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Abstract 

Background: Vaccine efficacy against susceptibility to infection (VES), regardless of symptoms, 

is an important endpoint of vaccine trials for pathogens with a high proportion of asymptomatic 

infection, as such infections may contribute to onward transmission and outcomes such as 

Congenital Zika Syndrome. However, estimating VES is resource-intensive. We aim to identify 

methods to accurately estimate VES when only a limited amount of information is available and 

resources are constrained. 

Methods: We model an individually randomized vaccine trial by generating a network of 

individuals and simulating an epidemic. The disease natural history follows a Susceptible, 

Exposed, Infectious and Symptomatic or Infectious and Asymptomatic, Recovered model. The 

vaccine is leaky, meaning it reduces the probability of infection upon exposure. We then use 

seven approaches to estimate VES, and we also estimate vaccine efficacy against progression to 

symptoms (VEP).  

Results: A corrected relative risk and an interval censored Cox model accurately estimate VES 

and only require serologic testing of participants once at the end of the trial, while a Cox model 

using only symptomatic infections returns biased estimates. Only acquiring serological endpoints 

in a 10% sample and imputing the remaining infection statuses yields unbiased VES estimates 

across values of R0 and accurate estimates of VEP for higher values of R0.  

Conclusion: Identifying resource-preserving methods for accurately estimating VES is important 

in designing trials for diseases with a high proportion of asymptomatic infection. Understanding 

potential sources of bias can allow for more accurate VE estimates in epidemic settings. 

Keywords: vaccine trial, epidemics, asymptomatic infection, infectious diseases, modeling, 

interval censoring 
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Key Messages 

• Accurate estimation of vaccine efficacy against susceptibility to infection 

(VES) and vaccine efficacy against progression to symptoms (VEP) 

requires ascertaining rates of asymptomatic infection, as well as 

symptomatic infection. This can be resource intensive.  

• Through evaluating seven different methods for analyzing vaccine trials, 

we identify two methods that accurately estimate VES and VEP which only 

require testing all trial participants once and one method which only 

requires testing 10% of the trial participants once, substantially reducing 

required resources. 

• The analytical methods described in this paper could be considered for use 

in future vaccine trials and contribute to the growing international effort to 

prepare for vaccine trials conducted during epidemics in advance. 
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Background 

 In 2015, the World Health Organization (WHO) identified a list of priority pathogens 

with potential to cause future public health emergencies of international concern [1]. The 

Coalition for Epidemic Preparedness Innovations (CEPI) has dedicated one billion dollars to 

vaccine development efforts starting with three of these: Middle East respiratory syndrome 

(MERS) coronavirus, Lassa virus and Nipah virus [2]. These three pathogens, as well as others 

on the WHO’s list, such as Zika virus, have high proportions of asymptomatic or mild infection 

[2–7]. Vaccine efficacy against susceptibility to infection (VES) [8], regardless of symptom level, 

is an important endpoint of vaccine trials for these pathogens, as infection may contribute to 

onward transmission, and outcomes such as Congenital Zika Syndrome, even without primary 

symptoms [9–14]. However, VES is resource-intensive to estimate as it requires testing all trial 

participants, either by periodically conducting assays for infection throughout the trial, or by 

serologic testing at the trial’s conclusion if natural and vaccine-derived immune responses can be 

distinguished. Testing trial participants is also necessary for estimating a vaccine’s efficacy 

against progression (VEP) to symptoms, another critical outcome measurement [8]. We aim to 

identify a methodology to accurately estimate VES and VEP when only a limited amount of 

information is available, and resources – both time and money – are constrained. Throughout, we 

use “asymptomatic” synonymously with “subclinical” to mean any infection episode that does 

not generate sufficient symptoms to prompt testing that would reveal that the participant is 

currently infected with the causative pathogen. 

 

Methods 

 We model a vaccine trial by first generating a model of a main population and a network 
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of individuals grouped into communities, the structure of which has been described previously 

(see Supplementary Table 1 for parameters) [15]. The model is compartmental, using 

deterministic (differential equation) dynamics for the main population and stochastic dynamics 

in the communities. We simulate an epidemic in the main population with a seasonal 

transmission rate that generates an epidemic curve with a shape similar to the epidemic curve of 

the 2015 Zika outbreak in Brazil [16]. The disease is introduced into communities via infectious 

contact with the main population, and transmission occurs when infected individuals transmit to 

their susceptible connections in the communities. All susceptible individuals have a daily 

probability of infection from each of their infectious neighbors of 1-e-β, where β is the force of 

infection, as well as a daily external hazard of infection from the main population, which varies 

with the prevalence in the main population. The disease natural history follows a Susceptible-

Exposed-Infectious/Symptomatic (or Infectious/Asymptomatic)-Recovered (SEIS(IAS)R) model, 

with estimated incubation and infectious periods of a Zika-like disease (Supplementary Table 1). 

Vector transmission is not directly modeled, so the serial interval of the simulated disease is 

shorter than that of Zika virus disease. Symptomatic and asymptomatic infections are assumed to 

be equally infectious, and whether an individual is infected by a symptomatic or an 

asymptomatic individual does not affect their probability of becoming symptomatic. The 

baseline parameters of the model assume 20% of those infected in both the vaccine and control 

groups become symptomatic, based on the estimated proportion of Zika infections that are 

symptomatic [9]. The epidemic and the vaccine trial are simulated in both a network of 

individuals grouped into five relatively disconnected communities as well as in a network of 

individuals in one large community.  

 7.5% of the individuals in the communities are enrolled into a 150-day long trial, and 
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individuals are randomized to the vaccine or control groups. All individuals enrolled into the trial 

are assumed to be naïve to the infection, which in practice might require serologic testing of all 

individuals prior to enrollment. The vaccine is leaky, meaning it reduces the probability of 

infection upon each exposure to an infectious individual. The daily probability of infection from 

vaccinees’ infectious contacts is 1-e-β(1-VE), where VE is the assumed direct leaky multiplicative 

vaccine efficacy [8,17]. 

 VES is estimated with seven different approaches, which are described in Table 1. Trial 

status (i.e. vaccine or control) is the explanatory variable for all Cox proportional hazards 

models, and individuals who are never infected are censored at the end of the trial. Approach 1 

assumes that the time of infection is known exactly (to the day) even for asymptomatic infections 

and therefore would be strictly applicable only where very frequent testing is performed 

throughout the trial. Approach 2 assumes that infection is unobserved for asymptomatic 

infections, so only symptomatic infections are included in the Cox regression, and those infected 

asymptomatically are assumed to have survived without infection to the end of follow up. 

Because this latter approach leads to bias in estimating VES (see Figure 1 and Results), we 

consider five additional approaches.  

In the interval censored Cox models, the exact day of infection for the symptomatic 

individuals is known (and in practice would be laboratory-confirmed). For the asymptomatically 

infected individuals, the interval for day of infection ranges from the day of their last negative 

serologic test to the day of their first positive serologic test. Two different interval lengths are 

assessed to determine if increased frequency of testing yields more precise results [18]. As 

mentioned above, this method assumes the ability of the serologic test to distinguish between 
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vaccine acquired immunity and naturally acquired immunity, currently possible for some but not 

all vaccines/pathogens [19–21]. 

The results from the network with five communities are analyzed first with the same 

seven approaches, treating the five communities as if they were one large community. 

Alternatively, to account for the potential for heterogeneity in hazard rates between communities, 

the Cox models in Approaches 1, 2, 5, 6 and 7 are stratified by community [15], and estimates 

from Approaches 3 and 4 are calculated separately within each community and meta-analyzed 

using inverse-variance weighting.  

 Empirical coverage probabilities are calculated by the proportion of simulations with 

95% confidence intervals that cover the true VES parameter of the model (60%). Power is 

estimated by the proportion of simulations in which the p-value for the null hypothesis of VES=0 

is less than 0.05 and the estimated VES is greater than 0. The trial is also simulated with fewer 

participants to assess power in smaller trials. 

 Additionally, to evaluate the efficacy of the vaccine in preventing progression to 

symptoms, VEP is estimated by: 

1 −

𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑣𝑎𝑐𝑐𝑖𝑛𝑒𝑒𝑠
𝐴𝑙𝑙	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑣𝑎𝑐𝑐𝑖𝑛𝑒𝑒𝑠

𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
𝐴𝑙𝑙	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

 

Finally, to assess whether the results hold in other contexts, trial parameters such as trial length, 

VES, and the proportion of the infected individuals in each arm of the trial that becomes 

symptomatic, are varied.  

 R code for these analyses is available at: https://github.com/rek160/Asymptomatic-

Infection-Vaccine-Efficacy. 
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Results 

 Figure 2 displays the results of the median of 500 simulations in the single-community 

network, showing VES estimates from the seven approaches described above across three values 

of R0, the basic reproductive number. As expected, Approach 1 returns accurate VES estimates, 

while Approach 2 returns estimates biased towards the null because there is differential 

overestimation of person-time at risk, with worse overestimates in the controls (Figure 1). This 

bias is exacerbated as R0 increases. Approach 3 returns an estimate biased toward the null 

compared to the true value of VES, also as expected and also worsened at higher levels of R0 [8]. 

Approach 4 corrects this bias by converting the risk-based analysis into a rate-based analysis 

[17,22]. 

The interval censored Cox proportional hazards models (Approaches 5-6) return 

estimates approximately equal to the VES input into the model. These approaches require fewer 

resources than would be necessitated by the Cox model with perfect knowledge of infection time 

(Approach 1) because they use only three or one serologic tests, respectively, rather than 

frequent monitoring for infection throughout the period of follow-up. Approach 6, the interval 

censored Cox model with testing only at the end of the trial, yields the same results as Approach 

5, testing three times, without substantial difference in coverage probability or power in the 

settings considered (Table 2 and Figure 3). Thus, both Approaches 4 and 6 yield accurate 

estimates with testing only required once at the end of the trial.  

Even a single serologic test could be resource-intensive. Approach 7, which only requires 

testing 10% of the trial participants at the end of the trial, results in accurate estimates of VES 

(Figure 2) for all values of R0 considered and of VEP (Table 3) for R0 values of 1.25 or 1.50. 

Only testing 10% of the trial participants once at the end of the trial substantially reduces 
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required resources. However, when the number of cases is very low (Supplementary Table 2), 

the sample does not accurately estimate VEP, and this approach is less efficient than others in 

many of the settings considered (i.e. wider confidence intervals, see Supplementary Table 3). 

Similar results are obtained in the analyses of the five communities (Figures 4-5). However, 

when the number of cases is low (R0=1), the meta-analysis of Approach 4 is imprecise.  

Results are essentially unchanged across changes in duration of the trial or vaccine 

efficacy, and when the proportion symptomatic among the vaccine and control groups differs 

(i.e. VEP ≠ 0), as shown in Figures S1-5. When the vaccine has an effect on both susceptibility to 

infection and progression to symptoms, serologic testing helps differentiate between VES and 

VEP except when the number of total cases is low.  

 

Discussion 

For pathogens with a high proportion of mild or asymptomatic infection, understanding if 

the vaccine prevents all infection, not solely symptomatic infection, as well as understanding the 

vaccine’s impact on progression to symptoms, is critical for determining the epidemiologic 

impact of the vaccine. However, costs and resources can pose major barriers to estimating these 

critical values. Here we have discussed different methods and their varying levels of accuracy 

and resource requirements for estimating VES and VEP. The corrected relative risk estimate 

(Approach 4), the interval censored Cox models (Approaches 5-6), and the imputed interval 

censored Cox model (Approach 7) provide estimates close to the VES input into the model across 

values of R0, which is of course also obtained under the assumption of perfect knowledge of the 

time of all asymptomatic infections (Approach 1). A Cox model considering only symptomatic 

infections proves biased, especially at higher values of R0. Approaches 1 and 4-7 also return 
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accurate estimates of VEP, with the exception of Approach 7 when R0 is low due to the small 

number of cases overall and in the sample.  

In practice, using a Cox proportional hazards model for the time of all infections would 

entail testing everyone frequently (perhaps weekly or even daily) for infection throughout the 

trial, requiring significant expenditures of both money and time. Using a corrected relative risk 

estimate or an interval censored Cox model, an accurate estimate of VES and VEP can be 

obtained with serologic testing only once at the end of the trial. Testing only 10% of the trial 

population and imputing the event status of the remaining asymptomatic trial participants 

substantially reduces the resources needed while still providing critical information about the 

vaccine.  

These approaches work in both trials conducted in one large community and trials 

conducted in disconnected communities, such as the recent malaria trials [23]. In trials with more 

communities or increased heterogeneity, the bias from heterogeneity in hazard rates will likely 

be more pronounced [15]. Methods to account for this heterogeneity, such as stratification, meta-

analyses, or incorporation of random effects, should therefore be used; although when the 

number of cases is very low, some of these methods may be imprecise.  

Limitations 

 While Approaches 4-7 require substantially fewer resources for estimating VES and VEP 

than Approach 1 and are more accurate than Approaches 2-3, all participants must be tested at 

the beginning of the trial to ensure they are not exposed or immune. Including those with pre-

existing immunity in the trial would reduce the total number of overall cases, and thus the power, 

limiting the ability to draw a statistically significant conclusion about the vaccine’s effects. This 

challenge however is not limited to diseases with high proportions of mild or asymptomatic 
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infection, as prior immunity would reduce the power of any trial. Additionally, distinguishing 

between natural and vaccine-derived immunity can be challenging, especially at the beginning of 

an outbreak of an emerging infectious disease about which not much is known and for which 

serologic tests are likely in early stages of development [21,24]. Therefore, investments in 

diagnostic development will also be critical for ensuring accurate VE estimates. Finally, many 

simplifying assumptions are made, including complete ascertainment of infectious cases, perfect 

sensitivity and specificity of the diagnostic test, and comparability of the infected vaccinees and 

infected controls for the estimation of VEP [8]. 

 

Conclusion 

 We have identified methods that accurately estimate VES and VEP and only require 

serologic testing of trial participants once at the end of the trial. Only acquiring serological 

endpoints in a 10% sample yields unbiased VES estimates, significantly reducing required 

resources. While parameterized for a Zika-like disease, the methods and exact parameters 

described above are not meant to represent a particular epidemic context, but merely to serve as a 

guide when thinking through how to accurately estimate important endpoints of vaccine trials in 

different settings with limited resources and information. R code for this simple model can be 

readily modified to reflect disease-, vaccine- and setting-specific parameters. Identifying 

resource-preserving methods is important in designing trials for diseases with a high proportion 

of asymptomatic or mild infection, especially when those cases are still infectious. 

Understanding the potential sources of bias from different approaches can allow for more 

accurate estimates in epidemic settings.  
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Table 1: Approaches for estimating VES 

# Approach Symptomatic 
Infections 

Asymptomatic 
Infections 

Notes 

1 Cox “perfect 
knowledge” 

Exact day of 
infection known 

Exact day of 
infection known 

Requires frequent viremia 
monitoring throughout trial 

2 Cox: symptomatic 
only 

Exact day of 
infection known 

Treated as non-
events 

Assumes same proportion 
of vaccinated and control 
cases are symptomatic  

3 Relative risk 
estimate 

Ascertained 
prospectively 
and total counted 
at end of trial 

Serologic testing 
at end of trial 

𝑉𝐸7 S,= 	1 −
9::;<=	>;:?	(A;<<BC;:?D)
9::;<=	>;:?	(FGC:HGI)

	

4 Corrected relative 
risk estimate [22] 

Ascertained 
prospectively 
and total counted 
at end of trial 

Serologic testing 
at end of trial 

𝑉𝐸7 S,= 	1 −
JKL	MN9::;<=	>;:?	(A;<<BC;:?D)O
JKLMN9::;<=	>;:?	(FGC:HGI)O

 

5 Interval censored 
Cox model (3 
intervals) 

Exact day of 
infection known 

Interval for 
infection time 
known: 3 
serologic tests 

Interval based on serologic 
testing 2 times throughout 
trial and once at end (i.e. 
day 50, day 100, day 150) 

6 Interval censored 
Cox model (1 
interval) 

Exact day of 
infection known 

Interval for 
infection time: 
length of trial 

Serologic testing once at 
end of trial  

7 Imputation Exact day of 
infection is 
known 

Serologic testing 
at end of trial for 
asymptomatic 
participants in a 
random sample 
of 10% of 
participants and 
the remaining 
asymptomatic 
participants’ 
event statuses are 
imputed 

a) Probability of infection 
(in 1 community analysis) 
or ratio of asymptomatic to 
symptomatic infections (in 
5 community analysis) 
estimated in sample of 10% 
of the vaccinated and the 
control groups 
b) Infectious status of the 
remaining asymptomatic 
individuals imputed using 
multiple (10) imputation 
[25] 
c) Imputed data set then 
analyzed with Approach 6 
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Table 2. VES Estimates (Empirical Coverage Probabilities)1 

Method 
R0 = 1.00 R0 = 1.25 R0 = 1.50 

1 
 community 

5 
communities 

1  
community 

5 
communities 

1  
community 

5 
communities 

1 0.59 (0.96) 0.59 (0.95) 0.60 (0.95) 0.59 (0.94) 0.59 (0.93) 0.59 (0.94) 
2 0.58 (0.96) 0.58 (0.94) 0.55 (0.90) 0.52 (0.85) 0.45 (0.49) 0.46 (0.52) 
3 0.58 (0.95) 0.58 (0.95) 0.52 (0.51) 0.51 (0.49) 0.43 (0) 0.44 (0) 
4 0.59 (0.96) 0.59 (0.94) 0.60 (0.95) 0.59 (0.95) 0.59 (0.94) 0.59 (0.94) 
5 0.59 (0.96) 0.59 (0.95) 0.60 (0.94) 0.59 (0.94) 0.59 (0.94) 0.59 (0.93) 
6 0.59 (0.95) 0.59 (0.95) 0.60 (0.94) 0.59 (0.93) 0.59 (0.93) 0.59 (0.92) 
7 0.59 (0.91) 0.59 (0.96) 0.58 (0.92) 0.58 (0.97) 0.58 (0.91) 0.58 (0.96) 

1Empirical coverage probabilities are calculated by the proportion of simulations with 95% 

confidence intervals that cover the true VES parameter of the model (60%). 

 
 
Table 3. Median VEP estimate (true VEP = 0) in full trial and sample from Approach 7 

VEP 
R0 = 1.00 R0 = 1.25 R0 = 1.50 

1 
 community 

5 
communities 

1  
community 

5 
communities 

1  
community 

5  
communities 

Full Trial -0.02 0.003 0.02 -0.01 -0.01 -0.002 
Sample 0.38 0.13 0.04 -0.01 -0.03 -0.003 
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Figure 1.  
 

 
Differential misclassification of at risk person-time. When considering only symptomatic events, 

presumed person-time at risk increases for both the vaccine and control groups, as all 

asymptomatic infections are now perceived to be uninfected and at risk for the entire period of 

the trial. In the vaccine group, 9 people are perceived to still be at risk (Panel B), when in reality 

only 7 remain at risk (Panel A), as 2 people are asymptomatically infected. In the control group, 

8 people are perceived to be at risk (Panel B), when in reality only 2 remain at risk (Panel A). 

Because there are more people infected and therefore more people incorrectly still perceived at 

risk in the control group than the vaccine group, apparent incidence is underestimated in the 

controls more so than in the vaccine group, leading to the bias towards the null. This bias is 

exacerbated as R0 increases and more people in the control group become infected but are still 

perceived to be at risk. At time t post randomization, person time at-risk in the controls will be 

overestimated by a factor 𝑒P(Q)(MNRST)(MNRU)	relative to the vaccine group, where Λ(t) is the 

cumulative hazard to time t, p is the symptomatic proportion in controls,	 and 1- 𝜃Y and 1- 𝜃Z are 

the efficacy of the vaccine against infection, and disease given infection, respectively [26]. This 

will be greater than 1 for non-negative VEP and positive VES.  
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Figure 2.  

 

VES estimates (baseline parameters, one community network). Estimates for vaccine efficacy 

against susceptibility to infection (VES) using seven different approaches across three values of 

R0 under the model’s baseline parameters in the one community network.  
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Figure 3.  

 

Power. The power of the Cox “perfect knowledge” and the two interval censored models in one 

community with A-C) 1500 trial participants (baseline), D-F) 250 trial participants, and G-I)100 

trial participants across the three values of R0. The interval censored models do not lead to a 

substantial loss in power except in the trial with 100 participants enrolled when R0 = 1. The 

dashed lines are at 0.80. 

 

 

 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/295337doi: bioRxiv preprint 

https://doi.org/10.1101/295337
http://creativecommons.org/licenses/by-nd/4.0/


 18 

Figure 4.  

 

VES estimates (baseline parameters, five communities network, analyzed as one large 

community). Estimates for vaccine efficacy against susceptibility to infection (VES) using seven 

different methods across three values of R0 under the baseline parameters in the five 

communities network analyzed as one large community.  
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Figure 5.  

 

VES estimates (baseline parameters, 5 communities network, stratified analyses). The estimates 

for vaccine efficacy against susceptibility to infection (VES) using seven different methods across 

three values of R0 under the baseline parameters in the five communities network, with stratified 

and meta-analyzed analyses. 
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