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Abstract 
Motivation: Protein-hydroxyapatite interactions govern the development and homeostasis of teeth and bone. Characterization 
would enable design of peptides to regenerate mineralized tissues and control attachments such as ligaments and dental 
plaque. Progress has been limited because no available methods produce robust data for assessing phase interfaces. 
Results: We show that tooth enamel pellicle peptides contain subtle sequence similarities that encode hydroxyapatite binding 
mechanisms, by segregating pellicle peptides from control sequences using our previously developed substitution matrix-
based peptide comparison protocol (Oren et al., 2007), with improvements. Sampling diverse matrices, adding biological con-
trol sequences, and optimizing matrix refinement algorithms improves discrimination from 0.81 to 0.99 AUC in leave-one-out 
experiments. Other contemporary methods fail on this problem. We find hydroxyapatite interaction sequence patterns by ap-
plying the resulting selected refined matrix (“pellitrix”) to cluster the peptides and build subgroup alignments. We identify puta-
tive hydroxyapatite maturation domains by application to enamel biomineralization proteins and prioritize putative novel pelli-
cle peptides identified by In stageTip (iST) mass spectrometry. The sequence comparison protocol outperforms other contem-
porary options for this small and heterogeneous group, and is generalized for application to any group of peptides. 
Availability: Software to apply this protocol is freely available at github.com/JeremyHorst/Mat4Pep and compbio.org/protinfo/ 
Mat4Pep. 
Contact:  jahorst@gmail.com, ram@compbio.org. 
Supplementary information: Available at Bioinformatics online. 

1 Introduction  
Mechanisms of protein to hydroxyapatite interactions in tooth and 
bone remain elusive. Here we introduce a generalized approach for 
detecting patterns in peptide sequences, and apply the method to 
describe amino acid sequence features that may control interac-
tions with forming and mature hydroxyapatite. 

The enamel pellicle is a layer of peptides derived from saliva 
that binds directly to and coats tooth enamel, and is bound by early 
colonizer dental plaque bacteria. Sequences for the enamel-binding 
peptide constituent of the human enamel pellicle (pellicle peptides) 
have been described (Siqueira et al., 2007; Vitorino et al., 2007; 
Vitorino et al., 2008; Siqueira and Oppenheim, 2009). The greater 
context of the salivary proteome, from which these proteins arise, 
has been explored and tapped as readily available diagnostic sam-
ples, for example to detect cancer (Hu et al., 2008). 

Physiologic details of enamel binding have been explored to the 
extent of measuring adhesion strength for the saliva-derived enam-
el pellicle to oral bacteria (Mei et al., 2009). Specific peptides have 
been designed to replace this pellicle handle by which oral flora 
adhere to the tooth (Li et al., 2009). Yet the mechanisms of peptide 
to enamel adhesion are still poorly understood.  

One type of hydroxyapatite interaction is obvious from clues in 
nature. Comparison of the aspartate-serine-serine (DSS) repeats in 
dentin phosphoprotein (DPP) to the hydroxyapatite unit cell hints 
at a template of carboxylates interacting with calcium and hydrox-
yls interacting with phosphates. Similar or enhanced affinities are 
observed upon mutation to residues bearing the same functional 
groups but different side chain lengths (Yarbrough et al., 2010). 

Relatively few proteins directly interact with tooth and bone hy-
droxyapatite. Besides a couple proteins like DPP, domains respon-
sible for direct hydroxyapatite interactions are sparsely character-
ized. No atomic resolution structures of proteins that physiologi-
cally interact with hydroxyapatite are available, except osteocalcin 
(PDB entry 1q8h), so structural analysis for these proteins is elu-
sive. Neither the DSS repeats of DPP nor the g-carboxy glutamic 
acids of osteocalcin are present in the pellicle peptides or enamel-
forming proteins, so no homology-based inferences are accessible. 

While no obvious similarities are found among the pellicle pep-
tides (Siqueira and Oppenheim, 2009), this set of 78 peptides from 
29 proteins comprises the largest and most diverse information on 
hydroxyapatite interactions. We hypothesize that patterns in the 
sequences of enamel pellicle peptides can drive discovery of pro-
tein-hydroxyapatite interactions and mechanisms. 
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We anticipate that the mechanisms underlying peptide-
hydroxyapatite interactions produce nontrivial similarities in the 
protein sequences that can drive the training of a sequence compar-
ison algorithm to successfully discriminate enamel-binding pellicle 
peptides from control sequences. However, physiologic peptides 
that do not bind tooth enamel have not been directly observed, so 
we fabricate decoy sets as the negative control instances to feed the 
algorithm. The regions of the source protein sequences least likely 
to bind enamel are those areas from which the pellicle peptides are 
not derived - they are exposed to the same environment that ena-
bles enamel interactions and therefore it is likely that they would 
be observed if they did bind enamel. We derive the decoy control 
set from these protein regions. Omission by lack of observation is 
not sufficient evidence to identify absent function (enamel bind-
ing), but discrimination from pellicle peptides would give evidence 
for differential evolution and validate the approach. 

Previously we exploited the sequence similarities of phage dis-
play peptides that bind to inorganic surfaces to program an amino 
acid substitution matrix, and subsequently designed peptides with 
enhanced binding affinity to that surface (Oren et al., 2007). 

Although the pellicle set has amino acid content patterns (Figure 
1), there are not sufficient position-specific patterns to enable con-
struction of a multiple sequence alignment as necessary for appli-
cation of commonly used sequence comparison algorithms such as 
PSI-BLAST or hidden-Markov models (HMMs). Nor are neural 
networks able to perform better than random in leave-one-out ex-
periments (SciKit-Learn; Figure S1). The Needleman-Wunsch 
algorithm does not require a strong pairwise alignment to construct 
a comparison, and thus may capture more diffuse sequence similar-
ities, as in a heterogeneous set of enamel binding peptides. 

The Needleman-Wunsch dynamic programming algorithm finds 
the optimal global alignment for two protein sequences with re-
spect to the scoring system being used (Needleman and Wunsch, 
1970), which includes a substitution matrix and penalties for open-
ing or extending gaps in the alignment. The more popular Smith-
Waterman algorithm is essentially a variant of the Needleman-
Wunsch algorithm with zeroed negative matrix values, such that 
local alignments are optimized (Smith and Waterman, 1981). 

Optimal gap penalties are found using a simple grid search. 
Finding the optimal matrix values by which to score the potential 
alignment of two sequences is the challenge (Kawashima et al., 
2008). The combination of 39 integer values (from -19 to 19) for 
each of the 210 possible amino acid substitutions in a symmetric 
matrix, 39210, is too many to enumerate (39400 if asymmetric). Sub-
stitution matrices can be calculated directly by comparative analy-
sis between sets, but alignments must already be known. Unless 
the set is large enough to represent the relevant evolutionary rela-
tionships, this approach has the propensity to become too specific 
to the data set, i.e. overtraining. 

One technique that performed well for the phage display-derived 
inorganic surface-binding problem was to exploit a substitution 
matrix calculated with a widely diverse set of proteins (e.g. 
BLOSUM62, PAM250) and refine the values to the dataset (Oren 
et al., 2007). Refinement may not resolve to a near optimal matrix, 
as coarse integer-based scoring functions result in local maxima 
and weak trajectories to guide improvement. Therefore, here we 
sample many starting matrices from the diverse set in AAindex 
(Kawashima et al., 2008). In this work we ask whether a sequence 
analytic algorithm can select and refine a substitution matrix to 
discriminate functional peptides of dissimilar lengths from con-
trols, find these peptides from within their source proteins, and 
identify mechanistic patterns in these natural sequences. 

2 Methods 
2.1 Data sets 
Acquired enamel pellicle peptides. The peptides taken to be true pelli-
cle constituents in this work are the 78 from 29 salivary proteins observa-
tion in multiple studies and described by Siqueira and Oppenheim in 2009. 
For use in our bioinformatic experiments, we aligned the peptide sequenc-
es, removed 100% redundant sequences, and combined overlapping por-
tions from the same protein. The resulting new pellicle peptide fragment set 
includes 49 peptides, 8-36 residues in length (Supplemental Table 1). 

Control sequences. For controls in training and back-testing we used 
fragments of the 29 proteins not observed within the 78 acquired enamel 
pellicle peptides. We retrieved random fragments matching the number and 
length of the peptides, in regions not overlapping the pellicle peptide se-
quences. When intervening stretches were not abundant or long enough to 
derive a matching set, we retrieved additional fragments from random other 
proteins in the set. The resulting decoy control set includes 49 peptides, 8-
36 residues in length (Supplemental Table 2). 

Additional negative sequences from other proteins. To increase in-
formation content for matrix training and enhance relevance to nonpellicle 
proteins, we derived additional presumed nonfunctional sets matching the 
pellicle peptide set in length and quantity. One set was produced by extract-
ing random parts of any human protein secreted in the saliva (Supplemental 
Table 3). Additional sets were constructed from random sequences by 
combination of amino acids selected to mimic the composition in UniProt 
(The UniProt Consortium, 2007; Supplemental Table 4). We attempted 
training with and without each of the additional background sequence sets. 
Additional negative sequences were included as controls during training 
and not assessment. Wherever use of these sequences did not disrupt train-
ing, they were included to enhance relevance to other proteins. 

2.2 Training protocol 
Similarity calculations. The total similarity score function (TSSF) is the 
primary output metric used to differentiate between pellicle peptides and 
control sequences. Matrices, gap values, and training paths were optimized 
by maximizing TSSF. The TSS is applied as the sum of Needleman-
Wunsch scores (Needleman and Wunsch, 1970) for all alignments between 
two sets, normalized by peptide length and the number of sequences in 
each set (Oren et al., 2007). Previously we used the difference of TSS for 
functional peptides to themselves (TSS.ff) and functional to non-functional 
peptides (TSS.fn; TSSF = TSS.ff – TSS.fn; Oren et al., 2007). Here we 
considered TSS for non-functional to themselves (TSS.nn) and non-
functional to functional TSS (TSS.nf), as the difference (TSSF = TSS.ff + 
TSS.nn - TSS.fn - TSS.nf) or the quotient (TSSF = TSS.ff * TSS.nn / 
(TSS.fn * TSS.nf)). We also attempted training to maximize the difference 
between the third lowest (to allow for outliers) scoring pellicle peptide and 
the third highest scoring control sequence. 

Gap penalties. Gap penalties were trained by selecting the maximal 
score in an integer grid based search [-16, -1] for the gap open penalty and 
[-8, -1] for the gap extend penalty. Gap penalties were only trained before 
altering substitution matrices, and not iteratively, due to their potential 
volatility during a training process. 

Amino acid substitution matrices. We took starting matrices from 75 
amino acid substitution matrices in AAindex (Kawashima et al., 2008). 
Matrix elements are perturbed as integers within the range -19 to 19. 

Refinement paths. We evaluated three substitution matrix refinement 
paths. We perturb the starting matrix values by either greedy or modified 
Monte Carlo trajectories. The greedy algorithm considers all possibilities 
and then chooses the path that makes the largest magnitude of improvement 
(increased TSSF). We also attempted either local maximization by using 
the minimum unit of the matrix, or a modified Monte Carlo search for the 
global maximum by using a random value less than the maximum differ-
ence in the matrix, with the decision of keeping each sequential step made 
after local maximization. We also attempted refinement paths wherein the 
importance of query versus data set amino acid and overall trends in amino 
acid type were simultaneously examined, rather than amino acid type com-
binations (e.g. the target position being an alanine versus both query and 
target being alanine), as all sequential combinations of mutating columns, 
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rows, and cells of the matrix. Refinement paths were followed until chang-
es no longer resulted in improvements. Monte Carlo refinement was 
stopped after five consecutive attempts failed to make an improvement. 

2.3 Assessment 
Leave one protein out experiments. We attempted to discriminate 
pellicle peptides from control sequences by total similarity score (Figure 1). 
To assess accuracy, we performed modified leave-one-out experiments: 
while scoring a peptide we remove all sequences (pellicle peptides and 
controls) from the same protein. A normal leave one out experiment in-
volves removing one constituent from the set, training on the rest, scoring 
the constituent, and repeating for each instance. Here peptides are separated 
by protein such that in the benchmark the algorithm never learns from and 
applies information to peptides from the same protein, because sequences 
in the same protein are likely to contain mutual information. 

Statistical metrics. The receiver operating characteristic (ROC) com-
pares sensitivity (true positives) across all ranges of specificity (true nega-
tives; Figure 2a). The precision recall curve compares the precision at all 
ranges of recalled selections (Figure 2b). The Matthews correlation coeffi-
cient (MCC; Matthews, 1975) measures the correlation of true positives, 
false positives, false negatives, and true negatives. The MCC curve plots 
this correlation across a range of thresholds (e.g. 0.01 steps from 0 to 1) for 
indicating a true or positive result (Horst, 2010). The complexity of a MCC 
curve informs the capacity for improvement by further training, and identi-
fies the threshold cutoff score that results in the most informative predic-
tions (Figure 2c). Area under the ROC curve (AUC) and one-tailed un-
paired unequal variance Student’s T-test (p values) tested significance. 

Amino acid content calculation. To evaluate whether sequential ori-
entation (position) influences enamel binding, we assessed whether the 
accuracy of scoring each amino acid in a query peptide by the proportion of 
the amino acid type in pellicle peptides versus controls. 

2.4 Application to full protein sequences 
We evaluate the ability to recapture pellicle regions from full protein se-
quences by generating a score for each residue in the protein, considering 
the surrounding region. We applied the sliding window approach for each 
unique length of pellicle peptides. For this problem, it is uncertain whether 
it would be better to choose segments of one particular length, or to ex-
haustively create segments of all pellicle peptide lengths. Even then, it is 
not known how to consider the similarity scores for the various segments to 
which each particular residue contributes. For both a single window length 
(the median of all peptide lengths) and enumeration of the lengths, we 
evaluated the application of the mean of the similarity scores for overlying 
segments and the maximum score for each. Maintaining consistent frag-
ment lengths between query and comparison sets avoids a difficult normal-
ization problem. We compared the predictive ability of residue scores to 
recapture the pellicle peptides from the entire protein sequences, again 
using the leave one protein out approach (Figure 3). 

2.5 Cluster analysis 
To study the sequence patterns identified in training, we derived sequence 
clusters by analyzing the network of comparisons between all enamel pelli-
cle peptides using the best selected and refined matrix. We filtered the 
resulting similarity scores by the threshold cutoff that gave maximum in-
formation in the benchmark according to the MCC plot (Figure 2c). We 
then input the supra-threshold similarities as force vectors into a clustering 
algorithm. We depicted the resulting network using cluster analysis in 
Cytoscape (Shannon et al., 2003). Subcluster networks were identified from 
the graph, and aligned by CLUSTALW (Larkin et al., 2007) using the same 
substitution matrix (Figure 4). 

2.6 Software 
All code was written in Python version 2.7. The Needleman-Wunsch algo-
rithm implemented as ggsearch35 was taken from the FASTA suite version 
35.4.11 (Pearson and Lipman, 1988). Statistical tools employed in the 

assessment were written locally and extensively checked against both SPSS  
and STATA. Figures were depicted with GNUplot (Williams et al., 2012; 
gnuplot.info) and R (R Core Team, 2017). 

2.7 Pellicle peptide characterization 
Sample collection. De-identified samples were collected with consent 
under UCSF IRB exempt protocol, as previously (Siqueira and Oppenheim, 
2009). Briefly, two hours after prophylaxis with pumice, and limitation 
from eating, teeth were rinsed with sterile deionized water, and scraped 
with micropipette tips, which were vortexed in 10 mM PBS, and pooled. 

In stageTip (iST) mass spectrometry. Samples were moved into urea 
lysis buffer, treated with trypsin/lysC, reduced with TCEP, and alkylated 
with 2-chloroaceatmaide in a “single pot” system to minimize sample loss 
and contamination, then placed in 0.1% acetic acid and 80% acetonitrile 
until LC/MS mass spectrometry (Thermo Scientific LTQ-Orbitrap Velo, 
ThermoFisher Scientific), as previously (Kulak et al., 2014). 

Peptide data analysis. MaxQuant and Perseus (Cox and Mann, 
2008) were applied to identify and assess the validity of source protein 
sequences for each observed peptide amidst the human proteome. 

3 Results 
3.1 Selected and refined peptide discrimination 
We demonstrate the ability of the matrix sampling and refinement 
protocol to optimize performance in discriminating pellicle from 
control sequences (Figures 1 and 2). Three statistical metrics verify 
marked improvement of two highly different substitution matrices 
(Figure 2). The β-3D-Ali matrix (MEHP950102) was selected for 
optimal peptide discrimination, and refined from 0.92 (p=3.4*10-

15) to 0.99 AUC (p=3.4*10-26). We present the optimized substitu-
tion matrix and values changed during training in Supplemental 
Table 5. The PAM250 matrix (DAYM780301) was refined from 
0.76 (p=5.0*10-7) to 0.84 AUC (p=4.5*10-10). We extended the 
refined β-3D-Ali matrix (“pellitrix”) to estimate the likelihood of 
any single residue binding tooth enamel and calculated recovery of 
the pellicle peptides (0.75 AUC; Figure 3). We analyzed pellicle 
peptide similarities with the refined selected matrix to gain mecha-
nistic insight into pellicle-enamel interactions (Figure 4). Finally, 
we applied pellitrix to predict biomineralization interactions in 
enamel matrix proteins (Figure 5), and to prioritize novel peptides 
observed in the enamel pellicle (Figure 6). 

3.2 Matrix sampling 
AAindex (Kawashima et al., 2008) matrices discriminated pellicle 
peptides from control sequences with performance ranging from 
discriminating the majority of pellicle peptides, to none (Supple-
mental Table 6). Figure 1 shows the distribution of scores for pelli-
cle peptides and control sequences for the top twenty matrices, the 
worst ten, and scoring by amino acid content. The β-3D-Ali matrix 
most accurately separated pellicle peptides from controls, and 
along with the PAM250 matrix was used for further analysis. 

3.3 Matrix refinement 
The refinement protocols improved performance on the task of 
sorting pellicle peptides from control sequences for both the 
PAM250 and β-3D-Ali matrices (Figure 2, Supplemental Table 7). 

Similarity calculations. All three subtraction-based similarity 
calculations resulted in improvement for the PAM250 and β-3D-
Ali matrices, whereas the quotient based similarity calculation did 
not. The most significant improvements in the matrices arose con-
sistently from including the relation of control sequences to them-
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selves and to the pellicle peptides in the total similarity score 
(TSSF = TSS.ff + TSS.nn - TSS.fn - TSS.nf). 
 

 

Fig. 1. Discrimination of enamel pellicle peptides. The scoring of 49 pelli-
cle peptides (red) from 49 control sequences (blue) in a modified leave-
one-out experiment is shown for amino acid content, and the top 20 and 
worst 10 performing substitution matrices. Each row represents application 
of one matrix, for which normalized scores are plotted for each pellicle and 
control sequence. Better discrimination is seen at top, with pellicle peptides 
assigned higher scores (red to the right) and controls assigned lower scores 
(blue to the left). No overlap for the profiles of pellicle and control markers 
would indicate perfect discrimination. Most matrices discriminate more 
accurately than amino acid content (at bottom), demonstrating the im-
portance of the sequential and spatial arrangement of residues. 

Refinement paths. The best and most consistent matrix refine-
ment protocol was achieved by a greedy path, exhausting im-
provements from changing all values in each column together, 
exhausting improvements similarly in the rows, then optimizing 
whole columns and rows with the modified Monte Carlo search. 
The greedy algorithm uses more processor time than a random or 
Monte Carlo path, as both positive and negative trajectories for 
each position must be considered before progressing to the next 
step. Each training combination reaches completion in 4 hours on a 
4.8 GHz processor (~10,000 pairwise comparisons per minute). 

The order of starting permutations with matrix row (query ami-
no acid type) or column (pellicle / control amino acid type) affect-
ed the performance of the matrix. Only a few random paths starting 
with rows improved performance, while many training conditions 
improved accuracy when starting with columns. Adding Monte 
Carlo perturbations of columns and then rows as a last set of steps 
after the described greedy path improved performance in nearly all 
cases, whereas Monte Carlo perturbations of the cells never did. 
 

 

Fig. 2. Refinement improves enamel pellicle peptide discrimination in a 
modified leave-one-out experiment. The β-3D-Ali.trained (solid red line, 
see key below panels a-c) and PAM250.trained (blue coarsely dashed line) 
matrices demonstrate increased predictive ability across three rigorous 
metrics from the β-3D-Ali (red dashed line) and PAM250 (blue thinly 
dashed line) matrices, respectively. Comparison is given to the worst per-
forming matrix (ExposedContext = KOSJ950113). a. Receiver operating 
characteristic curve. b. Precision recall curve. c. Matthews correlation 
coefficient (MCC) curve. The complexity of each MCC curve informs the 
capacity for improvement: the untrained matrices both show a large local 
minimum, lost with improvement in the correlate trained curve. d. Score 
distributions (as in Figure 1) show greater separation of pellicle peptide 
(red) and control sequence (blue) scores after training. 

 Training data set combinations. Inclusion of the additional 
background sequences into the controls improved the discriminato-
ry performance of both PAM250 and β-3D-Ali matrices slightly 
(AUC ~1%) with statistical significance (p<0.01). 
 Relationship of improvement to matrix distance. Across all ma-
trices, the magnitude of improvement ranged from 0.002 to 0.41 
AUC, with many nearing perfect discrimination. The arithmetic 
distance between the matrices before and after training correlated 
to improvement (Pearson’s R=0.55; Figures S2-S4). 
 Preferences of the trained matrix. Pairwise amino acid substitu-
tion scores for the identical residue and for the mean of all possible 
residue substitutes indicate the importance of matching each par-
ticular amino acid type in the final selected and trained matrix 
(Supplemental Table 8). For example, it is preferred that glutamic 
acid is aligned with another glutamic acid (score = 2.00), but self 
match is penalized for leucine (-1.40) and arginine (-2.00). 

3.4 Protein binding region recapture 
Accuracy of pellicle peptide recapture from full protein sequence 
depended largely on the formalism. Comparing protein segments 
of the median pellicle peptide length (14 residues) with pellitrix 
achieved 0.75 AUC for the mean score, and 0.54 AUC for the 
maximum. A similar difference was found for enumerating all 

!"#$%&'()*+#%,%*$'

-./0.12%'

3(45667878'

9./0.12%'

5:(;<=787>'

!(?4=<7878'

!@:4787878'

A1!8>7'

A1!B7'

CDEF7G7878'

EH:I<>7878'

IEJ!</7878'

3:K0LG7878'

AD;177787>'

M;EN@!BG'

M;EN@!L7'

O./0.12%'

M;EN@!G7'

M;EN@!6>'

A1!>G7'

FD1D=B787B'

PENI<G788B'

PENI<G788G'

K(:P<8787>'

4@0:<77878'

1Q1:<=7878'

!(?N</7878'

PENI<G787='

R@SC</7878'

D@ND<=787/'

:&TUV*)CU+#*&#'

11')%V#$%WX#%U+'

0 1 
Enamel binding prediction score 

to
p
 2

0
 b

e
s
t 
p
e
rf

o
rm

in
g
 s

u
b
s
ti
tu

ti
o
n
 m

a
tr

ic
e
s
 

w
o
rs

t 
1
0
 m

a
tr

ic
e
s
 

AUC  P(t-test) 

0.92  3.4E-15 

0.90  5.2E-15 

0.89  3.0E-13 

0.87  4.8E-12 

0.87  1.7E-12 

0.83  4.1E-09 

0.83  7.1E-09 

0.82  1.2E-07 

0.82  2.1E-08 

0.82  2.3E-08 

0.81  4.8E-08 

0.79  1.4E-07 

0.79  5.7E-07 

0.79  2.2E-06 

0.79  4.7E-07 

0.78  1.1E-06 

0.78  9.1E-07 

0.77  6.7E-07 

0.76  5.0E-07 

0.76  3.0E-06 

0.54  0.41 

0.54  0.42 

0.54  0.11 

0.54  0.47 

0.54  0.050 

0.54  0.41 

0.53  0.42 

0.53  0.13 

0.52  0.29 

0.50  0.26 

0.57  0.010 

! 

!-3D-Ali.trained!

!-3D-Ali!

PAM250.trained!

PAM250!

ExposedContext!

d.!Score separation!

Training enamel pellicle binder recapture!

0 1 
Enamel binding prediction confidence 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/295857doi: bioRxiv preprint 

https://doi.org/10.1101/295857
http://creativecommons.org/licenses/by/4.0/


 protein-hydroxyapatite interactions in enamel pellicle  

5 

lengths: 0.69 AUC for the mean and 0.54 AUC for the maximum. 
A caveat to this experiment should be noted: while the leave-one-
out design avoids comparing peptides directly to any part of their 
source protein sequence, the information trained into the matrix in 
the selection and refinement steps cannot be removed and so biases 
this experiment. Without training, the β-3D-Ali matrix achieves 
0.73 AUC using the mean of the multiple sliding windows, again 
the highest of all matrices (Supplemental Table 7). 
 

 

Fig. 3. Enamel pellicle peptide recapture from complete proteins. Predic-
tions of enamel affinity by the refined β-3D-Ali matrix (pellitrix) for each 
residue are plotted in blue for each enamel pellicle protein. Scores represent 
the mean of the similarity scores between all peptides derived from other 
proteins (modified leave one out experiment) and all possible overlapping 
sequence fragments of lengths matching the pellicle peptides (sliding win-
dow fragmentation). Experimentally derived pellicle peptides are shown as 
red blocks. Overlap of high blue bars with the red blocks denotes recapture 
of pellicle peptides from the parent protein. Protein length (AAs) and per-
residue recapture accuracy (AUC) are listed at right.  

3.5 Pellicle peptide sequence cluster analysis 
Application of pellitrix to compare all 78 pellicle peptides to each 
other resulted in a network of context-specific sequence similari-
ties (Figure 4). Multiple sequence alignments constructed with 
pellitrix illustrate in each column the amino acid types that can 
function similarly within the specific context of protein-
hydroxyapatite interactions. 

3.6 Novel pellicle peptide prioritization 
1,265 unique peptides from the pooled pellicle sample were ob-
served at least twice by iST secondary mass spec (MS/MS), identi-
fied by MaxQuant, and judged as significant by Proteus (Supple-
mental Table 9). Figure 6 shows that the range of pellitrix scores 
for these peptides falls within that of pellicle peptides and control 
sequences. The mean score falls at the center of the range (0.52) 
and the highest control sequence score corresponds to 1.5 standard 
deviations from the mean for the novel peptides. 15 of the 49 pelli-
cle peptides and 5 control sequences were observed. 
 
 
 

4 Discussion 
4.1 Advancement in biomineralization 
The ability of many amino acid substitution matrices to accurately 
discriminate enamel pellicle peptides from control sequences (Fig-
ure 1) demonstrates the presence of discernable sequence patterns, 
which likely underlie the common function of enamel hydroxyap-
atite binding. Cluster analysis (Figure 4) suggests peptide groups 
likely to share similar mechanisms and sequence patterns to facili-
tate them. The refined selected matrix can be used to analyze se-
quences for likelihood of contributing protein-hydroxyapatite in-
teractions in peptides (Figure 2,6), whole protein sequences (Fig-
ure 3,5), and to design novel peptides. 

Novel peptides may be designed with controllable binding affin-
ities, used as a supplementary pellicle coat to control the attach-
ment of oral flora, or as an adjuvant vehicle for controllable deliv-
ery of saliva replacements such as anticariogenic antibiotics or 
remineralizing agents (Yarbrough et al., 2010). 

4.2 Advancement in bioinformatics 
The improvements we introduce to our protocol to develop peptide 
similarity detection tools increased the final trained matrix discrim-
inatory ability from 0.81 AUC with the old protocol to 0.99 AUC 
with the new protocol. Meanwhile, standard sequence comparison 
methods failed on this problem (Figure S1). MCC plot analysis 
indicates the training of this matrix has approached saturation 
(Figure 2c). The most significant improvements arose from sam-
pling many starting substitution matrices, incorporating all peptide 
and control comparisons into the total similarity scores, and Monte 
Carlo optimization of columns and rows after greedy refinement. 
This approach may be able to learning patterns in any group of 
functional peptides, and is available as software called Mat4Pep 
for use and development. 

4.3 Matrix sampling 
Discriminatory performance across the matrices may indicate rele-
vance to the context for which the matrix was calculated. Matrices 
built for general protein sequence comparison exhibited intermedi-
ate performance. The best performance came from a matrix built 
specifically to align β-strands in 38 3D-Ali protein structure fami-
lies (Mehta et al., 1995), while matrices derived in parallel from 
random coils performed third, and that for a-helices ranked 16th. 
These secondary structures match observations that regions which 
interact with hydroxyapatite adopt beta strand or polyproline type 
II extended conformations (Jin et al., 2009; Carneiro et al., 2016). 

4.4 Protein binding region recapture 
Application of scores to the derivative proteins (Figure 3) shows 
successful modeling of a significant subset of enamel binding 
mechanisms. High scoring regions at locations where pellicle pep-
tides have not been measured are predictions of areas that may 
bind enamel, for example the amino terminal regions of α-actin 2, 
cystatin-A, S100-A14, histone H2As 1-A and 1-D (Figure 3). 

Recapture of pellicle peptides from whole protein sequences is 
better than average for 21 of 29 proteins, with a by-residue AUC of 
0.75 across all proteins. Poor performance of the PAM250 matrix 
(AUC=0.31) highlights the uniqueness of sequence traits within 
these peptides of such rare function, and therefore the importance 
of using similarity matrices with maximal relevance to any particu-
lar group of proteins under study. This analysis demonstrates novel 
ability to understand, predict, and potentially design protein to 
hydroxyapatite interactions. 
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Fig. 4. Cluster analysis of the enamel pellicle peptide sequence similarity network. Shown is the relation of the 78 peptide sequences (nodes) clustered with 
edge weights given by the trained β-3D-Ali matrix (pellitrix) similarity scores. The initial network was generated from an all-against-all matrix of these 
scores, for which edges were defined as any similarity score above the threshold cutoff corresponding to the maximum Matthews correlation coefficient in 
Figure 2c. The magnitude of similarity between pairs of peptides is shown as increasing from green to violet (edges). Protein names that appear multiple 
times indicate alternate peptides derived from the same protein. Node placement was adjusted slightly to enable viewing of protein names. The multiple 
sequence alignments display trends for each subcluster (circles), which suggest residue patterns for stabilizing extended beta strand and polyproline helix 
conformations; mediating calcium interactions by adjacent carboxyl and amide residues; mediating phosphate interactions by alternating hydroxyl moieties; 
and pi interactions and/or hydrophobic exclusion by aromatic moieties. 

4.5 Pellicle peptide sequence cluster analysis 
Each cluster in the network analysis displays trends in multiple 
sequence alignments (Figure 4). We observe tolerance for swap-
ping residue identity but maintenance of chemical moieties: adja-
cent carboxyl or amide residues may facilitate calcium interactions 
(Horst and Samudrala, 2010), and alternating hydroxyl moieties 
may mediate phosphate interactions. Stretches of prolines may 
stabilize extended conformations, facilitating surface interactions. 
Proline almost never aligns with glutamine, suggesting non-
interchangeable roles for the two most abundant residues in these 
peptides. Residue types most commonly involved in enzymatic 
catalysis (in order: EKDHRSTCYNQAFGMLWIVP; Wang et al., 
2008) are seldom aligned with identical amino acid types in these 
clusters. These patterns suggest greater structural conservation 
with variance allowed for chemical interactions, which fits the 
presentation of calcium and phosphate on hydroxyapatite. 

4.6 Application to enamel matrix proteins  
High scoring regions in five enamel matrix biomineralization pro-
teins (Figure 5) are predicted to participate physiologically in 
enamel development. Low scoring areas may carry out functions 
that require staying away from mature enamel, such as mineral 
nucleation or cleavage by endoproteases (Horst, 2010). These data 
may be used to derive peptides, or inform mutation experiments to 
drive mechanistic understanding of enamel development. 

Predictions of hydroxyapatite interactions in Amelogenin (Fig-
ure 5) coincide with experimental hydroxyapatite binding data for 
peptides derived from the Amelogenin sequence (Gungormus et al. 
2012). This convergence emphasizes the validity of the protocol in 
finding the enamel-binding regions in related proteins. 

 

 

Fig. 5. By-residue likelihood of hydroxyapatite interactions for enamel 
matrix proteins. The refined selected matrix was applied to find the similar-
ity of the region surrounding each residue to the enamel pellicle peptides. 
Scores are normalized to the highest and lowest scores observed for all 
peptides and control sequences. Length of proteins is shown at right. High 
scoring regions likely correspond to functional areas that interact with 
mature or maturing enamel. Low scoring areas may carry out functions not 
consistent with mature enamel, such as hydroxyapatite nucleation and 
endoprotease cleavage.  

4.7 Novel pellicle peptide prioritization 
Recent advances in mass spectrometry protocols and technology 
motivated re-assessment of pellicle peptides. Observation of 15 
known pellicle peptides, and the highest scoring control sequence 
further validate these peptides for enamel interactions (Figure 6). 
The pattern of half the control sequence scores falling below the 
range of these peptide scores validates the assumption of non-
interaction and supports the hypothesis that regions with pellicle 
proteins that are not ever observed in the pellicle are evolved to not 
bind enamel. High scoring peptides are from keratins, calmodulins, 
cystatins, and others (Supplemental Table 9). 

Cornulin

Cytokeratin-16 

Lactotransferrin 

GAPDH

alpha-amylase1 

CalgranulinB

Parotid 
P-rich 1/2 

Cystatin-B
Parotid 

P-rich 1/2 

Myeloperoxidase 

alpha-enolase 

Parotid 
P-rich 1/2 

Parotid 
P-rich 1/2 

Con1 
glycoprotein 

Histone 
H2A 1-D 

Salivary 
P-rich1 

alpha-amylase1 

Cytokeratin2P 

Psoriasin

S100-A14

alpha-actin-2 

Parotid 
P-rich 1/2 

Annexin A1

alpha-amylase1 

Con1 
glycoprotein 

Parotid 
P-rich 1/2 Poly-Ig 

receptor 

Statherin

Con1 
glycoprotein 

alpha-actin-2 

Serum 
albumin 

Cornulin

Cystatin-A

GAPDH

Annexin A1

S100-A14

Parotid 
P-rich 1/2 

Cystatin-A

Histatin-1

S100-A14

Apolipoprotein 

Cystatin-SSerum 
albumin 

Mucin-5BHistatin-1S100-A14

Cystatin-A

Annexin A1

Statherin

Parotid 
P-rich 1/2 

Con1 
glycoprotein 

Con1 
glycoprotein 

S100-A14

CalgranulinB

Salivary 
P-rich1 

Statherin

Histone 
H2A 1-A 

Histone 
H2A 1-A 

Cornulin

alpha-amylase1 
Parotid 

P-rich 1/2 

Peroxiredoxin-5 

Galectin-7

-KLGHPDTLNQGEF- 
GNCTALTRGELKR-- 

SLPGQNED-LVLTG- 

-SSDFNSDTHSSTF- 
-EVFTSSSSSSSRQ- 

QTNKAKHDELTYF-- 

--IENEEQEYVQTVK 

-G-YGYGPYQPVPE-- 
-Y-GDYGSNYLYDN-- 

GG-DVQLDSVRIF--- 

----TEGNCTALTRGE 
-I-ANLGSCNDSKL-- 

-A-QGGVLPNIQAV-- 

-A-VMD-DFAAFVEK- 

EVPWEDRMSLVN---- 
----ALVFVDNHDNQR 

TYGKLEAVQY-- 
KTNETYGKLE-- 

--FWELIGEAAK 

NFHQYSVEGG-- 

--PPGKP--QGPPPQGGR-- 
----GGRP-QGPP-QGQSPQ 

----IDEERQGPPLGGQQ-- 

---HKQSHGAAPCSGGS--- 
--APIKVGDAIPA-VEV--- 

---TIAQGGVLPNIQAV--- 

IYQEVIDL-GGEP-IK---- 

--SSPSPAPGCDN-AIP--- 
----VGDEAQSKRGILTL-- 

-QEFSDVERAIETLI----- 

---ESTVFEDLSDEAER--- 
----FIENEEQEYVQTVK-- 

PQGPPPQGGNKP-QGPPPP--GK-- 
PQGPPPQGGNKP-QGPPPP--GK-- 

--GPP-QQGGNRPQGPPPP--GKPQ 

--GPP--QQGGHQQGPPPPPPGKPQ 
-IGRF-GYGYGP-YQPVPE--QP-- 

--RSF-WELIGE-AAKSVK--LE-- 

-GNQPQGPP----PP-PGKP-Q----- 
GQQQ-QGPP----PPQ-GKP-Q----- 

------GPP----PPPPGKP-QGPPPQ 

----PQGPPPQGGRPQ-GPP-Q----- 
------GNP-QGPSPQGGNKPQ----- 

------GVFGG--VSGSGSGGYK---- 

------RNDEE-LNKLLGKVTIA---- 

------AHFS-ISNSAEDPFIAI---- 
------DFVN-CSTLPALNLASW---- 

-----SERLAKYNQLLRIEEE------ 

------TGSG---DIENYNDATQVR-- 

GPPPQGGNKPQGPPPP-GKPQ----- 
GPPPQGGNQPQGPPPPPGKPQ----- 

IDEERQGPPLGG-----QQSQPS--- 

G-P--YQPVPEQP----LYPQPYQPQ 
ASVDSGSSEEQG-----GSSRAL--- 

AASSSSLEKSYELPD--GQVI----- 

--SVKLGHPDTLN---QGEFKEL--- 

-IDE---ERQGPPLG- 
--TP---AQFDADELR 

--REQLGPVTQEF--- 

--SE--GPLKGILGY- 
PLVE---EPQNLIK-- 

---EQGQTQTQPGS-- 

-GDYG-SNYLYDN--- 

Ameloblastin 

Amelogenin 

Amelotin 

Enamelin 

ODAM 

protein name AAs 

421 

175 

193 

1103 

264 

hydroxyapatite interaction predictions for enamel matrix proteins 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/295857doi: bioRxiv preprint 

https://doi.org/10.1101/295857
http://creativecommons.org/licenses/by/4.0/


 protein-hydroxyapatite interactions in enamel pellicle  

7 

 

Fig. 6. Pellitrix scores for novel peptides observed in the enamel pellicle by 
iTS mass spectrometry. 15 pellicle peptides (re-observed) and 5 control 
sequences (controls observed) occurred within 1,265 sequences. Scores for 
the remaining sequences (novel peptides) are plotted in context. The 92 
peptides with scores above the range of control sequences are likely to 
contribute physiologically to the enamel pellicle (Supplemental Table 9). 

4.8 Matthews correlation coefficient plot  
The complexity of an MCC curve informs the capacity for im-
provement: untrained matrices show large local minima, which are 
lost with improvement (Figure 2c). MCC curves for trained matri-
ces are broader with decreased complexity, suggesting that these 
are near the end of the respective training paths. The MCC plot 
also shows the cutoff value with the most discriminative ability. 

4.9 Comparison to previous work  
We extended the methodology for sequence-based prediction of 
inorganic surface binding peptides to naturally occurring peptides 
observed in the enamel pellicle. Sampling the amino acid substitu-
tion matrix space by selecting among a diverse database proved 
efficient and useful. As seen previously for artificial phage display 
derived inorganic surface binding peptides (Oren et al., 2007), 
amino acid substitution matrix methods can learn contextual pat-
terns, now including physiologic salivary enamel pellicle peptides.  

Further understanding of biomineralization proteins and pep-
tides may be gained by considering catalytic activity, structural 
features, cleavage sites, post-translation modifications, and evolu-
tionary conservation, in the context of the pellitrix scores. While 
no other tool known to us can learn the patterns in such a small 
heterogeneous sequence set, the analysis presented here demon-
strates the ability of this approach to predict, and therefore interro-
gate and design protein-hydroxyapatite interactions. 

5 Conclusions 
We demonstrated that enamel pellicle peptides contain subtle se-
quence similarities that likely encode hydroxyapatite binding 
mechanisms. With experimental and algorithmic improvements, 
our substitution matrix-based peptide comparison protocol repre-
sented the pellicle peptide similarities in an amino acid substitution 
matrix (pellitrix) that discriminates pellicle peptides from control 
sequences with near perfect accuracy (0.99 AUC). We showed that 
pellitrix can recapture the peptides from their source protein se-
quences, and that this can be applied as a tool to predict hydroxy-
apatite interaction regions within relevant proteins. Analysis of 
relationships between the pellicle peptide sequences indicates that 
adjacent carboxyl or amide residues facilitate calcium interactions, 
that alternating hydroxyl moieties mediate phosphate interactions, 
and that stretches of prolines stabilize extended conformations. 
This protocol was built as a freely available software suite called 
Mat4Pep to learn similarities in any set of peptides, for bioengi-
neering design and analysis of any biological function. 
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