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Introductory paragraph 

The inclusion of genetic data in large studies has enabled the discovery of genetic 

contributions to complex traits and their application in applied analyses including those using 

genetic risk scores (GRS) for the prediction of phenotypic variance. If genotypes show 

structure by location and coincident structure exists for the trait of interest, analyses can be 

biased. Having illustrated structure in an apparently homogeneous collection, we aimed to a) 

test for geographical stratification of genotypes in UK Biobank and b) assess whether 

stratification might induce bias in genetic association analysis. 

We found that single genetic variants are associated with birth location within UK Biobank 

and that geographic structure in genetic data could not be accounted for using routine 

adjustment for study centre and principal components (PCs) derived from genotype data. 

We found that GRS for complex traits do appear geographically structured and analysis 

using GRS can yield biased associations. We discuss the likely origins of these observations 

and potential implications for analysis within large-scale population based genetic studies.  
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Main  

Many recent and ongoing research programmes aim to systematically identify genetic 

contributions to complex traits and undertake applied epidemiological analyses using 

genotype data. Irrespective of source, latent structure within a dataset can be very important 

when performing these analysis, as structural alignment between ancestry and genotypes, 

health outcomes and geography has potential to induce artefactual relationships1. Current 

methods to account for structure include proxy measurement and adjustment for latent 

structure within datasets (mainly using PCs or measures of actual geographic location2-4). 

 

Recent developments in resources, applications and understanding warrant a re-exploration 

of latent structure in datasets. Prior to 2015, very large samples were only achieved by 

aggregation of smaller studies whose structural properties and geographical footprints were 

neither detectable within single studies nor coordinated across the collection of studies. Now 

analysis can be undertaken in very large individual collections with the capacity to capture a 

single geographical footprint, such as UK Biobank5. With increased sample size and 

statistical power, there is now potential to discover a broader range of genetic effects that 

might conceivably capture characteristics of the structural properties or geographical 

footprint of the dataset. This sits in the context of a growing appreciation of fine-scale 

population structure within the British population6.  

 

These changing circumstances are relevant for applied epidemiological analyses which have 

developed substantially with their exploitation of reliable genetic association results. A good 

example of this is Mendelian randomization, which aims to escape confounding in 

observational associations by using genetic variation to proxy risk factors of interest7. Recent 

literature has focused on maximising the use of the current wave of genetic association 

evidence and accounting for undesirable pleiotropic effects of single variants8. This activity, 

however, has largely assumed that structure is addressed during the discovery of associated 
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genetic variants. Under-appreciated structure in genetic datasets challenges the assumption 

that genetic instruments are not related to potentially confounding features9.  

 

As an exemplar, we examined whether there is previously under-appreciated structure in a 

well understood, ethnically and geographically homogenous resource. In the Avon 

Longitudinal Study of Parents and Children (ALSPAC)10,11, we studied mothers who were 

recruited during pregnancy in the Bristol area (South West UK) in the early 1990s. We 

undertook chromosome painting12 to describe fine-scale relatedness between each mother 

and each of the regions of the Peopling of the British Isles (PoBI) project6. We summarised 

each mother’s ancestral lineage as a mixture of the PoBI regions, allowing us to estimate the 

educational attainment that those regions would have, were the ALSPAC mothers’ education 

levels explained by this variation. In doing this a pattern for lower educational attainment in 

lineages originating from the regions immediately surrounding Bristol (Figure 1) and higher 

educational attainment in more geographically distant lineages was observed. Distant 

lineages are likely only represented in ALSPAC by individuals or families who had migrated, 

and we anticipate that the educational attainment of people who migrate for economic 

reasons differs from people who do not. Educational attainment is therefore aligned to subtle 

genetic differences even in this apparently geographically and ethnically homogenous 

population and this is coincident with axes of ancestry.  

 

The structure in ALSPAC was detected here using a method which is highly sensitive to 

ancestry. With greater power, it is entirely possible the same phenomena may become 

detectable in more routine analytical procedures. We therefore turned to UK Biobank, an 

exceptional resource containing a catalogue of health, disease and genotype data of almost 

half a million participants5,13 Conceptually the UK Biobank is analogous to a super-imposition 

of multiple ALSPACs, each of which recruited participants living near a study assessment 

centre. This design gives UK Biobank the capacity to represent a broad spectrum of UK 
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ancestry and structure, but is also sensitive to important sampling phenomena including self-

selection. The hurdles of location and attendance (less than 6% of individuals contacted by 

UK Biobank chose to participate14) are likely to influence the nature of the resultant 

participant collection and are related to behaviours with heritable contributions15. This may 

create collider biases16,17 which have the ability to induce association between otherwise 

independent variables.  

 

We examined whether genotypes are structured using genome-wide association studies 

(GWAS) for North/South and East/West axes of birth location (on a metre grid scale from an 

origin South West of the UK) using PLINK18. Analysis of genetic data was performed within 

individuals of white British ancestry with non-missing data on birth location (n=321,439). 

GWAS for birth location identified that single variants are associated with geography within 

UK Biobank. An unadjusted model produced distorted and inflated plots with evidence for 

association at variants across the autosome. After adjustment for genotyping array, 40 PCs 

and a factor variable representing UK Biobank assessment centre single variants remained 

associated with birth location (figure S1).  

 

Rather than using single genetic variants, empirical epidemiological analyses often use 

genetic risk scores (GRS)19,20.  As exemplars, we took genetic variants and weightings 

associated with educational attainment, height and body mass index (BMI) from published 

genome-wide meta- analyses21-23. Using an approach that is widespread in applied 

analyses, we derived weighted and unweighted GRS for the three traits based on variants 

with p<5e-08 and p<1e-05 in the discovery sample. We used general additive models24 in 

the ‘mgcv’ package (version 1.8)25 within R (version 3.3.1)26, to test for non-linear 

relationships between GRS and geographical terms. All GRS tested were associated with 

birth location in an unadjusted model and a model that adjusted only for genotyping array. 

These associations attenuated but were not extinguished in models incorporating adjustment 

for 40 PCs and study centre, especially for educational attainment and North location at 
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birth, where statistical adjustment had little impact on the fitted geographical distribution of 

the GRS (figure 2, table 1).   

 

Having found evidence for association between genotypic variation and geography, we used 

general additive models to test for non-linear relationships between four exemplar complex 

traits and geography. Reported household income, measured BMI, reported age at 

completion of full time education and reported number of siblings showed strong evidence 

for geographical stratification (p<2e-16 for non-linear relationship between observed traits 

and axes of birth location).  

 

We noted that structure in genotypes and phenotypes appeared geographically co-incident 

(example figure S2), which led us to explore the potential role of geography in confounding 

applied analysis. We tested for linear association between GRS and complex traits and 

examined whether the inclusion of non-linear terms for birth location as covariates altered 

the results, again using general additive models. These relationships changed in magnitude 

with the addition of non-linear terms for birth location (table 2), suggesting a role for residual 

confounding by geographical location. For example, the relationship between genetically 

predicted BMI and household income (pounds sterling per year per 1 standard deviation 

(SD) increase in GRS for BMI) changed from -335 in the unadjusted model to -251 (adjusted 

for 40 PCs and study location) to -229 (adjusted for 40 PCs study location and non-linear 

terms for birth location). Birth location captures neither the full extent of variation in fine 

ancestral structure (which predicts GRS) nor the full extent of geographically structured 

social and economic differences (which predict income). It is possible that these adjusted 

estimates therefore contain residual confounding and that the true impact of biases within 

this sample is larger than these results suggest. 

 

As an alternative way to demonstrate the potential impact of such bias, we analysed 

simulated geographically-stratified complex traits which preserved coarse geographical 
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variance in observed traits whilst removing direct genotype-phenotype effects. This analysis 

produced associations between GRS and complex traits even in the absence of direct 

genetic effects on biology, suggesting GRS predict geographical location within the UK 

Biobank sample (online methods and table S1).  

 

The presence of structure within the genetic data of UK Biobank has several potential 

explanations, including a legacy of ancient ancestral groups that are not fully admixed6,27, a 

consequence of non-random mating or polygenic selection28-30, a study artefact induced by 

selection bias17 or a combination of all these explanations. Regardless of origin, 

unaddressed structure in this sample is sufficient to mean that predictions based on GRS 

are capable of inducing associations where there is little or no direct effect. Recent evidence 

from an investigation in the USA31 also illustrates associations between GRS and complex 

traits at the ecological level. Now manifest, this property should be added to the growing list 

of limitations to naïve use of GRS - including horizontal pleiotropy7, high false discovery 

rate32, association with coarse ancestral groups33 and prediction of inter-generational 

phenotypes which complicates interpretation34.  

 

The ability of very large studies to detect effects indistinguishable from artefactual biases or 

ancestral differences demands reworked approaches to exploit35, or at least account for, 

structure. Exciting recent developments aim to improve statistical models36 or leverage 

information from family-based study designs for unbiased inference37. Until such methods 

have developed further, the truth is that a thorough understanding of the properties of 

genotypic and phenotypic data and impact of study design will remain critical in allowing 

reasonable inference.  
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Figure Legends 

 

Figure 1: Within-UK ancestry predicts migration that confounds education: Estimated educational 

attainment of the UK, when seen only through the ALSPAC cohort based in Bristol. Scores are 1: 

Vocational, 2: CSEs, 3: O-levels, 4: A-levels, 5: degree. The predicted mean education for each region 

is given, along with 95% confidence intervals estimated by bootstrap resampling of individuals. Each 

region is coloured by predicted mean education. See online methods for details. 

 

Figure 2: Fitted spline regression plots showing the non-linear distribution of GRS for educational 

attainment (weighted version, including variants with p<1.0e-05) in minimally adjusted model (left) 

and model after adjustment for 40 principal components and study centre (right). The centre of 

major population centres is marked for reference. The shaded area represents 95% confidence 

intervals 
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Tables 

Table 1 – Relationship between GRS and birth location within UK Biobank. 

 P value for association between GRS and geographical term 

Weighted GRS Unweighted GRS 

 Model 1  Model 2  Model 3  Model 4 Model 1 Model 2 Model 3 Model 4 

 Educational attainment 

P
 (
 5
.0
e
-
0
8
)
 

North component 2e-16 <2e-16 6.4e-06 6.7e-06 <2e-16 <2e-16 1.3e-09 1.6e-06 

East component <2e-16 <2e-16 1.5e-09 6.0e-11 <2e-16 <2e-16 7.5e-14 1.3e-11 

 Height 

North component <2e-16 <2e-16 1.3e-05 0.14 <2e-16 <2e-16 4.6e-06 0.13 

East component <2e-16 <2e-16 0.00021 0.095 <2e-16 <2e-16 3.4e-05 0.046 

 Body mass index 

North component 9.7e-07 9.9e-07 0.063 0.40 0.0013 0.0012 0.0032 0.58 

East component 0.0036 0.0035 0.24 0.93 0.053 0.054 0.032 0.47 
  Educational attainment 

P
 
(
 1
.0
e
-
0
5
)
 

North component <2e-16 <2e-16 <2e-16 <2e-16 7.6e-11 8.5e-11 0.012 0.16 

East component <2e-16 <2e-16 <2e-16 <2e-16 9.7e-12 8.9e-12 0.0021 0.041 

 Height 

North component <2e-16 <2e-16 5.9e-05 0.16 <2e-16 <2e-16 0.00025 0.17 

East component <2e-16 <2e-16 0.00014 0.051 <2e-16 <2e-16 7.2e-05 0.014 

 Body mass index 

North component 2.4e-09 2.5e-09 0.023 0.019 2.4e-10 2.6e-10 0.0029 0.074 

East component 1.4e-13 1.7e-13 0.134 0.34 <2e-16 <2e-16 0.020 0.14 

 

Table contents – p value for non-linear association between component of birth location and genetic 

risk score. For all models n=321,439. Statistical adjustment was performed as follows: model 1 – no 

adjustment; model 2 – adjustment for genotyping array only; model 3 – adjustment for genotyping 

array, 10 PCs and study participation centre; model 4 – adjustment for genotyping array, 40 PCs and 

study participation centre. 
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Table 2  - Linear relationships between observed traits and genetic risk scores in UK Biobank. 

 

Observed trait (unit 

per 1SD increase in 

GRS) 

N Weighted GRS Unweighted GRS 

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 

 GRS for educational attainment 

Household income 

(£/year) 

276,

779 

1066 

(<2e-16) 

1062 

(<2e-16) 

874 

(<2e-16) 

835 

(<2e-16) 

1454 

(<2e-16) 

1446 

(<2e-16) 

1200 

(<2e-16) 

1140 

(<2e-16) 

Body mass index 

(kg/m
2
) 

336,

031 

-0.112 

(<2e-16) 

-0.111 

(<2e-16) 

-0.101 

(<2e-16) 

-0.097 

(<2e-16) 

-0.151 

(<2e-16) 

-0.150 

<2e-16 

-0.132 

(<2e-16) 

-0.129 

(<2e-16) 

Age at completion of 

full time education 

(years) 

228,

886 

0.0878 

(<2e-16) 

0.0877 

(< 2e-16) 

0.0844 

(< 2e-16) 

0.0831 

(< 2e-16) 

0.12 

(<2e-16) 

0.119 

(<2e-16) 

0.112 

(<2e-16) 

0.109 

(<2e-16) 

Number of siblings 

(persons) 

332,

037 

-0.0250 

(<2e-16) 

-0.0250 

(<2e-16) 

-0.0258 

(< 2e-16) 

-0.0253 

(< 2e-16) 

-0.038 

(<2e-16) 

-0.0382 

(<2e-16) 

-0.0293 

(<2e-16) 

-0.0279 

(<2e-16) 

 GRS for height 

Household income 276,

779 

522 

(<2e-16) 

515 

(<2e-16) 

418 

(1.8e-14) 

406 

(2.7e-13) 

515  

(<2e-16) 

509 

(<2e-16) 

419 

(1.7e-14) 

405 

(2.9e-13) 

Body mass index 336,

031 

-0.129 

(<2e-16) 

-0.128 

(<2e-16) 

-0.112 

(<2e-16) 

-0.116 

(<2e-16) 

-0.122 

(<2e-16) 

-0.121 

(<2e-16) 

-0.105 

(<2e-16) 

-0.109 

(<2e-16) 

Age at completion of 

full time education 

228,

886 

0.0350 

(9.4e-09) 

0.0348 

(1.1e-08) 

0.0289 

(2.0e-06) 

0.0263 

(2.0e-05) 

0.0349 

(1.1e-08) 

0.0347 

(1.2e-08) 

0.0286 

(2.6e-06) 

0.0265 

(1.8e-05) 

Number of siblings 332,

037 

-0.0249 

(<2e-16) 

-0.0248 

(< 2e-16) 

-0.0130 

(8.1e-06) 

-0.0119 

(7.2e-05) 

-0.0264 

(<2e-16) 

-0.0263 

(< 2e-16) 

-0.0136 

(3.0e-06) 

-0.0127 

(2.1e-05) 

 GRS for body mass index 

Household income 276,

779 

-335 

(1.8e-09) 

-325 

(5.2e-09) 

-251 

(4.0e-06) 

-229 

(3.4e-05) 

-304 

(4.7e-08) 

-294 

(1.3e-07) 

-212 

(0.00010) 

-190 

(0.0057) 

Body mass index 336,

031 

0.612 

(<2e-16) 

0.611 

(<2e-16) 

0.606  

(<2e-16) 

0.606 

(<2e-16) 

0.549 

(<2e-16) 

0.547 

(<2e-16) 

0.541 

(<2e-16) 

0.541 

(<2e-16) 

Age at completion of 

full time education 

228,

886 

-0.0219 

(0.00032) 

-0.0216 

(0.00040) 

-0.0201 

(0.00092) 

-0.0187 

(0.0025) 

-0.0231 

(0.00016) 

-0.0227 

(0.00020) 

-0.0201 

(0.00096) 

-0.0187 

(0.0024) 

Number of siblings 332,

037 

0.0107 

(0.00030) 

0.0105 

(0.00036) 

0.00783 

(0.0071) 

0.00750 

(0.011) 

0.00130 

(1.0e-05) 

0.00129 

(1.3e-05) 

0.00850 

(0.0035) 

0.00807 

(0.0068) 

 

GRS = genetic risk score; PC = principal component; SD = standard deviation. The field contents are 

beta coefficients per 1 SD increase in GRS, with p-values for the linear association, testing the null 

hypothesis of no linear association between each observed trait and GRS in brackets. Statistical 

adjustment was performed as follows: model 1 – no adjustment; model 2 – adjustment for 

genotyping array only; model 3 – adjustment for genotyping array, 40 PCs and study participation 

centre; model 4 – adjustment for genotyping array, 40 PCs, study participation centre and non-linear 

regression terms for North and East axes of birth location. 

 

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/294876doi: bioRxiv preprint 

https://doi.org/10.1101/294876
http://creativecommons.org/licenses/by/4.0/


15 

 

Figure 1 
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Figure 2 
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