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Abstract 

The multiple-demand (MD) network is sensitive to many aspects of task difficulty, including 

such factors as rule complexity, memory load, attentional switching and inhibition. Many 

accounts link MD activity to top-down task control, raising the question of response when 

performance is limited by the quality of sensory input, and indeed, some prior results suggest 

little effect of sensory manipulations. Here we examined judgments of motion direction, 

manipulating difficulty by either motion coherence or salience of irrelevant dots. We 

manipulated each difficulty type across six levels, from very easy to very hard, and 

additionally manipulated whether difficulty level was blocked, and thus known in advance, or 

randomized. Despite the very large manipulations employed, difficulty had little effect on 

MD activity, especially for the coherence manipulation. Contrasting with these small or 

absent effects, we observed the usual increase of MD activity with increased rule complexity. 

We suggest that, for simple sensory discriminations, it may be impossible to compensate for 

reduced stimulus information by increased top-down control. 
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1. Introduction 

Diverse studies examining a range of cognitive demands have found of a set of frontal-

parietal regions that are consistently involved in a variety of tasks, ranging from response 

inhibition to working memory to decision making (e.g., Duncan & Owen, 2000; Fedorenko, 

Duncan, & Kanwisher, 2013; Niendam et al., 2012; Stiers, Mennes, & Sunaert, 2010). 

Included in this pattern are regions of the dorsolateral prefrontal cortex, extending along the 

inferior/middle frontal gyrus (IFG/MFG), and including a posterior-dorsal region close to the 

frontal eye field (pdLFC), parts of the anterior insular cortex (AI), pre-supplementary motor 

area and adjacent anterior cingulate cortex (pre-SMA/ACC), and intraparietal sulcus (IPS). 

Together they have been termed the multiple demand (MD) network (Duncan, 2010), 

cognitive control network (Niendam et al., 2012), or task positive network (Fox et al., 2005). 

 

Activity in the MD network increases with increases in many kinds of task difficulty or 

demand, such as with additional subgoals (e.g., Farooqui et al., 2012), greater working 

memory demand (Dara et al., 1997), resisting strong competitors (e.g., Baldauf & Desimone 

2014), task switching (e.g., Wager et al., 2004), or a wide range of other task demands (e.g., 

Crittenden & Duncan, 2014; Jovicich et al., 2001; Marois, Chun, & Gore, 2004; Woolgar, 

Afshar, Williams, & Rich, 2015). Increased activity in more difficult conditions can also be 

accompanied by stronger information coding, shown by multivoxel pattern analysis (e.g., 

Woolgar, Afshar, et al., 2015; Woolgar, Hampshire, Thompson, & Duncan, 2011; Woolgar, 

Williams, & Rich, 2015). Reflecting these widespread effects of demand, the MD network 

has been suggested to implement top-down attentional control, optimally focusing processing 

for the requirements of a current task (Miller & Cohen, 2001; Duncan, 2013; see also 

Norman & Shallice, 1980). 

 

One simple way to manipulate task difficulty is through the quality of stimulus information. 

Some experiments have shown clear MD responses as stimulus discriminability decreases 

(e.g., Crittenden et al., 2014; Deary et al., 2004; Holcomb et al., 1998; Jiang & Kanwisher, 

2003; Sunaert, Van Hecke, Marchal, & Orban, 2000; Woolgar et al., 2011), but this has not 

always been the case (Cusack, Mitchell, & Duncan, 2010; Dubis et al., 2016; Han & Marois, 

2013; Muller-Gass & Schroger, 2007). For example, Cusack et al. (2010) contrasted hard and 

easy trials of a task in which participants had to detect a barely perceptible ripple in an 

oscillating dot field and found no neural activation differences between the two sensory 

difficulty levels, despite substantial differences in behavioral performance, and robust BOLD 

contrast to a different task manipulation (attention switching). 

 

In an important study, Han and Marois (2013) investigated activity in parts of the MD system 

during a task in which three letter targets were to be identified in a rapid stream of digit 
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nontargets. In the baseline condition, the three letters occurred in immediate succession; to 

increase demand, they either inserted a nontarget into the series of three targets, or reduced 

exposure duration. While activity in frontal-parietal areas increased with the addition of a 

distractor, exposure duration had little effect. To interpret their findings, Han and Marois 

(2013) appealed to the distinction made by Norman and Bobrow (1975), between data-

limited and resource-limited behavior. Norman and Bobrow (1975) proposed that, for any 

task, some function (the performance-resource function or PRF) relates performance to 

investment of attentional resources. When this function is increasing, behavior is said to be 

resource-limited, and additional investment is repaid by improved performance. When the 

function asymptotes, further investment has no positive effect, and performance is said to be 

data-limited. In line with a link of MD activity to attentional investment, Han and Marois 

(2013) used these ideas of data- and resource-limitation to explain their findings. They 

proposed that, in their task, brief exposure duration created data limits, which could not be 

offset by increased fronto-parietal recruitment, while adding a distractor introduced resource 

limits by calling for increased attentional focus. 

 

 
Figure 1. Theoretical performance-resource function (PRF) plots. (A). Difficulty might change the 

asymptote of of the PRF. Increased difficulty cannot be offset by increased resource allocation. (B). 

Difficulty might shift the PRF. Increased difficulty can be offset by increased resource allocation. 

 

In general it is not known when performance will be resource- or data-limited, but within this 

general framework, many patterns of results are possible. Figure 1A illustrates a case in 

which, as difficulty level varies, there is no reason to expect increased attentional allocation.  

In this case, PRFs asymptote at different performance levels for the different levels of task 

difficulty, but across difficulty levels, the asymptote occurs at the same level of allocated 

resource. Figure 1B illustrates an opposite case, with increased task difficulty potentially 

offset by increased resource allocation. This uncertainty over the role of attentional 

investment in different cases of perceptual discrimination could help to explain disparate 
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results in the literature, with some cases (e.g. Han and Marois (2013), manipulation of 

exposure duration) more resembling Figure 1A, and others (e.g. Han and Marois (2013), 

distractor manipulation) more resembling Figure 1B. 

 

In our first experiment, we sought to strengthen the evidence that, for simple sensory 

discriminations, MD activity can be rather independent of task difficulty, providing an 

exception to the “multiple demand” pattern. For this purpose we used a motion discrimination 

task with two kinds of difficulty manipulation – motion coherence and salience of task-

irrelevant dots. For the strongest possible effect, we manipulated both variables over a wide 

range, moving performance from close to ceiling to close to chance. In the task demand 

literature, several studies have shown that, as opposed to a monotonic increase of MD activity 

with task difficulty, there was an inverted U-shape response (Callicott et al., 1999; Linden et 

al., 2003), or a plateau after a certain difficulty level (Marois & Ivanoff, 2005; Todd & 

Marois, 2004; Mitchell & Cusack, 2008). A possible interpretation is that MD activity 

initially increases with task demands, but plateaus or even declines once the task becomes 

impossible even with maximal attention. In our study we examined MD activity over the full 

range of possible task difficulties.  

 

In addition to manipulating both aspects of difficulty over a wide range, between participants 

we varied whether difficulty levels were mixed or blocked. In the mixed design, levels of 

difficulty were presented in random order, without advance cueing of the level to be 

experienced on a given trial. In contrast, difficulty level was known in advance in the blocked 

design. With this manipulation, we asked whether MD activity is driven more proactively, by 

expectancy of forthcoming demand, or more reactively, when high demand is experienced on 

a current trial. 

 

Finally, in modelling our fMRI data, we attempted to remove effects of decision time, 

expected to increase with either sensory or selection difficulty. In two prior studies of motion 

coherence, trials were modelled simply as events, without regard for their duration (Kayser et 

al., 2010a, 2010b). In this case, greater brain activity associated with decreasing motion 

coherence may simply have reflected longer processing times. To diminish such effects, our 

fMRI model explicitly included decision time for each trial. 

 

Though PRF shapes are generally unknown, our use of two different demand manipulations 

afforded the possibility of different outcomes. In particular, we expected that top-down 

control could be especially important in the irrelevant-dots condition, leading to larger effects 

of demand on MD activity. Though Experiment 1 showed results in line with this expectation, 

they occurred against a background of generally weak effects, and no significant difference 
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between the two manipulations. In Experiment 2 we reexamined coherence and irrelevant-

dots conditions in a new group of participants, and compared these sensory demands with a 

manipulation of rule complexity. 

 

 

2. Methods 

2.1 Experiment 1 

2.1.1 Participants 

Participants were randomly assigned to either the blocked or mixed group, with this variable 

manipulated between participants to minimize carryover effects. A total of 40 participants 

took part in the experiment. Twenty-one participants (9 male, 12 female, ages 19-31, mean = 

25.7) took part in the blocked group, and nineteen participants (11 male, 9 female, ages 19-

36, mean = 23.9) took part in the mixed group. Participants were recruited from the volunteer 

panel of the MRC Cognition and Brain Sciences Unit and paid to take part. An additional 16 

participants were excluded (10 participants had excessive motion > 5mm, and another 6 had 

poor performance with accuracies more than three median absolute deviations below the 

median in at least one condition). All participants were neurologically healthy, right-handed, 

with normal hearing and normal or corrected-to-normal vision. Procedures were carried out 

in accordance with ethical approval obtained from the Cambridge Psychology Research 

Ethics Committee, and participants provided written, informed consent before the start of the 

experiment.  

 

2.1.2 Experimental Setting and Design 

Each participant performed two conditions of a motion coherence task, referred to here as the 

coherence condition and the irrelevant-dots condition. Each condition spanned six levels of 

difficulty. Difficulty type and level served as within-subject factors. This resulted in a group 

(blocked vs. mixed) × difficulty type (coherence vs. irrelevant-dots) × difficulty level (level 1 

~ level 6) design.  

 

2.1.3 Stimuli and Procedures 

The task structure was similar for both blocked and mixed designs (see Figure 2). On each 

trial, participants were presented with a random dot kinematogram (RDK) displayed for 200 

ms, with an interval of 2-3 s between RDKs of successive trials. Participants were asked to 

judge the direction of the dominant dot motion, leftward or rightward. They were given 2 s to 

press one of two response buttons (up or down) to indicate their decision. The mapping 

between stimulus (left or right) and response (up or down) varied randomly between blocks, 

ensuring that, across the whole experiment, there were equal numbers of left-up/right-down 

and left-down/right-up trials for each difficulty level in each condition. 
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Trials were run in blocks of six. At the beginning of each block, the response mappings were 

displayed on the screen during a 2 s instruction period preceding the first trial, and remained 

on the screen throughout the entire block. The response mappings were indicated by two 

arrows above and below each other within the dot field aperture, with one arrow pointing 

right and the other pointing left. In the blocked version, information about the difficulty level 

of the following block was also shown on the screen (e.g., ‘Difficulty Level is 1’) during the 

instruction period; while in the mixed version, participants were shown the instructions 

‘Prepare for Next Block’. The difficulty level of the six trials in a block remained the same in 

the blocked design, covering all six difficulty levels every six blocks; while in the mixed 

design each block contained one trial of each difficulty level randomized within the block. 

 

Participants were given two practice blocks of each condition (coherence and irrelevant-dots) 

before entering the scanner. Within the scanner, each condition constituted a separate run, 

each lasting ~18 minutes. The order of the two conditions was counterbalanced between 

participants. In each run there were 60 blocks in total, thus 60 trials per difficulty level, and 

30 trials of each left/right motion direction in each difficulty level. 
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Figure 2. An example of one block of each condition in the blocked design (A) and the mixed design (B). At the 

beginning of each block, participants were given the response mappings and were cued to prepare for that 

block. At the beginning of each trial, a 200 ms RDK appeared, followed by a 2-3 s fixation period, during which 

participants were to judge the motion direction of the red dot field. The percentages indicate degree of motion 

coherence and were not shown on the actual display. (C) An illustration of the 6 levels of the coherence and 

irrelevant-dots conditions. In the coherence condition, difficulty was manipulated by decreasing the motion 

coherence of the dot field. In the irrelevant-dots condition, difficulty was manipulated by increasing the salience 

of the yellow dots. The percentages indicate the degree of motion coherence and were not shown on the actual 

display. 

 

Figure 2C illustrates coherence and irrelevant-dots conditions across the six difficulty levels. 

In each RDK there were 64 red dots (RGB channels [112.5, 0, 0]) moving dominantly either 

left or right for 200 ms (circular aperture with diameter of visual angle ~8.5∘, dot size = 12 
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pixels diameter, dot speed = 5 pixels/s, dot lifetime = 5 frames). In the coherence condition, 

only red dots were present, and difficulty was manipulated by decreasing the percentage of 

the dots that were moving coherently. The six difficulty levels corresponded to 85%, 60%, 

40%, 25%, 15%, or 10% of the dots moving either left or right, while the remaining dots 

moved in random directions. In the irrelevant-dots condition, the red dots were fixed at 85% 

coherence, but an additional distractor dot field was present. The distractor dot field consisted 

of 576 yellow dots, all of which moved randomly, with a net direction of zero (dot size = 12 

pixels, dot speed = 7 pixels/s, dot lifetime = 5 frames). Participants were asked to ignore the 

yellow dots, and judge the dominant motion direction of the red dots. Six levels of difficulty 

were created by increasing the salience of the yellow distractors (RGB channels [21.25, 

21.25, 0], [42.5, 42.5, 0], [85, 85, 0], [127.5, 127.5, 0], [191.25, 191.25, 0], and [255, 255, 

0]). These values were selected from previous pilot testing. 

 

Visual stimuli were displayed on a 1920×1080 (visual angle 25.16×14.31∘  screen with a 

refresh rate of 60 Hz, which the participants viewed through a mirror placed on top of the 

head coil. The distance between the participant and screen was approximately 1565 mm. 

Stimulus presentation was controlled using the Psychophysics Toolbox (Brainard, 1997) in 

Matlab (2014a, Mathworks, Natick, WA).  

 

2.1.4 Imaging Parameters and Data Analyses  

Scanning took place on a 3T Siemens Tim Trio scanner. Functional images were acquired 

using a multi-band gradient-echo echo-planar imaging (EPI) pulse sequence (TR = 1100 ms, 

TE = 30 ms, flip angle = 62°, 78 × 78 matrices, slice thickness = 2.5 mm, no gap, voxel size 

2.5 mm × 2.5 mm × 2.5 mm, 48 axial slices covering the entire brain, 3 slices acquired at 

once). The first 10 volumes served as dummy scans and were discarded to avoid T1 

equilibrium effects. Field maps were collected at the end of the experiment (TR = 400 ms, TE 

= 5.19 ms / 7.65 ms, flip angle = 60°, 64 × 64 matrices, slice thickness = 3 mm, 25% gap, 

resolution 3 mm isotropic, 32 axial slices). High-resolution anatomical T1-weighted images 

were acquired for each participant using a 3D MPRAGE sequence (192 axial slices, TR = 

2250 ms, TI = 900 ms, TE = 2.99 ms, flip angle = 9°, field of view = 256 mm × 240 mm × 

160 mm, matrix dimensions = 256 × 240 × 160, 1 mm isotropic resolution). 

 

The data were preprocessed and analyzed using the automatic analysis (aa) pipelines and 

modules (Cusack et al., 2014), which called relevant functions from Statistical Parametric 

Mapping software (SPM 12, http://www.fil.ion.ucl.ac.uk/spm) implemented in Matlab (The 

MathWorks, Inc., Natick, MA, USA). EPI images were realigned to correct for head motion 

using rigid-body transformation, unwarped based on the field maps to correct for voxel 

displacement due to magnetic-field inhomogeneity, and slice time corrected. The T1 image 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/296509doi: bioRxiv preprint 

https://doi.org/10.1101/296509
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

was coregisted to the mean EPI, and then coregistered and normalized to the MNI template. 

The normalization parameters of the T1 image were applied to all functional volumes. The 

functional data were high-pass filtered with a cutoff at 1/128 Hz, and spatial smoothing of 10 

mm FWHM was applied. 

 

Statistical analyses were performed first at the individual level using general linear modeling 

(GLM). For correct trials, separate regressors were created for each combination of condition 

and difficulty level. As errors can be a strong driver of MD activity (Kiehl et al., 2000; 

Ullsperger & Cramon, 2004), error trials and no-response trials were removed using separate 

regressors. A separate regressor was created for the cue period at the start of each block. All 

regressors were created by convolving the interval between stimulus onset and response with 

the canonical hemodynamic response function. 

 

Frontoparietal MD ROIs were taken from Fedorenko et al. (2013) (http://imaging.mrc-

cbu.cam.ac.uk/imaging/MDsystem). These included: anterior cingulate and pre-

supplementary motor area (ACC/pre-SMA), anterior insula (AI), posterior-dorsal prefrontal 

cortex (pdLFC), intraparietal sulcus (IPS), and three foci along the middle frontal gyrus 

(anterior, middle, and posterior MFG). Beta estimates for correct trials were averaged within 

each ROI and analyzed using a 4-way mixed ANOVA, with factors group (blocked vs. 

mixed), difficulty type (coherence vs. irrelevant-dots), difficulty level (level 1 ~ level 6), and 

ROI (7 MD ROIs). We also performed the same ANOVA on the motion-sensitive visual area 

MT, using the ROI defined in the SPM anatomy toolbox. 

 

To examine whether individuals showed significant linear effects for difficulty level, we 

performed a GLM on average activity across the entire MD network, using the MarsBaR 

toolbox (Brett et al., 2002). Positive linear contrasts (activity increasing with task difficulty) 

were defined as [-5 -3 -1 +1 +3 +5], across difficulty levels 1 to 6, and negative linear 

contrasts as [+5 +3 +1 -1 -3 -5].  

 

An additional whole-brain voxelwise analysis was also performed, to detect any regions that 

showed a significant positive linear trend for difficulty level, separately for each difficulty 

type. Activation maps were thresholded at p < 0.05 (FDR corrected).  

 

2.2 Experiment 2  

A separate set of participants (n = 24, 18 female, ages 19-30, mean = 24.4) was recruited to 

perform the coherence and irrelevant-dots conditions along with an additional rule condition. 

5 additional participants were excluded (1 because the top of the brain was not acquired, 2 

who had head movements > 5 mm, and 2 who had outlier reaction times more than three 
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median absolute deviations above the median). All participants performed the blocked design.  

 

The coherence and irrelevant-dots conditions used a subset (levels 1, 3, and 5) of the same 

stimuli as previously described, except this time (Figure 3A) the dots went in one of four 

directions (15°, 65°, 115°, 165°). The stimuli and response-mappings for the rule condition 

are illustrated in Figure 3. Participants responded using the index and middle finger of each 

hand on the four buttons of a response pad (left hand middle finger for the first button, left 

hand index finger for the second button, right hand index finger for the third button, and right 

hand middle finger for the fourth button), with a direct spatial mapping between stimulus 

direction and response key (Figure 3B, level 1. The dot fields in the rule difficulty condition 

had high coherence (85%) and did not include yellow dots. However, rule complexity was 

manipulated using three different mappings between stimulus direction and response key 

(Figure 3B).  

 

At the beginning of each block, participants were presented with a cue indicating the 

difficulty level of the block. After processing the cue, they were able to press a button to 

begin a consecutive 6 trials of that condition. Each RDK was presented for 200 ms. 

Participants had up to 10 s to respond, and after a button was pressed, a 2 s ISI preceded the 

next trial. At the cue for the next block, participants were given feedback of their 

performance accuracy as well as mean reaction time for the previous block.  

 

Participants were given two practice blocks of each condition (coherence, irrelevant-dots, and 

rule) before entering the scanner. Within the scanner, each condition constituted a separate 

run. The order of the three conditions was counterbalanced across participants. In each run 

there were 24 blocks in total, thus 48 trials per difficulty level. 
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Figure 3. (A) Stimuli in Experiment 2. Red dots moved in one of four possible directions (15°, 65°, 

115°, 165°). Additional yellow dots (not shown) were added only in the irrelevant-dots condition. (B) 

Participants were asked to use a response pad to indicate the direction of the moving dots by pressing 

the corresponding button. A direct mapping (level 1) was used for coherence and irrelevant-dots 

conditions, while all 3 rules were used in the rule difficulty condition.  

 

3. Results 

3.1 Experiment 1 

3.1.1 Behavioral results 

As shown in Figure 4A, accuracy decreased while reaction times increased with difficulty in 

both groups. Overall, proportion correct decreased from a mean of 93.5%, to a mean of 

63.0% from the easiest to the hardest difficulty level. 

 

3-way ANOVAs of group (blocked vs. mixed) × condition (coherence vs. irrelevant-dots) × 

difficulty level (level 1 ~ level 6) were performed on proportion correct and reaction time. 

The Greenhouse-Geisser correction was used to correct for non-sphericity. For accuracy, 

there were significant main effects of condition, F(1,38) = 4.1, p = 0.049, with slightly higher 

accuracy for irrelevant-dots, and difficulty level, F(5,190) = 240.36, p < 0.001. There was no 
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main effect of group, F(1,38) = 0.3, p = 0.61, and no interactions. Analysis of reaction times 

showed a significant main effect of difficulty level, F(5,190) = 69.6, p < 0.001. The reaction 

time analysis also showed a significant but small interaction of condition × difficulty level, 

F(5,190) = 3.8, p < 0.01, but no other effects. 

 

 

3.1.2 fMRI results 

 

Figure 4. Experiment 1. (A). Behavioral results for each group and condition. Left: accuracy; right: 

reaction time). (B). ROI results of MD regions. (C). ROI results of MT. Graphs plot the beta values 

for each condition averaged across bilateral ROIs. Error bars represent the standard error of the 

mean.  

 

Results averaged over bilateral MD regions are shown in Figure 4B, separately for each 

condition and group. As a first step, we used 2-way ANOVAs (group × difficulty level) to 

examine the effect of difficulty separately in each condition, averaged across all MD ROIs. In 

the coherence condition, the effect of difficulty was not close to significance, F(5,190) = 1.7, 
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p = 0.14. For the irrelevant-dots condition, in contrast, increased activity across difficulty 

levels was significant, F(5,190) = 3.1, p = 0.01. There were no significant interactions with 

group.  

 

Next we tested linear increases with difficulty level in each condition separately. For the 

coherence condition, there were no linear effects of difficulty in the blocked group, F(1,20) = 

0.1, p = 0.73, or in the mixed group, F(1,18) = 0.04, p = 0.84. For the irrelevant-dots 

condition, there was a significant linear trend in the mixed group, F(1,18) = 5.6, p = 0.03, but 

no effects in the blocked group, F(1,20) = 0.3, p = 0.61. 

 

Next, to compare across groups, conditions and ROIs, we used 4-way ANOVA with factors 

group (blocked vs. mixed), condition (coherence vs. irrelevant-dots), difficulty level (level 1 

– level 6), and ROI (7 MD ROIs, averaged across the two hemispheres). This analysis 

revealed a significant main effect of difficulty level, F(5,190) = 4.1, p < 0.05. Tests of a linear 

contrasts across difficulty levels showed a significant positive trend, F(1,38) = 4.3, p = 0.04. 

Critically, there was no significant interaction of condition and difficulty level, F(5,190) = 

0.3, p = 0.89, though a significant interaction between group and difficulty level, F(5,190) = 

2.7, p = 0.03 reflected somewhat different activity profiles for blocked and mixed participants 

(see Figure 4). Though absolute activation levels differed over MD ROIs, trends were largely 

similar across ROIs (Figure 4B). The ANOVA showed a significant main effect of ROI, 

F(6,228) = 37.3, p < 0.001, along with a significant interaction of ROI and difficulty level, 

F(30,1140) = 2.6, p = < 0.001. 

 

To check that our ROI analysis did not miss important effects elsewhere in the brain, we also 

carried out a standard whole-brain analysis, combining data for blocked and mixed groups, 

and testing for a linear increase across difficulty levels (see Methods). For the coherence 

condition, no significant voxels were found anywhere in the brain. For the irrelevant-dots 

condition, beyond the expected large increases in visual cortex, the test showed scattered, 

small regions close to our MD ROIs, including preSMA/ACC, AI, and regions of lateral 

frontal cortex. 

 

Lastly, we tested for significant linear increases or decreases in individual participants (see 

Methods), again combining blocked and mixed groups, and using a whole-MD ROI. With 40 

participants and an alpha level of .05, for each test we should expect 2 participants to be 

judged significant by chance. For the coherence condition, there were 10 significant increases 

but also 8 significant decreases. For the irrelevant-dots condition, there were 17 significant 

increases and 3 significant decreases. Overall, these results are broadly similar to those from 
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standard random-effects analysis, but further, they suggest a significant degree of 

heterogeneity between participants. 

 

ROI results for MT are shown in Figure 4C. In line with prior results (Rees, Friston, & Koch, 

2000), MT activity generally declined with increasing difficulty of extracting the motion 

signal. A 3-way ANOVA with factors group (blocked vs. mixed), condition (coherence vs. 

irrelevant-dots), and difficulty level (level 1 – level 6) showed a significant main effect of 

difficulty level, F(5,190) = 11.7, p < 0.001. There was also a group by level interaction, 

F(5,190) = 2.9, p = 0.03, reflecting a stronger difficulty effect in the blocked group. No other 

significant effects were observed. Tests of within-subjects contrasts on difficulty level 

showed a significant negative linear trend, F(1,38) = 58.6, p < 0.001.  

 

 

3.2 Experiment 2 

3.2.1 Behavioral results 

In Experiment 2, participants performed the coherence, irrelevant-dots, and rule conditions. 

Behavioral data are shown in Figure 5A. Separate condition (sensory, selection, and rule) × 

difficulty level (level 1 ~ level 3) ANOVAs were performed on accuracy and reaction time. 

For accuracy, there were main effects of difficulty level, F(2,26) = 187.2, p < 0.001, and 

condition, F(2,46) = 64.2, p < 0.001. There was a significant interaction between condition 

and difficulty level, F(4,92) = 69.2, p < 0.001, reflecting generally high accuracy across 

difficulty levels in the rule condition. Reaction times also showed significant main effects of 

difficulty level, F(2,46) = 112.3, p < 0.001, and condition, F(2,46) = 7.0, p < 0.01, and a 

significant interaction between condition and difficulty level, F(4,92) = 10.6, p < 0.001.  

 

3.2.2 fMRI results 

Results for MD regions are shown in Figure 5B. In this experiment, neither coherence nor 

irrelevant-dots conditions showed any trend towards increasing activity with increasing 

difficulty, in contrast to results from the rule condition. In the MD regions, we found 

significant 2-way interactions of condition and difficulty level, F(4,92) = 2.9, p < .05, and 

ROI and difficulty level, F(12,276) = 3.6, p < .01, as well as a 3-way interaction of condition, 

difficulty level, and ROI, F(24,552) = 2.2, p < .05. Further we tested for linear increases 

across difficulty levels in each condition separately. Difficulty level showed a significant 

linear trend in the rule condition, F(1,23) = 4.5, p < .05; however, there were no linear trends 

for either coherence, F(1,23) = 1.1, p = 0.32 or irrelevant -dots F(1,23) = 0.1, p = 0.76. 

 

Whole-brain analysis showed no voxels with a significant linear increase across difficulty 

levels, either for coherence or irrelevant-dots conditions. For the rule condition, significant 
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effects were found in lateral parietal and lateral frontal cortex bilaterally. Tests on individual 

participants showed 9/24 increases and 6/24 decreases in the coherence condition; the same 

in the irrelevant-dots condition; and in the rule condition, 14/24 increases and 2/24 decreases. 

 

Results for MT are shown in Figure 5C. There were significant main effects of difficulty 

level, F(2,46) = 17.1, p < 0.001, and condition, F(2, 46) = 5.6, p = 0.01, but no interactions. 

 

Figure 5. Experiment 2. A. Behavioral results each group and condition. Left: accuracy; right: 

reaction time. B. ROI results of MD regions. C. ROI results of MT. Graphs plot the beta values for 

each condition averaged across bilateral ROIs. Error bars represent the standard error of the mean. 

 

 

 

4. Discussion 

The characteristic of fronto-parietal “multiple-demand” regions is increased activity for many 

different kinds of task difficulty. Here, we pursued mixed previous findings suggesting a 

partial exception – in some cases, MD activity seems largely insensitive to the difficulty of 
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sensory discriminations. To obtain the strongest possible test of such insensitivity, using a 

motion coherence task, we manipulated two aspects of sensory difficulty over the widest 

possible range, from very easy to close to chance. We also compared results with difficulty 

fixed or variable across a block of trials. To ensure good power, across two experiments we 

tested a total of 64 participants. 

 

Clear results were obtained for a manipulation of motion coherence. Across experiments and 

mixed or blocked variations of difficulty level, there was no hint of consistently increased 

MD activity as performance changed from close-to-ceiling to close-to-chance. Following Han 

and Marois (2013), these results can be interpreted in terms of the distinction drawn by 

Norman and Bobrow (1975) between data and resource limitations. For motion coherence, 

the results suggest a scenario similar to that depicted in Figure 1A: decreasing coherence 

simply decreases the quality of sensory data, and this cannot be offset by increased 

attentional focus or top-down control. 

 

An intriguing result was revealed by examining participants individually. Even for motion 

coherence, there was a clear suggestion of some participants showing a linear increase of MD 

activity across difficulty levels. These participants were matched, however, by similar 

numbers showing decreases. It is worth noting that, under the framework of Norman and 

Bobrow (1975), altered resource allocation is an option whether or not performance is 

actually resource-limited. When resource allocation has little effect on performance, it may 

vary idiosyncratically between participants. 

 

Results were less clear for the salience of irrelevant dots. Following Han and Marois (2013), 

we expected that MD activity might increase with the salience of irrelevant dots, reflecting 

stronger attempts to focus only on the relevant red dots. Results of Experiment 1 were 

somewhat in line with this prediction, though even with 40 participants, the effect was not 

sufficiently strong to differ significantly from the null effect for coherence. In Experiment 2, 

even irrelevant-dots showed no hint of an overall difficulty effect. Across experiments, 

results for individual participants again showed a mixture of increases and decreases. Though 

such variable results lead to no strong interpretation, a reasonable speculation concerns 

variable strategies. In one extreme case, the participant could make no attempt to separate red 

and yellow dots, in which case yellow dots simply decrease motion coherence, and results 

should resemble those of a direct coherence manipulation. Under our presentation conditions, 

effective top-down separation of the two dot fields may have been hard or impossible to 

achieve, making unselective processing the dominant strategy. In some cases, however, 

increasing the salience of yellow dots could have increased top-down attempts to ignore 

them, reflected in increased MD activity. 
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Across many different kinds of cognitive demand, it seems that scenarios like that of Figure 

1B are by far the most common. In most cases – including the rule complexity case we used 

in Experiment 2 – increased cognitive demand calls for increased top-down input, ensuring 

optimal focus on task-relevant processing. The results show, however, that this is not a 

universal rule. In line with the ideas of Norman and Bobrow (1975), increased attentional 

focus may be ineffective in overcoming simple limitations of sensory data. 

 

As reviewed in the Introduction, the literature contains mixed findings concerning the MD 

response to reduced stimulus discriminability. In speeded tasks, for example, strong increases 

in MD activity have been reported as stimuli to be discriminated are made more similar 

(Jiang & Kanwisher, 2003; Woolgar et al., 2011). As we have indicated, in general we do not 

know the shapes of PRFs for different tasks. Rapidly deciding which of four lines is shortest, 

for example, may have very different attentional requirements from a global judgment of 

motion direction as used in the present work. 

 

While many studies in the literature show increasing MD activity with increasing task 

demands, there have also been studies that have showed decreased MD activity (Bor et al., 

2003), an inverted U-shape response (Callicott et al., 1999; Linden et al., 2003), or a plateau 

after a certain difficulty level (Marois & Ivanoff, 2005; Todd & Marois, 2004; Mitchell & 

Cusack, 2008). For example, Linden et al. (2003) and Callicott et al. (1999) found that the 

frontal-parietal network initially showed increased activation with increased working 

memory load, but decreased in the highest load condition close or beyond the limit of 

capacity. In our data there was no suggestion of an inverted-U profile; if anything, in some 

conditions there was a decrease in MD activity over the first few difficulty levels (e.g. 

Experiment 2, coherence condition). Our data suggest no decrease of MD activity as sensory 

limits make a task impossible to perform well. 

 

One factor affecting MD recruitment might be advance knowledge of difficulty level. The 

neural basis of expectation in perceptual tasks has been shown to involve top-down 

modulation of frontal and parietal cortices to enhance sensory processing in the visual cortex 

(Giesbrecht, Weissman, Woldorff, & Mangun, 2006; Kastner, Pinsk, De Weerd, Desimone, 

& Ungerleider, 1999; Kok, Jehee, & de Lange, 2012; Sylvester, Shulman, Jack, & Corbetta, 

2009). Furthermore, Manelis and Reder (2015) recently demonstrated using MVPA that the 

regions involved in a working memory task are the same regions that contain information 

about the upcoming task difficulty during task preparation. It is therefore possible in our 

study that participants in the blocked group could have decided to increase attentional effort 
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in an attempt to compensate for anticipated perceptual difficulty. Our data, however, 

suggested little notable difference between mixed and blocked conditions. 

 

Activity across the MD network is increased by many different kinds of cognitive demand 

(Duncan & Owen, 2000; Fedorenko et al., 2013). In contrast to this “multiple demand” 

pattern, the present results show little or no consistent effect of sensory manipulations in a 

simple motion coherence task. As suggested by Han and Marois (2013), results may reflect 

the degree to which performance can be improved by increasing attentional investment. 

When simple sensory decisions are largely data-limited, decreased accuracy cannot be 

compensated by increased attention, leading to little or no enhancement of MD activity. 
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