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Variants of uncertain significance (VUS) fundamentally limit the utility of genetic 1 
information in a clinical setting. The challenge of VUS is epitomized by BRCA1, a tumor 2 
suppressor gene integral to DNA repair and genomic stability. Germline BRCA1 loss-of-3 
function (LOF) variants predispose women to early-onset breast and ovarian cancers. 4 
Although BRCA1 has been sequenced in millions of women, the risk associated with most 5 
newly observed variants cannot be definitively assigned. Data sharing attenuates this 6 
problem but it is unlikely to solve it, as most newly observed variants are exceedingly rare. 7 
In lieu of genetic evidence, experimental approaches can be used to functionally 8 
characterize VUS. However, to date, functional studies of BRCA1 VUS have been 9 
conducted in a post hoc, piecemeal fashion. Here we employ saturation genome editing to 10 
assay 96.5% of all possible single nucleotide variants (SNVs) in 13 exons that encode 11 
functionally critical domains of BRCA1. Our assay measures cellular fitness in a haploid 12 
human cell line whose survival is dependent on intact BRCA1 function. The resulting 13 
function scores for nearly 4,000 SNVs are bimodally distributed and almost perfectly 14 
concordant with established assessments of pathogenicity. Sequence-function maps 15 
enhanced by parallel measurements of variant effects on mRNA levels reveal mechanisms 16 
by which loss-of-function SNVs arise. Hundreds of missense SNVs critical for protein 17 
function are identified, as well as dozens of exonic and intronic SNVs that compromise 18 
BRCA1 function by disrupting splicing or transcript stability. We predict that these 19 
function scores will be directly useful for the clinical interpretation of cancer risk based on 20 
BRCA1 sequencing. Furthermore, we propose that this paradigm can be extended to 21 
overcome the challenge of VUS in other genes in which genetic variation is clinically 22 
actionable. 23 
 24 
Despite our rapidly advancing knowledge of the genetic underpinnings of human disease, our 25 
ability to predict the phenotypic consequences of an arbitrary genetic variant in a human genome 26 
remains poor. This problem manifests most poignantly in the large numbers of ‘variants of 27 
uncertain significance’ (VUS) identified in ‘clinically actionable’ genes, i.e. genes that are 28 
already etiologically linked with a specific disease, and for which a definitive interpretation of 29 
the variant as benign or pathogenic would significantly impact clinical care1,2.  30 
 31 
The gene that perhaps best highlights the challenge of VUS is BRCA1. Germline variants that 32 
disrupt BRCA1 function are associated with a hereditary predisposition to breast and ovarian 33 
cancer3–6. Functionally disruptive germline variants in BRCA1 are clinically actionable, e.g. by 34 
more aggressive screening or prophylactic surgery, interventions which lead to improved 35 
outcomes7,8. Furthermore, functionally disruptive somatic BRCA1 mutations influence how 36 
tumors respond to specific therapeutic agents, e.g. PARP inhibitors9–11. Clinical sequencing of 37 
BRCA1, as well as many other genes linked to cancer predisposition such as BRCA2, PALB2, 38 
BARD1, ATM, etc., has the potential to implicate specific variants in disease12. Documented 39 
pathogenic BRCA1 variants in the ClinVar database include complete or partial gene deletions, 40 
frameshifting insertions and deletions (indels), nonsense SNVs, missense variants detrimental to 41 
protein stability and function, and both intronic and exonic variants that perturb splicing13. 42 
However, as of January 2018, over half of BRCA1 SNVs in ClinVar are classified as VUS. VUS 43 
are typified by rare missense SNVs, but also include variants potentially affecting mRNA 44 
production, such as SNVs near splice junctions. Further indicative of the challenge of variant 45 
interpretation, ClinVar is replete with BRCA1 variants that have received conflicting 46 
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interpretations from different experts. Of 3,936 germline BRCA1 SNVs currently represented in 47 
ClinVar, only 983 are classified by an expert panel as ‘benign’ or ‘pathogenic’ without 48 
conflicting interpretations.  49 
 50 
There are two major approaches for resolving VUS. The first approach, data sharing, relies on 51 
the expectation that as BRCA1 is sequenced in increasing numbers of individuals14, the recurrent 52 
observation of a specific variant in multiple individuals who either have or have not developed 53 
breast and/or ovarian cancer will enable the definitive interpretation of that variant. However, 54 
although this may be possible for some variants, given that the vast majority of potential SNVs 55 
in BRCA1 are exceedingly rare15,16 and that the phenotype is incompletely penetrant, it may be 56 
decades or centuries before sufficient numbers of humans are included in genotype-phenotype 57 
studies to accurately quantify cancer risk for each individual rare variant. 58 
 59 
The second approach, functional assessment, has spurred the development of diverse in vitro 60 
assays for BRCA117. As the homology-directed DNA repair (HDR) function of BRCA1 is key 61 
for tumor suppression, one commonly used assay involves expressing a BRCA1 variant in cells 62 
and assessing the integrity of the cells’ HDR pathway via inducing repair of a double strand 63 
DNA break in a fluorescent reporter construct18,19. Other approaches include assays for 64 
embryonic stem cell viability20, cell sensitivity to chemotherapeutic drugs20, binding to known 65 
partners such as BARD118,21, and minigene-based splicing assays22,23. Computational tools can 66 
predict variant effects based on features such as amino acid conservation. However, although 67 
many such metrics correlate with pathogenicity, at present no computational tool is sufficiently 68 
accurate to be used for the clinical interpretation of newly observed BRCA1 variants in the 69 
absence of genetic or experimental evidence24,25. 70 
 71 
Functional assessment of BRCA1 variants has historically been limited in several ways. Chiefly, 72 
experimental studies are post hoc and have not kept pace with the scaling of BRCA1 sequencing 73 
and the accumulation of VUS. Additionally, assays that express variants as cDNA-based 74 
transgenes removed from their genomic context18,21 fail to assess effects on splicing or transcript 75 
stability, as well as potential artifacts of overexpression26. Genome editing technologies provide 76 
a means to overcome these challenges. Yet to our knowledge, genome editing has not yet been 77 
applied to functionally characterize VUS in BRCA1 or other genes similarly linked to cancer 78 
predisposition. 79 
 80 
Here we set out to apply genome editing to measure the functional consequences of all possible 81 
SNVs in BRCA1, regardless of whether they have been previously observed in a human. Given 82 
BRCA1’s immense size, this initial study focuses on 13 exons that encode the functionally 83 
critical RING and BRCT domains. In each experiment, a single exon is subjected to ‘saturation 84 
genome editing’27, wherein all possible SNVs are simultaneously introduced to a haploid human 85 
cell line in which BRCA1 is essential. Consequently, BRCA1 variants that result in nonfunctional 86 
alleles are depleted over time, a selection that is quantified by deep targeted sequencing. We 87 
optimized this method to obtain function scores for 3,893 SNVs, comprising 96.5% of all 88 
possible SNVs in the targeted exons. These function scores are bimodally distributed and nearly 89 
perfectly concordant with expert-based assessments of pathogenicity. We predict that our 90 
functional classifications will be of immediate clinical utility, and argue that the scaling of this 91 
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approach to additional clinically actionable genes will substantially enhance the utility of genetic 92 
testing. 93 
 94 
RESULTS 95 
 96 
Saturation genome editing of BRCA1 exons 97 
 98 
Many genes in the HDR pathway, including those associated with hereditary cancer 99 
predisposition such as BRCA1, BRCA2, PALB2 and BARD112, were recently identified in a gene 100 
trap screen as being essential in the human haploid cell line HAP128 (Fig. 1a). To validate this 101 
finding, we designed guide RNAs (gRNAs) to target exons of each of these genes and assessed 102 
HAP1 cell viability after transfecting each gRNA on a plasmid co-expressing Cas9 and a 103 
puromycin resistance cassette29. High cell death was evident by light microscopy (Fig. 1b), and a 104 
luminescence-based survival assay established that targeting any of these genes substantially 105 
reduces viability of HAP1 cells within one week (Extended Data Fig. 1). Deep sequencing of 106 
the edited loci of BRCA1-targeted cells confirmed that cell death was consequent to mutations, as 107 
there was widespread selection against frameshifting indels in favor of unedited loci and some 108 
in-frame indels (Fig. 1c). Overall, these results confirm the essentiality of HDR pathway 109 
components in HAP1 cells and establish targeted sequencing as a strategy to distinguish 110 
functional vs. non-functional BRCA1 variants in a population of edited HAP1 cells. 111 
 112 
We next designed and optimized experiments for saturation genome editing (SGE)27 (Fig. 1d) . 113 
We chose to focus on the thirteen exons of BRCA1 encoding the RING (exons 2-5) and BRCT 114 
domains (exons 15-23) because these domains are essential for the protein’s role as a tumor 115 
suppressor30–32 and harbor missense variants known to be pathogenic or benign, as well as ~400 116 
VUS or variants with conflicting reports of pathogenicity13,33,34. To create a library of repair 117 
templates, we used array-synthesized oligo pools containing all possible SNVs spanning each 118 
exon and ~10 bp of adjacent intronic sequence. Oligo pools for each exon were PCR-amplified 119 
and cloned into plasmids with homology arms to mediate genomic integration and make ‘SNV 120 
libraries’. Each SNV library molecule also included a fixed synonymous substitution at the target 121 
site to reduce re-cutting by Cas9 after successful HDR27. Each SGE experiment targeted a single 122 
exon. In brief, a population of 20 million HAP1 cells was co-transfected on day 0 with the 123 
exon’s corresponding SNV library and Cas9/gRNA plasmid. Successfully transfected cells were 124 
selected with puromycin (days 1-4), expanded, and sampled on day 5 and day 11. Variant 125 
frequencies were quantified by targeted amplification and sequencing of the edited exon from 126 
genomic DNA (gDNA) harvested on day 5 and day 11. Negative controls were used to confirm 127 
that PCR amplicons were not derived from the plasmid DNA of the SNV library. 128 
 129 
We initially performed SGE experiments in replicate for each exon in wild-type (WT) HAP1 130 
cells. In each of the 13 exons, we observed depletion of frameshifting indels, confirming 131 
intolerance to loss of BRCA1 function (Extended Data Fig. 2). However, towards achieving 132 
more robust data, we optimized SGE in HAP1 cells in two ways. First, to increase HDR rates in 133 
HAP1 cells, we generated a monoclonal LIG4 knockout HAP1 line (HAP1-Lig4KO) (Extended 134 
Data Fig. 3a-b). LIG4 acts in the non-homologous end joining (NHEJ) pathway, and its 135 
depletion can increase the proportion of cells with HDR-mediated repair of double-stranded 136 
breaks35,36. We observed a median 3.6-fold increase in HDR rates on day 5 in HAP1-Lig4KO 137 
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relative to WT HAP1 (Fig. 2a). Second, it is known that HAP1 cells can spontaneously revert to 138 
diploidy37. Simply sorting HAP1 cells for 1N ploidy prior to editing improved reproducibility 139 
(Extended Data Fig. 3c-e).  140 
 141 
We next performed optimized SGE experiments for each of the 13 targeted exons in 1N-sorted 142 
HAP1-Lig4KO cells, testing nearly every possible SNV per exon in replicate (Fig. 2b). 143 
Functional effects of SNVs on survival were determined by targeted DNA sequencing of each 144 
SNV library as well as the edited exon in gDNA harvested on day 5 and day 11 (Fig. 2c-e). 145 
Additionally, targeted RNA sequencing of day 5 samples was used to determine how abundant 146 
exonic SNVs were in BRCA1 mRNA (Fig. 2f). Because these optimizations resulted in greater 147 
reproducibility (Extended Data Fig. 4), we moved forward with data from the 1N-sorted HAP1-148 
Lig4KO cells only. 149 
 150 
Function scores for 3,893 BRCA1 SNVs 151 
 152 
We sought to calculate function scores for each SNV in a way that accurately quantified 153 
selection throughout the experiment while also minimizing experimental biases. First, we 154 
calculated the log2 ratio of the SNV’s frequency on day 11 vs. its frequency in the original 155 
plasmid library. Second, positional biases in editing rates were modeled (using day 5 SNV 156 
frequencies) and subtracted (Extended Data Fig. 5). Third, to enable comparisons between 157 
exons, we normalized function scores such that each experiment’s median synonymous and 158 
nonsense SNV matched global medians. Finally, a small number of SNVs were filtered out that 159 
could not confidently be scored (e.g. SNVs poorly represented on day 5; Extended Data Fig. 6). 160 
Altogether, we obtained function scores for 3,893 SNVs within or immediately intronic to these 161 
exons (Fig. 2e, Supplementary Table 1, https://sge.gs.washington.edu/BRCA1). This 162 
corresponds to 96.5% of all possible SNVs in these regions. 163 
 164 
Function scores for SNVs in these 13 BRCA1 exons were bimodally distributed (Fig. 2g). All 165 
nonsense SNVs scored below –1.25 (N = 138, median = -2.12), whereas 98.7% of synonymous 166 
SNVs >3 bp from splice junctions scored above -1.25 (N = 544, median = 0.00). We classified 167 
all SNVs as ‘functional’, ‘non-functional’, or ‘intermediate’ by fitting a two-component 168 
Gaussian mixture model in which the parameters of the ‘non-functional’ distribution were based 169 
on all nonsense SNVs and the ‘functional’ distribution based on synonymous SNVs not depleted 170 
in RNA (Extended Data Fig. 7). We then used this model to estimate the probability of each 171 
SNV’s score being drawn from the non-functional distribution (Pnf). SNVs with Pnf < 0.01 were 172 
categorized as functional (72.5%); SNVs with Pnf > 0.99 were categorized as non-functional 173 
(21.1%); and SNVs with 0.01 < Pnf < 0.99 (6.4%) were categorized as intermediate. 174 
 175 
Rare missense variants in BRCA1 are particularly challenging to interpret clinically. Of the 176 
missense SNVs that we scored here, 21.1% (441 of 2,086) scored as non-functional (Fig. 2h). 177 
Although most of the remaining missense SNVs were functional (70.6%), there was an 178 
enrichment for missense SNVs with intermediate effects (8.1%, compared to 4.4% of all other 179 
SNVs; Fisher’s exact P = 2.7 x 10-6).  180 
 181 
An advantage of assaying variants by genome editing is that their impact on native regulatory 182 
mechanisms such as RNA splicing can be ascertained27. Whereas SNVs disrupting canonical 183 
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splice sites (the two intronic positions immediately flanking each exon) overwhelmingly scored 184 
as non-functional (89.5%) or intermediate (5.5%) (‘CS’ in Fig. 2h). SNVs positioned 1-3 bp into 185 
the exon or 3-8 bp into the intron had variable effects. We defined SNVs in these regions that did 186 
not alter the amino acid sequence as ‘splice region’ variants, of which 22.9% were non-187 
functional (‘SR’ in Fig. 2h), on par with missense SNVs (21.2% non-functional). SNVs 188 
positioned more deeply in introns or in the 5’ UTR were similar to non-splice-region 189 
synonymous SNVs, in that they were much less likely to score as non-functional (intronic: 1.8% 190 
non-functional; 5’ UTR: 0.0% non-functional; synonymous: 1.3% non-functional). 191 
 192 
Function scores are nearly perfectly concordant with ClinVar 193 
 194 
We next asked how well our function scores agreed with expert-based clinical variant 195 
interpretations, where available in ClinVar. Of 169 SNVs deemed ‘pathogenic’ in ClinVar that 196 
overlapped with our classifications, 162 were designated ‘non-functional’, 2 ‘functional’, and the 197 
remaining 5 ‘intermediate’. In contrast, of 22 SNVs deemed ‘benign’ in ClinVar that overlapped 198 
with our classifications, 1 was designated ‘non-functional’, 1 ‘intermediate’, and 20 ‘functional’ 199 
(Fig. 3a). The three SNVs for which our function scores are unambiguously discordant with 200 
ClinVar are discussed further below. A ROC curve showed a sensitivity of 96.7% at 98.2% 201 
specificity when we treat ‘likely pathogenic’ and ‘likely benign’ ClinVar annotations as 202 
pathogenic and benign, respectively (Fig. 3b). Importantly, our assay accurately predicts ClinVar 203 
interpretations independent of mutational consequence; sensitivity and specificity are high for 204 
both missense and splice site SNVs when these are considered separately from nonsense SNVs 205 
(Extended Data Fig. 7f). We find 64 of 256 (25.0%) VUS and 60 of 122 (49.2%) SNVs with 206 
conflicting interpretations to be non-functional in our assay (Fig. 3c). Missense VUS from 207 
ClinVar were significantly more likely to score as non-functional compared to missense SNVs 208 
absent from ClinVar (25.9% vs. 17.2%, P = 0.002). Apart from largely corroborating established 209 
ClinVar annotations, our scores also provide functional classifications for an additional 3,140 210 
SNVs, the vast majority of which have yet to be publicly reported in clinical sequencing. Of 211 
these SNVs, 498 (15.9%) are classified as non-functional. 212 
 213 
We also investigated the relationship between our function scores and SNV frequencies in large-214 
scale databases of human genetic variation. Of 302 assayed SNVs that overlap with the Genome 215 
Aggregation Database (gnomAD)16, higher allele frequencies were associated with higher 216 
function scores (Fig. 3d). For instance, 33 of 166 (19.9%) of singleton gnomAD variants were 217 
non-functional, whereas only 8 of 136 SNVs (5.9%) seen in multiple individuals were non-218 
functional (Fisher’s exact P = 3 x 10-4). A similar trend was observed with the Bravo database 219 
(Extended Data Fig. 8a). The FLOSSIES database contains BRCA1 variants observed in women 220 
over seventy years old who have not developed breast or ovarian cancer38. Of 39 intersecting 221 
SNVs, only one scored as non-functional (Extended Data Fig. 8b). Collectively, these 222 
observations show that BRCA1 SNVs with higher allele frequencies are more likely to be 223 
functional, as expected. However, the fact that >70% of ClinVar variants and >95% of non-224 
ClinVar variants that we assayed here have not been observed even once in sequencing of 225 
>120,000 humans illustrates the challenges facing observational approaches to variant 226 
interpretation.  227 
 228 
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Several computational metrics are currently used to the assess deleteriousness of variants and 229 
often included in genetic testing reports. Although our function scores correlate with metrics 230 
such as CADD39, phyloP40, and Align-GVGD41, which are largely based on evolutionary 231 
conservation and biochemical properties of missense variants, the modesty of these correlations 232 
underscores the value of functional assays (Fig. 3e, Extended Data Fig. 9a-g). ROC curve 233 
analysis restricted to missense variants reveals that SGE-based function scores outperform these 234 
metrics at predicting pathogenicity status in ClinVar (Extended Data Fig. 9h-l). This 235 
outperformance is likely underestimated because some of these metrics (e.g. Align-GVGD) or 236 
their correlates (e.g. evolutionary conservation) informed the ClinVar classifications of 237 
pathogenicity in the first place.  238 
 239 
Mechanisms of BRCA1 loss-of-function 240 
 241 
To gain insights into the various mechanisms by which SNVs compromise function, we 242 
performed targeted RNA sequencing of BRCA1 transcripts from day 5 cells. We normalized 243 
SNV frequencies in cDNA to their frequency in gDNA to produce mRNA expression scores 244 
(‘RNA scores’) for 96% of the functionally characterized exonic SNVs. Together with function 245 
scores, RNA scores enable fine mapping of molecular consequences of SNVs (Fig. 4). For 246 
instance, regions of exons 2 and 15 that respectively code for RING and BRCT domain residues 247 
contain numerous loss-of-function missense variants. This contrasts with coding sequence in the 248 
same exons that fall outside of the boundaries of these protein domains. Overall, 89% of non-249 
functional missense SNVs did not reduce RNA levels substantially, suggesting that their effects 250 
are likely mediated at the protein level (Fig. 5a). Many residues that are sensitive to missense 251 
SNVs not impacting RNA levels map to buried hydrophobic residues or to the zinc-coordinating 252 
loops that are required for proper RING domain folding (Fig. 5b-c). However, 11% of non-253 
functional missense SNVs are depleted from RNA by 4-fold or more. Many of these SNVs map 254 
outside of key protein-protein interfaces and rather in unstructured loops, suggesting that they 255 
cause loss-of-function by lowering mRNA expression levels. Consistent with this, the 12 256 
synonymous SNVs classified as non-functional also tended to markedly reduce mRNA levels 257 
(median 5.4-fold reduction).  258 
 259 
How do these exonic SNVs cause reductions in mRNA levels? Although other mechanisms 260 
cannot be ruled out, many of the variants depleted in mRNA are likely impacting RNA splicing. 261 
This is evidenced by an overrepresentation of non-functional SNVs near splice junctions, 262 
including low scores for many SNVs at terminal G nucleotides of exons (Fig. 4), non-functional 263 
exonic SNVs with low mRNA levels that create new acceptor or donor sequences (SNVs 264 
annotated with asterisks in Fig. 5d), and the presence of short regions (~6-8 bp) in which many 265 
SNVs have moderate-to-strong effects on RNA levels, suggestive of exonic splice enhancers42 266 
(Fig. 5e). Certain exons appeared particularly prone to harbor non-functional SNVs with low 267 
RNA scores. In exon 16, for instance, 46 of 244 SNVs (excluding nonsense) were non-functional 268 
(Fig. 5e). Of these, more than half (n = 26) reduced RNA levels by more than 2-fold, and nearly 269 
a third (n = 15) by more than 4-fold. In contrast, in exon 19, of 55 of 234 SNVs (excluding 270 
nonsense) that were non-functional, none lowered expression by more than 2-fold (Fig. 5f). Exon 271 
19 also completely lacks non-functional SNVs in its flanking intronic regions (apart from the 272 
acceptor and donor sites), suggesting the exon is robustly spliced compared to other exons.  273 
 274 
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Discordances with ClinVar Interpretations 275 
 276 
We leveraged sequence-function maps in reviewing the evidence around the three SNVs for 277 
which our classifications were clearly discordant with ClinVar. Discordant SNVs assayed in our 278 
preliminary experiments in WT HAP1 cells had similar scores, suggesting their classifications 279 
are not secondary to noise in our assay (Extended Data Fig. 10). One missense SNV designated 280 
‘pathogenic’ in ClinVar that we scored as functional, c.5359T>A (C1787S), was identified 281 
through segregation with disease. However, in each case, it was seen in cis with a second SNV at 282 
the neighboring amino acid position43. Our data as well as data from other functional assays44 283 
suggest c.5359T>A on its own is functional. The linked SNV c.5363G>T (G1788D), however, 284 
scored as non-functional, calling into question the ClinVar annotation (Extended Data Fig. 285 
10c).  286 
 287 
A second disagreement was identified in the exon 2 splice acceptor, c.-19-2A>G. This SNV was 288 
annotated as ‘pathogenic’ in ClinVar based on its occurrence at a splice acceptor site45, rather 289 
than from having been associated with disease. Exon 2 contains the BRCA1 translation initiation 290 
codon, meaning that alternate splice forms may preserve the complete open reading frame. Of 291 
note, CADD scores for SNVs across the exon 2 acceptor site were much lower than for SNVs in 292 
other canonical splice sites (Extended Data Fig. 10d), and none of the 6 SNVs that we 293 
introduced here scored as non-functional. Further supporting that this splice site is not essential 294 
for BRCA1 function, RNA sequencing from breast and ovarian tissue in the GTEx database46 295 
shows this exon junction is poorly represented among BRCA1 transcripts (Extended Data Fig. 296 
10e). This suggests that this acceptor site is likely dispensable both in our assay and in tissues 297 
relevant to disease, again calling the ClinVar annotation into question. 298 
 299 
Exon 16 harbored the third discordantly classified SNV, the ‘benign’ c.5044G>A (E1682K) 300 
variant, which scored as non-functional in our assay. Of note, c.5044G>A resides in a predicted 301 
exonic splice enhancer (ESE)42, and its low function score was substantiated by a reduction in 302 
RNA levels of over 90% (Fig. 5e). Neighboring SNVs in the predicted ESE also reduced RNA 303 
expression, corroborating the element’s importance. Although this missense SNV is rare (absent 304 
from gnomAD and Bravo), reports indicate it was designated as benign based on being observed 305 
in trans with a variant considered pathogenic33, as biallelic BRCA1 loss-of-function mutations 306 
are thought to be embryonic lethal. The underlying data supporting this finding are not publically 307 
available, and previous assays of this variant did not measure splicing consequences44.  308 
 309 
DISCUSSION 310 
 311 
Here we applied saturation genome editing to the 13 exons that encode functionally critical 312 
domains of the cancer risk gene, BRCA1, characterizing the functional consequences of nearly 313 
4,000 SNVs in their native genomic context. Specifically, we used CRISPR/Cas9 to introduce 314 
hundreds of SNVs per experiment, followed by deep sequencing to measure the functional 315 
consequences of each SNV in parallel. Because we measured cell survival, the effects of SNVs 316 
on multiple layers of gene function (e.g. RNA splicing, translation, protein function, protein 317 
stability) are effectively integrated. The approach is validated by nearly perfect concordance of 318 
function scores with available evidence for clinical pathogenicity.  319 
 320 
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Our experimental approach has several caveats. First, the exact requirements for BRCA1 function 321 
essential to maintaining in vitro viability and growth of HAP1 cells, as opposed to mediating in 322 
vivo tumor suppression, are not known. For instance, we cannot rule out, differences in splicing 323 
or dosage requirements between our in vitro model vs. in vivo physiology. Second, we are not 324 
currently able to interrogate every possible SNV. Of note, most of the 3.5% of SNVs for which 325 
we do not provide function scores were excluded by factors related to genome editing, rather 326 
than because of sampling (Extended Data Fig. 6). Lastly, as these experiments were designed to 327 
measure loss-of-function in a haploid cell line, we are unable to detect all types of functional 328 
effects (e.g. dominant negative variants).  329 
 330 
Notwithstanding these limitations, we achieved nearly comprehensive coverage of the targeted 331 
regions and our functional classifications are nearly perfectly concordant with current clinical 332 
interpretations. As such, we anticipate that our results will be clinically useful, both for 333 
adjudicating hundreds of observed variants whose interpretation is currently ambiguous, as well 334 
as for providing immediate functional assessments for variants newly observed. Therefore, the 335 
pressing question becomes how to best to integrate this functional data within existing clinical 336 
variant classification schemes47. 337 
 338 
A benefit of functional data is that measurements are systematically derived, independent of 339 
prior expectation48. As such, function scores add an additional layer of evidence to support 340 
interpretations of variants made through segregation with disease. However, for the large number 341 
of VUS for which genetic evidence is insufficient, the predictive power demonstrated here 342 
suggests function scores can be used to classify variants with >95% accuracy. As current 343 
standards for defining ‘likely pathogenic’ and ‘likely benign’ variants accept a comparable level 344 
of uncertainty49, we argue that a failure to use appropriately validated functional data to inform 345 
clinical care would be a missed opportunity. There is precedent for incorporating functional data 346 
in interpretation guidelines24, but the breadth and predictive power demonstrated by SGE calls 347 
for an increased role. Indeed, given the low likelihood that observational approaches will ever be 348 
sufficient to classify variants not yet seen once in humans, we believe that there is a strong 349 
argument to be made for using highly predictive function scores, where available, to inform 350 
initial interpretations of newly observed variants. 351 
 352 
The orthologous nature of SGE data also presents an opportunity for integration with other data 353 
sources. For example, a multiplex reporter assay for HDR activity strengthens the functional 354 
evidence presented here for BRCA1 missense variants (see accompanying manuscript from 355 
Starita et al.). Integration and optimal weighting of experimental and computational approaches 356 
may also further improve classification of variants lacking genetic evidence. In cases where 357 
evidence is contradictory, functional data may yield specific hypotheses to test. For example, 358 
c.5044G>A, for which our data contradicts the ClinVar interpretation (Fig. 5e), would be 359 
disambiguated by testing BRCA1 mRNA levels in individuals harboring this SNV. Similar 360 
approaches should be taken to more confidently resolve unlikely functional classifications, such 361 
as synonymous SNVs with low function scores and canonical splice SNVs deemed functional. 362 
Furthermore, the ~6% of SNVs exhibiting intermediate function scores remain beyond definitive 363 
interpretation. The fact that we observe an excess of missense SNVs with intermediate scores 364 
suggests that some of these may be hypomorphic BRCA1 alleles50-52. Further studies will be 365 
necessary to quantify the penetrance of intermediately functional variants. 366 
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 367 
Moving forward, our study provides a blueprint for comprehensive functional analysis of all 368 
potential SNVs in clinically actionable genes for which appropriate assays can be developed. 369 
Here, we prioritized BRCA1 exons encoding the RING and BRCT domains, but SGE of the 370 
entire coding sequence and promoter are also well motivated. Furthermore, the essentiality of 371 
BRCA2, PALB2, BARD1, and RAD51C in HAP1 suggests that these genes are assayable by the 372 
same method. For genes in other pathways, assays that are compatible with saturation genome 373 
editing (e.g. drug selection, FACS on phenotypic markers, etc.) may need to be developed and 374 
validated. For any gene tested, it is critical that functional measurements be calibrated to clinical 375 
evidence of pathogenicity. Given that SGE tests variants in their endogenous genomic context, 376 
the scaling of SGE to many loci promises to improve our understanding of how diverse 377 
biological functions are encoded by the genome. 378 
 379 
Delivering on the promise of genomic medicine requires that we not only be able to cost-380 
effectively ascertain genetic variation, but also accurately and definitively interpret it. Presently, 381 
interpretation is the rate limiting step. As a potential path forward, we show that saturation 382 
genome editing is a viable strategy for functionally classifying thousands of variants in a 383 
clinically actionable gene, most of which have yet to be observed in a human. With further 384 
scaling, we anticipate that this paradigm will substantially improve the utility of genetic 385 
information in clinical decision making.   386 
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DATA AVAILABILITY 387 
 388 
Saturation genome editing data is available at:  https://sge.gs.washington.edu/BRCA1. 389 
 390 
ACKNOWLEDGEMENTS 391 
 392 
We thank Malte Spielmann, Daniela Witten, Aaron McKenna, Martin Kircher, Max Dougherty, 393 
John Lazar, Yi Yin, and Brian Shirts for insights on data analysis and/or comments on the 394 
manuscript, Jacob Kitzman for sharing reagents and protocols, Rocío Acuña-Hidalgo and 395 
Jennifer Milbank for experimental assistance and the Feng Zhang lab for sharing Cas9/gRNA 396 
plasmids. This work was supported by an NIH Director's Pioneer Award (DP1HG007811 to J.S.) 397 
and a training award from the National Cancer Institute (F30CA213728 to GMF). JS is an 398 
Investigator of the Howard Hughes Medical Institute.   399 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/294520doi: bioRxiv preprint 

https://doi.org/10.1101/294520


 11 

METHODS 400 
 401 
HDR pathway essentiality analysis in HAP1 cells 402 
 HAP1 cells were derived from KBM7 cells (a near-haploid immortalized chronic 403 
myelogenous leukemia line) by introduction of induced pluripotent stem cell factors56. HAP1 404 
gene essentiality scores were obtained28 and filtered on genes with greater than 20 mapped gene-405 
trap insertions (N = 14,306). Of 78 HDR genes defined by the GO term ‘double-strand break 406 
repair via homologous recombination’ (GO:0000724), 66 were among the 14,306 genes included 407 
in analysis. To rank genes by essentiality, they were first ordered by q-value (low to high) and 408 
second by the proportion of gene-trap insertions in the sense orientation (low to high). HDR 409 
pathway genes implicated in cancer (labelled in Fig. 1) were defined as those included on the 410 
University of Washington BROCA sequencing panel57. 411 
  412 
gRNA design and cloning 413 
 All CRISPR gRNAs used in SGE and essentiality experiments were cloned into pX45929. 414 
This plasmid expresses the gRNA from a U6 promoter, as well as a Cas9-2A-puromycin 415 
resistance (puroR) cassette. S. pyogenes Cas9 target sites were chosen for SGE experiments on 416 
multiple criteria, assessed in the following order:  1.) To induce cleavage within BRCA1 coding 417 
sequence, 2.) To target a genomic site permissive to synonymous substitution within the guanine 418 
dinucleotide of the PAM or the protospacer, 3.) To have minimal predicted off-target activity58, 419 
4.) To have maximal predicted on-target activity59.  420 

Complementary oligos ordered from Integrated DNA Technologies (IDT) were annealed, 421 
phosphorylated, diluted and ligated into BbsI-digested and gel-purified pX459, as described29. 422 
Ligation reactions were transformed into E. coli (Stellar competent cells, Takara), which were 423 
plated on ampicillin. Colonies were cultured and Sanger sequenced to confirm correct gRNA 424 
sequences. Purification of sequence-verified plasmids for transfection was performed with the 425 
ZymoPure Maxiprep kit (ZymoResearch). For targeting LIG4 in HAP1 cells, pX45829 was used 426 
instead of pX459, which expresses EGFP in lieu of puroR.   427 

 428 
HDR library design and cloning 429 
 Array-synthesized oligos were designed as follows for each saturation genome editing 430 
region (i.e. a BRCA1 exon). The sequence to be mutated (~100bp) was obtained from the human 431 
genome (hg19) and a synonymous substitution was introduced at the chosen Cas9 target site (e.g. 432 
a substitution at the PAM site). This ‘fixed’ substitution in the library was included in design to 433 
serve multiple purposes: 1.) plasmid library molecules harboring the substitution are predicted to 434 
be cleaved less frequently by Cas9:gRNA complexes, 2.) SNVs introduced to cells are predicted 435 
to be depleted via Cas9 re-cutting less frequently as a consequence of the fixed substitution, and 436 
3.) sequencing reads can be filtered on the fixed substitution to distinguish true SNVs introduced 437 
via HDR from sequencing errors. A second synonymous substitution at an alternative CRISPR 438 
target site was introduced to the sequence as well, such that each exon’s SNV library would be 439 
compatible with multiple gRNAs. Next, a sequence was created for every possible single 440 
nucleotide substitution on this template. For all sequences, adapters were added to both ends to 441 
enable PCR amplification from the oligo pool. For each SGE region, the total number of oligos 442 
designed was three times the length of the region, plus the oligo template without any SNV (e.g. 443 
for a 100 bp SGE region, 301 total oligos were designed). 444 
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Pooled oligos were synthesized (Agilent Technologies). Primers designed to amplify the 445 
subset of oligos corresponding to a single exon’s region were used to perform PCR with Kapa 446 
HiFi Hot-start Ready Mix (‘Kapa HiFi’, Kapa Biosystems). PCR products were purified with 447 
Ampure beads (Agencourt) to be used in subsequent library cloning reactions. 448 

Homology arms were cloned into pUC19 by PCR-amplifying (Kapa HiFi) regions 449 
surrounding each targeted exon from HAP1 gDNA. Primers for these reactions were designed 450 
such that homology arms would be between 600 and 1,000 bp on both sides of the targeted 451 
region. Adapters homologous to pUC19 were added to primers to facilitate NEBuilder HiFi 452 
Assembly cloning (NEB) into a linearized pUC19 vector. Cloning reactions were transformed 453 
into Stellar competent cells and selected with ampicillin. Plasmid DNA was isolated from 454 
colonies (Qiagen MiniPrep kit) and sequence-verified. 455 

To make the HDR library, homology arm plasmids were linearized via PCR using 456 
primers that conferred 15-20 bp of terminal overlap with the adapter sequences flanking each 457 
PCR-amplified oligo pool. This sequence overlap enabled cloning via the NEBuilder HiFi 458 
Assembly Cloning Kit (NEB). Cloning reactions were transformed into Stellar competent cells, 459 
and a small proportion (1%) of the transformation was plated on ampicillin-containing plates to 460 
assess efficiency. All remaining transformed cells were grown directly in 100 ml of media with 461 
ampicillin for 16-18 hours, and plasmid DNA from the culture was isolated (ZymoPure 462 
Maxiprep kit) to produce each final HDR library. 463 

 464 
HAP1 cell culture 465 

Quality-controlled WT HAP1 cells were purchased (Haplogen/Horizon Discovery) and 466 
cultured in media comprising Iscove’s Modified Dulbecco’s Medium (IMDM) with L-glutamine 467 
and 25 mM HEPES (GIBCO) supplemented with 10% fetal bovine serum (Rocky Mountain 468 
Biologicals) and 1% penicillin-streptomycin (GIBCO). Cells were grown on plates at 37C with 469 
5% CO2, and passaged prior to becoming confluent. For routine passaging, cells were washed 470 
once with 1x phosphate buffered saline (PBS, Gibco), trypsinized with 0.25% trypsin with 471 
EDTA (Gibco), resuspended in media, centrifuged for 5 min at 300 rcf, and then resuspended 472 
and plated. 473 

A monoclonal LIG4 knock-out HAP1 line (HAP1-Lig4KO) was generated by 474 
transfecting a plasmid expressing a Cas9-2A-GFP cassette and a gRNA targeting the human 475 
LIG4 coding sequence (gRNA sequence: 5’-GCATAATGTCACTACAGATC) into WT HAP1 476 
cells. Single GFP-expressing HAP1 cells were sorted into wells of a 96-well plate and cultured. 477 
After two weeks, gDNA was harvested and Sanger sequencing was performed to assess LIG4 478 
editing. A clone with a 4bp deletion was identified and expanded further for use in saturation 479 
genome editing experiments. 480 

HAP1 cells can spontaneously revert to a diploid state in cell culture. Therefore, to sort a 481 
1N-enriched population of cells prior to transfection, cells were stained for DNA content with 482 
Hoechst 34580 (BD Biosciences) at 5 ug/ml media for 1h at 37C. FACS was performed to 483 
isolate 1-2x106 cells from the lowest intensity Hoechst peak, corresponding to 1N ploidy. These 484 
cells were expanded for seven days prior to transfection. 485 

 486 
Transfection of HAP1 cells 487 
 For all experiments, HAP1 cells were transfected using TurboFectin 8.0 (Origene) 488 
according to manufacturer’s protocol. A 2.5x volume of Turbofectin was added to the 489 
transfection mix for each ug of plasmid DNA in Opti-Mem (Life Technologies). For each SGE 490 
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transfection, 10 million cells were passaged to a 10 cm dish. The next day (day 0), cells were co-491 
transfected with 12 ug of the Cas9/gRNA plasmid (pX459) and 3 ug of the SGE library 492 
corresponding to a single exon. For negative control transfections, a pX459 vector targeting 493 
HPRT1 was used instead. On day 1, cells were passaged into media supplemented with 494 
puromycin (1 ug/ml) to select for successfully transfected cells. On day 4, cells were washed 495 
twice and passaged to 6 cm plates in regular media. 496 

Cell populations were sampled on day 5 and day 11 for all SGE experiments. On day 5, 497 
half of the cells were pelleted and frozen and the other half passaged. The cells were passaged on 498 
day 8 into 15 cm dishes and then harvested on day 11. Negative control transfections were 499 
harvested on day 5. 500 

For the luminescence-based viability assay, HAP1 cells were plated at ~35-40% 501 
confluency in a 6-well dish (approximately 1.2 million cells per well per target) then transfected 502 
with 1.5 ug Cas9/gRNA plasmid targeting coding exons of HDR genes or controls the following 503 
day. 24 hours after transfection the cells were plated in time-point triplicates at 20,000 cells per 504 
well in 96-well clear bottom plates in media with and without puromycin. Cells without 505 
puromycin were assessed 4 hours after plating to establish baseline absorbance for each target. 506 
Cell survival was assessed at day 2, day 5, and day 7 post-transfection using the CellTiterGlow 507 
reagent (Promega, 1:10 dilution of suggested reagent). Luminescence at 135 nm absorbance was 508 
measured using a Synergy plate reader (Biotek Instruments). 509 

 510 
Nucleic acid sampling and sequencing library production 511 

For obtaining WT HAP1 genomic DNA for cloning homology arms and for genotyping 512 
the HAP1-Lig4KO cell line, DNA was isolated using the DNeasy kit (Qiagen). For each SGE 513 
experiment, DNA and total RNA were purified using the AllPrep kit (Qiagen). DNA samples 514 
were quantified with the Qubit dsDNA Broad Range kit (Thermo Fisher) and RNA samples by 515 
UV spectrometry (Nanodrop). PCR primers for genomic DNA were designed such that one 516 
primer would anneal outside of the homology arm sequence, thereby selecting for amplicons 517 
derived from gDNA and not plasmid DNA. PCR conditions were optimized using gradient qPCR 518 
on WT HAP1 gDNA. 519 

All gDNA harvested from the population of day 5 cells was sampled by performing many 520 
PCR reactions in parallel on a 96-well plate, using 250 ng of gDNA per 50 ul reaction such that 521 
all day 5 gDNA was used in PCR (Kapa HiFi). At least as many PCR reactions were performed 522 
for day 11 samples (which yielded more gDNA) to ensure adequate sampling. PCRs were 523 
performed for the minimal number of cycles needed to complete amplification, with cycling 524 
conditions as specified in the Kapa HiFi protocol. An additional PCR was performed using day 5 525 
gDNA from negative control transfections for each exon. 526 
 After PCR, multiple wells of amplicons from the same sample were pooled and purified 527 
using Ampure beads. Next, a nested qPCR was performed using the first reaction as template to 528 
produce a smaller amplicon with custom sequencing adapters (‘PU1L’ and ‘PU1R’), which was 529 
likewise purified with Ampure beads. The SGE libraries were also PCR-amplified at this step, 530 
starting from 50 ng of plasmid DNA. Lastly, a final qPCR was performed using purified 531 
products from the second reaction as template to add dual sample indexes and flow cell adapters. 532 
 RNA was sampled from day 5 HAP1-Lig4KO cells (AllPrep, Qiagen). Reverse 533 
transcription followed by RNase H treatment was performed on all RNA harvested or a 534 
maximum of 5 ug per sample (Superscript IV Kit, Life Technologies). This reaction was primed 535 
with a gene-specific primer complementary to the 3’ UTR in exon 23 of BRCA1. Primers were 536 
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designed for each exon to amplify across exon junctions, and reaction conditions were optimized 537 
using gradient PCR. cDNA was distributed into 5 equal PCR reactions, which were run on a 538 
qPCR machine and then pooled in equal ratios. Flow cell adapters and sample indexes were 539 
added in an additional reaction (as for gDNA samples). 540 

All sequencing libraries were purified with Ampure beads, quantified with the Qubit 541 
dsDNA High Sensitivity kit (Life Technologies), diluted and denatured for sequencing in 542 
accordance with protocols for the Illumina NextSeq or MiSeq machines. 543 

 544 
Sequencing and data analysis 545 

Sequencing was performed on an Illumina NextSeq or MiSeq instrument, allocating 546 
about 3 million reads to each gDNA and cDNA sample, 1 million reads for each HDR library, 547 
and 500,000 reads for each negative control sample. gDNA samples for individual exons were 548 
sequenced on the same run. 300 cycle kits were used, with 150 cycles for read 1 and read 2 each, 549 
and 19 cycles for dual index reads. Custom sequencing primers and indexing primers are 550 
provided in Supplementary Table 2. Illumina PhiX control DNA was added to each sequencing 551 
run (~10% MiSeq, ~30-40% NextSeq) to improve base calling. 552 
         Illumina’s bcl2fastq 2.16 was used to call bases and perform sample demultiplexing and 553 
fastqc 0.11.3 was run on all samples to assess sequencing quality. SeqPrep was used with the 554 
following parameters to perform adapter trimming and to merge perfectly matched overlapping 555 
read pairs: ‘-A GGTTTGGAGCGAGATTGATAAAGT -B 556 
CTGAGCTCTCTCACAGCCATTTAG -M 0.1 -m 0.001 -q 20 -o 20’. Merged reads containing 557 
‘N’ bases were removed. Reads from cDNA samples were removed if they contained indels or 558 
did not perfectly match transcript sequence flanking each targeted exon. Remaining cDNA reads 559 
were processed to match genomic DNA amplicons by removing flanking exonic sequence and 560 
replacing it with the exon’s corresponding intronic sequence. All reads were then aligned to 561 
reference gDNA amplicons for each exon using the needleall command in the EMBOSS 6.4.0 562 
package with the following parameters:  ‘-gapopen 10 -gapextend 0.5 -aformat sam’. Reads not 563 
aligning to the reference amplicon (alignment score < 300) were removed from analysis. To 564 
analyze indels, unique cigar counts were quantified from day 5 and day 11 samples using a 565 
custom Python script. Reads were classified as HDR events for rate calculations if the 566 
programmed edit or edits to the PAM or protospacer (HDR marker edits) were observed in the 567 
alignment. Variants without identifiable markers of HDR were not used. Abundances of SNVs 568 
were quantified only from aligned reads that had no other mismatches or indels, with the 569 
exception of the HDR markers. SNV reads with only the cut-site proximal HDR marker were 570 
summed with reads that had both HDR markers to get total abundances for each SNV in each 571 
sample, to which a pseudocount of 1 was added to all variants present in either the library, day 5 572 
or day 11 sample. Frequencies for each SNV were calculated as SNV reads over total reads. 573 
SNV measurements from WT HAP1 cells and HAP1-Lig4KO cells were processed separately at 574 
all steps. 575 
  576 
Modeling positional biases of library integration 577 
         Positional biases in editing rates were modeled for each SNV by using a LOESS 578 
regression to fit the log2 day 5 over library ratios as a function of chromosomal position. To 579 
avoid modeling biological effects instead of positional effects, the model was fit only on the 580 
subset of SNVs that were not substantially depleted between any two timepoints in the 581 
experiment (i.e. SNVs with day 5 over library ratios > 0.5 and day 11 over d5 ratios > 0.8.). The 582 
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regression was performed for each exon replicate, using the ‘loess’ function in R with span = 583 
0.15. Each model was extended flatly outward to include any positions not fit (a total of 22 584 
nucleotides of sequence on the edges of the edited regions). We subtracted each SNV’s 585 
positional fit (e.g. the model’s output) from the SNV’s log2 day 11 over library ratio to get 586 
position-adjusted ratios for each SNV. 587 
 588 
Normalizing scores within and across exons 589 
         Position-adjusted log2 day 11 over library ratios were normalized first across exon 590 
replicates, and then across all exons assayed. Scores from within each replicate were linearly 591 
scaled such that the median synonymous and median nonsense SNVs within the replicate were 592 
set to the median synonymous and median nonsense SNV values averaged across replicate 593 
experiments. The ensuing SNV scores for each replicate were then normalized across exons in 594 
the same way by again using median synonymous and median nonsense SNVs. 595 
 596 
SNV functional class assignment 597 
 Function scores were averaged across replicates and a mixture model was used to 598 
estimate the probability that each SNV’s score was drawn from the non-functional distribution of 599 
scores. The non-functional distribution was defined as nonsense SNVs across all exons. The 600 
functional distribution was defined as exonic synonymous SNVs not within 3 bp of splice 601 
junctions and with RNA scores within 1 standard deviation of the median synonymous SNV. 602 
This definition does not fully guarantee that these SNVs have no functional consequence. The 603 
means and variances of the ‘non-functional’ and ‘functional’ groups were fixed and a model was 604 
fit using the normalmixEM function of the mixtools package in R, with starting component 605 
proportions set to 0.5. The posterior probabilities generated from the model were used as point 606 
estimates of the probability of drawing each SNVs score from the non-functional distribution 607 
(Pnf). Functional classifications were made by setting thresholds for Pnf as follows:  Pnf > 0.99 = 608 
‘non-functional’, 0.01< Pnf < 0.99 = ‘intermediate’, Pnf <0.01 = ‘functional’. 609 

Independent of mixture modelling, ROC curves were used to assess performance of SGE 610 
data and other metrics’ ability to predict assigned ClinVar classifications. These analyses were 611 
performed with the plotROC package in R, and Youden’s J-statistic was calculated (sensitivity 612 
plus specificity minus 1) to determine optimal values reported in text. 613 
 614 
Variant filtering 615 
         A small minority of SNVs that could not be accurately scored were removed from 616 
analysis. If a SNV was not present in the HDR library at a frequency over 1 in 104, it was 617 
presumed to have been lost in oligo synthesis or cloning and was removed. Additionally, if a 618 
SNV was not observed with complete HDR markers at a frequency over over 1 in 105 in day 5 619 
genomic DNA samples from both replicate experiments, it was removed. SNVs introduced near 620 
the CRISPR recognition site have the potential to facilitate Cas9 recutting of the locus (e.g. by 621 
replacing the PAM edit or introducing an alternative PAM site). Because these SNVs are likely 622 
to score lower consequent to Cas9 editing biases and not their effects on gene function, SNVs 623 
were filtered that created increased potential for re-cutting as follows:  When an HDR marker 624 
mutation used to disrupt editing occurred at position 2 of the PAM (e.g. ‘NGG’ to ‘NCG’), 625 
SNVs that replaced this marker with an alternate base were removed to prevent biases introduced 626 
by recutting non-canonical S. pyogenes Cas9 PAMs (e.g. ‘NAG’, ‘NTG’). Additionally, variants 627 
that created a new PAM 1 bp 3’ of the mutated PAM were excluded due to the potential for 628 
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recutting (e.g. unedited PAM: 5’-NGGA, edited PAM with HDR marker: 5’-NCGA, filtered out 629 
SNV that creates new PAM +1bp 3’: 5’-NCGG). (Extended Data Fig. 6 describes recutting 630 
observed at alternative PAMs.) To prevent misinterpretation, we also removed SNVs that created 631 
amino acid changes specific to the context of the library’s fixed edits (e.g. if in the unedited 632 
background, the SNV causes an X to Y change, but with a fixed edit in the same codon, the SNV 633 
causes an X to Z change). We also applied this logic to remove SNVs that introduced splice 634 
donor sites only in the context of the edited PAM, and SNVs that create splice donor sites in the 635 
unedited context but not in the context of the edited PAM. 636 
 The RNA scores for exon 18 samples were neither well correlated across replicates nor 637 
with SNV abundances in genomic DNA, indicating likely bottlenecking in library preparation. 638 
Therefore, RNA data from exon 18 was excluded. WT HAP1 function scores from exon 22 were 639 
excluded because there was an unusually high correlation between SNV frequencies sampled 640 
from the plasmid library and from day 5 gDNA, suggesting plasmid contamination in gDNA 641 
sequencing. This problem was fixed by designing a new primer to prepare gDNA sequencing 642 
samples from HAP1-Lig4KO cells. 643 
 644 
External data sources 645 

Variant annotations were downloaded from CADD39 version 1.3 646 
(http://cadd.gs.washington.edu/download). This included the following scores: mammalian 647 
phyloP, Grantham deviation, SIFT, Polyphen-2, and CADD. Align-GVGD scores were obtained 648 
by running the Align-GVGD program on BRCA1 sequences conserved to sea urchin. ClinVar 649 
data were downloaded on 1/2/2018 for all germline SNVs with at least a 1-star annotation. SNVs 650 
annotated as ‘Benign/Likely benign’ were grouped with ‘Likely benign’ SNVs and SNVs 651 
classified ‘Pathogenic/Likely pathogenic’ were grouped with ‘Likely pathogenic’ SNVs. SNV 652 
allele frequencies were obtained from http://gnomad.broadinstitute.org/ on 12/26/2017 for 653 
gnomAD16, from https://bravo.sph.umich.edu/freeze5/hg38/ on 11/19/2017 for Bravo, and from 654 
https://whi.color.com/ on 10/9/2017 for FLOSSIES data. Transcript data was obtained from 655 
GTEx on 1/3/2018. Throughout this study, BRCA1 exons, coding nucleotide positions, and 656 
amino acid positions are referenced by the ClinVar transcript annotation for BRCA1, transcript 657 
NM_007294.3 (NCBI).  658 
 659 
Statistical reporting 660 
 All statistical tests described were performed as two-tailed tests using the R software 661 
package. 662 
 663 
Code availability 664 

Custom scripts for analyzing sequencing data were written in Python and R. All code will 665 
be made available upon request.  666 
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Figure 1 | BRCA1 and other HDR pathway genes are essential in HAP1 cells. a, The q-value rankings of HDR pathway genes (N = 66, defined 
by Gene Ontology) among 14,306 genes scored in a HAP1 gene trap screen for essentiality28 are indicated with tick marks. Essential HDR genes 
are colored red and those implicated in cancer predisposition are labelled in the enlargement below. Of the 66 HDR pathway genes scored, 34 
including BRCA1 were ‘essential’, a 3.4-fold enrichment compared to non-HDR genes (Fisher’s exact P = 6.1 x 10-12).  b, HAP1 cell populations 
were transfected with a Cas9/gRNA plasmid either targeting the non-essential gene HPRT1 (control) or exon 17 of BRCA1 on day 0. Successfully 
transfected cells were selected with puromycin (days 1-4) and cultured until day 7, at which point cells were washed prior to imaging. Images are 
representative of two transfection replicates. c, The targeted BRCA1 exon 17 locus was deeply sequenced from a population of transfected cells 
sampled on day 5 and day 11. The fold-change from day 5 to day 11 for each editing outcome observed at a frequency over 0.001 in day 5 sequencing 
reads is plotted. All alleles but indel-free sequences and two in-frame insertions were depleted. d, Saturation genome editing experiments were 
designed to introduce all possible SNVs across thirteen BRCA1 exons encoding the protein’s RING (exons 2-5) and BRCT domains (exons 15-23). 
For each exon, a Cas9/gRNA construct was designed to be transfected with a library of plasmids containing all SNVs across ~100 bp of genomic 
sequence (the ‘SNV library’). SNV libraries were designed to saturate a total of 1,345 bp of genomic sequence, spanning BRCT and RING domain 
coding regions and adjacent intronic sequences. SNV library plasmids contain homology arms to mediate genomic integration, as well as fixed 
synonymous variants within the CRISPR target site to prevent Cas9 re-cutting. Upon HAP1 cell transfection of each Cas9/gRNA plasmid / SNV 
library pair, successfully edited cells harbor a single BRCA1 SNV from the library. Cells are sampled 5 and 11 days after transfection and targeted 
gDNA and RNA sequencing is performed to quantify SNV abundances. SNVs compromising BRCA1 function are selected against, manifesting in 
reduced gDNA representation, and SNVs impacting mRNA production are depleted in RNA samples relative to gDNA.  
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 Figure 2 | Saturation genome editing enables functional classification of 3,893 BRCA1 SNVs. a, HDR editing rates were calculated for each 
exon as the fraction of day 5 reads containing the SNV library’s fixed synonymous variant (i.e. an ‘HDR marker’ edit). The average of two WT 
HAP1 replicates and two HAP1-Lig4KO replicates is plotted for comparison. (Asterisk denotes missing exon 22 data.) b, The fraction of all possible 
SNVs scored is shown for each exon. SNVs were excluded mainly due to proximity to the HDR marker and/or poor sampling (Extended Data Fig. 
6 and Methods). c-f, Reproducibility was assessed across all exon replicates (Extended Data Fig. 5). Measurements for exon 17 SNVs assayed in 
HAP1-Lig4KO cells are plotted to show correlations of day 5 frequencies (c, ɏ  = 0.97), day 11 over library ratios (d, ɏ  = 0.95), function scores 
(e, ɏ  = 0.88), and RNA expression scores (f, ɏ  = 0.61). g, A histogram of 3,893 SNV function scores (averaged across replicates and normalized 
across exons) shows how each category of mutation compares to the overall distribution. h, The number of SNVs within each category of mutation 
is plotted and colored by functional classification determined by SGE. (NS = nonsense, CS = canonical splice, SYN = synonymous, INT = intronic, 
SR = splice region, 5’UTR = 5’ untranslated region, MIS = missense.) 
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Figure 3 | SGE function scores are highly accurate at predicting clinical interpretations of BRCA1 SNVs. a, The distribution of SNV function 
scores colored by ClinVar interpretation. Scores are shown for the 375 SNVs with at least a ‘1-star’ review status in ClinVar and either a 
‘pathogenic’ or ‘benign’ interpretation (including ‘likely’). The dashed lines indicate the functional classification thresholds determined by mixture 
modeling (gray = intermediate, black = non-functional). b, An ROC curve reveals optimal sensitivity and specificity for classifying the same 375 
SNVs in a at SGE function score cutoffs from -1.03 to -1.22. c, The distribution of scores plotted as in a for the 378 SNVs annotated as variants of 
uncertain significance or with conflicting interpretations. 91.3% of such variants are classified as ‘functional’ or ‘non-functional’ by SGE. d,e, 
SNVs are colored by ClinVar annotation. d, Among the 302 SNVs assayed also present in gnomAD, higher allele frequencies associated with 
higher function scores (Wilcoxon Signed Rank Test, P = 3.7 x 10-12). e, CADD scores (which predict deleteriousness) inversely correlate with 
function scores. 
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Figure 4 | Sequence-function maps for 13 BRCA1 exons. The 3,893 SNVs scored with SGE are each represented by a box corresponding to 
coding sequence position (NCBI transcript ID: NM_007294.3) and nucleotide identity. Boxes are filled corresponding to functional class, and 
outlined corresponding to the SNV’s mutational consequence. Red lines within boxes mark SNVs depleted in RNA; one line indicates an RNA 
score between -2 and -3 (log2 scale) and two lines indicate a score below -3. RNA measurements were determined only for exonic SNVs, excluding 
exon 18. Reference nucleotides are indicated by dark gray letters; blank boxes indicate missing data. 
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Figure 5 | Measuring SNV mRNA abundance and function in parallel delineates mechanisms of variant effect. a, Function scores are plotted 
against RNA scores for all exonic synonymous and missense SNVs scored  (N = 2,646). Horizontal dashed lines indicate functional thresholds, and 
vertical dotted lines mark RNA scores of -2 and-3. b,c, Function scores for all SNVs were mapped onto the structures of the  RING (b, pdb 1JM7) 
and BRCT (c, pdb 1T29) domains in shades of red by averaging missense SNV scores at each amino acid position.  The number of SNVs that cause 
>75% reduction in RNA levels at each amino acid position is represented by the size of the sphere at the alpha-carbon at each residue. Grey denotes 
residues not assayed and the BACH1 peptide bound to the BRCT structure is colored slate blue. d,e,f, SNV RNA scores are plotted by transcript 
position, with lines denoting SNV functional classification. d, Examples of non-functional SNVs with low RNA scores that create new 5’-GU 
splice donor motifs are shown. Complete maps of RNA scores for exons 16 (e) and exon 19 (f) reveal highly variable sensitivity to RNA depletion. 
The location of the strongest predicted exonic splice enhancer in exon 1642 is indicated by the orange line (e).
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Extended Data Figure 1 | CRISPR targeting of HDR pathway genes to confirm essentiality in HAP1 cells. a, Schematic;
HAP1 cells are transfected with a plasmid expressing a gRNA and a Cas9-2A-puromycin cassette29 . Due to low transfection rates
for HAP1 cells, puromycin selection reduces viable cells in all transfections. Over time, however, CRISPR targeting of non-
essential genes leads to increased cell growth compared to CRISPR targeting of essential genes. b, Cell viability of HAP1 cells
transfected with Cas9/gRNA constructs targeting different HDR genes and controls (HPRT1, TP53) was measured using the
CellTiterGlow assay. Luminescence is proportional to the number of living cells in each well when the assay is performed.
Triplicate wells for each gRNA at each time point were processed, quantified on a plate reader and averaged. gRNA sequences are
included in Supplementary Table 2.
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Extended Data Figure 2

Extended Data Figure 2 | Analysis of Cas9-induced indels observed in BRCA1 SGE experiments. Variants observed in gDNA
sequencing were included in this analysis if i) they aligned to the reference with either a single insertion or deletion within 15 bp of
the predicted Cas9 cleavage site and ii) were observed at a frequency greater than 1 in 10,000 reads in both replicates. a,
Histograms show the number of unique indels observed of each size, with negative sizes corresponding to deletions. More unique
indels were observed in WT HAP1 cells compared to HAP1-Lig4KO cells for exons compared (WT data for exon 22 was
excluded). b, Day 11 over day 5 indel frequencies were normalized to the median synonymous SNV in each replicate and then
averaged across replicates to measure selection on each indel. The distribution of selective effects is shown for each experiment as
a histogram, in which indels are colored by whether their size was divisible by 3 (i.e. ‘in-frame’ vs. ‘frameshifting’). Whereas
frameshifting variants were consistently depleted, some exons were tolerant to in-frame indels.
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Extended Data Figure 3
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Extended Data Figure 3 | HAP1 cell line optimizations for saturation genome editing to assay essential genes. a, A gRNA
targeting Cas9 to the coding sequence of LIG4, a gene integral to the non-homologous end-joining pathway, was cloned into a
vector co-expressing Cas9-2A-GFP29. WT HAP1 cells were transfected, and single GFP-expressing cells were sorted into wells of
a 96-well plate. Eight monoclonal lines were grown out over a period of three weeks and screened using Sanger sequencing for
frameshifting indels in LIG4. The Sanger trace shows the frameshifting deletion present in the clonal line chosen for subsequent
experiments, referred to as ‘HAP1-Lig4KO’. b, To purify HAP1 cells for haploid cells, live cells were stained for DNA content
with Hoechst 34580 and sorted using a gate to select cells with the lowest DNA content, corresponding to 1N cells in G1. c-e, Plots
comparing SNV function scores across replicate experiments for exon 17 saturation genome editing experiments performed in
unsorted WT HAP1 cells (c), HAP1-Lig4KO cells (d), and WT HAP1 cells sorted on 1N ploidy (e). Both LIG4 knockout and 1N-
sorting improved replicate correlations.
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Extended Data Figure 4 | Correlations for SNV measurements within single experiments, across transfection replicates, and
to CADD scores for all SGE experiments. Heatmaps indicate Spearman correlation coefficients for SNV measurements from
experiments in WT HAP1 cells (a) and in HAP1-Lig4KO cells (b). Gray boxes indicate absent RNA data from WT HAP1 cells.
The four leftmost columns show how SNV frequencies correlate between samples from within a single replicate experiment. The
unusually high correlations between exon 22 SNV frequencies in the plasmid library and in day 5 gDNA samples from WT HAP1
cells suggests plasmid contamination in gDNA. Indeed, primer homology to a repetitive element in the exon 22 library was
identified. Consequently, the WT HAP1 exon 22 data was removed from analysis and a different primer specific to gDNA was
used to prepare exon 22 sequencing amplicons from HAP1-Lig4KO cells. The low HAP1-Lig4KO correlations between exon 18
SNV frequencies in day 5 gDNA and RNA and between RNA replicates suggests RNA sample bottlenecking consequential to low
RNA yields. Therefore, exon 18 RNA was also excluded from analysis. Consistent with the higher rates of HDR-mediated genome
editing (Fig. 2a), replicate correlations (middle columns) were generally higher in HAP1-Lig4KO cells than WT HAP1 cells.
CADD scores predict the deleteriousness of each SNV, and are therefore negatively correlated with function scores (rightmost
columns).
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Extended Data Figure 5 

Extended Data Figure 5 | Models of SNV editing rates across BRCA1 exons account for positional biases. a, Gene conversion
tracts arising during HDR in human cells are short such that library SNVs are introduced to the genome more frequently near the
CRISPR target site. We modelled this positional effect in our data using a LOESS regression fit on day 5 over library SNV ratios.
Plots shown here are of the average of two replicate experiments per exon, with the black line indicating the LOESS regression. By
day 5 sampling, selective effects on gene function are evidenced by nonsense SNVs (red) appearing at lower frequencies compared
to neighbouring SNVs. Therefore, to best approximate the SNV editing rate as a function of position alone (i.e. the ‘baseline’), the
regression excluded SNVs that were selected against between day 11 and day 5 (see Methods). b,c, Day 11 over library SNV ratios
were adjusted by the positional fit for each experiment in calculating function scores. This adjustment is illustrated here for an exon
3 replicate by plotting the ratio as a function of position before (b) and after (c) adjustment. The elevated day 11 over library ratios
for SNVs near the CRISPR target site are corrected to achieve a more uniform baseline across the mutagenized region. d,e, The
distributions of SNV day 11 over library ratios before and after accounting for positional effects are shown, colored by mutational
consequence (pre-filtering, N = 4,002).
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a

13 RING and BRCT exons, 1,345 nt, 4,035 possible SNVs

BRCA1
RING

exons 2-5
BRCT

exons 15-23

4,002 SNVs with HDR markers above 1 in 100,000 Day 5 reads in each replicate 

Exclude SNVs likely biased by Cas9 editing:  44 removed, 3,958 SNVs remain
- SNVs at same position as target site-disrupting SNV (e.g. NNG) (28)
- SNVs WKDW�FUHDWH�D�QHZ�3$0�VKLIWHG���ES��·��e.g. NCGG) (9)
- Exon 5 SNVs adjacent to the edited PAM site (e.g. NAGN) (6)
- SNVs near PAM edits highly depleted on Day 5 (2)
- SNVs with corrected Day 5 / library ratios >2-fold higher than expected (7) 

Exclude SNVs with discordant function scores across replicates:  14 removed, 3,944 SNVs 
remain 

- Discordant definition:  replicate function scores differing by >2 and SNV classified 
oppositely (14)

Exclude multinucleotide variants (SNVs within 2bp of an edited PAM site and likely to differ in 
consequence due to the edited PAM):  51 removed, 3,893 SNVs remain

- SNV results in different codon change due to PAM edit (39)
- SNV results in low RNA (>75% reduction) and is within 2 bp of PAM edit (2)
- 619�FUHDWHV�SRWHQWLDO��·-GT splice donor if not for PAM edit (10)
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Extended Data Figure 6 | SNV filtering to prevent erroneous functional classification. a, The flow chart describes filters used
to produce the final SNV data set and shows how many SNVs were removed at each step. b, Raw day 5 over library SNV ratios are
shown for a portion of exon 15 to illustrate how re-editing biases necessitate filtering. The three depleted SNVs marked with
asterisks create alternative PAM sequences that likely allow the Cas9:gRNA complex to re-cut the locus and cause their removal.
For other SNVs, the fixed PAM edit (a GGG to GCG synonymous change) minimalizes re-editing. The location of the target PAM
is underlined and each indicated SNV is bolded in the annotations. The LOESS regression curve in shown in black. c,d, Plots show
the relationship between day 5 over library and day 11 over day 5 ratios before (c) and after (d) filtering steps 1 and 2. Filtering
removes outliers because editing biases primarily affect the day 5 over library ratio. e-g, Histograms show the distributions of
function scores for SNVs deemed ‘pathogenic’ or ‘benign’ in ClinVar at different stages of filtering. Scores in e are derived prior
to normalization across exons.
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Extended Data Figure 7 | Mixture modeling of scores to classify SNVs by functional effect. a, Distributions of ‘non-functional’
and ‘functional’ SNVs plotted here were defined respectively as all nonsense SNVs and all synonymous SNVs with RNA scores
within 1 SD of the median synonymous SNV. b, An ROC curve was generated using SGE function scores to distinguish the 634
‘functional’ and ‘non-functional’ SNVs defined in a. c, A two-component Gaussian mixture model was used to produce point
estimates of the probability that each SNV was ‘non-functional’, P(nf), given its average function score across replicates. These P-
values are plotted in d against function scores for a subset of the data. Thresholds were set such that P(nf) < 0.01 corresponds to
‘functional’, and P(nf) > 0.99 corresponds to ‘non-functional’, and 0.01 < P(nf) < 0.99 corresponds ‘intermediate’ classification.
Functional classification thresholds are drawn as dashed lines; black denotes the non-functional threshold and gray the intermediate
threshold. e,f, SNV function scores across replicates are plotted for each exon with SNVs colored by mutational consequence (e),
and for each type of mutational consequence with SNVs colored by ClinVar status (f). Using the optimal function score cutoff for
all SNVs tested (Fig. 3b), sensitivities and specificities for distinguishing ‘Pathogenic’/’Likely pathogenic’ from ‘Benign’/’Likely
benign’ ClinVar annotations for each type of mutation are as follows: 92.7% and 92.9% for missense SNVs (N = 55), 100% and
100% for splice region SNVs (N = 23), and 95.2% sensitivity for canonical splice site SNVs (N = 83; specificity not calculable).
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Extended Data Figure 8 | BRCA1 SNVs observed more frequently in large-scale population sequencing are more likely to
score as functional. SNV function scores are plotted against Bravo allele frequencies (a) and FLOSSIES allele frequencies (b). a,
Bravo is a collection of whole genome sequences ascertained from 62,784 individuals through the NHLBI TOPMed program.
Similarly to SNVs present in gnomAD (Fig. 3d), higher allele frequencies of SNVs in Bravo correlate with higher function scores.
b, FLOSSIES is a database of variants seen in targeted sequencing of breast cancer genes sampled from approximately 10,000
cancer-free women at least 70 years old. Only 1 of 39 SNVs observed in FLOSSIES scored as non-functional. c,d, Missense SNVs
in ClinVar are separated by whether they have (c) or have not (d) been seen in either gnomAD or Bravo and function scores across
replicates are plotted, with dashed lines demarcating functional classes. A higher proportion of ClinVar missense SNVs absent
from gnomAD and Bravo score as non-functional (50.6% vs. 15.7%, Fisher’s exact P = 1.80 x 10-17).
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Extended Data Figure 9 | SGE function scores correlate with computational metrics and perform favorably at predicting
ClinVar annotations. a, SNV function scores are plotted against mammalian phyloP scores, with colors indicative of ClinVar
status. b,c, ROC curves show the performance of CADD scores and phyloP scores for discriminating ClinVar ‘pathogenic’ and
‘benign’ SNVs (including ‘likely’), as described in Fig. 3b for SGE data. d-g Plots as in a, but for missense SNVs only, showing
correlations between SGE function scores and CADD39 scores, phyloP scores40, Grantham differences (Grantham amino acid
variation minus Grantham amino acid deviation; GV - GD), and align-GVGD classifications53. Missense SNV function scores also
correlate with SIFT scores54 (⍴ = 0.363) and PolyPhen-2 scores55 (⍴ = -0.277). (P < 1 x 10-37 for all correlations.) h-l, ROC curves
assess the performance of SGE function scores and each indicated metric at distinguishing firmly ‘pathogenic’ and ‘benign’
missense SNVs. (i.e. not including ‘likely’).
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Extended Data Figure 10 | Evidence supporting SNV scores in discordance with ClinVar classifications. Function scores of
SNVs classified as ‘benign’ or ‘pathogenic’ (including likely’s) are shown across replicates for experiments using HAP1-Lig4KO
cells (a) and for preliminary experiments using WT HAP1 cells (b). Plots exclude exons with low overall reproducibility in WT
HAP1 cells (replicate correlations < 0.4: exons 15, 18, 20 and 22). The three SNVs firmly discordant with ClinVar are labelled 1-3
in a, corresponding to c.5359T>A (dark red 1), c.5044G>A (dark blue 2), and c.-19-2A>G (dark red 3), respectively. The same
filtering criteria were applied to both sets of experiments, which led to the removal of SNV 3 from the WT HAP1 data due to
disagreement of scores between replicates. Discordant ‘likely pathogenic’ SNVs (4,5), an intermediate scoring ‘benign’ SNV (6)
and a discordant ‘likely benign’ SNV (7) are also labelled for comparison. c, The sequence-function map of exon 21 is shown with
the function scores for the two ‘pathogenic’ SNVs observed in linkage indicated. Dashed lines demarcate functional classifications.
d, Function scores are plotted against CADD scores for all canonical splice SNVs assayed, colored by ClinVar status. The six
possible exon 2 splice acceptor SNVs (circled) have the lowest CADD scores among all canonical splice SNVs assayed, and none
score as ‘non-functional’. e, GTEx browser shots show that many of the most common BRCA1 transcripts mapped from ovarian
and breast tissues lack the exon 1 / exon 2 junction.
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