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Meta-analysis of genetic association with diagnosed Alzheimer's disease identifies novel 

risk loci and implicates Abeta, Tau, immunity and lipid processing 
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Introduction 

Late-onset Alzheimer’s disease (LOAD, onset age > 60 years) is the most prevalent 

dementia in the elderly1, and risk is partially driven by genetics2.  Many of the loci 

responsible for this genetic risk were identified by genome-wide association studies 

(GWAS)3–8. To identify additional LOAD risk loci, the we performed the largest GWAS to 

date (89,769 individuals), analyzing both common and rare variants.  We confirm 20 

previous LOAD risk loci and identify four new genome-wide loci (IQCK, ACE, ADAM10, 

and ADAMTS1). Pathway analysis of these data implicates the immune system and lipid 

metabolism, and for the first time tau binding proteins and APP metabolism.  These 

findings show that genetic variants affecting APP and Aβ processing are not only 

associated with early-onset autosomal dominant AD but also with LOAD.  Analysis of AD 

risk genes and pathways show enrichment for rare variants (P = 1.32 x 10-7) indicating 

that additional rare variants remain to be identified. 

 

Main Text 

Our previous work identified 19 genome-wide significant common variant signals in addition to 

APOE9, that influence risk for LOAD.  These signals, combined with ‘subthreshold’ common 

variant associations, account for ~31% of the genetic variance of LOAD2, leaving the majority of 

genetic risk uncharacterized10. To search for additional signals, we conducted a GWAS meta-

analysis of non-Hispanic Whites (NHW) using a larger sample (17 new, 46 total datasets) from 

our group, the International Genomics of Alzheimer’s Project (IGAP) (composed of four AD 

consortia: ADGC, CHARGE, EADI, and GERAD).  This sample increases our previous 

discovery sample (Stage 1) by 29% for cases and 13% for controls (N=21,982 cases; 41,944 

controls) (Supplementary Table 1 and 2, and Supplementary Note). To sample both common 

and rare variants (minor allele frequency MAF ≥ 0.01, and MAF < 0.01, respectively), we 

imputed the discovery datasets using a 1000 Genomes reference panel consisting of 
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36,648,992 single-nucleotide variants, 1,380,736 insertions/deletions, and 13,805 structural 

variants. After quality control, 9,456,058 common variants and 2,024,574 rare variants were 

selected for analysis (a 63% increase from our previous common variant analysis in 2013). 

Genotype dosages were analyzed within each dataset, and then combined with meta-analysis 

(Supplementary Figures 1 and 2 and Supplementary Table 3). The Stage 1 discovery meta-

analysis was first followed by Stage 2 using the I-select chip we previously developed in 

Lambert et al (including 11,632 variants, N=18,845) and finally stage 3A (N=6,998). The final 

sample was 33,692 clinical AD cases and 56,077 controls. 

Meta-analysis of Stages 1 and 2 produced 21 associations with P ≤ 5x10-8 (Table 1 and 

Figure 1). Of these, 18 were previously reported as genome-wide significant and three of them 

are signals not initially described in Lambert et al: the rare R47H TREM2 coding variant 

previously reported by others11–13; ECDH3 (rs7920721) which was recently identified as a 

potential genome-wide significant AD risk locus in several studies23-25 and ACE (rs138190086). 

In addition, four signal showed suggestive association with a P-value<5.10-7 (respectively 

rs593742, rs830500, rsrs7295246 and rs7185636 for ADAM10, ADAMTS1, ADAMTS20, and 

IQCK). 

Stage 3A and meta-analysis of all three stages for these 6 variants (excluding the TREM2 

signal, see Supplementary Figure 1 for workflow) identified five genome-wide significant sites. 

In addition to ECDH3, this included four new genome-wide AD risk signals at IQCK, ADAMTS1, 

ACE and ADAM10 not previously described in other AD GWAS (Table 2 and Supplementary 

Figures 3-7). ACE and ADAM10 were previously reported as AD candidate genes14–18 that were 

not replicated in some subsequent studies19–21,17,22. We also extended the analyses of the two 

loci (NME8 and MEF2C) in stage 3 that were previously genome-wide significant in our 2013 

meta-analysis. These loci were not genome-wide significant in our current study and will 

deserve further investigations (NME8: P = 2.8x10-6; MEF2C: P = 2.8x10-7). Of note, GCTA-

COJO23 conditional analysis of the genome-wide loci indicates that TREM2 and three other loci 
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(BIN1, ABCA7, and PTK2B/CLU) have multiple independent LOAD association signals 

(Supplementary Table 5), suggesting that the genetic variance associated with some GWAS 

loci is probably under-estimated. 

We also selected 33 SNPs from stage 1 (28 common variants and 5 rare variants in loci 

not well captured in the I-select chip; see supplementary material and methods section for full 

selection criteria) for genotyping in stage 3B (including populations of stage 2 and stage 3A). 

We nominally replicated a rare variant (rs71618613) within an intergenic region near 

SUCLG2P4 (MAF = 0.01; P = 6.8x10-3; combined-P = 3.3x10-7) and a low-frequency variant in 

the TREM2 region (rs114812713, MAF=0.03, P = 1.4x10-2; combined-P = 4.2x10-13) in the gene 

OARD1 that may represent an independent signal according to our conditional analysis (Table 

2, Supplementary Figures 8-9, Supplementary Table 5 and 6). 

To evaluate the biological significance of the newly identified signals and those found 

previously, we pursued four strategies: expression-quantitative trait loci (eQTL) analyses, 

differential expression in AD versus control brains, gene cluster/pathway analyses, and 

expression in AD-relevant tissues24,25. For the 24 signals reported here, other evidence 

indicates that APOE26,27, ABCA728,29, BIN130, TREM211,12, SORL131,32, ADAM1033, SPI134, and 

CR135 are the true AD risk gene, though there is a possibility that multiple risk genes exist in 

these regions36.  Because many GWAS loci are intergenic, and the closest gene to the sentinel 

variant may not be the actual risk gene, in these analyses, we considered all genes within 

±500kb of the sentinel variant linkage disequilibrium (LD) regions (r2 ≥ 0.5) for each locus as a 

candidate AD gene (Supplementary Table 7). 

For eQTL analyses, we identified variants in LD with sentinel variants for each locus.  

For these variants, there were cis-acting eQTLs for 117 genes, with 92 eQTL-controlled genes 

in AD relevant tissues (Supplementary Tables 8-11). For our newly identified loci, the most 

significant eQTLs for the ADAM10 signal were for ADAM10 in blood (P = 1.21x10-13). For the 

IQCK signal, the top eQTL was for DEF8 in monocytes (P = 5.75x10-48).  For the ADAMTS1, 
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signal, the most significant eQTL was for ADAMTS1 in blood (P = 7.56x10-7). No eQTLs were 

found for the ACE locus. These results indicate that ADAM10, ADAMTS1, and DEF8 may be 

the genes responsible for the observed association signal.  For previously identified loci, there 

were eQTLs for BIN1 in monocytes (P = 3.46x10-67), PVRIG in blood at the NYAP1 locus (P = 

2.02x10-221), and SLC24A4 in monocytes (P = 1.27x10-34). 

To study the differential expression of genes in brains of AD patients versus controls, we 

used thirteen expression studies37. Of 469 protein coding genes within the genome-wide loci, 

we found 87 upregulated and 55 downregulated genes that were differentially expressed in the 

same direction in two or more studies. These include four genes at the ADAM10 locus 

(ADAM10 and SLTM, each upregulated in two studies; AQP9, downregulated in three studies; 

and LIPC, downregulated in two studies), three genes in the IQCK locus  (GPRC5B, CCP10, 

and GDE1 upregulated in 13, six and four studies, respectively), six genes in the ACE locus 

(MAP3K3, KCNH6 and FTSJ3, upregulated in seven, two and two studies respectively; and 

DDX42, PSMC5 and TANC2, downregulated in seven, five and three studies respectively), and 

three genes in the ADAMTS1 locus (ADAMTS1, CYYR1, and ADAMTS5, upregulated in ten, 

two and two studies respectively) (Supplementary Table 12). For previously described loci, 

differentially expressed genes included TFEB near TREM2, MS4A6A (upregulated in 10 

studies) at the chromosome 11 MS4A gene cluster, and FERMT2 (upregulated in 9 studies) on 

chromosome 14, among others. Brain RNA-seq data reveals many of these differentially 

expressed candidate genes are expressed in AD-relevant cell types (Supplementary Table 

12). 

We conducted pathway analyses (MAGMA38) using five gene set resources.  Analysis 

were conducted separately for common (MAF > 0.01) and rare variants (MAF < 0.01). For 

common variants, we detected four function clusters including: 1) APP metabolism/Aβ-formation 

(regulation of beta-amyloid formation: P = 4.56x10-7 and regulation of amyloid precursor protein 

catabolic process: P = 3.54x10-6), 2) tau protein binding (P = 3.19x10-5), 3) lipid metabolism 
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(four pathways including protein-lipid complex assembly: P = 1.45x10-7), and 4) immune 

response (P = 6.32x10-5) (Table 3 and Supplementary Table 13). Enrichment of the four 

pathways remains after removal of genes in the APOE region.  When APOE-region genes and 

genes in the vicinity of genome-wide significant genes are removed, tau shows moderate 

association (P = 0.027) and lipid metabolism and immune related pathways show strong 

associations (P < 0.001) (Supplementary Table 14).  Genes driving these enrichments (i.e. 

having a gene-wide P < 0.05) include SCNA, a Parkinson’s risk gene that encodes alpha-

synuclein, the main component of Lewy bodies, and may play a role in tauopathies39,40, for the 

tau pathway; apolipoprotein genes (APOM, APOA5) and ABCA1, a major regulator of cellular 

cholesterol, for the lipid metabolism pathways; and 52 immune pathway genes (Supplementary 

Table 15). While no pathways were significantly enriched for rare variants, lipid and Aβ-

pathways did have nominal significance in rare-variant-only analyses. Importantly, we also 

observe a highly significant correlation between common and rare pathway gene results (P = 

1.32x10-7), suggesting that risk AD genes and pathways are enriched for rare variants. In fact, 

50 different genes within tau, lipid, immunity and Aβ pathways show nominal association (P < 

0.05) with LOAD (Supplementary Table 15).  

To further explore the APP/Aβ-pathway enrichment we analyzed a comprehensive set of 

335 APP metabolism genes41 curated from the literature. We observed significant enrichment of 

this gene-set in common variants (P = 2.27x10-4; P = 3.19x10-4 excluding APOE), with both 

ADAM10 and ACE nominally significant drivers of this result (Table 4 and Supplementary 

Table 16 and 17). Several ‘sub-pathways’ were also significantly enriched in the common-

variants including ‘clearance and degradation of Aβ’ and ‘aggregation of Aβ’, along with its 

subcategory ‘microglia’, the latter supporting the recent hypothesis that microglia play a large 

role in AD42,43. Nominal enrichment for risk from rare variants was found for the pathway 

‘aggregation of Aβ: chaperone’ and 23 of the 335 genes.  
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To identify candidate genes for our novel loci, we combined results from eQTL, 

differential expression, AD-relevant tissue expression, and gene function/pathway analyses 

(Table 5). For our ADAM10 signal, of the 17 genes within this locus, only ADAM10 meets all our 

prioritization criteria. In addition, ADAM10, the most important α-secretase in the brain, is a 

component of the non-amyloidogenic pathway of APP metabolism44, and sheds TREM245, an 

innate immunity receptor expressed selectively in microglia. Over-expression of ADAM10 in 

mouse models can halt Aβ production and subsequent aggregation46.  Also two rare ADAM10 

mutations segregating with disease in LOAD families increased Aβ plaque load in “Alzheimer-

like” mice, with diminished α-secretase activity from the mutations likely the causal 

mechanism15,33.  For the IQCK signal three of the 12 genes at the locus are potential candidate 

genes: IQCK, DEF8, and GPRC5B. The latter is a regulator of neurogenesis47,48 and 

inflammatory signalling in obesity49. Of the 23 genes in the ACE locus, two meet three of the 

four prioritization criteria, PSMC5, a major regulator of major histocompatibility complex50,51, and 

CD79B, a B lymphocyte antigen receptor sub-unit. Candidate gene studies previously associate 

ACE variants with AD risk16,52,18, including a strong association in the Wadi Ara, an Israeli Arab 

community with high risk of AD17. However, these studies yielded inconsistent results19, and our 

work is the first to report a clear genome-wide association in NHW at this locus. While our 

analyses did not prioritize ACE, it should not be rejected as a candidate gene, as its expression 

in AD brain tissue is associated with Aβ load and AD severity53. Furthermore, CSF levels of the 

angiotensin-converting enzyme (ACE) are associated with Aβ levels54 and LOAD risk55, and 

studies show ACE can inhibit Aβ toxicity and aggregation56. Finally, angiotensin II, a product of 

ACE function mediates a number of neuropathological processes in AD57 and is now a target for 

intervention in phase II clinical trials of AD58. Another novel genome-wide locus reported here 

ADAMTS1, is within 665 kb of APP on chromosome 21.  Of four genes at this locus (ADAMTS1, 

ADAMTS5, CYYR1, CYYR1-AS1) , our analyses nominates ADAMTS1, as the likely risk gene, 

though we cannot rule out that this signal is a regulatory element for APP. ADAMTS1 is 
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elevated in Down Syndrome with neurodegeneration and AD59 and is a potential neuroprotective 

gene60,61,62, or a neuroinflammatory gene important to microglial response63.  

For previously reported loci, named for the closest gene, applying the same approach for 

prioritization highlights several genes as described in Table 5. It is also interesting to keep in 

mind that systematic biological screening have also highlighted some of these genes as 

involved in the APP metabolism (FERMT2) or Tau toxicity (BIN1, CD2AP, FERMT2, CASS4, 

EPHA1, PTK2B)64–66. Pathway, tissue and disease traits enrichment analysis supports the utility 

of our prioritization method, as the 68 prioritized genes are: 1) enriched in substantially more AD 

relevant pathways and processes, 2) enriched in candidate AD cells such as monocytes 

(adjusted-P = 1.75x10-6) and macrophages (adjusted-P = 6.46x10-3), and 3) increased in 

associations of dementia-related traits (Supplementary Table 18 and 19).   

Our work identifies four new genome-wide associations for LOAD and shows that GWAS 

data combined with high-quality imputation panels can reveal rare disease risk variants (i.e. 

TREM2). The enrichment of rare-variants in pathways associated with AD indicates that 

additional rare-variants remain to be identified, and larger samples and better imputation panels 

will facilitate identifying these rare variants. While these rare-variants may not contribute 

substantially to the predictive value of genetic findings, it will add to the understanding of 

disease mechanisms and potential drug targets. Discovery of the risk genes at genome-wide 

loci remains challenging, but we demonstrate that converging evidence from existing and new 

analyses can prioritize risk genes. We also show that APP metabolism is not only associated 

with early-onset but also late-onset AD, suggesting that therapies developed by studying early-

onset families could also be applicable to the more common late-onset form of the disease.  

Finally, our analysis showing tau is involved in late-onset AD supports recent evidence that tau 

may play an early pathological role in AD67–69, and confirms that therapies targeting tangle 

formation/degradation could potentially affect late-onset AD. 
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Meta-analysis of genetic association with diagnosed Alzheimer's disease identifies novel 

risk loci and implicates Abeta, Tau, immunity and lipid processing - Methods 

  

Samples. All stage I meta-analysis samples are from four Consortia: the Alzheimer’s Disease 

Genetics Consortium (ADGC), the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Consortium, the European Alzheimer’s Disease Initiative (EADI), and 

the Genetic and Environmental Risk in Alzheimer’s Disease (GERAD) Consortium.  Summary 

demographics of all 37 case-control studies from the four consortia are described in Table 1 and 

Supplementary Tables 1 and 2. Written informed consent was obtained from study participants 

or, for those with substantial cognitive impairment, from a caregiver, legal guardian or other proxy. 

Study protocols for all cohorts were reviewed and approved by the appropriate institutional review 

boards. Further details of all cohorts can be found in the Supplementary Note. 

Pre-imputation genotype chip quality control. Standard quality control (QC) was performed 

on all datasets individually, including exclusion of individuals with low call rate (<90%), individuals 

with a high degree of relatedness (pi_hat > 0.98) and variants with low call rate (<95%). Individuals 

with non-European ancestry according to principal components (PCs) analysis of ancestry 

informative markers were excluded from the further analysis. 

Imputation and pre-analysis quality control. Following genotype chip QC, each dataset was 

phased and imputed with data to the 1000 Genomes Project (phase 1 integrated release 3, March 

2012)1 using SHAPEIT/IMPUTE22,3 or MaCH/Minimac4,5 software (Supplementary Table 3). All 

reference population haplotypes were used for the imputation as this method improves accuracy 

of imputation for low-frequency variants6. Common variants (MAF ≥ 0.01%) with an r2 < 0.30 from 

MaCH or an information measure < 0.40 from IMPUTE2 were excluded from further analyses. 

Rare variants (MAF < 0.01%) with a ‘global’ weighted imputation quality score of < 0.70 were also 

excluded from analyses. This score was calculated by weighting each variants MACH/IMPUTE2 

imputation quality score by study sample size and combining these weighted scores for use as a 

post-analysis filter. We also required the presence of each variant in 30% of AD cases and 30% 

of controls across all datasets. 

Association Analysis. The Stage 1 discovery meta-analysis was followed by Stage 2, and Stage 

3 (A and B) replication analyses. Stage 2 was data from a custom array with 11,632 assays 

selected as variants with P < 10-3 from our 2013 work7. Genotypes were determined for 8,362 

cases and 10,484 controls (Supplementary Table 20).  Stage 3A was conducted for variants 
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selected as novel loci from meta-analyses of Stages 1 and 2 with P < 5 x 10-7 (6 variants) and 

variants that were previously significant (P < 5 x 10-8) that were not genome-wide significant after 

Stages 1 and 2 (2 variants) (3,348 cases and 3,650 controls) (Supplementary Table 21).  Stage 

3B, which combined samples from Stage 2 and 3A, was conducted for variants with MAF < 0.05 

and P < 1 x 10-5 or variants with MAF ≥ 0.05 and P < 5 x 10-6 from genome regions not covered 

on the Stage 2 custom array (11,710 cases and 14,133 controls) (Supplementary Table 6). For 

Stages 1, 2, and 3, samples did not overlap.  

Stage 1 single variant-based association analysis was conducted on genotype dosages 

modeling for an additive genotype model and adjusting for age (defined as age-at-onset for cases 

and age-at-last exam for controls), sex and population substructure using PCs8.  The score test 

was implemented on all case-control datasets. This test was shown to be optimal for meta-

analysis of rare variants due to its balance between power and control of type 1 error9. Family 

datasets were tested using the R package GWAF10, with generalized estimating equations (GEE) 

implemented for common variants (MAF ≥ 0.01), and a general linear mixed effects model 

(GLMM) implemented for rare variants (MAF < 0.01), per internal data showing behavior of test 

statistics for GEE was fine for common variants but inflated for rare variants, while GLMM 

controlled this rare variant inflation. Variants with regression coefficient |β| > 5 or P value equal to 

0 or 1 were excluded from further analysis.  

Within-study results for Stage 1 were meta-analyzed in METAL11 using an inverse-

variance based model with genomic control. The meta-analysis was split into two separate 

analyses based on the study sample size, with all studies being included in the analysis of 

common variants (MAF ≥ 0.01), and only studies with a total sample size of 400 or greater being 

included in the rare variant (MAF < 0.01) analysis. We also conducted a second meta-analysis in 

METAL using a sample-size weighted meta-analysis model. Results of this model were compared 

to the inverse-variance weighted meta-analysis, and results that differed by more than 3 logs on 

both P-values were removed from further analysis. Regression coefficients for rare variants can 

at times be unstable12, and this step attempted to control for these problematic variants by using 

a second method of meta-analysis that may be less sensitive to certain properties of rare variant 

analysis. In total, 11 variants were removed through this comparison, and most results showed 

very little difference in P-values between the two methods. An additional 106 variants with high 

heterogeneity between studies (defined as I2 > 75) were removed. Figures for association signals 

were generated with LocusZoom software13. Genome-wide summary statistics are available from 

The National Institute on Aging Genetics of Alzheimer’s Disease (NIAGADS) website 

(https://www.niagads.org/). These analyses were conducted by two independent consortia 
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(ADGC and EADI) and then cross-validated. Analyses for Stage 2 and Stage 3 followed these 

same analysis procedures, except covariate adjustments per cohort, where all analyses were 

adjusted on sex and age apart from Italian and Swedish cohorts, which were also adjusted for 

PCs. 

GCTA14 was used to conduct conditional analysis using 37,635 individuals from the ADGC 

as a reference panel for calculation of linkage disequilibrium (LD). LDLink15 was used to conduct 

LD, using all 5 CEU populations as the reference for calculations. 

Stage 2 and 3 Genotyping and Quality Control. Datasets for Stage 2 analysis were obtained 

from previous genotyping from Lambert et al. 20137 of 11,632 single nucleotide variants 

genotyped using Illumina iSelect technology. Eight variants from Stage 3A were genotyped using 

Taqman technology. Stage 3B included 23 variants included as part of Sequenom MassArray 

iPLEX panels and 10 additional variants genotyped using Taqman technology. 

 Per sample quality checks for genetic sex and relatedness were performed in PLINK. 

Individuals not matching their reported sex or showing a high degree of relatedness (IBD value of 

0.98 or greater) were removed from the analysis. A panel of ancestry-informative markers (AIMs), 

was used to perform PCA analysis with SMARTPCA from EIGENSOFT 4.2 software16, and 

individuals with non-European ancestry were excluded. Variant quality control was also performed 

separately in each country including removal of variants missing in more than 10% of individuals, 

having a Hardy-Weinberg P value in controls lower than 1 x 10-6, or a P value for missingness 

between cases and controls lower than 1 x 10-6. Please see Lambert et al. for a more detailed 

description of the QC procedures followed in Stage 2 analysis. After quality control, 18,845 

individuals (8,362 cases and 10,483 controls) were available for the stage 2 analysis. The same 

quality control measures were applied to data for the Stage 3 variants attained from follow-up 

genotyping. 

Selection of variants for 3B follow-up genotyping. In order to prioritize variants for genotyping 

in Stage 3B, we first selected all MAF < 0.05 variants with P < 1 x 10-5 or MAF ≥ 0.05 variants 

with P < 5 x 10-6 in novel loci not covered in the iSelect genotyping from Stage 2 of Lambert et 

al.7 A total of 180 variants were considered for follow up due to meeting the P-value criteria and 

not being in an IGAP 2013 locus. 88 of these variants were in a region covered in the replication 

genotyping chip from 2013 and thus were removed from further consideration. 33 loci remained 

after their removal, with 19 loci having only one prioritized variant, which we selected for 

genotyping. Remaining variants in 14 regions with multiple prioritized variants were then 
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annotated with GWAVA17 and CADD18 scores (using ANNOVAR19), Ensembl Variant Effect 

Predictor (VEP) Consequences (using Ensembl VEP20), GWAS3D21, RegulomeDB22, and 

FANTOM523 (using NIAGADS GenomicsDB) in order to rank their functional potential. A CADD 

score > 10, GWAVA score > 0.5, FATHHM > 0.5, RegulomeDB score < 5 and GWAS3D top p-

value score were considered ‘functional’ in the ranking. The top ranked variant for functional 

potential for each locus with multiple variants was selected for further genotyping and analysis. 

Removal of 59 variants in regions with multiple variants left 33 total variants for follow-up 

genotyping. 

Characterization of gene(s) and non-coding features in associated loci. We determined the 

basepair (bp) boundaries of the search space for potential gene(s) and non-coding features in 

each of the 24 associated loci (excluding APOE) using the ‘proxy search’ mechanism in LDLink15. 

LDLink uses 1000 genomes genotypes to calculate LD for a selected population; in our case all 

five European population were selected (CEU, TSI, FIN, GBR, and IBS). The boundaries for all 

variants in LD (r2 ≥ 0.5) with the top associated variant from the stage 2 meta-analysis for each 

region  ±500kb of the ends of the LD blocks (as expression quantitative trait loci (eQTL) controlled 

genes are typically less than 500kb from their controlling variant24) were input into the UCSC 

genome browser’s ‘Table Browser’ for RefSeq25 and GENCODEv2426 genes at each associated 

locus. 

Human brain gene expression and eQTL analysis. To identify potential functional risk gene(s) 

at each associated locus we first identified variants with suggestive significance (P>10-5) in LD (r2 

≥ 0.5) and within 500kb of the sentinel variants for the 23 associated loci (excluding APOE) 

(N=3,576 variants). We then identified functionally interesting variants in this set of variants using 

ReguomeDB22, HaploReg v4.127,28, GWAS3D21. Variants with a RegulomeDB score ≥ 2 (N=160), 

in high LD (r2 > 0.8) and with evidence of at least one cis-eQTL in any tissue via HaploReg 

(N=3,407), or with a P ≥ 5 x 10-8 in GWAS3D (N=1,120) were selected. We then searched for 

genes functionally linked via eQTLs in blood (including all immune-related cell types) and brain 

tissue types using this expanded list of variants (N=3,470). eQTL databases searched included 

BRAINEAC29, SCANdb30, the NESDA NTR Conditional eQTL Catalog31, GTEx32, exSNP33 and 

Zou et al.34. Additional eQTL analysis was conducted with INFERNO35, where 44 GTEx tissues 

were searched, with prioritization on the INFERNO tissue classes of brain, blood, and connective 

tissue (including fibroblasts). INFERNO analyses identified 1,338 unique variants in LD (r2 ≥ 0.7) 

with the sentinel variants, 1,087 of which are eQTLs (Supplementary Table 10).  
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We also evaluated gene expression of all candidate genes in the associated loci, defined 

as all genes within ±500kb of the sentinel variant linkage disequilibrium (LD) regions (r2 ≥ 0.5) 

(see Supplementary Table 7 for a complete list of genes searched), using gene expression data 

from AlzBase36 and the Barres Human and Mouse Brain RNA-Seq Resource37,38. AlzBase 

includes transcription data from brain and blood from aging, non-dementia, mild cognitive 

impairment, early stage AD and late stage AD. Please see ALZBase 

(http://alz.big.ac.cn/alzBase/Document) for a complete list of studies included in the search. 

Genes differentially expressed in the same direction in two or more studies of AD are highlighted 

in Supplementary Table 12. 

Pathway Analysis. Pathway analyses were performed with MAGMA39, which performs SNP-wise 

gene analysis of summary statistics with correction for LD between variants and genes to test 

whether sets of genes are jointly associated with a phenotype (i.e. LOAD), compared to other 

genes across the genome  Adaptive permutation was used to produce an empirical p-value and 

an FDR-corrected q-value. Gene-sets used in the analyses were from GO40,41, KEGG42,43, 

REACTOME44,45, BIOCARTA, and MGI46 pathways. Analyses were restricted to gene sets 

containing between 10 and 500 genes, a total of 10,861 sets. Variants were restricted to common 

variants (MAF≥0.01) and rare variants (MAF<0.01) only for each analysis, and separate analyses 

for each model included and excluded the APOE region (Chr19:45,116.911-46,318,605). 

Analyses were also perf12ormed after removal of all genome-wide significant genes. Primary 

analyses used a 35-kb upstream/10-kb downstream window around each gene in order to 

potential regulatory variants for each gene, while secondary analyses was run using a 0-kb 

window47. To test for significant correlation between common and rare variant gene results we 

performed a gene property analysis in MAGMA, regressing the gene-wide association statistics 

from rare variants on the corresponding statistics from common variants, correcting for LD 

between variants and genes using the ADGC reference panel. The Aβ-centered network pathway 

analysis used a curated list of Aβ processing related genes from Campion et al.48 Thirty-two Aβ–

related gene sets and all 335 genes combined (see Campion et al.48 for details) were run in 

MAGMA pathway analysis on both common (MAF ≥ 0.01) and rare (MAF < 0.01) variant summary 

results. The combined dataset of 37,635 individuals from the ADGC were used as a reference set 

for LD calculations in these analyses.  

Validation of prioritization method. Evaluation of the prioritization of the risk genes in genome-

wide loci was done using STRINGdb49, Jensen Diseases50, Jensen Tissues51, and the ARCHS452 

resource via the EnrichR53 tool. We evaluated both the 469 genes set list and the prioritized 68 
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genes set list (adding in APOE to both lists) using the standard settings for both STRINGdb and 

EnrichR. 

Data Availability 
Stage 1 data (individual level) for the GERAD cohort can be accessed by applying directly to 

Cardiff University. Stage 1 ADGC data are deposited in a NIAGADS- and NIA/NIH-sanctioned 

qualified-access data repository. Stage 1 CHARGE data are accessible by applying to dbGaP 

for all US cohorts and to Erasmus University for Rotterdam data. AGES primary data are not 

available owing to Icelandic laws. Genome-wide summary statistics for the Stage 1 discovery 

are available from The National Institute on Aging Genetics of Alzheimer’s Disease (NIAGADS) 

website (https://www.niagads.org/). Stage 2 and stage 3 primary data are available upon 

request.  
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Meta-analysis of genetic association with diagnosed Alzheimer's disease identifies novel risk loci and implicates Abeta, Tau, immunity 

and lipid processing - Figures 

Figure 1. Manhattan plot of meta-analysis of Stage 1, 2 and 3 results for genome-wide association with Alzheimer’s disease. The threshold for genome-wide 
significance (P < 5 x 10-8) is indicated by the red line, while the blue line represents the suggestive threshold (P < 1 x 10-5). Loci previously identified by the 
Lambert et al. 2013 IGAP GWAS are shown in green, and newly associated loci are shown in red. Diamonds represent variants with the smallest P values for each 
genome-wide locus. 
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Meta-analysis of genetic association with diagnosed Alzheimer's disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing - Tables 
 
Table 1. Summary of discovery stage 1, stage 2 and overall meta-analyses results for identified loci reaching genome-wide significance after stages 1 and 2. 

aVariants showing the best level of association after meta-analysis of stages 1 and 2.  
bBuild 37, assembly hg19.  
cBased on position of top SNP in reference to the refSeq assembly  
dAverage in the discovery sample.  
eCalculated with respect to the minor allele.  
fCochran’s Q test  
gPreviously the ZCWPW1 locus.  
hPreviously the CELF1 locus. 
 
 
 

      
Stage 1 Discovery (n=63,926) Stage 2 (n=18,845) Overall Stages 1 + Stage 2 (n=82,771) 

SNPa Chr. Positionb 
Closest 
genec 

Major/ 
minor alleles 

MAFd OR (95% CI)e 
Meta P 
value 

OR (95% CI)e Meta P value OR (95% CI)e Meta P value 
I2 (%), 

P valuef 

Previous genome-wide significant loci still reaching significance  
rs4844610 1 207802552 CR1 C/A 0.187 1.16 (1.12-1.20) 8.2 x 10-16 1.20 (1.13-1.27) 3.8 x 10-10 1.17 (1.13-1.21) 3.6 x 10-24 0, 8 x 10-1 

rs6733839 2 127892810 BIN1 C/T 0.407 1.18 (1.15-1.22) 4.0 x 10-28 1.23 (1.18-1.29) 2.0 x 10-18 1.20 (1.17-1.23) 2.1 x 10-44 15, 2 x 10-1 

rs10933431 2 233981912 INPP5D C/G 0.223 0.90 (0.87-0.94) 2.6 x 10-7 0.92 (0.87-0.97) 3.2 x 10-3 0.91 (0.88-0.94) 3.4 x 10-9 0, 8 x 10-1 

rs78738018 6 32575406 HLA-DQB1 T/A 0.270 1.10 (1.06-1.14) 5.1 x 10-8 1.11 (1.06-1.17) 5.7 x 10-5 1.10 (1.07-1.13) 1.4 x 10-11 10, 3 x 10-1 

rs75932628 6 41129252 TREM2 C/T 0.008 2.01 (1.65-2.44) 2.9 x 10-12 2.50 (1.56-4.00) 1.5 x 10-4 2.08 (1.73-2.49) 2.7 x 10-15 0, 6 x 10-1 

rs9473117 6 47431284 CD2AP A/C 0.280 1.09 (1.05-1.12) 2.3 x 10-7 1.11 (1.05-1.16) 1.0 x 10-4 1.09 (1.06-1.12) 1.2 x 10-10 0, 6 x 10-1 

rs12539172 7 100091795 NYAP1g C/T 0.303 0.93 (0.91-0.96) 2.1 x 10-5 0.89 (0.84-0.93) 2.1 x 10-6 0.92 (0.90-0.95) 9.3 x 10-10 0, 8 x 10-1 

rs11762262 7 143107876 EPHA1 C/A 0.199 0.90 (0.87-0.94) 3.1 x 10-8 0.91 (0.86-0.96) 1.1 x 10-3 0.90 (0.88-0.93) 1.3 x 10-10 0, 5 x 10-1 

rs73223431 8 27219987 PTK2B C/T 0.367 1.10 (1.07-1.13) 8.3 x 10-10 1.11 (1.06-1.16) 1.5 x 10-5 1.10 (1.07-1.13) 6.3 x 10-14 0, 6 x 10-1 

rs9331896 8 27467686 CLU T/C 0.387 0.88 (0.85-0.91) 3.6 x 10-16 0.87 (0.83-0.91) 1.7 x 10-9 0.88 (0.85-0.90) 4.6 x 10-24 3, 4 x 10-1 

rs3740688 11 47380340 SPI1h T/G 0.448 0.91 (0.89-0.94) 9.7 x 10-11 0.93 (0.88-0.97) 1.2 x 10-3 0.92 (0.89-0.94) 5.4 x 10-13 4, 4 x 10-1 

rs7933202 11 59936926 MS4A2 A/C 0.391 0.89 (0.86-0.92) 2.2 x 10-15 0.90 (0.86-0.95) 1.6 x 10-5 0.89 (0.87-0.92) 1.9 x 10-19 27, 5 x 10-2 

rs3851179 11 85868640 PICALM C/T 0.356 0.89 (0.86-0.91) 5.8 x 10-16 0.85 (0.81-0.89) 6.1 x 10-11 0.88 (0.86-0.90) 6.0 x 10-25 0, 8 x 10-1 

rs11218343 11 121435587 SORL1 T/C 0.040 0.81 (0.76-0.88) 2.7 x 10-8 0.77 (0.68-0.87) 1.8 x 10-5 0.80 (0.75-0.85) 2.9 x 10-12 7, 3 x 10-1 

rs17125924 14 53391680 FERMT2 A/G 0.093 1.13 (1.08-1.19) 6.6 x 10-7 1.15 (1.06-1.25) 5.0 x 10-4 1.14 (1.09-1.18) 1.4 x 10-9 8, 3 x 10-1 

rs12881735 14 92932828 SLC24A4 T/C 0.221 0.92 (0.88-0.95) 4.9 x 10-7 0.92 (0.87-0.97) 4.3 x 10-3 0.92 (0.89-0.94) 7.4x 10-9 0, 6 x 10-1 

rs3752246 19 1056492 ABCA7 C/G 0.182 1.13 (1.09-1.18) 6.6 x 10-10 1.18 (1.11-1.25) 4.7 x 10-8 1.15 (1.11-1.18) 3.1 x 10-16 0, 5 x 10-1 

rs429358 19 45411941 APOE T/C 0.216 0.30 (0.28-0.31) 1.2 x 10-881 APOE region not carried forward to replication stage 
rs6024870 20 54997568 CASS4 G/A 0.088 0.88 (0.84-0.93) 1.1 x 10-6 0.90 (0.82-0.97) 9.0 x 10-3 0.88 (0.85-0.92) 3.5 x 10-8 0, 9 x 10-1 

New genome-wide significant loci reaching significance  
rs138190086 7 61538148 ACE G/A 0.02 1.29 (1.15-1.44) 7.4 x 10-6 1.41 (1.18-1.69) 1.8 x 10-4 1.32 (1.20-1.45) 7.5 x 10-9 0, 9 x 10-1 

rs7920721 10 11720308 ECDH3 A/G 0.389 1.08 (1.05-1.11) 1.9 x 10-7 1.07 (1.02-1.12) 3.2 x 10-3 1.08 (1.05-1.11) 2.3 x 10-9 0, 8 x 10-1 

Previous genome-wide significant loci not reaching significance  
rs190982 5 88223420 MEF2C A/G 0.390 0.95 (0.92-0.97) 2.8 x 10-4 0.93 (0.89-0.98) 2.7 x 10-3 0.94 (0.92-0.97) 2.8 x 10-6 0, 6 x 10-1 

rs4723711 7 37844263 NME8 A/T 0.356 0.95 (0.92-0.98) 2.7 x 10-4 0.91 (0.87-0.95) 9.5 x 10-5 0.94 (0.91-0.96) 2.8 x 10-7 0, 5 x 10-1 
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Table 2. Summary of discovery Stage 1, Stage 2, Stage 3 (A and B), and overall meta-analyses results for potential novel loci 
reaching P <5.10-7. 

      Stage 1 Discovery (n=63,926) Stage 2 (n=18,845) Stage 3A (n=6,998) Overall (n=89,769) 

SNPa Chr. Positionb 
Closest 
genec 

Major/Minor 
allele 

MAFd OR (95% CI)e Meta P OR (95% CI)e Meta P OR (95% CI)e Meta P OR (95% CI)e Meta P 

rs7920721f 10 11720308 ECHDC3 A/G 0.389 1.08 (1.05-1.11) 1.9 x 10-7 1.07 (1.02-1.12) 3.2 x 10-3 1.13 (1.06-1.22) 5.9 x 10-4 1.08 (1.06-1.11) 1.2 x 10-11 
rs593742 15 59045774 ADAM10 A/G 0.295 0.94 (0.91-0.97) 3.0 x 10-5 0.92 (0.87-0.97) 8.8 x 10-4 0.91 (0.84-0.99) 2.5 x 10-2 0.93 (0.91-0.95) 1.1 x 10-8 

rs7185636 16 19808163 IQCK T/C 0.18 0.92 (0.89-0.96) 2.5 x 10-5 0.90 (0.85-0.95) 7.6 x 10-4 0.93 (0.85-1.01) 9.6 x 10-2 0.92 (0.89-0.95) 2.0 x 10-8 
rs138190086 17 61538148 ACE G/A 0.02 1.29 (1.15-1.44) 7.4 x 10-6 1.41 (1.18-1.69) 1.8 x 10-4 1.18 (0.90-1.55) 2.4 x 10-1 1.31 (1.19-1.43) 5.0 x 10-9 

rs2830500 21 28156856 ADAMTS1 C/A 0.308 0.92 (0.89-0.95) 2.5 x 10-7 0.95 (0.91-1.00) 5.7 x 10-2 0.95 (0.88-1.02) 1.7 x 10-1 0.93 (0.91-0.96) 3.2 x 10-8 
              

rs190982 5 88223420 MEF2C A/G 0.390 0.95 (0.92-0.97) 2.8 x 10-4 0.93 (0.89-0.98) 2.7 x 10-3 0.92 (0.86-0.99) 2.4 x 10-2 0.94 (0.92-0.96) 2.4x10-7 
rs4723711 7 37844263 NME8 A/T 0.356 0.95 (0.92-0.98) 2.7 x 10-4 0.91 (0.87-0.95) 9.5 x 10-5 0.96 (0.90-1.03) 3.0 x 10-1 0.94 (0.92-0.96) 2.0 x 10-7 

      Stage 1 Discovery (n=63,926)  Stage 3B (n=25,843) Overall (n=89,769) 

SNPa Chr. Positionb 
Closest 
genec 

Major/Minor 
allele 

MAFd OR (95% CI)e Meta P   OR (95% CI)e Meta P OR (95% CI)e Meta P 

rs71618613 5 29005878 SUCLG2P4 A/C 0.01 0.68 (0.57-0.80) 9.8 x 10-6 - - 0.76 (0.63-0.93) 6.8 x 10-3 0.71 (0.63-0.81) 3.3 x 10-7 
aSNPs showing the best level of association after meta-analysis of stages 1, 2 and 3.  
bBuild 37, assembly hg19.  
cBased on position of top SNP in reference to the refSeq assembly  
dAverage in the discovery sample.  
eCalculated with respect to the minor allele.  
fRecently identified as a LOAD locus in two separate 2017 studies 
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Table 3. Significant pathways (q-value≤0.05) from MAGMA pathway analysis for common SNV and rare SNV subsets.  

Pathway 
N genes in 
pathway in 

dataset 

Common 
SNVs P* 

Common SNVs 
q-value 

Rare SNVs 
P* 

Rare SNVs 
q-value 

Pathway description 

GO:65005 20 1.45E-07* 9.53E-04 6.76E-02 8.42E-01 protein-lipid complex assembly 
GO:1902003 10 4.56E-07* 1.49E-03 4.94E-02 8.42E-01 regulation of beta-amyloid formation 

GO:32994 39 1.16E-06* 2.54E-03 1.78E-02 8.17E-01 protein-lipid complex 
GO:1902991 12 3.54E-06* 5.80E-03 5.66E-02 8.42E-01 regulation of amyloid precursor protein catabolic process 

GO:43691 17 5.55E-06* 6.75E-03 3.08E-02 8.17E-01 reverse cholesterol transport 
GO:71825 35 6.18E-06* 6.75E-03 1.27E-01 8.42E-01 protein-lipid complex subunit organization 
GO:34377 18 1.64E-05* 1.53E-02 1.82E-01 8.42E-01 plasma lipoprotein particle assembly 
GO:48156 10 3.19E-05* 2.61E-02 7.77E-01 8.54E-01 tau protein binding 
GO:2253 382 6.32E-05* 4.60E-02 2.09E-01 8.42E-01 activation of immune response 

*Significant after FDR-correction (q-value≤0.05) 
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Table 4. Top results of pathway analysis of Aβ-beta centered biological network from Campion et al (see Supplementary Table 12 for full results). 

Category Subcategory N Genes 
Common SNVs P 

0kb 
Common SNVs P 35kb-

10kb 
Rare SNVs P 

0kb 
Rare SNVs P 
35kb-10kb 

Aβ -centered biological network (all genes) -- 331 2.27E-04* 1.54E-04* 8.26E-01 5.19E-01 

Clearance and degradation of Aβ -- 74 2.18E-04* 3.27E-03 3.13E-01 5.11E-01 

Clearance and degradation of Aβ Microglia 47 2.24E-04* 1.83E-02 2.49E-01 6.87E-01 

Aggregation of Aβ -- 35 7.09E-04* 9.93E-03 9.02E-02 1.68E-01 

Aggregation of Aβ Miscellaneous 21 1.08E-03* 3.38E-02 9.53E-02 1.90E-01 

APP processing and trafficking Clathrin/caveolin-dependent endocytosis 10 1.19E-03 1.15E-02 3.64E-01 1.84E-01 

Mediator of Aβ toxicity -- 51 3.82E-02 4.69E-02 5.89E-01 5.70E-01 

Mediator of Aβ toxicity Calcium homeostasis 6 6.90E-02 1.21E-01 3.96E-01 2.54E-01 

Mediator of Aβ toxicity Miscellaneous 3 7.61E-02 2.35E-02 9.79E-01 7.61E-01 

Clearance and degradation of Aβ Enzymatic degradation of Aβ 15 7.77E-02 2.63E-02 6.10E-01 2.95E-01 

Mediator of Aβ toxicity Tau toxicity 20 9.03E-02 3.48E-01 7.17E-01 6.85E-01 

Aggregation of Aβ Chaperone 9 1.52E-01 3.09E-01 1.98E-01 1.13E-02 
*Significant after Bonferroni correction for 33 pathway sets tested
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Table 5. Top prioritized genes in significant loci based on biological evidence. Genes meeting at least 3 of 4 criteria in each locus 
are listed. The criteria include: 1) differential expression in at least one Alzheimer disease (AD) study, 2) expression in a tissue 
relevant to AD (astrocytes, neurons, microglia/macrophages, oligodendrocytes), 3) having an eQTL effect on the gene in any tissue, 
or having an eQTL on the gene in AD relevant tissue, and 4) being involved in a biological pathway enriched in AD (from the current 
study). Novel genome-wide loci from the current study are listed first, followed by known genome-wide loci.  

Novel genome-wide loci 

Locus 
Number of 

genes in locus 
Gene 

Differential 
expression in AD 

Expression in AD 
relevant tissue 

eQTL in any 
tissue 

eQTL in AD 
relevant tissue 

In enriched 
pathway 

ADAM10 17 ADAM10      

IQCK 12 

GPRC5B      

IQCK      

DEF8      

ACE 23 
PSMC5      

CD79B      

ADAMTS1 4 ADAMTS1      

Known genome-wide loci 

Locus 
Number of 

genes in locus 
Gene 

Differential 
expression in AD 

Expression in AD 
relevant tissue 

eQTL in any 
tissue 

eQTL in AD 
relevant tissue 

In enriched 
pathway 

CR1 13 
CD55      

CR1      

BIN1 10 BIN1      

INPP5D 14 INPP5D      

HLA-DQB1 59 

HLA-DPA1      

HLA-DRA      

C4A      

TNXB      

PSMB9      

HLA-DRB6      

HLA-DRB1      

HLA-DRB5      

HLA-DQB1      

AGPAT1      

AGER      

HLA-DQA1      

C2      

BRD2      

HLA-DQB2      

MICB      

TREM2 26 TREM2      

CD2AP 8 CD2AP      

NYAP1 60 

GAL3ST4      

EPHB4      

PILRB      

NYAP1      

AGFG2      

PILRA      

GATS      

EPHA1 27 No gene meets 3 of the 4 criteria; 4 genes meet 2 of the 4 criteria 

PTK2B 12 

PTK2B      

CLU      

SCARA3      

CLU 16 CLU      

ECHDC3 10 No gene meets 3 of the 4 criteria; 6 genes meet 2 of the 4 criteria 

SPI1 25 

PSMC3      

MTCH2      

MADD      

NUP160      

PTPMT1      

CELF1      

RAPSN      

NR1H3      

MS4A6A 24 

MS4A6A      

MS4A4A      

OSBP      

PICALM 12 
SYTL2      

PICALM      

SORL1 4 SORL1      

FERMT2 10 

FERMT2      

PSMC6      

STYX      

SLC24A4 11 

LGMN      

RIN3      

SLC24A4      

ABCA7 49 

POLR2E      

STK11      

CNN2      

HMHA1      

CFD      

ABCA7      

BSG      

CASS4 12 CSTF1      
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