC ID: 4785). 241 

2.2.2. ROSIE 242 

ROSIE [33, 34], was also used in a similar way. The PDB files were again prepared, removing the 243 

Abacavir and peptide from 3VRI and this time also removing the water molecules from the target 244 

structure, as Rosetta is unable to natively recognise these residues. The Abacavir drug structure was 245 

extracted from the relevant PDB (3VRI) and converted to SDF format. This was then submitted to the 246 

server to be docked, with the search space specified to centre on the peptide binding groove. This 247 

process was repeated for each of the risk and control alleles to be investigated. 248 

2.2.3. AutoDock 249 

Two versions of AutoDock were also used, AutoDock Vina [35] and the later version AutoDockFR 250 

[36]. AutoDock Tools [51] was used to prepare the PDBQT files for both the target HLA alleles and 251 

the ligand structure. The drug structures for Abacavir was extracted from the 3VRI PDB file [8]. For 252 

Carbamazepine, there is no crystal structure available for the drug bound to a target and so the PDB 253 

file was obtained from the ZINC entry previously used for the SwissDock docking and from the 254 

Drugbank structure. 255 

Using AutoDock Vina, a search space of 40x40x40Å was used. Initially, the default exhaustiveness 256 

was used but this was then increased gradually to identify the best parameters to find the closest 257 

docking poses of Abacavir to the native position seen in the crystal structure. Once this was identified, 258 

the process was then repeated for the other alleles, using the same parameters. 259 
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Using AutoDockFR, the docking was performed twice, either assuming the target as rigid or allowing 260 

for flexible residues. The aligned alleles and the ligand PDB files were converted to PDBQT files 261 

using AutoDock Tools [51]. The target structure and ligands were then loaded separately into 262 

AutoGridFR [52]. The pockets located within the target structure were identified and the search space 263 

selected to 1) surround the known binding position of the ligand, 2) surround the peptide binding 264 

groove and 3) surround the top three largest pockets identified. By selecting the top three pockets, this 265 

increases the search space and gives the opportunity for the ligand to bind in an alternative pocket and 266 

can tell us if the peptide binding groove is indeed the favoured binding region or not. The affinity 267 

maps are then generated by AutoGridFR and these are then inputted into AutoDockFR along with the 268 

ligand and the parameters for the docking. This process was repeated for each of the alleles, using the 269 

three different search spaces. As AutoDockFR only gives the binding pose for the top binding 270 

solution, AutoDockFR was ran in batches in order to obtain multiple binding poses. The top pose is 271 

therefore given for a selection of ten runs as opposed to the top ten poses for one run, as seen in the 272 

other examples. 273 

Rosetta Relax was used to identify flexible side chains. These residues were then selected as flexible 274 

in AutoGridFR and the search space was set along the peptide binding groove, encompassing these 275 

residues. The affinity maps were generated and as before, inputted into AutoDockFR. 276 

It was predicted that AutoDockFR may show more accurate docking predictions for unbound 277 

structures than those using the 3VRI crystal structure with both Abacavir and the peptide removed. As 278 

a result, the structure of HLA-B*57:01 without Abacavir bound (B5701_s2) was obtained from the 279 

PDB database (2RFX [39]). The peptide bound was removed and the B*57:01 structure was used in a 280 

similar way to give predicted binding when searching the peptide binding groove, assuming the 281 

receptor to be either rigid or flexible. 282 

The results files from all the docking programs were then processed. The RMSDs (Root-Mean-Square 283 

Deviation) between the non-hydrogen atoms of the docked poses and the known binding position of 284 

Abacavir were calculated through PyMOL [30] using the “rms_cur” command. RMSDs were used to 285 

give a quantitative guide to how close the prediction poses lay to the known binding mode of 286 

Abacavir. The RMSDs along with visual inspection and docking scores were used to assess the 287 
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reliability of each of the docking programs. The scores were also used to investigate the relationship 288 

between the binding scores and positions. The binding predictions for Carbamazepine were compared 289 

to predictions from previous studies in a similar way although RMSDs could not be measured for that 290 

case as no crystal structure was available. 291 

3. Results 292 

3.1. Homology Modelling 293 

The first analysis was to explore the overall effect of homology modelling on the reliability of results 294 

from in silico docking. As expected, given the small number of amino-acid differences between 295 

models and templates, the QMean and Ramachandran plots for each of the alleles were shown to be 296 

within acceptable limits, showing the models to be of good quality. B5701_m was shown to be very 297 

similar to the known structure B5701_s with RMSD 0.81Å (266 to 266 atoms). The B*57:03 models 298 

also showed low RMSDs (B5703_m = 1.46Å (266 to 266 atoms), B5703_m2 = 1.24Å (266 to 266 299 

atoms)) when compared to the known structure B5703_s. The two differing residues between the 300 

B*57:03 and B*57:01 alleles (position 114 and 116) both lie along the peptide binding groove and are 301 

vital for the architecture of the F-pocket shown to be the known binding position of Abacavir. It is 302 

therefore important that the model correctly represents the allele structure. When comparing the 303 

B*57:03 and B*07:02 control allele structures used for the Abacavir example with B5701_s, it could 304 

be seen that the tyrosine at position 116 for the B*57:03 and B*07:02 known structures overlaps with 305 

the known binding position of the Abacavir. It would be expected for the tyrosine in the B*57:03 306 

model to show a similar conformation to that seen in these known structures. This was not seen in the 307 

B5703_m model but was seen in the B5703_m2 model in which two templates were used (S1 Fig). 308 

Using two templates for the model gave a more accurate representation of this element of the target 309 

structure in this case. 310 

3.2. Abacavir 311 

3.2.1. All docking software assessed could dock Abacavir into the risk allele crystal structure 312 

but could not always predict the correct binding mode 313 
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Using SwissDock, it can be seen that the B5701_s example gives a docking solution close to the 314 

native position (Fig 2 a-c) with all poses showing binding in the F-pocket. When using AutoDockFR 315 

assuming the receptor to be rigid, similar results were seen to those using SwissDock (Fig 2 d-f). All 316 

poses for the B5701_s risk allele were shown bound in the same pocket as the known binding 317 

position. Little difference was seen between the docking shown for each search space, with only one 318 

pose from the B*57:01 run showing binding outside of the peptide binding groove when the search 319 

space was extended around the whole protein (data not shown). This indicates that the peptide binding 320 

groove is the most favourable region for binding. It can be concluded overall that the Abacavir docks 321 

in the expected binding pocket for these packages, but they cannot predict the exact native pose. 322 

Fig 2. Binding positions for B*57:01 (B5701_s1) with Abacavir using SwissDock (a-c) and 323 

AutoDockFR (d-f). Predicted Abacavir binding positions using SwissDock (a-c) and AutoDockFR 324 

(d-f) are shown by white molecules with B5701_s1 shown as grey structure. The known binding 325 

position of Abacavir is shown in red. (a) All binding poses using SwissDock, (b) SwissDock pose 1 326 

giving lowest RMSD of 2.02Å and (c) SwissDock pose 4 giving a higher RMSD of 6.92Å due to 327 

reversed orientation, (d) All binding poses using AutoDockFR, (e) AutoDockFR pose 3 giving lowest 328 

RMSD of 2.25Å and (f) AutoDockFR pose 5 giving a higher RMSD of 6.92Å due to reversed 329 

orientation. AutoDockFR docking ran using the search space centred on the known binding position 330 

of the ligand.  331 

As the ROSIE server allows movement of side chains within the target, the modelled structure of the 332 

B*57:01 risk allele target was compared to the B5703_s structure submitted. This resulted in the 333 

RMSDs shown in Table 2 with B5701_s giving similar average RMSDs to the control alleles. 334 

Comparing the lowest RMSDs, the control structures give poses with lower RMSDs than B5701_s.  335 

Table 2: RMSD measurements for Abacavir docked with B*57:01, B*07:02 and B*57:03 336 

models, using the different software. 337 
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 RMSDs (Å) 

 B*57:01_s B*57:03_m B*57:03_m2 B*57:03_s B*07:02_s 

Software Search 

space 

Lowest Average Highest Lowest Average Highest Lowest Average Highest Lowest Average Highest Lowest Average Highest 

SwissDock PBG 2.02 (1) 5.03 8.46 (5) 2.93 (1) 5.32 8.25 (2) 5.41 (5) 6.91 7.70 (0) 7.34 (5) 11.65 15.69 (1) 6.20 (5) 10.15 18.28 (2) 

ROSIE PBG 3.16 (1) 4.87 10.69 (2) 2.56 (8) 4.69 10.08 (8) 2.21 (3) 4.53 10.95 (6) 2.87 (4) 5.05 7.60 (8) 2.24 (8) 3.64 5.66 (5) 

AutoDock Vina (exh=8) PBG 1.06 (3) 6.11 15.88 (7) 4 (1) 7.13 8.76 (6) 5.26 (3) 8.79 15.55 (8) 9.30 (8) 11.90 14.85 (3) 5.92 (3) 8.35 12.25 (4) 

AutoDock Vina 

(exh=112) 

PBG 0.98 (6) 5.75 8.36 (5) 4.02 (2) 7.51 9.29 (7) 4.85 (8) 7.45 8.41 (3) 9.07 (8) 12.01 14.84 (4) 5.46 (6) 10.43 18.33 (2) 

AutoDock FR Ligand 2.25 5.70 7.64 4.85 6.21 8.14 4.06 7.52 8.60 4.45 (1) 4.75 4.96 (5) 3.69 4.93 6.77 

AutoDock FR PBG 2.24 6.38 8.01 4.94 6.38 9.04 6.88 8.61 9.23 12.8 (4) 13.3 14.36 (5) 12.51 15.06 18.21 

AutoDock FR Top 3 2.21 8.33 22.56 5.14 6.15 8.24 8.12 8.62 9.19 7.92 (6) 13.02 14.34 (3) 12.61 18.14 42.64 

For AutoDock Vina, exhaustiveness is shown in brackets as (exh=). The lowest and highest RMSDs are shown along with the averages for all poses, pose rank is shown in 

brackets. (For SwissDock, poses are ranked from 0-5. For ROSIE and AutoDock Vina, poses are ranked from 0-9. Rank is not shown for AutoDock FR, as each pose was taken 

from top pose for each of 10 runs). Search spaces include surrounding the peptide binding groove (PBG), surrounding around the known ligand binding position (Ligand) and 

surrounding the top three largest binding pockets to increase the search space to enable binding away from the peptide binding groove (Top 3). 
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When docking the Abacavir structure using AutoDock Vina, the exhaustiveness was investigated 340 

using the B*57:01 example (B5701_s) to optimise the protocol before docking the other non-risk 341 

alleles. Using the default exhaustiveness of 8, the RMSD values were shown to be quite variable 342 

(Table 2). The exhaustiveness was then increased starting at exh=18 and doubling the exhaustiveness 343 

to see the effect. It was found that the exhaustiveness of 112 gave the lowest RMSDs overall and 344 

these did not improve with further increasing of exhaustiveness 345 

3.2.2. Most docking software assessed can distinguish between risk and control alleles 346 

Two methods were used to investigate if the docking software can distinguish between the risk alleles. 347 

RMSD values, alongside some visual inspection, were used to give a measure of how similar the 348 

docking prediction results are to the known binding position obtained from the crystal structure. 349 

Docking scores were also investigated to see if there is more favourable binding seen in the risk 350 

alleles compared to the controls and also how the scores differ between the predicted poses for the 351 

risk allele itself. 352 

Using RMSDs, it can be seen from Figure 3 and Table 2 that most of the software, excluding 353 

“AutoDockFR (Ligand)” and ROSIE, showed lower RMSD’s for B*57:01 than the other control 354 

alleles investigated and were able to distinguish between the known risk allele structure (B5701_s) 355 

and the known control allele structures (B0702_s and B5703_s). AutoDockFR using a search space 356 

surrounding the known binding position of the Abacavir ligand, “AutoDockFR (Ligand)”, shows 357 

lowest median RMSD’s for B*07:02. ROSIE shows lowest median RMSD’s for all the alleles 358 

investigated. AutoDock Vina (with exhaustiveness 112) was able to achieve the lowest RMSD overall 359 

for B*57:01 (0.98 Å) but showed more variability between poses, giving a higher average RMSD, 360 

although this was still lower than the average RMSDs for the control alleles. Using SwissDock and 361 

AutoDockFR, the control alleles showed higher RMSDs than the risk B*57:01 allele although it can 362 

be seen that some poses gave higher RMSDs, similar to those seen for the control alleles. Some of the 363 

predicted poses for the B*57:01 allele were shown to be binding in the correct pocket but gave a 364 

higher RMSD due to the reversed orientation (Fig 2c & 2f). By examining these poses it can be seen 365 

that the ligand makes similar interactions to the correct binding pose (S2 Fig) but the reversed 366 
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orientation results in the higher RMSD. It is therefore important to consider both the poses and the 367 

RMSD scores when comparing binding results.  368 

Fig 3. Boxplots to show RMSD values of Abacavir poses with respect to the known structure. 369 

Plots grouped by (a) Allele and (b) software. Search spaces for AutoDockFR are shown in brackets 370 

and include surrounding the peptide binding groove (PBG), surrounding around the known ligand 371 

binding position (Ligand) and surrounding the top three largest binding pockets to increase the search 372 

space to enable binding away from the peptide binding groove (Top 3). For AutoDock Vina, 373 

exhaustiveness is shown in brackets.   374 

Figure 4 shows the docking poses for the control alleles using SwissDock. It can be seen that the 375 

Abacavir binds further from the known binding position from 3VRI, with A*01:01 showing the 376 

largest difference from the B*57:01 allele, predicting binding away from the peptide binding groove 377 

(RMSDs: lowest = 21.44 Å, average = 23.23 Å, highest = 25.47 Å).  378 

Figure 4: All docking poses of Abacavir for control alleles using SwissDock. (a) B*57:03 using 379 

one template (B5703_m), (b) B*57:03 using two templates (B5703_m2), (c) B*07:02 (B0702_s) and 380 

(d) A*01:01 (A0101_s). Known binding position of Abacavir shown in red. Poses can be seen further 381 

from the native pose than found in the risk allele docking. 382 

It can be seen that B*57:01 generally had a lower average RMSD than the control alleles for all 383 

software, excluding ROSIE, even with these reversed orientations discussed, with the lowest RMSD 384 

being constantly lower than those seen for the controls. Both control alleles B*57:03 and B*07:02 385 

contain a tyrosine at position 116, rather than the serine seen in the risk allele, with A*01:01 having 386 

an aspartic acid at position 116. This residue is sensitive for the F-pocket architecture as it lies along 387 

the base of the pocket [53] and so this mutation prevents binding in this native position. 388 

The full fitness scores for SwissDock poses were investigated, with lower scoring poses being more 389 

favourable than higher scoring poses. Scores were compared between B*57:01, B*57:03 and 390 

B*07:02, it was found that poses for the B*57:01 risk allele scored more poorly than those for the 391 

non-risk alleles (Fig 5a), with the control alleles showing lower scores than the risk allele. This 392 

implies that comparison of scores between alleles is not valid since better docking results were seen 393 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/296574doi: bioRxiv preprint 

https://doi.org/10.1101/296574
http://creativecommons.org/licenses/by/4.0/


17 

 

for the risk allele. Put another way, the docking scores were not able to distinguish between the risk 394 

and control alleles. Nevertheless, the scores for the B*57:01 risk allele are a good guide to pose 395 

accuracy, as there is a modest positive correlation between RMSD and score (Fig 5b), with an R2 396 

value of 0.65. 397 

Fig 5. Full fitness scores versus RMSD. (a) Scatterplot to show the full fitness scores vs RMSDs for 398 

each pose for each of the different alleles. The non-risk allele poses have lower scores than poses for 399 

the risk allele. (b) Scatterplot to show full fitness score vs RMSD for B*57:01 poses.  400 

3.2.3. Docking performance can be degraded by using a homology model 401 

The docking of Abacavir with the known and modelled structures of B*57:01 and B*57:03 were 402 

compared (S3 Fig). This allowed us to compare the docking positions between known and modelled 403 

structures. B5701_m showed an unexpected overlap between the Ser116 residue and the known 404 

binding position on Abacavir from 3VRI. This prevented the docking from predicting the exact native 405 

pose. However, poses were still predicted within the F-pocket and had lower RMSDs seen than those 406 

predicted for the non-risk alleles. This slight difference between the modelled and known structures 407 

may be due to the peptide bound in the peptide binding groove of the 3VRI structure.  408 

The docking of Abacavir to the known structure of the control allele B5703_s showed similar results 409 

to the modelled structures, with poses seen away from the known Abacavir binding position and 410 

higher RMSDs (S4 Fig). The average RMSDs seen with the B*57:03 known structure were higher 411 

than those seen with the homology models, showing the Abacavir docks further from the known 412 

binding position with the known structure. 413 

3.2.4. Receptor flexibility negatively affects the docking performance 414 

When the flexible residues were incorporated for the 3VRI docking with Abacavir example, poses 415 

occupied the whole peptide binding groove and did not favour the F-pocket as expected (Fig 6). When 416 

the scores for the poses found inside the F-pocket were compared to those found outside the F-pocket, 417 

it was also seen that these scores did not favour the F-pocket (data not shown). Thus, although the 418 

complex algorithms developed for AutoDockFR have been shown to improve the success of docking 419 
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[36] in general, they degraded performance in our example, suggesting that they should only be used 420 

with caution for HLA docking. 421 

Fig 6. Abacavir docked with B*57:01 structure (3VRI), using ADFR assuming the receptor to 422 

be flexible. Poses are seen along the whole groove and not just the F-pocket (shown in orange). The 423 

docking is unable to predict the native-like poses (known binding of Abacavir shown in red). 424 

3.2.5. Using AutoDockFR cannot compensate for the added difficulty of docking to the unbound 425 

target 426 

AutoDockFR was also used to dock Abacavir with the unbound structure of HLA-B*57:01 (2RFX 427 

[39]), crystallised in the absence of drug, in order to test the possibility that the structure without 428 

Abacavir bound would yield better docking results when flexibility of residues was considered. The 429 

peptide was removed from 2RFX and the B*57:01 structure was used as the target. Again, two runs 430 

were completed, assuming the receptor to be either rigid or flexible. 431 

Docking to the structure assuming rigid side chains produced poses in both the B and F pockets (Fig 432 

7a). However, the lowest RMSD is seen as 8Å and is therefore not very accurate when comparing to 433 

the known binding position. When looking at the poses, it can be seen that the native pose could not 434 

be predicted. When flexible residues were incorporated with AutoDockFR (Fig 7b), the entire peptide 435 

binding groove was again occupied. 436 

Fig 7. Abacavir docked with unbound B*57:01 structure (2RFX), using ADFR. (a) Assuming the 437 

receptor to be rigid. Only a few poses can be seen bound within the F-pocket (shown in orange), with 438 

these poses showing incorrect conformation. The docking was unable to predict native-like poses 439 

(known binding of Abacavir shown in red). (b) Assuming the receptor to be flexible. Poses are found 440 

along the whole groove and not just the F-pocket (shown in orange). The docking is unable to predict 441 

the native-like poses (known binding of Abacavir shown in red). 442 

Although AutoDockFR gives good results for the ideal case when docking the Abacavir structure 443 

back into the B*57:01 structure obtained from 3VRI (by removing both the ligand and the peptide), it 444 

is shown here that docking using the unbound structure, crystallised in the absence of the drug, 445 

showed less accurate results and the correct binding position could not be identified. This highlights 446 
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the difficulties of using docking to investigate these challenging HLA-ADR cases as in general 447 

docking for new ADRs will be performed, for example, on structures that have a peptide already 448 

bound but not the drug that is to be docked. 449 

3.3. Carbamazepine 450 

SwissDock and AutoDockFR were best able to predict the binding positions of Abacavir and so these 451 

programs were both used to predict the binding position of Carbamazepine with both the risk allele 452 

(B1502_m) and the control alleles (B1501_s, A0101_s and B070_s2). The predicted poses were 453 

compared to those shown in previous studies in which B*15:02 showed binding in the D-pocket, close 454 

to residues 62, 63, 95 and 156 [8, 14]. 455 

Docking Carbamazepine with B1502_m using SwissDock, the poses were predicted to sit in the D-456 

pocket previously identified as of interest. Looking at the docking results (Fig 8a), it can be seen that 457 

Carbamazepine is predicted to bind in the D-pocket of B*15:02, close to Leu156, identified by the 458 

study as important, with only one pose predicted out of this pocket. Using AutoDockFR, the same 459 

general pattern was seen with the D-pocket generally being favoured for B*15:02 (Fig 8b). Using 460 

SwissDock, the B*15:01 docking showed poses predicted to bind elsewhere, away from this pocket, 461 

as predicted. For the B*15:01, A*01:01 and B*07:02 alleles, with a mutation at this 156 position 462 

(Leu→Trp, Leu→Arg and Leu→Arg respectively), this D-pocket is closed off and produces poses 463 

elsewhere (S5 Fig). Using AutoDockFR, the same general pattern was seen with no poses being found 464 

in or around the D-pocket for B*15:01. These predictions cannot be validated since there is, as of yet, 465 

no crystal structure available for Carbamazepine bound to HLA. However, when compared to 466 

previous studies, our results showed a similar binding position using different software. 467 

Fig 8. Docking Carbamazepine with B*15:02 risk allele using SwissDock and AutoDockFR. (a) 468 

SwissDock and (b) AutoDockFR poses for Carbamazepine docked with B*15:02 risk allele. Residue 469 

at 116 shown in red, with other D-pocket residues shown in blue. 470 

4. Discussion 471 

The purpose of this exercise was to compare multiple docking programs to assess their performance 472 

with these challenging HLA-ADR cases. We used the Abacavir example as the benchmark for the 473 
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docking software, as the crystal structure is available for Abacavir bound in complex with its 474 

associated risk allele. We used the different docking programs to re-dock the Abacavir into the risk 475 

allele and measure how accurately each program could predict the known binding position. It was 476 

found that the binding modes can sometimes be predicted but not always. Each docking program used 477 

was able to predict the Abacavir binding within the F-pocket and, with the exception of the ROSIE 478 

server, was also able to distinguish between the risk and control alleles with the best scoring poses for 479 

the control alleles being seen further from the known binding position and in some cases, away from 480 

the F-pocket. This was also generally reflected in the RMSDs, although it is important to consider 481 

these alongside the poses themselves as reversed orientations can give higher RMSDs for poses found 482 

close to the known binding position. 483 

Using the same docking methods to investigate the Carbamazepine example, the docking programs 484 

used were able to recreate previously published predictions. The docking software was also able to 485 

distinguish between the risk and control alleles with the risk allele showing binding in the D-pocket 486 

and the other control alleles showing poses away from the D-pocket. 487 

Here we also investigated the impact of homology modelling on the docking performance. Homology 488 

models are commonly used for docking, especially with in silico database screening and have been 489 

shown to give accurate docking predictions [54-57]. However, localised errors can still have a big 490 

impact and so special caution should be used when there is no crystal structure available for the 491 

docking. It is important to ensure the models are as accurate as possible in order to give accurate 492 

predictions. Especially when mutations may impact the architecture of the predicted binding pocket, 493 

such as in the Abacavir example. 494 

Predictions of docking poses have subsequently been experimentally validated by a crystal structure. 495 

Yang et al. [58] predicted binding of Abacavir to B*57:01 in the F-pocket and predicted positions 114 496 

and 116 as important for binding. This was then confirmed once the crystal structure of the HLA-drug 497 

complex was determined [8]. Other predictions have also been made which fit well with experimental 498 

data, about binding of Carbamazepine, for example, and have been in accord with the experimental 499 

data [5]. 500 
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Caution is needed to overcome the challenges produced from docking with the HLA structures. The 501 

long hydrophobic peptide-binding cleft is separated into subsites and small molecules can bind in any 502 

of these subsites along the cleft. The binding of drugs to HLA is probably weaker than many natural 503 

and drug-target interactions as the HLA binding site has not naturally evolved to recognise the drug, 504 

nor has the drug been designed or discovered in a structure-based fashion. This presents challenges 505 

for docking as there may be fewer interactions formed and less steric complementarity between the 506 

drug and its HLA recognition site. A further complication is the possibility that bound peptides may 507 

stabilise drug poses that would not otherwise be energetically favourable. Addressing this issue 508 

computationally is beyond the capability of current tools but the possibility should be borne in mind. 509 

Furthering our understanding of the potentials and limitations of docking small molecules to HLA is 510 

important to aid our understanding of the underlying mechanisms involved with these ADRs. 511 

Understanding these mechanisms and how the binding of small molecules varies between risk and 512 

control alleles may enable us to make predictions of potential ADRs by identifying polymorphisms 513 

which may contribute to direct binding. This may also lead to improved understanding and predictions 514 

of ADRs, ultimately leading to reduced risk due to screening procedures. 515 
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Supporting information 689 

S1 Table. Percentage sequence identity between models and templates. Table to show the 690 

percentage sequence identity calculated using BLAST-P [59] for each of the template sequences 691 

compared to the model sequences. 692 

S1 Fig. Crystal structure of B*57:03 aligned to modelled structure of B*57:03. Crystal structure 693 

of B*57:03 (green) shown aligned with models created using one template (blue) and two templates 694 

(pink). Also shown with the known binding position of Abacavir (red). Looking at Tyr116 shown 695 
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highlighted as sticks, it can be seen that the B*57:03 model created using one template shows a 696 

different conformation than expected by the known structure. 697 

S2 Fig. Ligplot plots show the interactions between Abacavir and B*57:01. (a) Known binding 698 

position of Abacavir in complex with B*57:01 (3VRI). (b) B5701_s using AutoDockFR, pose 3 699 

showing lowest RMSD (2.254 Å). (c) B5701_s using AutoDockFR, pose 4 showing highest RMSD 700 

(7.639 Å). Similar interactions with key residues can be seen between all poses (circled). Dashed lines 701 

show Hydrogen bonds (with length), spoked arcs show hydrophobic bonds. Created using Ligplot 702 

[56]. 703 

S3 Fig. Comparison of docking poses using crystal and modelled structures of B*57:01 and 704 

B*57:03. (a) Known structure of B*57:01 (B5701_s) showing all docking poses for Abacavir using 705 

SwissDock; (b) Modelled structure of B*57:01 risk allele (B5701_m) showing all docking poses for 706 

Abacavir using SwissDock; (c); B*57:03 known structure (B5703_s) showing all docking poses for 707 

Abacavir using SwissDock; (d) modelled structure of B*57:03 (B5703_m2) showing all docking 708 

poses for Abacavir using SwissDock. Known binding position of Abacavir from 3VRI shown as red 709 

mesh. 710 

S4 Fig. Comparison of RMSDs for docking poses using crystal and modelled structures of 711 

B*57:01 and B*57:03. Boxplot to compare the RMSDs for poses compared to the known binding 712 

position of Abacavir, for both the crystal structures and models of B*57:01 and B*57:03 using 713 

SwissDock. 714 

S5 Fig. Docking Carbamazepine with control alleles using SwissDock. SwissDock poses for 715 

Carbamazepine docked with (a) B*15:01 control allele (B1501_s), (b) B*07:02 control allele 716 

(B0702_s) and (c) A*01:01 control allele (A0101_s). Residue at 116 shown in red, with other D-717 

pocket residues shown in blue. 718 
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