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1 

Abstract 18 

High-throughput sequencing can establish the functional capacity of a microbial community by 19 

cataloging the protein-coding sequences (CDS) present in the metagenome of the community. 20 

The relative performance of different computational methods for identifying CDS from whole-21 

genome shotgun sequencing (WGS) is not fully established. 22 

 23 

Here we present an automated benchmarking workflow, using synthetic shotgun sequencing 24 

reads for which we know the true CDS content of the underlying communities, to determine the 25 

relative performance (sensitivity, positive predictive value or PPV, and computational efficiency) 26 

of different metagenome analysis tools for extracting the CDS content of a microbial community. 27 

 28 

Assembly-based methods are limited by coverage depth, with poor sensitivity for CDS at < 5X 29 

depth of sequencing, but have excellent PPV. Mapping-based techniques are more sensitive at 30 

low coverage depths, but can struggle with PPV. We additionally describe an expectation 31 

maximization based iterative algorithmic approach which we show to successfully improve the 32 

PPV of a mapping based technique while retaining improved sensitivity and computational 33 

efficiency. 34 

 35 

 36 

 37 

  38 
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Introduction 39 

High throughput (or “next-generation”) sequencing has uncovered the hidden complexity of 40 

microbial communities living within and upon the human body, as well as the link between the 41 

human microbiome and health [1–4]. The taxonomic composition of a microbial community can 42 

be inferred by sequencing PCR amplicons spanning variable regions of a taxonomically 43 

informative gene (i.e. the 16S rRNA gene or the CPN60 gene)[5–8]. Alternatively, DNA 44 

recovered from a sample can be put through Whole-Genome Sequencing (WGS), which 45 

samples the complete genomic content of a sample via random fragmentation and sequencing 46 

[9]. WGS differs from amplicon sequencing by (1) providing genomic data from all organisms in 47 

a sample—not limited to any single domain of life; (2) enabling a high degree of taxonomic 48 

resolution which identifies the subspecies and strains present in a sample; and (3) generating a 49 

"functional" metagenomic profile of the protein coding sequences (CDS) that are present in a 50 

sample in addition to the organisms which contain those genes [10]. While the term “functional” 51 

can often be used to describe predicted metabolic pathways, in this case are limiting our scope 52 

to the identification of CDS without presupposing knowledge of any annotations. 53 

  54 

There are three broad computational approaches used to generate an estimate of the functional 55 

metagenome (CDS content) of a microbial community from WGS reads: (1) The inferred 56 

taxonomic composition can be used to construct a custom database of protein-coding genes 57 

from the set of reference organisms detected in the sample (e.g. HUMAnN2, MIDAS) [11,12]. 58 

(2) De novo assembly, in which the WGS reads are combined into contigs, which can be further 59 

used to identify open reading frames (e.g. metaSPAdes, IDBA-UD) [13,14]. (3) The WGS reads 60 

can be directly mapped (aligned) to a closed reference of protein coding sequences (which is 61 

also a downstream component of HUMAnN2 and MIDAS). 62 

  63 
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Proteins can evolve by duplication events, truncation, homologous recombination, and other 64 

means that result in the sharing of highly conserved domains between otherwise distinct CDS 65 

[15]. As a result, mapping of reads to a closed reference of CDS is challenged by the fact that 66 

some reads may align equally well to multiple references: “multi-mapping” reads. 67 

 68 

Metagenomic tools have been benchmarked extensively for their ability to determine the 69 

taxonomic composition of a microbial community [16–19]. The relative ability of metagenomic 70 

analysis approaches and tools to accurately infer the CDS catalog of a microbial community has 71 

yet to be established. Additionally, benchmarking efforts are often limited in their long-term utility 72 

by the practical challenges of repeating the computational analysis with the addition of newly 73 

available tools. We address this core challenge of benchmarking by implementing our analysis 74 

within a workflow management tool, Nextflow [20], which achieves a high degree of 75 

reproducibility by executing each component task within Docker containers, a portable and fixed 76 

computational environment. 77 

 78 

Here we establish sensitivity and positive predictive value (PPV) of computational tools for 79 

determining the CDS content of a microbial community metagenome, using synthetic 80 

communities and reads generated in silico for which we know the true CDS content of the 81 

community. We establish that assembly-based approaches achieve a near-perfect PPV, but 82 

struggle with sensitivity for CDS at a low sequencing coverage depth. Mapping-based 83 

approaches are more sensitive, particularly at low coverage depths, but struggle with PPV. We 84 

introduce an expectation-maximization based approach for mapping based metagenomics that 85 

retains the sensitivity and improves the PPV of CDS calls close to that of assembly-based 86 

approaches.  87 

 88 

Materials & Methods 89 
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Evaluating Computational Tools 90 

All of the analytical steps for analyzing computational tools for CDS detection from 91 

metagenomes were executed within a single analytical workflow (‘evaluate-gene-detection.nf’) 92 

which can be downloaded from https://github.com/FredHutch/evaluate-gene-level-93 

metagenomics-tools and executed via Nextflow. That analytical workflow follows this approach: 94 

 95 

1. Simulate metagenomes (n=100) 96 

a. Randomly select host-associated genomes from NCBI/RefSeq (n=20). (A list of 97 

genomes from host-associated organisms is available in the supplemental 98 

materials.) 99 

b. Make a file with all of the CDS records from those genomes 100 

c. Assign sequencing depths for each genome from a log-normal distribution 101 

(mean=5x, std=1 log), with a maximum possible depth of 100x 102 

d. Make a file with the depth of sequencing for each CDS from step (1b) above 103 

e. Simulate reads from whole genome sequences via ART (paired-end read length 104 

250bp, mean fragment length 1kb +/- 300bp) 105 

f. Interleave paired end FASTQ data 106 

2. Run tools 107 

a. For assembly-based tools, perform assembly from paired end FASTQ data and 108 

predict CDS records from the resulting contigs 109 

b. For mapping-based tools, run the tool and then extract the FASTA for all 110 

detected CDS records 111 

3. Perform evaluation 112 

a. For each tool, align the FASTA with all detected CDS records against the set of 113 

truly present CDS records (from step 1b) 114 
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i. Prior to alignment, both sets of FASTAs are clustered at 90% amino acid 115 

identity to account for sets of homologous genes in the simulated 116 

metagenome 117 

b. Filter to the top hit for each detected CDS 118 

c. Assign each detected CDS as: 119 

i. True positive: The detected CDS is the mutual best hit for a truly present 120 

CDS 121 

ii. False positive: The detected CDS does not align against any truly present 122 

CDS 123 

iii. Duplicate: The detected CDS aligns against a truly present CDS, but is 124 

not the best hit (i.e. there are multiple non-overlapping detected CDS 125 

records that each align against a single truly present CDS). 126 

d. Calculate accuracy metrics: 127 

i. Sensitivity is calculated as the number of true positives (TP) divided by 128 

the number of true positives and false negatives (FN): TP / (TP + FN) 129 

ii. Positive Predictive Value is calculated as the number of true positives 130 

(TP) divided by the number of true positives and false positives (FP): TP / 131 

(TP + FP) 132 

iii. Uniqueness is calculated as the number of true positives  133 

(TP) divided by the number of true positives and duplicates (DUP): TP / 134 

(TP + DUP) 135 

FAMLI Implementation 136 

FAMLI is available as an open source software package on GitHub at 137 

https://github.com/FredHutch/FAMLI. In addition, Docker images are provided at 138 

https://quay.io/repository/fhcrc-microbiome/famli to facilitate easy usage by the research 139 
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community with a high degree of computational reproducibility. FAMLI can be run with the single 140 

executable "famli", which encompasses: 141 

1. Downloading reference data and query FASTQ files (supporting local paths, FTP, and 142 

Amazon Web Service (AWS) object storage) 143 

2. Aligning query FASTQ files in amino acid space with DIAMOND 144 

3. Parsing the translated alignments 145 

4. Running the FAMLI algorithm to filter unlikely reference peptides and assign multi-146 

mapping query reads to a single unique reference. 147 

5. Summarizing the results in a single output file 148 

6. Copying the output file to a remote directory (supporting local paths, FTP, and AWS 149 

object storage) 150 

The help flag (“-h” or “—help”) can be used to print a complete list of options, including the flags 151 

used to run the filtering process starting from step 4 above.. 152 

FAMLI Overall Approach 153 

1. Align all input nucleotide reads in against a reference database of peptides; UniRef 90 154 

was used for this study [21].  155 

2. Calculate the coverage depth (CD) across the length of each reference, representing the 156 

number of reads aligning to each amino acid position of the reference. 157 

3. Filter out any reference sequences with highly uneven coverage:  158 

�����

������

� 1.0           (1) 159 

Where STD is standard deviation of per-base coverage values. 160 

4. Calculate initial score for a given query coming from a subject using the alignment 161 

bitscores to weight the relative possibilities for a given query, normalizing the scores to 162 

total to 1 for a given query.   163 
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5. Iteratively, until no further references are pruned or a maximum number of iterations is 164 

reached:  165 

i. WEIGHTING and RENORMALIZING: The score of queries being from a subject 166 

from the prior iteration are weighted by the sum of scores for a given subject, and 167 

then renormalized to sum to 1 for each query.   168 

ii. PRUNING. Determine the maximum likelihood for each query. Prune away all 169 

other likelihoods for the query below a threshold.  170 

6. Repeat filtering steps 2-3 using the set of deduplicated alignments resulting from step 4. 171 

 172 

Here are some examples: 173 

� For reference A and reference B that both have some aligning query reads, if there is 174 

uneven depth for reference A but relatively even depth across reference B, then 175 

reference A is removed from the candidate list while reference B is kept as a 176 

candidate. 177 

� If query read #1 aligns equally-well to reference A and reference C, but there is 2x 178 

more query read depth for reference A as compared to reference C across the 179 

entire sample, then reference C's alignment is removed from the list of candidates 180 

for query read #1. 181 

A more detailed description of the method is available in the supplemental materials. An 182 

interactive demonstration of our algorithm is available as a Jupyter notebook is available at 183 

https://github.com/FredHutch/FAMLI/blob/master/schematic/FAMLI-schematic-figure-GB.ipynb 184 

 185 

Comparison of FAMLI to HUMAnN2, SPAdes, Top Hit, and Top 20 186 

The version of FAMLI presented in this paper is v1.3, which can be found at 187 

https://github.com/FredHutch/FAMLI/releases/tag/v1.3. FAMLI was executed in this analysis 188 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/295352doi: bioRxiv preprint 

https://doi.org/10.1101/295352
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

using a Docker image hosted at https://quay.io/repository/fhcrc-microbiome/famli with the tag 189 

v1.3 (sha256:25c34c73964f). 190 

The version of DIAMOND used for translated nucleotide alignments in this analysis is 191 

DIAMOND v0.9.10 using a Docker image compiled from https://github.com/FredHutch/docker-192 

diamond and available at https://quay.io/repository/fhcrc-microbiome/docker-diamond as 193 

v0.9.23--0 (sha256: 0f06003c4190).  194 

Comparative analysis of the simulated communities used HUMAnN2 v0.11.1--py27_1, and all 195 

code used to run HUMAnN2 can be found in the GitHub repository 196 

https://github.com/FredHutch/docker-humann2 (v0.11.1--6), which is based on the BioBakery 197 

Docker image quay.io/biocontainers/humann2:0.11.1--py27_1. The Docker image used to run 198 

HUMAnN2 is available at https://quay.io/repository/fhcrc-microbiome/humann2 as v0.11.2--1 199 

(sha256:d6426bda36ca). 200 

The code used to run SPAdes is maintained by BioContainers and is available at 201 

https://quay.io/repository/biocontainers/spades as 3.13.0--0 (sha256:9f097c5d6d79).  202 

The code used to run megahit is maintained by BioContainers and is available at 203 

https://quay.io/repository/biocontainers/megahit as 1.1.3--py36_0 (sha256:8c9f17dd0fb1). 204 

The code used to run IDBA is maintained by BioContainers and is available at 205 

https://quay.io/repository/biocontainers/idba as 1.1.3--1 (sha256:51291ffeeecc). 206 

CDS were predicted from assembled contigs using Prokka as maintained by BioContainers 207 

(https://quay.io/repository/biocontainers/prokka) 1.12--pl526_0 (sha256:600512072486).  208 

The reference database used for the alignment-based analysis was UniRef90 209 

(www.uniprot.org/uniref/) [16], downloaded on January 30th, 2018. 210 

 211 

Simulation of microbial communities 212 

Synthetic microbial communities were simulated using ART 213 

(https://quay.io/repository/biocontainers/art) 2016.06.05--h869255c_2 (sha256:1cd93ed9f680) 214 
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with paired-end reads, a read length of 250, mean fragment length of 1000, and fragment size 215 

standard deviation of 300. The abundance of each member of a given community was 216 

simulated from a log-normal distribution with a mean of 5x, standard deviation of 1-log, and 217 

maximum of 100x. Each community contains 20 distinct genomes. 218 

 219 

Results 220 

Sensitivity and specificity of metagenomics approaches 221 

For each synthetic community, we cataloged the CDS present and compared these true 222 

positives to the reported CDS by each analytic method. For mapping-based methods, we 223 

allowed for duplicate calls (i.e. similar but distinct CDS sequences determined by the method to 224 

be roughly equally likely to be present). Comparing these CDS catalogs (true and inferred) we 225 

were able to calculate a positive predictive value (PPV; true positive / true positive + false 226 

positive), sensitivity (true positive / true positive + false negative), and uniqueness (true positive 227 

/ true positive + duplicates). As shown in Figure 1, mapping-based approaches were more 228 

sensitive, particularly when the CDS has low coverage depth, at a cost of PPV and uniqueness.  229 

 230 

The mapping all-hits approach is the simplest approach, accepting as present any CDS that had 231 

at least one aligning short-read sequence. While very sensitive, this approach had dismal PPV 232 

and uniqueness. A related mapping method is to restrict to CDS with at least one short read that 233 

maps uniquely to that CDS: Mapping - unique hits; this approach yielded balanced sensitivity 234 

and PPV. FAMLI uses an expectation maximization-based iterative approach (considering 235 

evenness of coverage and total coverage depth) and achieves somewhat superior sensitivity 236 

and PPV as compared to the Mapping - unique hit approach. 237 

 238 

HUMAaN2 uses a hybrid approach, combining taxonomic identification, mapping of reads to 239 

reference genomes, and then using a mapping - all-hits like approach for the remainder of short 240 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/295352doi: bioRxiv preprint 

https://doi.org/10.1101/295352
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

reads that do not map to a genome. Our experimental set-up biases in favor of organisms with 241 

reference genomes. In this favorable set of circumstances, HUMAaN2 performs well with 242 

regards to PPV (superior to any of the tested mapping based approaches), sensitivity (similar at 243 

all depths and low-coverage depths, slightly inferior to mapping approaches) and with 244 

uniqueness. 245 

 246 

Assembly based approaches have the advantage of near perfect uniqueness (with the 247 

assembly process itself resulting in convergence on a single CDS), and the best PPV. 248 

Sensitivity was inferior to mapping-based approaches, and varied by the coverage depth for a 249 

given CDS (Figure 2). 250 

 251 

Short reads align equally well to multiple CDS 252 

To better understand why mapping approaches, particularly mapping with acceptance of all hits, 253 

has poor sensitivity, we explored the role multi-mapping reads may be playing. To do so, three 254 

random unique CDS were selected and 120 simulated reads were generated for each CDS, 255 

resulting in a total of 360 simulated reads. These simulated reads were aligned against the 256 

UniRef100 database. Each read has only one true origin CDS. 257 

 258 

To account for sequencing errors and poor representation in the reference database, we 259 

accepted alignments within a certain percentage of the best alignment for a given read. When 260 

we accept all CDS with an alignment within 10% identity (‘top-10’) of the best alignment for a 261 

read, 100,468 CDS are recruited for the 360 reads, an average of 279 (median of 268, minimum 262 

of 77 and maximum of 537) CDS recruited from UniRef100 per read (figure XXX D, Start). 263 

 264 

When taking a more restricted approach, only recruiting CDS with an alignment to a read 265 

equivalent to the best hit, a total of 57,983 CDS are recruited, an average of 161 (median of 266 
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165, minimum of 1 and maximum of 384) equally well aligning reference CDS for each 267 

simulated read. 268 

 269 

The FAMLI approach can successfully cull multi-mapped reads 270 

To establish the extent of the multimapping read problem, three random CDS were selected 271 

from UniRef100. One hundred and twenty simulated reads were generated from each CDS, and 272 

combined into one set of 360 paired reads; each of these reads had one true origin coding 273 

sequence.  274 

 275 

We then used Diamond to align these 360 reads against UniRef100. Even after limiting to only 276 

alignments within equal in quality to the best hit, there were an average of 161 (median 165, min 277 

1, and max 384) reference sequences tied with the best hit per read pair; when limited to 278 

alignments within 10% of the best identity, there was a mean of 279, median 268, minimum 77, 279 

and max 537 aligning subjects (references) per read pair. 280 

 281 

To filter these alignments, we developed an iterative expectation maximization-based approach 282 

that considered both the evenness of coverage and total depth of coverage (weighted by 283 

alignment quality) of a candidate CDS in order to cull the vast excess of recruited CDS by the 284 

mapping approach, the FAMLI algorithm. Figure 3 shows the FAMLI algorithm applied to the 285 

top-10 alignments. Figure 3A shows the coverage (or read depth by base pair) for the three true 286 

positive CDS. After filtering for coverage evenness, Fig 3B shows the read-depth of some 287 

successfully filtered away references, as well as some references not present in the simulated 288 

sample that pass this evenness test. Figure 3C depicts the iterative pruning of alignments by 289 

likelihood, showing the candidate references for one query being successfully filtered down over 290 

ten iterations to a single reference CDS for the read (the true origin reference for this read).  291 

 292 
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By the conclusion of the first evenness filtering, 908 references remain (for the true three); the 293 

360 reads remain with an average of 271 (median of 267, minimum of 77, and maximum of 398) 294 

equally-well aligning reference CDS. By the conclusion of ten iterations, all reads are 295 

successfully assigned now to their true origin CDS (one reference CDS per read) (Figure 3D).  296 

 297 

Discussion 298 

Randomly fragmented shotgun sequencing of the metagenome of a microbial community offers 299 

the promise of inferring the functional capacity of the community by establishing the protein 300 

coding sequencing (CDS) present. CDS or gene-level metagenomics offers a more reproducible 301 

and mechanistic means of associating the state of the microbiome with functional outcomes in a 302 

host or environment [22]. Realizing this promise is predicated on having a reliable set of analytic 303 

tools for determining the CDS catalog of a microbial community.  304 

 305 

Here we introduce and employ an approach for benchmarking the performance of different 306 

metagenome analysis tools for determining the CDS content of the metagenome. This 307 

benchmarking approach is implemented within a reproducible Nextflow workflow, and therefore 308 

should be relatively straightforward for other researchers to reproduce and augment as 309 

additional tools for CDS detection become available. 310 

 311 

We found that assembly-based tools are limited by sensitivity, particularly at low read coverage. 312 

The association between the sensitivity to detect a CDS and the read coverage depth of the 313 

CDS is worrisome; the ability of these tools to detect a protein coding sequence is dependent 314 

upon community factors, including the relative abundance of the hosting organism, more so 315 

than other approaches. 316 

 317 
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Mapping-based approaches must address the problem of short-reads from metagenomes 318 

aligning equally well to large numbers of distinct CDS sequences. As evident in our simulated 319 

communities, the ratio of true to false positive alignments can be in the hundreds to one, 320 

resulting in dismal precision unless the alignments are culled or filtered. We suspect some of 321 

the limitations experienced by software attempting to use short reads to identify the functional 322 

genes encoded by microbial communities, described by [23], may be due to this multi-mapping 323 

read problem.  324 

 325 

Here we demonstrate the magnitude of the problem of multiple-mapping of short reads to 326 

peptides, revealing a large number of equally-scored alignments; if one simply includes all 327 

peptides for which there is at least one short read that aligns equally as well as to any other 328 

peptide, the false positives outnumber true positives by an average of about 160:1.  329 

 330 

We describe an algorithmic approach to correctly assign these multiply aligned WGS reads to 331 

the proper reference sequence, implemented as the open source software package FAMLI 332 

(Functional Analysis of Metagenomes by Likelihood Inference). With FAMLI, we are able to 333 

improve our precision (number of true positives divided by the sum of false and true positives) to 334 

about 80%; this performance is consistent over a range of community types. FAMLI is more 335 

efficient than de novo assembly at identifying protein-coding sequences present in a community 336 

with regards to both read depth and computational time. While FAMLI can be used as a 337 

standalone tool to identify protein-coding genes, it could also easily be used to enhance the 338 

precision of existing bioinformatics tools (e.g. HUMAnN2). 339 

 340 

The hybrid approach of establishing which taxa are present and first mapping to reference 341 

genomes (e.g. HUMAnN2, MIDAS) has merit, and performed well from a sensitivity and positive 342 

predictive value perspective in our benchmarking approach. We note that our approach limits 343 
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our synthetic communities to being those with reference genomes. This biases in favor of this 344 

hybrid approach. In the context of microbial communities with a high degree of novelty, we 345 

suspect performance would be poorer.  346 

 347 

Thinking about the relative merits of reference-based (e.g. UniRef90) or reference-free (e.g. de 348 

novo assembly) analysis methods, one of our primary considerations was the efficiency of 349 

comparing results across large numbers of samples. While reference-free approaches are free 350 

by definition from the bias inherent in reference databases, that lack of common reference 351 

makes it extremely challenging to compare results between samples. For example, comparing a 352 

set of genes between N samples is an O(N^2) problem that scales exponentially with the 353 

number of samples. In contrast, by identifying proteins from a reference database (UniRef90), 354 

all results are inherently comparable without any additional computation (e.g. sequence 355 

alignment), in other words the complexity is O(1). Put simply, with de novo assembly (SPAdes) 356 

it is much more difficult to compare the results for 1,000 samples in contrast to just 10 samples, 357 

while for FAMLI or HUMAnN2 it is about the same.  358 
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 427 

Figure Legends 428 

 429 

Figure 1: Positive predictive value (PPV), sensitivity, and uniqueness of CDS calls by 430 

metagenomic analysis approaches. The positive predictive value (true positive over true 431 

positive plus false positive), sensitivity (true positive over true positive plus false negative) both 432 

overall and subsetted to CDS with 0-5x coverage, and uniqueness (true positive over true 433 

positive plus duplicates) on a per-CDS basis with different analysis approaches. 434 

 435 

Figure 2: Sensitivity and uniqueness of CDS calls with respect to CDS coverage depth. 436 

Mapping based approaches are both more sensitive, and achieve a plateau of sensitivity at a 437 

lower coverage depth as compared to assembly-based methods. 438 

 439 

Figure 3: The problem of multiply-mapping short-reads, and the FAMLI algorithm 440 

schematized. Three hundred and sixty simulated reads were generated from three CDS. These 441 

simulated read was aligned against the UniRef100 database, and all CDS with an alignment 442 

within 10% identity of the best match were retained. A) The read-depth coverage of the three 443 

true peptides (top) B) Evenness filtering is used to remove the least likely to be present 444 

references from being considered. The left column is three randomly selected references that 445 

are successfully filtered at this step, the right three false references that are not filtered. C) The 446 

iterative likelihood-based filtering of one randomly selected synthetic read. Each circle 447 
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represents one remaining aligned reference CDS for this read; the true positive origin reference 448 

is in dark green. The length of each line is proportional to the calculated score at this iteration. 449 

D)The number of CDS per read as a violin plot. After the tenth iteration, only one reference CDS 450 

(the correct) remains for this read.  451 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/295352doi: bioRxiv preprint 

https://doi.org/10.1101/295352
http://creativecommons.org/licenses/by-nc-nd/4.0/


all diamond

unique diamond

FAMLI

HUMAnN2

IDBA

megahit

metaSPAdes

Positive Predictive Value

all diamond

unique diamond

FAMLI

HUMAnN2

IDBA

megahit

metaSPAdes

Sensitivity

all diamond

unique diamond

FAMLI

HUMAnN2

IDBA

megahit

metaSPAdes

Sensitivity (0-5X)

0.0 0.5 1.0

all diamond

unique diamond

FAMLI

HUMAnN2

IDBA

megahit

metaSPAdes

Uniqueness

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/295352doi: bioRxiv preprint 

https://doi.org/10.1101/295352
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.2

0.4

0.6

0.8

1.0
Sensitivity (Mapping) Uniqueness (Mapping)

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0

10
-20

20
-50

50
-10

0

Sequencing Depth per CDS (fold)

0.0

0.2

0.4

0.6

0.8

1.0
Sensitivity (Assembly)

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0

10
-20

20
-50

50
-10

0

Sequencing Depth per CDS (fold)

Uniqueness (Assembly)

method
FAMLI
HUMAnN2
IDBA
all diamond
megahit
metaSPAdes
unique diamond

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/295352doi: bioRxiv preprint 

https://doi.org/10.1101/295352
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 100 200 300 400

10

20

30

R
ea

d 
D

ep
th

UniRef100_P0A9A8 (true positive)

0 50 100 150 200

10

20

30

R
ea

d 
D

ep
th

UniRef100_P25536 (true positive)

0 50 100 150 200 250 300
Base pair

10

20

R
ea

d 
D

ep
th

UniRef100_P07862 (true positive)

0 250
0.0

0.5

1.0

R
ea

d 
D

ep
th

SD/M 2.6

0 250
0

5

10

R
ea

d 
D

ep
th

SD/M 2.1

0 200
Base pair

0

5

10
R

ea
d 

D
ep

th
SD/M 1.2

0 200

10

20

R
ea

d 
D

ep
th

SD/M 0.1

0 250
0

10

20

30

R
ea

d 
D

ep
th

SD/M 0.6

0 200
Base pair

0

5

10

R
ea

d 
D

ep
th

SD/M 1.0

1: 395 Refs 2: 86 Refs 3: 67 Refs

4: 67 Refs 5: 56 Refs 6: 38 Refs

7: 12 Refs 8: 6 Refs 9: 3 Refs

10: 1 Refs

A. Start B. Evenness Filtering C. Iterative Alignment Filtering
Filtered 

(True Neg)
Not Filtered 
(False Pos)

Star
t

Eve
nn

es
s F

ilte
r

Ite
rat

ion
 1

Ite
rat

ion
 2

Ite
rat

ion
 3

Ite
rat

ion
 4

Ite
rat

ion
 5

Ite
rat

ion
 6

Ite
rat

ion
 7

Ite
rat

ion
 8

Ite
rat

ion
 9

Ite
rat

ion
 10

0

200

400

600

C
D

S
 p

er
 R

ea
d

D. CDS per read by step

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/295352doi: bioRxiv preprint 

https://doi.org/10.1101/295352
http://creativecommons.org/licenses/by-nc-nd/4.0/

