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Abstract 
We describe a novel hybrid method to threshold FMRI group statistical maps derived from 
voxelwise second-level statistical analyses. The proposed Equitable Thresholding and 
Clustering (ETAC) approach is grounded in two ideas: (i) reducing the dependence of 
clustering results on arbitrary parameter values by using multiple sub-tests—each 
equivalent to a “standard” FMRI clustering analysis—to make decisions about which groups 
of voxels are potentially “significant”, then combining the results of each sub-test to decide 
which voxels are "accepted" ; and (ii) adjusting the cluster-thresholding parameters of each 
sub-test from (i) in an equitable way—so that the individual false positive rates (FPRs) are 
balanced across sub-tests and voxels—to achieve a desired global FPR (e.g., 5%). ETAC 
is independent of parametric assumptions about the spatial correlation of FMRI noise, 
because resampling methods are used to simulate the null (noise-only) distribution required 
to compute the FPR evaluations required in (ii). Resting FMRI datasets, analyzed with 
pseudo-task timings to provide a null model, were used to show the accuracy of the ETAC 
FPR control. A task FMRI data collection was used to compare ETAC’s true positive 
detection power vs. a standard cluster detection method, with ETAC providing equivalent or 
favorable results. Additionally, an important general note on the use of one-sample t-tests 
in neuroimaging is also made, based on an examination of the variability of cluster results. 
 
Introduction 
One of the most common (if not the  most common) methods used for group level FMRI 
statistical map decision making is dual thresholding of statistical parametric maps.  In most 
software, this is (schematically) performed in two successive steps: 

A. At each voxel, reject any voxel whose test statistic likelihood ( p-value) is larger than 
some user-selected p-threshold (1- or 2-sided tests can be used; 1-sided are more 
common in FMRI practice); 

B. Among the surviving voxels, accept only those that form neighborhoods with other 
surviving voxels in a cluster of some threshold size or larger. 

The per-voxel statistic thresholding (step A) is easy to apply, since the voxelwise t-statistic 
with known degrees of freedom (for example) can be directly converted to a p-value. For 
the cluster thresholding (step B), determining a cluster-size threshold that results in a 
desired global false positive rate (FPR) for a given voxelwise p-threshold is nontrivial and 
does not have an exact closed-form solution.  There are two main categories of standard 
approaches to this latter problem. The method used in SPM (Worsley & Friston, 1994; 
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Flandin & Friston, 2017) uses a formula based on a Gaussian-shaped spatial 
autocorrelation function (ACF) for the FMRI noise and is asymptotically accurate for large 
smoothness when the Gaussian-shaped ACF model is accurate. The method commonly 
used in AFNI (Cox, 1996) to date is a noise-only cluster-simulation technique, based on a 
Gaussian or (more recently) a longer-tailed model for the ACF of the simulated 
pseudo-random FMRI noise volumes (Cox et al., 2017a; Cox et al., 2017b). The 
cluster-simulation approach avoids potential inaccuracy from the approximate cluster-size 
threshold formula, at the cost of brute force computation. 
 
Controversy flared in 2016 with the publication of a paper (Eklund et al., 2016) that put forth 
strong claims about the failure in controlling the FPR of the most common software tools 
used in FMRI group analysis. Although the authors withdrew or tempered some of their 
most tendentious claims (e.g., about the number of FMRI papers brought under suspicion), 
the main thrust of their work remained largely unrefuted: many parametric methods for 
cluster-thresholding showed higher-than-nominal FPR rates in their testing 
framework—though again, it is worth noting that their own results show that these 
overreaches tended to be moderate for the kinds of parameters most used in the literature; 
also see (Cox et al. 2017a; Cox et al., 2017b). 
 
The principal causes of the inflated empirical FPRs they found in the examined parametric 
methods were, in our opinion, twofold. First, at that time, all of these methods used a 
Gaussian shape to model the spatial ACF of the noise in FMRI data, but it appears that the 
actual noise autocorrelation function often has significantly longer tails, which has 
substantial effects on the estimated FPR, especially at larger p-thresholds (Cox, 2017b). 
Second, these parametric methods implicitly assumed that the ACF is stationary (i.e., 
roughly constant) across the brain; however, the ACF can have very large variations across 
the brain, even within a given tissue type, which also greatly affects FPR. Additionally, from 
follow-up simulations and analyses, we would hypothesize that the ACF is also not the 
same at all temporal frequencies, which may partially explain why FPR control can be less 
accurate for slow block designs (since it is the noise in the subspace of the FMRI time 
series model that is the “enemy” of detection), at least in their testing framework. 
 
In an earlier paper (Cox et al., 2017b), we addressed the first point directly in AFNI's 
parametric cluster-simulation approach by modeling the ACF with a non-Gaussian shape 
(termed a "mixed model" ACF), and were able to improve the FPR performance markedly 
for relatively stringent per voxel p-thresholds (≤0.002). In a separate nonparametric 
analysis that omits any explicit model for the ACF, we were also able to achieve robust 
FPR control for voxelwise p≤0.01 by using a pure resampling and cluster-simulation 
method. Unfortunately, the penalty for this latter approach to detection is that the resulting 
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cluster-size thresholds can be very large, making the method very (and likely "overly," for 
many parts of the brain) conservative. In addition, the false positives are far from being 
uniformly distributed in the brain volume (Eklund et al., 2016), suggesting that biases still 
remain, in large part due to the nonstationarity of smoothness across the brain. 
 
We developed the method presented herein, equitable thresholding and clustering (ETAC), 
in an attempt to overcome the related problems of overly-strict thresholds and highly 
non-uniform FPR density.  As described here and below, the term "equity" is applied in 
several important contexts. The method has the added benefit of reducing the influence of 
parameters chosen semi-arbitrarily (e.g., smoothing radius or voxelwise p-value threshold; 
"semi-" because there is generally a window of acceptable values in the literature, but the 
exact value used may have a large impact on the final outcome). 
 
Briefly, ETAC works by implementing a collection of related individual component 
tests—called sub-tests from here onwards—across a range of parameter values, such as 
smoothing radius and voxelwise p-threshold, for dual (voxelwise, then cluster-wise) 
thresholding, and then merging their results via set union. Each sub-test is a “standard” 
type of test carried out in FMRI group analyses, as illustrated in (Eklund et al., 2016).  We 
maintain equity (or balance) among this collection of sub-tests (and therefore across 
otherwise arbitrarily chosen parameters) by constraining each individual sub-test’s 
cluster-threshold to produce the same FPR as every other sub-test. The global (or final) 
FPR is controlled by adjusting all sub-tests’ equitably constrained cluster-threshold 
parameters simultaneously in order to reach the desired target FPR in the simulations. 
Furthermore, each voxel in the brain mask is treated similarly—equity is applied among 
voxels, as well as equity among sub-tests—to have its own FPR approximately equalized. 
These abstract concepts are presented in detail in the Methods section below and 
demonstrated concretely in the Results.  
 
The use of multiple sub-tests reduces the number of semi-arbitrary choices the FMRI data 
analyst must make. Effectively, multiple p-thresholds and multiple levels of data blurring are 
used: the data analyst only needs to choose ranges of these parameters, rather than a 
specific p-threshold and a specific spatial blur, and each combination comprises one 
sub-test. As a result, ETAC has the potential to detect both small, intense clusters (found 
using small p-value thresholds and small blurring) and large, weak clusters (found using 
large p-value thresholds and perhaps more blurring). This choice of sub-tests is intended to 
balance cluster detection across spatial location, spatial scale (cluster-size), and cluster 
intensity. As will be demonstrated, ETAC gives reasonably accurate control of false 
positives, and provides the same or slightly more statistical power than the use of a fixed 
cluster-size threshold that also controls global FPR. 
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Above, we appealed to various features of the FMRI time series noise, especially its spatial 
smoothness, in our path of reasoning leading to the new thresholding method; however, we 
emphasize that our ETAC approach does not directly model these features. We do not 
attempt to use ab initio  simulation to create synthetic random noise fields for 
cluster-threshold emulation. Instead, our approach here is to: 1) use the residuals from the 
voxelwise statistics (e.g., t-test or linear regression results) as exemplars of the FMRI noise 
at the group level, and then 2) build the thresholding method on randomizing/permuting 
these residuals to generate further realizations of the FMRI noise field, still at the group 
level.  Our reasons for taking this approach are twofold: (a) using this 
randomization/permutation technique to select the cluster-size threshold in the dual 
threshold method has been more precise (in the tests undertaken) thus far in controlling the 
false positive rate across a wide range of p-thresholds than has been parametric modeling 
and simulation of the FMRI noise field (Eklund et al., 2016; Cox et al., 2017b); and (b) 
simulations of 3D random fields with complex spatial correlation structures is very 
compute-intensive and is bound up with choosing a reasonably accurate parametric model 
for these correlations. 
 
In the next section, we outline the concepts underlying the ETAC approach. In the 
Appendix, we provide a detailed summary of how ETAC is implemented in AFNI. To 
examine the global FPR performance of ETAC, we used simulations à la (Eklund et al., 
2016), with resting state FMRI as “null data” for task-based analyses. To examine the 
ability of ETAC to detect signal changes (thereby investigating its "power"), we analyzed an 
publicly available collection of task FMRI datasets. 
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Equitable Generalizations of Dual Thresholding 
Figure 1 shows a schema for judging all possible clusters in a brain mask (i.e., globally).  A 
point ( S,C ) in this configuration space represents a cluster of C neighboring voxels, each of 
which is individually “more significant” than S (representing t, z , -log( p), or other similar 
statistic).  The dual thresholding approach for finding significant clusters is also shown: 
first, a voxel threshold is chosen (a value along the abscissa, e.g., S*), which delimits part 
of the configuration space;  one then determines a cluster-size C* which further delimits the 
configuration space to the dark shaded region, for a desired global (i.e., within brain mask) 
FPR 𝜛 (cursive Greek “pi”). Thus, C* depends on both S  and 𝜛; in general, for a given 
FPR, the cluster-size threshold C*=C( S*,𝜛) is a decreasing function of per-voxel threshold 
significance S*, as shown (the solid black curve).  There is a tradeoff implicit in the dual 
thresholding approach: a more stringent per-voxel threshold (moving the shaded region 
rightwards) allows for detection of smaller clusters (the shaded region extends further 
downwards). The function C( S,𝜛) is determined by simulation in AFNI and by an 
approximate asymptotic formula in SPM. 
  

Figure 1. Graphical view of the dual thresholding tradeoff.  All voxels that meet a voxelwise threshold 
and a cluster-size (contiguity) threshold are kept—the gray region indicates the combinations that 
pass a particular instance of this procedure: each voxel’s statistic must pass a first significance 
threshold S*, and the number of contiguous voxels (in a single cluster) must be above a second 
threshold C*. The thick black curve C(S,𝜛) indicates the cluster-size threshold that gives a fixed 
global FPR 𝜛 (e.g., 5%) as a function of the per-voxel threshold S; 𝜛 is the probability that a 
noise-only cluster falls into the gray region. See the main text for discussion of named clusters J-M. 
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Here, the J cluster passes the thresholding test, by containing "enough" voxels for the 
given voxelwise threshold. The K cluster is made up of voxels that easily pass the threshold 
test, but it does not have enough voxels to “survive” in the present scenario; however, if the 
per-voxel threshold test were more stringent (S* moved rightward), then the K cluster could 
pass the dual threshold test. For the “right” choice of per-voxel threshold, both clusters J 
and K would survive. The L cluster has voxels that pass the per-voxel threshold, but not 
enough of them and there is no per-voxel threshold that will permit L to survive at the 
desired FPR. Conversely, the M cluster has a lot of voxels above a slightly smaller 
per-voxel threshold. Again, one could make M survive by playing with the per-voxel 
significance threshold, as M lies above the C( S,𝜛) tradeoff curve. Note that, for a given 
nominal FPR 𝜛, the choice of voxelwise thresholding statistic S* is essentially the primary 
quantity for determining which clusters are accepted or rejected, because the cluster size 
threshold C* is just a function of S* parametrized by a (typically 5%) 𝜛 value. 
 
Figure 1 and the reasoning above lead to the obvious question: If we are interested in 
obtaining clusters based on their dual properties of voxelwise significance and size, how 
should we choose the single voxelwise threshold that determines the result?  As shown 
using the simulations of (Eklund et al., 2016) and (Cox et al., 2017b), at some larger 
p-thresholds our ability to control FPR decreases; in the present language, there did not 
appear to be an accurate relation C( S,𝜛) for some large p-values (small S -values), such as 
p=0.10.  But even within a reasonable range of p-values, the choice of threshold might 
affect the outcome dramatically. As illustrated in Fig. 1, we could shift this voxelwise 
threshold along the horizontal axis and obtain the following combinations of “statistically 
significant” clusters: only M; both J and M; only J; both J and K; or only K. When the results 
can depend strongly on the choice of an arbitrary parameter, any value of which might 
considered “reasonable” within a large interval, we are in a bad situation. 
 
Figure 1 also leads to the idea of finessing the tradeoff between cluster-size and per-voxel 
thresholds; that is, simply accept every voxel configuration which lies above the solid black 
curve C( S,𝜛). From the viewpoint of the final FPR of the dual threshold method, any place 
along that curve is as acceptable as any other. The principle of equity asks, “Why 
discriminate?”; however, a practicable algorithm must use a discrete set of p-thresholds 
combined with their corresponding cluster-size thresholds. Of course, one also has to make 
sure that the desired FPR is still achieved in the final results. 
 
Figure 2 illustrates the use of four different per-voxel thresholds in a single test.  In this 
example scenario, using the equitable thresholding method, clusters J, K, and M survive. 
When using the multiple voxelwise thresholds (proposed multi-S or multi- p case), it is 
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important to note that we cannot use the original C( S,𝜛) tradeoff curve (from the mono- S 
case) to calculate the cluster threshold for each sub-test; this would lead to a final FPR that 
is larger than the desired 𝜛, since more potential voxel configurations are allowed with the 
use of multiple S-thresholds than with a single S-threshold. It is thus necessary to find an 
𝜛✭

 < 𝜛G (subscript “G” for “goal”) such that using the C( S,𝜛✭) for the individual sub-tests 
will achieve the desired 𝜛G in the final combined simulations. That 𝜛✭ value then defines 
the multi- p-threshold clustering algorithm when applied to the original voxelwise statistical 
tests. We do not make the Bonferroni correction 𝜛✭=𝜛G/4 among these four tests. This 
correction would be very conservative, as indicated by the strong overlap among the 
individual mono-p -threshold regions in Fig. 2. We describe in detail how 𝜛✭ is adjusted (via 
simulation) to make the final FPR equal to 𝜛G in the Appendix. 
 

Figure 2. Thresholding as in Fig. 1, but using four different per-voxel p-thresholds at once (vertical 
dotted lines), each using its own cluster-size threshold (horizontal dotted lines).  The FPR for the gray 
region (the union of four mono-p-threshold rectangles), if constructed above the solid black curve 
C(S,𝜛), would be larger than the desired 𝜛 (FPR for the gray rectangle shown in Fig. 1), since this 
union region would include more possible voxel configurations. To compensate for that and maintain 
a nominal (5%) FPR, the cluster-size threshold curve from Fig. 1 (solid curve) must be raised to a 
higher level by picking a curve C(S,𝜛✭) with an 𝜛✭ < 5% (dashed).  Which 𝜛✭ should be chosen is 
determined by simulating this multi-p-thresholding process—just as the curve C(S,𝜛) for the original 
dual threshold method is determined (in AFNI) by simulating the mono-p-threshold procedure. 
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One advantage of this approach over the simpler mono-S-thresholding method is that it 
allows large clusters of low effect size (smaller S, larger p) to be detected along with small 
clusters of high effect size (larger S, smaller p) within a single analysis. In the more 
common mono-p-threshold approach, the user has to decide which type of cluster to favor. 
It would be difficult for a user to know a priori what single p-value would be appropriate or 
preferable for a study. This arbitrariness can all too easily lead to the user adjusting the 
per-voxel p-threshold to get more “desirable” results. Additionally, a user may be interested 
in both large and small clusters (e.g., responses in amygdala and PCC) within a single 
experiment, an outcome which might be arbitrarily excluded by the constraint of being 
allowed only one single voxelwise threshold. In the ETAC method, only a plausible range of 
p-thresholds needs to be chosen. In summary: where results initially depended on just a 
single parameter chosen from within a range of reasonable values, the ETAC method has 
allowed multiple parameter values to be chosen, tested, and have their results combined 
into a single result, while simultaneously balancing the weight of each sub-test and 
maintaining control of the final FPR. 
 
The idea of combining multiple dual threshold sub-tests for detection (in Fig. 2, each 
sub-test is specified by its voxelwise S- or p -threshold) can be directly abstracted and 
generalized to other parameter dependencies.  For example, typically only one spatial 
smoothing length (full-width at half max, FWHM) is chosen for a given study, but commonly 
implemented values within the literature occupy a range of roughly 4-10 mm. No matter 
what the sub-test is, its individual FPR will be controlled by a cluster-thresholding 
parameter. The ETAC approach is to require each sub-test to have the same individual 
FPR 𝜛✭

   and to accept a voxel if it passes any of the individual sub-tests; then, 𝜛✭ is 
adjusted to achieve the goal of FPR=𝜛G for the final set of accepted voxels.  In this way, 
equity across the parameter ranges of the sub-tests (in Fig. 2, defined by S threshold 
values) is maintained while the overall FPR is still achieved. 
 
The presence of strong spatial inhomogeneity in the noise ACF (Cox, 2017b) leads to the 
requirement that large cluster-size thresholds be set in order to accommodate the highly 
smooth regions (e.g., the brain midline), which may be of interest in a study. In turn, these 
large cluster-size thresholds make detection of smaller clusters impossible, even in regions 
where the noise ACF decays quickly (i.e., where the noise is not “smooth”). This drawback 
led us to the next two generalizations of the ETAC method: applying equity across multiple 
cases of blurring, and applying equity across brain regions via spatially dependent 
cluster-thresholds. 
 
Using multiple cases of blurring to enable FMRI detections across spatial scales is certainly 
not new (Worsley et al., 2001).  The ETAC framework maintains equity across blur radii as 
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follows: the clustering thresholds at the different scales of blurring are balanced by making 
each sub-test (i.e., combination of p-threshold and blurring FWHM) have the same 
individual FPR 𝜛✭. The effect of this multi-blur analysis is to remove the semi-arbitrary 
choice of blurring scale from the data analyst. For this approach to work, the first-level 
(individual subject) analyses should be done without spatial blurring, since un-blurring 
afterward is impracticable. Instead, the blurring of the first-level results (individual subject 
“betas”) should be carried out by the ETAC software; alternatively, multiple cases of 
blurring at the first-level could be analyzed separately and those multiple results for each 
individual subject then entered into the ETAC algorithm. This latter approach would be 
useful for nonlinear time series blurring approaches (e.g., local principal singular vector), 
and for applying ETAC to resting-state FMRI seed-based correlation maps. However, this 
approach to supplying multiple blur cases has yet to be implemented in AFNI’s ETAC 
software; instead, the software does the additional Gaussian-in-brain-mask blurring of the 
input datasets internally. 
 
The sizes of cohesive brain regions vary across the brain (e.g., amygdala vs PCC) and so 
do the noise characteristics (e.g., smoothness of time series residuals).  To be equitable, 
the cluster-threshold tradeoff curve should vary with brain region. Theoretically, this effect 
could be modeled with simulated noise, but in practice the difficulty lies in accurately 
modeling and efficiently creating realizations of 3D noise fields with non-uniform correlation. 
Instead, we have chosen to model this effect with a randomized t-test approach. The goal 
is to keep the FPR approximately the same across the brain (at least, to keep it more 
uniform than would result from using single global cluster-thresholds). As a corollary, 
regions that are less smooth will get smaller cluster-size thresholds, and regions that are 
more smooth will get larger cluster-size thresholds, and it will thus be possible to detect 
smaller clusters of activation in “naturally favorable” parts of the brain. In order to combine 
the sub-test information, each sub-test is now to be cluster-thresholded using a 3D 
cluster-threshold map, not just a single number. The cluster-thresholds to use at each 
voxel, for each sub-test, are determined again by "equitable" balancing—the Appendix 
describes the algorithmic implementation in more detail.  
 
Finally, cluster-size is a commonly used figure of merit (FOM) for assessing significance in 
neuroimaging. The size of a cluster (voxel count) is the sum of the number 1 across all 
voxels within the cluster; that is, 𝚺 1. From this formulation, it is simple to generalize the 
cluster significance FOM to other sums; for example, incorporating the statistic associated 
with each voxel as a weight, such as 𝚺 z2, where z denotes the 𝓝(0,1) normal deviate that 
matches the voxel-level test statistic (e.g., t or p ) in tail probability. The TFCE method 
(Smith & Nichols, 2009) uses a related cluster FOM in its “threshold free cluster 
enhancement” algorithm. The current implementation of ETAC in AFNI allows for the 
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cluster thresholding FOM to be computed as 𝚺 |z |h where h=0, 1, and/or 2;  the h=0 case 
corresponds to the unweighted cluster size, h > 0 provides for significance weighting, which 
allows for an increased possibility of finding small but relatively significant clusters to be 
detected.  
 
Tests and Results 
The first test of the proposed ETAC approach is a variation on the methodology in (Eklund 
et al., 2016). From the FCON1000 collection of resting-state FMRI datasets (Biswal et al., 
2010), the 198 datasets in the Beijing sub-collection were processed with AFNI pipelines 
specified using afni_proc.py to produce the first-level (individual subject) activation maps. 
Three different stimulus durations were modeled as pseudo-tasks: 1 s, 10 s, and 30 s. For 
each duration, 5 sets of pseudo-random timings were used; thus, for each duration, 
198×5=990 maps of fit coefficients (betas) were generated, with no spatial blurring used at 
this analysis level. The BOLD hemodynamic response function (HRF) regressor models for 
all 5 pseudo-task timings in each duration are nearly orthogonal—stimulus duration 30 s 
had the most highly correlated HRF models, with mean correlation 0.09 and standard 
deviation 0.21—so that the 5 estimated response magnitudes (betas) in each subject were 
approximately independent. It is this use of multiple randomized timings that distinguishes 
our testing methodology from (Eklund et al., 2016). 
 
At the second (group) level, two-sample t-tests were carried out, with 20 randomly chosen 
subjects assigned to each sample; for each subject, 1 of the 5 results from the different 
task timings was selected randomly in each simulation. A total of 1,000 realizations of this 
procedure was analyzed with ETAC, for each of the 3 stimulus durations. When running 
ETAC, 3 blur cases were used in defining the sub-tests: 4 mm, 7 mm, and 10 mm (FWHM). 
Voxelwise p-thresholds were set at geometric intervals to: 0.010, 0.005, 0.002, and 0.001; 
the NN cluster-defining level was left at the default 2 (i.e., "neighbors" of a voxel are those 
sharing either face or edge), and the default FOM with h=2 (i.e., statistically weighted) was 
used. For each stimulus class (1 s, 10 s, 30 s), three results were calculated: the FPRs for 
1-sided (positive or negative) or 2-sided t-thresholding; thus, there are 3×3=9 results for the 
two-sided t-tests for each goal FPR. Additionally, a very similar set of simulations was run 
separately using one-sample t-tests with 40 subjects per simulation. In all cases, the 
panoply of nominal (goal) FPRs was run, with  𝜛G=2%, 3%, ... , 9%. Links to AFNI scripts 
for the first and second level analyses are given in the Appendix. 
 
The empirical FPRs from all these 1-sample and 2-sample t -test simulations are presented 
in Figure 3, along with the 95% (binomial) confidence intervals that would be expected from 
1,000 independent simulations if the algorithm exactly achieved the nominal FPR. For the 
two-sample t-tests (with 40 subjects total), the results are tightly clustered, very near the 
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nominal FPR and typically within the confidence interval, though biased slightly high. For 
the one-sample tests with 40 subjects, the results are more variable, as well as also being 
biased a little high. 
 
To understand the variability of the one-sample results from ETAC, we carried out 
numerical simulations with pseudo-random normally distributed datasets. Two sets of 
simulations were run, the first using independent collections of datasets for each t-test, and 
the second using collections resampled from a finite sample of datasets (and thus, the 
t-tests are not independent). The results are in Figure 4 (where the "FP Count" of 50 
corresponds to an FPR of 5%). The upper plot with independent collections exhibits both a 
near-zero bias and a small spread;  The lower plot, with non-independent collections, has a 
much larger spread in estimated FPR values. This comparison demonstrates that the 
assumption of independent simulations is critical (and often not met) for accurately 
assessing the FPR distribution of the one-sample tests. In the above analyses with real 
data (cf. Fig. 3), the tests are clearly not independent, as there are only 198 subjects (or 
990 beta datasets) from which to draw 40 subjects per test. The effect of this 
non-independence of the one-sample t-test collections is to greatly increase the variance of 
the empirical FPR results. In short, the methodology used in (Eklund et al., 2016), in (Cox 
et al., 2017ab), and herein, can only provide a rough evaluation of FPR accuracy for 
one-sample t-tests. While this point has arisen as a methodological sidenote to ETAC and 
cluster analysis methodologies, it is an important one for the neuroimaging community as a 
whole, as such one-sample tests are commonly used in published studies. 
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Figure 3. ETAC false positive rates from simulations of two-sample t-tests (20 subjects per sample) 
and one-sample t-tests (40 subjects in the sample). The nominal (desired) FPR 𝜛G is shown along the 
horizontal axis, and is also shown as a dashed line within the gray boxes, which represent the 95% 
confidence intervals for the FPR (from a binomial distribution, assuming the nominal FPR as the 
binomial parameter and assuming all 1000 replicates are independent). Thus, symbols that fall inside 
their gray box are within the 95% CI of what would be expected if the nominal FPR was the actual 
ETAC FPR. Medians for the 9 values in each partition are shown with solid black lines. The 
two-sample ETAC results are fairly close to the nominal FPR and tightly clustered, but the 
one-sample results are biased higher and have a great deal more variability; see Fig. 4 for an 
explanation of this increased dispersion.  
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Figure 4. Box-whisker plots of False Positives (FP) results from a fixed (not spatially variable) 
cluster-size thresholding method (Cox et al., 2017b) applied to simulated datasets. Each simulation 
(one data point in this Figure) used 40,000 independently generated normally distributed 3D volumes 
and carried out 1,000 one-sample t-tests using these as inputs; 40 datasets were used in each 
one-sample t-test. For the upper plot, the simulated datasets taken for the 1,000 t-tests were 
completely separate and thus independent. For the lower plot, only the first 198 datasets were used 
and 1,000 random subsets of 40 of these were taken for each FP calculation; thus, the 1,000 
replicates were not independent. The result from each FP calculation using 1,000 t-tests is a single 
FP count. Then 500 iterations of the above processes were run to produce the results shown (20 
million 3D volumes in total). For the resampled results, the variability in observed FP is much larger. 
Similar calculations (not shown) indicate that this higher variability due to non-independence is not a 
significant effect for two-sample t-tests. 

 
 
To test the ability of ETAC to find true positives, we downloaded a collection of datasets 
from OpenFMRI.org (currently moving to OpenNeuro.org). We used the UCLA Consortium 
for Neuropsychiatric Phenomics LA5c Study (Poldrack et al., 2016; collection ds000030), 
and picked out the pattern matching and encoding “pamenc” task, using 81 control subjects 
(one subject’s data had to be discarded due to excessive head motion). One-sample t-tests 
were carried out with 20 subjects per test, randomly selected; 500 iterations of this analysis 
were carried out with ETAC and also with a fixed cluster-size threshold. Figure 5 shows the 
map of the differences  in the detection rate between ETAC and fixed cluster-size 
thresholding (i.e., Fig. 5 is not an activation map, but shows the places where the two 
methods differed in likelihood of finding results). For the most part, ETAC was slightly 
superior to the fixed cluster-size threshold method, and did not significantly lose power in 
any region. 
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Figure 5. (A) This image  is not an activation map, but rather the difference in the detection 
probabilities between ETAC and a fixed cluster-size threshold method, applied to the OpenFMRI.org 
ds000030 collection using 500 simulations of one-sample t-tests with 20 subjects per test. Yellow-red 
colors indicate ETAC was more likely to indicate (true) detection in a given voxel; cyan-blue colors 
indicate the fixed cluster-size threshold method was more likely. The point of this image is not that 
ETAC is greatly superior to the more standard fixed cluster-size threshold method, but that it does not 
lose power significantly. (Much more of the brain is “truly” active than shown here; in many places, 
the detection probabilities of the two methods were nearly identical.) 

 
 
 
Discussion 
The ETAC method has been shown to be reasonably effective at controlling the false 
positive rate for cluster-based detection in task FMRI. This performance is achieved while 
also reducing the influence of the arbitrary (but constrained) selection of parameters 
affecting the cluster results (which was the primary motivation for the method's inception). 
ETAC does not lose true detection power relative to simpler cluster-thresholding methods, 
and in some cases can be a little more powerful. 
 
A significant advantage of ETAC is that it removes two arbitrary choices from the group 
analysis: the voxelwise p-threshold, and the amount of spatial blurring to apply. For 
example, there are no strong reasons to favor p=0.001 over p=0.01 (provided FPR is 
properly controlled), or 8 mm (FWHM) blurring over 4 mm blurring. 
 
The computational burden of this method is not trivial. A single ETAC run with 40 subjects 
at 2 mm resolution took about 2 hours on a 16 core Intel node, and needed 40 gigabytes of 
memory to hold all the simulations and cluster tables. (This time could be cut by 50-70% if 
requesting results for only a single FPR, which is common in applied studies where 
FPR=5% is commonly desired, rather than the full range from 2%-9%, as done for 
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methodological interest in Fig 3.) Of course, this analysis yields the final group map for a 
study; significant computational effort is a price worth paying to get more reliable and less 
arbitrary results. 
 
The computational cost makes it difficult to extend the ETAC method to more complex 
voxelwise statistical mapping techniques, such as Linear Mixed Effects analyses (Chen et 
al., 2013). Such analysis methods are themselves computationally intensive, unlike simple 
voxelwise t-tests or linear regression. Thus iterating and randomizing such tests thousands 
of times is (at present) impracticable.  This is a broader difficulty with all 
randomization/permutation methods at present, not just ETAC. 
 
ETAC can be extended to surface domains (2D), or even to the mixed 2D+3D domains 
supported by the CIFTI format—for cortical surface models plus solid gray matter voxel 
sets (https://www.nitrc.org/projects/cifti/ ). There is no geo-metric model (based on 
distances) used in ETAC; rather, the whole notion is based on topology (neighborhoods), 
and adapts itself to different locations using the principle of spatial equity. 
 
As it is implemented now, by using randomization and permutation, ETAC is of necessity a 
group analysis procedure. We have been asked about extending it to single-subject 
analysis. One approach would be to generate a model of the subject’s EPI noise, 
repeatedly re-analyze the time series with synthetic EPI data, and then use those results to 
build up the noise-only statistical maps needed for the cluster simulations. The speed of 
linear regression (when programmed in a compiled language, such as C) should make this 
a practicable approach, but it would still not be a fast algorithm. 
 
Applying the principle of equity in the spatial domain is one reason ETAC is slow: to get 
enough simulations to have a significant number of “hits” at most brain voxels requires a lot 
of work. An alternative approach would be to differentially smooth the first level brain 
activation maps to bring the noise ACF closer to spatial uniformity (i.e., blur less smooth 
regions more, and blur already smooth regions not at all). Then a single global cluster-size 
(or FOM) threshold might be a reasonable approach to control FPR and to keep the FPR 
density more spatially uniform. Fewer simulations (e.g., 2,000) are needed to compute the 
cluster thresholds when single values apply everywhere. However, this technique would 
have the drawback of making the entire brain volume as blurry as the most blurry region 
(typically retrosplenial or posterior parietal cortex), which is likely a price that most 
researchers would not wish to pay for the speedup in time. 
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Conclusion 
We have described the ETAC (Equitable Thresholding and Clustering) methodology and 
compared it with an existing standard cluster technique that also controls false positive 
rates reasonably. ETAC’s primary purpose is to reduce the dependence of arbitrary 
parameter choices on final cluster results, as well as to allow for the discovery of a greater 
range of cluster types (large with relatively low voxelwise significance;  small with relatively 
high voxelwise significance; etc.) in a single analysis and with essentially equal footing. 
This method comes with higher computational cost, but it does not appear to sacrifice 
power. An additional finding of note in this study was a comment on one-sample tests: in 
most MRI analyses, the group sizes of data mean that the sets compared in the 
permutation/randomization tests are not fully independent, and as a result they tend to 
have much larger variability than a naïve binomial model would imply. 
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Appendix 
 
A. Implementation Details 
ETAC is implemented inside the AFNI group analysis program 3dttest++, for convenient 
use by the data analyst. All operations take place in a user-selected mask of voxels (e.g., a 
brain mask or a gray-matter mask). An algorithmic outline of the procedure is: 

A. Generate N (default 40,000) noise-only random fields (volumes) of z-statistics for 
cluster analysis; the following steps are used to create each random field generated: 

a. The residuals in the voxelwise GLM ( t-tests, possibly with subject-level 
covariates) are sign-randomized; if two subject samples are used, the 
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subjects’ datasets are also randomly permuted between groups (unless 
covariates are present). 

b. The GLM is repeated using the randomized/permuted sample, saving the 
resulting voxelwise z statistics (converted from t ). 

c. The program requires at least 17 input datasets, so that 40,000 distinct 
random realizations are possible. 

d. These N realizations can also be used for the global (non-spatially varying) 
nonparametric cluster-size threshold analysis described in (Cox et al., 2017), 
which will produce a table of cluster-size thresholds vs. p-thresholds; 
essentially, the C( S,𝜛) curve from Fig. 1 (for a range of p  and 𝜛 values). 

B. Apply each of the sub-tests (i.e., p -thresholds, blur cases, and h values): 
a. For each sub-test, form all clusters in all N random fields. 

i. The default p-thresholds are five values distributed geometrically 
between 0.01 and 0.001 (0.0100, 0.0056, 0.0031, 0.0018, 0.0010). The 
data analyst can choose a different set of p-thresholds. 

ii. There is no default set of blur cases; rather, the default is not to apply 
additional blurring, since the ETAC group analysis software doesn’t 
“know” how much blurring was applied to its input data during 
preprocessing. If multiple blur cases are specified, each blur case has 
the entire set of p -thresholds applied.  (In the simulation testing 
described later, blurring was not applied during preprocessing and 
single-subject task analysis, and values of 4, 7, and 10 mm were used 
at the ETAC group level to blur the subject-level betas.) 

b. Save a table of all clusters found for each sub-test. Each cluster includes a 
list of its voxels, and its computed FOMs; ETAC can also balance across 
different formulæ for figures of merit. The default FOM is 𝚺 z2. 

C. “Spread out” the cluster-FOMs in regions where there are not a lot of “hits”, so that 
all voxels have a significant number of FOM realizations for each sub-test, for use 
later in step D: 

a. For each voxel, make a count of how many clusters “hit” it from each 
sub-test’s cluster table. 

b. For each cluster, find the median number of voxel hits in the corresponding 
sub-test. 

c. If the number of voxel hits in a cluster from a particular sub-test is below a 
target (default target is about 0.025N=1000), dilate that cluster outward one 
voxel—without changing the cluster’s recorded FOM values (which are used 
in steps D and E). 

d. Repeat steps C.{a,b,c} until dilations are unnecessary as determined in step 
C.c (or at most 9 times). 
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D. For each sub-test and for each voxel, make a sorted (largest first) list of cluster 
FOMs which hit that voxel. 

E. Pick a fraction 𝜏 (initial value 0.0006), and set the cluster-threshold for each sub-test, 
for each voxel, to be that sub-test’s FOM list’s (𝜏N )’th largest entry; that is, a larger 𝜏 
selects a smaller threshold (moving down in the sorted list). For example, when 
N =40,000, the initial cluster-threshold for each sub-test and for each voxel is the 24th 
entry in the corresponding list. (If 𝜏N is not an integer, the cluster-threshold is 
interpolated from the sorted FOM list.) 

a. This uniform selection in the FOM lists is how equity is applied, since the 
sorted list represents the reversed empirical cumulative distribution function of 
each sub-test’s FOM in each voxel. 

b. Apply the resulting voxelwise cluster FOM threshold maps to produce the 
“significant voxels” map for each of the N random fields, merging the results 
from each sub-test, and count the fraction 𝜑 of the N random fields that have 
any  surviving voxels; 𝜑 is the estimate of the global FPR. (See the text below 
for further implementation details for this step.) 

c. Adjust 𝜏 up (if 𝜑<𝜛G) or down (if 𝜑>𝜛G), until is 𝜑 approximately at the target 
𝜛G (which may be any value from 2% to 9%; the default, of course, is 5%). 

i. If the two previous 𝜑 results bracket 𝜛 G, then inverse linear 
interpolation in 𝜑(𝜏) is used to adjust 𝜏 for the next trial. 

ii. Otherwise, 𝜏 is just scaled linearly by 𝜛G  ⁄ 𝜑 for the next trial. 
iii. In usage thus far, usually only a few (2-3) iterations are necessary for 

convergence. 
iv. The user has the option to compute threshold maps for a range of FPR 

goals 𝜛G=2%, 3%, …, 9%, in order to allow perusal of the results at 
various levels of statistical stringency. 

F. Apply the final multi-method cluster-FOM threshold maps to the actual t-statistics 
resulting from the original GLM analysis. 

a. If multiple blur cases are used, each blur case’s multi- p-threshold maps are 
applied to the GLM tests on blurred copies of the original datasets, and the 
set of resulting detection maps (one from each blur case) are merged to make 
the final detection map. 

b. The outputs are a binary map (NIFTI dataset), indicating which voxels 
survived the process. This dataset can be used to mask the original GLM 
results to produce a final “activation map.” A second dataset is also produced, 
indicating which of the sub-tests were passed for each voxel. The main use 
for this dataset is for analyzing the ETAC process itself, to determine which 
sub-tests might have contributed unique results. Datasets embodying the 
multi-threshold maps are also saved. 
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The software is written in the compiled language C to be able to run in an acceptable time 
frame for group analyses, and is parallelized across multiple CPU cores. In typical cases, 
the majority of the computational time is spent carrying out the 40,000 repeated t-tests to 
produce the simulated noise volumes. 
 
We would like to expand upon a critical detail in the implementation of steps E.b and F.a 
above: how is a spatially variable cluster-FOM threshold map to be applied to a given 
cluster that results from the application of a given p-threshold? Unless a miracle occurs, the 
final cluster-FOM thresholds in every voxel of a given cluster from the real data will not be 
identical, requiring a further choice as to what cluster-FOM threshold should be applied to 
the particular cluster-FOM value calculated from the cluster in question. After some 
experimentation and even thought, we chose to take the cluster-FOM threshold values that 
overlap the given cluster, sort them, and take the 90% point (not quite the largest) in the 
cluster-FOM distribution as the threshold to apply (for each sub-test). This empirically 
motivated and validated choice resulted in reasonably robust final FPR control, and was 
simple to implement. (Other percentile points can be chosen by the intrepid user who 
wishes to experiment with the software.) 
 
Cluster-contiguity can be defined in several ways. In AFNI, contiguity is defined by the 
nearest neighbor (NN) level, which can be 1, 2, or 3: 

1. Voxels are defined as contiguous if faces touch (first nearest neighbors); 
2. Voxels are defined as contiguous if faces or edges touch (second nearest 

neighbors); 
3. Voxels are defined as contiguous if faces, edges, or corners touch (third nearest 

neighbors). 
The ETAC software in AFNI does not allow for balancing across these different clustering 
possibilities; the NN level remains a parameter the analyst must choose (default value in 
AFNI’s ETAC is 2). We do not think that providing equity across different clustering 
methods would be of major consequence, as simulations and comparisons are made 
consistently for a given NN value. 
 
The application of different blur cases in ETAC is carried out by applying 3D Gaussian 
blurring to the input datasets, but the kernel is restricted to the voxel mask supplied by the 
user. This “blur in mask” procedure is carried out by a finite difference stepping method 
applied to the 3D diffusion equation, with Neumann (reflecting) boundary conditions at the 
edge voxels of the mask.  
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The cluster FOM chosen can be  𝚺 |z |h for h =0, 1, and/or 2. The software can balance 
across any combination of these FOMs; however, the default choice is the single FOM with 
value h=2. In practice, we see little advantage in balancing across multiple cluster FOM 
formulæ. Other FOM formulæ could be added to the software with relatively little effort. 
 
B. Processing Scripts and Data 
All scripts are written in the Unix tcsh scripting language. For the most part, these scripts 
were run on the NIH Linux-based cluster (“Biowulf”). The scripts are available at the GitHub 
repository https://github.com/afni-rwcox/ETAC-scripts . 
 
The 198 Beijing-Zang datasets can be downloaded from 
http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html . 
 
The 81 UCLA Phenomics study datasets can be downloaded from 
https://openfmri.org/dataset/ds000030/ . 
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