1	Emergence of mosaic plasmids harboring Tn1546-ermB element in Staphylococcus
2	aureus isolates
3	
4	Tsai-Wen Wan, ^a Yu-Tzu Lin, ^a Wei-Chun Hung, ^b Jui-Chang Tsai, ^{c,d} Yu-Jung Liu, ^a Po-
5	Ren Hsueh, ^{e,f} Lee-Jene Teng ^{a,e} #
6	
7	^a Department of Clinical Laboratory Sciences and Medical Biotechnology, National
8	Taiwan University College of Medicine, Taipei, Taiwan
9	^b Department of Microbiology and Immunology, Kaohsiung Medical University,
10	Kaohsiung, Taiwan
11	°Institute of Medical Device and Imaging, National Taiwan University College of
12	Medicine, Taipei, Taiwan
13	^d Division of Neurosurgery, Department of Surgery, National Taiwan University
14	Hospital, Taipei, Taiwan
15	^e Department of Laboratory Medicine, National Taiwan University Hospital, Taipei,
16	Taiwan
17	^f Department of Internal Medicine, National Taiwan University Hospital, Taipei,
18	Taiwan

- 20 Running Head: Tn1546-ermB plasmids in Staphylococcus aureus
- 21 Keywords: *Staphylococcus aureus*, Tn1546-ermB, plasmid
- 22 #Address correspondence to Lee-Jene Teng, <u>ljteng@ntu.edu.tw.</u>

23	ABSTRACT Antimicrobial resistance in Staphylococcus aureus is a major problem
24	and the acquisition of resistance genes may occur by horizontal gene transfer (HGT).
25	The transposon, an important means of HGT, is recognized as a mobile genetic
26	element that can integrate in plasmids, replicate and transfer to other strains. We have
27	previously reported a novel structure of the Enterococcus faecium-originated Tn1546-
28	ermB element in S. aureus. The emergence of the Tn1546-like element is an emerging
29	problem that requires continuous monitoring. In the present study, we expand the
30	examination of Tn1546-ermB element to ermB-positive methicillin-susceptible S.
31	<i>aureus</i> (MSSA) ($n = 116$) and <i>ermB</i> -positive methicillin-resistant <i>S. aureus</i> (MRSA)
32	(n = 253) during a 16-year period, from 2000 to 2015. PCR mapping showed that 10
33	MSSA and 10 MRSA carried the Tn1546-ermB element. The 10 MSSA belonged to
34	three sequence types (ST), ST7 ($n = 6$), ST5 ($n = 3$), and ST59 ($n = 1$), and the 10
35	MRSA belonged to two STs, ST188 ($n = 8$) and ST965 ($n = 2$). Since only clonal
36	complex 5 (including ST5, ST85, ST231, and ST371) MRSA, ST8 MRSA and ST5
37	MSSA have been previously reported to carry Tn1546 plasmids, this is the first report
38	describing the presence of the Tn1546-ermB element in ST7/5/59 MSSA and
39	ST188/965 MRSA. Plasmid sequencing revealed that the Tn1546-ermB element was
40	harbored by five different mosaic plasmids. In addition to resistance genes, some
41	plasmids also harbored toxin genes.

43 INTRODUCTION

44	Antimicrobial resistance in <i>Staphylococcus aureus</i> is a major problem due to its
45	high capacity to acquire drug resistance genes by horizontal transfer (1). The problem
46	of multidrug-resistant S. aureus is becoming more serious, and the available drugs to
47	combat it are decreasing (2).
48	Antibiotic resistance is highly prevalent among common pathogenic bacteria in
49	Taiwan. For example, the rate of oxacillin resistance in 33,305 S. aureus isolates from
50	eight medical centers in Taiwan is approximately 60%, and the rates of resistance to
51	erythromycin, clindamycin, gentamicin, and tetracycline are also very high (3).
52	Erythromycin, a macrolide class antibiotic, is an old and well-established
53	antimicrobial agent that was approved in Taiwan in 1968 (4). Due to its long history
54	of usage in Taiwan, S. aureus isolates are highly resistant to erythromycin (3).
55	There are two major mechanisms for resistance to erythromycin. One uses
56	methylase (encoded by erm) which methylates 23S rRNA, thereby altering the drug
57	binding site, thus conferring resistance not only to macrolides (erythromycin) but also
58	to lincosamides (clindamycin) and streptogramin B (MLS phenotype) antibiotics. The
59	common erm gene in S. aureus is in Tn554-ermA (5, 6), Tn551-ermB (7, 8), and ermC
60	(5). The second mechanism is through an efflux pump encoded by the $msrA$ or $msrB$,
61	which confers resistance to the macrolides and streptogramin B only (MS phenotype)

62 (9).

63	We previously reported that the most prevalent resistance gene in erythromycin-
64	resistant blood isolates of methicillin-susceptible S. aureus (MSSA) collected from
65	2000 to 2012 in Taiwan was ermB (10). Although the majority (92%) of ermB-
66	positive MSSA isolates carried structures resembling the mobile element structure
67	(MES) that has been reported in sequence type 59 (ST59) MRSA (8, 11), we found a
68	unique structure, the $Tn1546$ -ermB element (10). The significance of the $Tn1546$ -
69	ermB element is that Tn1546 is also responsible for vancomycin resistance in
70	Enterococcus spp. (12, 13). The Tn1546-vanA was mainly located on the RepA_N
71	(pRUM/pLG1) and Inc18 plasmid families in vancomycin-resistant E. faecium
72	(VREfm) (14). The plasmids RepA_N (pRUM/pLG1) were able to yield plasmid
73	mosaics and acquire Tn1546-vanA, which was the main reason that vanA spread in
74	VREfm (14).
75	Tn1546 could acquire different insertion sequences (ISs), including the most
76	frequently acquired IS1216V, as well as IS1542, IS1251, and IS19 (15-18). A 92-kb
77	plasmid of <i>E. faecium</i> , pHKK701, contains a 39-kb Tn5506, which carries <i>ermB</i> and
78	IS1216V, and contains Tn1546 with vanA (8, 19). The novel Tn1546-ermB element,
79	Tn1546-carrying Tn551-ermB and IS1216V was recently reported in S. aureus by our
80	group (10).

- 81 In this study, we examined the prevalence of the Tn1546-ermB element in MSSA
- 82 and MRSA during a 16-year period, from 2000 to 2015. The presence of a Tn1546-
- 83 like element in different plasmids and lineages of *S. aureus* is an indication that *S.*
- 84 *aureus* may have the chance to acquire Tn1546-vanA by horizontal gene transfer
- 85 (HGT).

86 **RESULTS**

87	Prevalence of the Tn1546-ermB element. Of 340 erythromycin-resistant MSSA
88	isolates collected between 2000 and 2015, 112 (33%) carried the <i>ermB</i> gene. Of 1429
89	erythromycin-resistant MRSA isolates collected between 2006 and 2015, 224 (16%)
90	carried the <i>ermB</i> gene. However, only 10 MSSA and 10 MRSA carried the Tn1546-
91	ermB element.
92	Molecular epidemiology of the Tn1546-ermB element-carrying isolates. To
93	determine the clonal relation between 10 MSSA and 10 MRSA isolates carrying the
94	Tn1546-ermB element, we performed spa typing, multi-locus sequence typing
95	(MLST) (Table 1) and pulsed-field gel electrophoresis (PFGE) (Fig. 1). Of the 10
96	MSSA isolates, six belonged to ST7 (spa type t796), three belonged to ST5 (spa type
97	t002 and t242) and one isolate belonged to ST59 (spa type t216). Of the 10 MRSA
98	isolates, eight belonged to ST188 (spa type t189 and t5529) and two isolates belonged
99	to ST965 (spa type t575 and t062). The results of PFGE are shown in Fig. 1. Three
100	ST5 MSSA isolates from 2002, 2010 and 2012 samples belonged to the same
101	pulsotype (with 80% similarity cut-off). Two ST965 (CC5) MRSA isolates obtained
102	from 2012 and 2014 samples were very closely related to ST5 MSSA. Six ST7 MSSA
103	isolates obtained from 2004 to 2016 samples belonged to the same pulsotype, and the
104	four isolates from 2012 to 2015 samples were identical. Eight ST188 MRSA isolates

105 obtained from 2009 to 2014 samples belonged to the same pulsotype, and six of them

106 were identical.

107	Sanger sequence	cing of the	e Tn <i>1546-ermB</i>	element and	homology	analysis.

- 108 Representative strains of each STs (ST5 MSSA NTUH 9448, ST7 MSSA
- 109 NTUH 1027, ST59 MSSA NTUH 3874, ST188 MRSA NTUH 6457 and ST965
- 110 MRSA NTUH_5066148) were chosen for sequencing to determine the sequence of
- 111 Tn1546-ermB element. The size of the Tn1546-ermB element in all of the above
- strains is 14,567 bp. The sequences of Tn1546-ermB element in ST7 MSSA
- 113 NTUH_1027 and ST965 MRSA NTUH_5066148 were 100% identical. ST5 MSSA
- 114 NTUH_9448 had a nucleotide difference G1354A in *tnp* gene of Tn551 causing
- 115 G452R. ST188 MRSA NTUH_6457 had a nucleotide difference downstream of *ermB*
- 116 gene. ST59 MSSA NTUH 3874 had four nucleotides difference: (1) point mutation
- 117 (A299G) of *ermB* gene resulting in N100S, (2) non-coding region point mutation
- downstream of *ermB* gene, (3) point mutation (G765A) of *tnp* gene of Tn551, (4)
- 119 premature nonsense mutation in *tnp* gene of Tn551, shortening the amino acid length
- 120 from 972 to 857.
- 121 **Location of Tn1546-ermB element.** To determine the location of the Tn1546-
- 122 *ermB* element, the agarose plugs of 10 MSSA and 10 MRSA isolates were digested
- 123 with S1 nuclease (Fig. 2) and then hybridized with a Dig-labeled *ermB*-specific probe

124	prepared by PCR amplification of <i>ermB</i> using primers ermB-f and ermB-r (Table 2).
125	Isolates of the same ST (ST5, ST7, ST188 and ST965) harbored similar size of
126	plasmids containing ermB (Fig. 2).
127	Sequence analysis of five plasmids harboring the Tn1546-ermB element. The
128	sequences of plasmids in ST5 MSSA NTUH_9448, ST7 MSSA NTUH_1027, ST59
129	MSSA NTUH_3874, ST188 MRSA NTUH_6457 and ST965 MRSA NTUH_5066148
130	were determined. Fig. 3 presents the genetic structures of the five plasmids. The 14.5-
131	kb Tn1546-ermB element was inserted in four different backbones. Among them, the
132	plasmids pNTUH_1027 and pNTUH_6457 (Fig. 3A and 3B) showed mosaic
133	structures that included Tn1546-ermB and a 20.7-kb backbone which is similar to
134	pSaa6159 (NCBI accession no. CP002115) of ST93 MRSA. The <i>repA</i> gene and the
135	backbone of the above two plasmids were 100% and 99.9% identical, respectively, to
136	those in pSaa6159. The Tn1546-ermB element was inserted at the eleven o'clock
137	position in pNTUH_1027. The Tn1546-ermB element was inserted at three o'clock
138	position in pNTUH_6457 with the disruption of a <i>tnp</i> gene of Tn552. Plasmid
139	pNTUH_5066148 (Fig. 3C) was also a mosaic plasmid and contained the Tn1546-
140	<i>ermB</i> and a 24.7-kb backbone which is similar to pCA-347 (NCBI accession no.
141	CP006045) of ST45 MRSA is essentially identical to pN315 (NCBI accession no.
142	AP003139) of ST5 MRSA. The <i>repA</i> gene and the backbone of the pNTUH_5066148

143	was 100% and 99.8% identical, respectively, to those in pCA-347. The Tn1546-ermB
144	element was inserted at the eleven o'clock position in pNTUH_5066148 with the
145	disruption of one of the three rep gene, shortening the amino acid length from 286 to
146	271. Plasmid pNTUH_9448 (Fig. 3D) was another mosaic plasmid, in which the 14.5-
147	kb Tn1546-ermB element was inserted at the five o'clock position and disrupted an
148	alcohol dehydrogenase gene. The <i>repA</i> gene and the backbone of the pNTUH_9448
149	was 100% and 94.5% identical, respectively, to those in pWBG744.
150	Plasmid pNTUH_3874 (Fig. 3E) showed unique features. Nucleotide-nucleotide
151	BLAST analysis found no significant matches except for the region containing the
152	Tn1546-ermB element. Annotation revealed that Tn1546-ermB element has 11 ORFs,
153	and the backbone of plasmid pNTUH_3874 has 35 annotated ORFs, including three
154	conjugal transfer genes (<i>traB</i> , <i>traE</i> and truncated <i>traK</i>), one resolvase gene, one DNA
155	topoisomerase I gene and two DNA topoisomerase III genes.
156	Tn1546-ermB plasmids in other isolates. PCR mapping was used to determine
157	whether the other Tn1546-ermB-carrying plasmids contain similar structures in each
158	ST (Fig. S1, Table S1). Our results indicated that the plasmids in two remaining ST5
159	MSSA, six ST7 MSSA, seven ST188 MRSA, and one ST965 MRSA display similar
160	plasmid structures corresponding to each ST.
161	Conjugal transfer frequency of plasmids harboring the Tn1546-ermB element.

162	To determine whether Tn1546-ermB element-carrying plasmids could be transferred
163	in vitro from the clinical ST5/7/59/188/965 S. aureus to the laboratory strain ST8
164	RN2677, we performed conjugation tests. The Tn1546-ermB element-carrying
165	plasmids could be transferred from ST5 NTUH_9448, ST7 NTUH_1027, ST59
166	NTUH_3874, and ST965 NTUH_5066148 to RN2677 with a frequency of 3.1x10 ⁻¹⁰ ,
167	10 ⁻⁷ , 4.4x10 ⁻¹⁰ , and 1.5x10 ⁻¹⁰ per recipient cell, respectively. Transconjugants were
168	characterized by PCR to test for the presence of <i>ermB</i> and <i>tnp</i> of Tn1546, and by <i>spa</i>
169	typing, and by erythromycin/gentamicin susceptibility testing. The results showed that
170	the four different Tn1546-ermB plasmids could be transferred in vitro, and the
171	resulting four transconjugants were resistant to erythromycin and gentamicin (Table
172	3).

DISCUSSION

174	This study continued the work of our previous study in which the novel structure of
175	an <i>E. faecium</i> -originated Tn1546-ermB element in MSSA was reported (10). In the
176	present study, we examined the presence of Tn1546-ermB plasmids in more isolates
177	of MSSA and MRSA. The overall prevalence of Tn1546-ermB plasmid in
178	erythromycin-resistant S. aureus was low, and was slightly higher in MSSA than
179	MRSA. This result is expected since most of our MRSA isolates were resistant to
180	erythromycin and belonged to ST5/SCCmecII or ST239/SCCmecIII harboring ermA
181	located on Tn554 (20).
182	The most frequent ST of 20 Tn1546-ermB positive isolates is ST188 SCCmecIVa
183	MRSA (n = 8), followed by ST7 MSSA (n = 6). The ST188 was the common ST of
184	MSSA in Taiwan (21). However, the ST188 in MRSA is rare in Taiwan; only one
185	nasal carriage and one bloodstream report have referred to the ST188 MRSA (22, 23).
186	ST188 MRSA is also rare in other countries. Recently, Hong Kong (24, 25), China
187	(26) and Korea (27) showed the occurrence of ST188 MRSA. We examined the
188	ST188 MRSA isolates recovered from blood from 2006 to 2012 in NTUH, and found
189	that all the tested ST188 MRSA isolates harbored the Tn1546-ermB plasmid. The
190	reason for this finding is unclear. PFGE analysis shows that ST188 MSSA and ST188
191	MRSA belong to different pulsotypes (data not shown), suggesting some level of

192 genetic diversity.

193	The ST7 MSSA is one of the major sequence types of MSSA bacteremia in Taiwan
194	(21) and is a prevalent clonotype (13/92, 14.1%) for invasive community-acquired
195	MSSA infection (28). ST7 MSSA was the dominant MSSA carrying Tn1546-ermB
196	element in this study.
197	Three ST5 MSSA and two ST965 MRSA carried the Tn1546-ermB plasmid. ST965
198	is a single-locus variant (SLV) of ST5. Our data shows that ST5 MSSA and ST965
199	harbored different plasmids. However, according to PFGE data, the pulsotypes of ST5
200	MSSA and ST965 MRSA were very close. Twelve cases of vancomycin-resistant S.
201	aureus (VRSA) infection have been reported in the United States-all CC5 strains,
202	each have Tn1546-vanA. The CC5 isolates appear to be very well adapted for
203	acquiring Tn1546 (29). In the present study ST5-CC5 MSSA and ST965-CC5 MRSA
204	acquired Tn1546.
205	The S1 nuclease PFGE analysis showed that each Tn1546-ermB positive strain
206	harbored only one plasmid. Isolates of the same ST carried a similar size and the same
207	structure of plasmid. The earliest strain of this study was ST5 MSSA NTUH_My675
208	isolated from 2002, which indicates that the acquisition of the Tn1546-ermB element
209	in S. aureus did not occur recently.
210	Sequencing of plasmids revealed that there were four different plasmid backbones

0 4 4					•		
211	inserted with t	ne Tn <i>1546-ermB</i>	' element to f	orm five i	mosaic r	plasmids.	The ST/

212	pNTUH	1027 and ST188	pNTUH 645'	7 shared nearly	y identical	plasmid backbones

- and best match to a 20.7-kb pSaa6159 (NCBI accession no. CP002115) derived from
- a dominant clone ST93 isolated in 2004 from community-associated MRSA (CA-
- 215 MRSA) in Australia (30, 31). Plasmid pSaa6159 was also highly similar to the pMW2
- 216 plasmid (NCBI accession no. AP004832) from strain MW2 USA400 ST1 MRSA,
- 217 which caused fatal septicemia and septic arthritis in a 16-month-old girl in North
- 218 Dakota, USA, in 1998 (32). The pMW2-like plasmids are common with a wide
- 219 geographical distribution (33). This is the first report that pMW2-like plasmid
- 220 obtained Tn1546.
- The best match of the plasmid backbones from ST965 NTUH_5066148 was a 24.7-
- kb pCA-347 (NCBI accession no. CP006045), derived from a dominant clone
- 223 USA600 ST45 MRSA from a bacteremia infection in 2005 in California (34). Plasmid
- pCA-347 was also highly similar to the pN315 plasmid (NCBI accession no.
- AP003139) from strain N315 ST5 MRSA, was isolated in 1982 from the pharyngeal
- smear of a Japanese patient, which is prevalent in Japan and the USA (35).
- The plasmids from ST7 pNTUH_1027, ST188 pNTUH_6457 and ST965
- 228 NTUH_5066148 contained the identical origin-of-transfer gene *oriT* mimic sequence
- of the pWBG749-family. Since the oriT may facilitate horizontal transmission (36-

230	38), if this kind	d of plasmid	contains the	Tn1546-ermB	element,	then it may a	lso
-----	-------------------	--------------	--------------	-------------	----------	---------------	-----

231	acquire the Tn1546-vanA element. This is alarming since it raises the possibility of
232	the occurrence of the Tn1546-vanA element in S. aureus.
233	The backbone of the plasmid in ST5 pNTUH_9448 is the 27-kb pWBG744 of ST5
234	MSSA. The mobilized plasmid pWBG744 belongs to the pIB485-family that has been
235	reported in clinical and colonizing isolates of S. aureus (39). Plasmid pIB485 is the
236	prototype <i>sed/sej/ser</i> -encoding plasmid of <i>S. aureus</i> . (40-42). The presence of the
237	enterotoxin genes sed, sej and ser in the pIB485-family plasmids have been
238	previously reported (33, 41).
239	Only one isolate of ST59 in our collection carried the Tn1546-ermB plasmid. The
240	plasmid backbone of ST59 pNTUH_3874 is a novel plasmid, since there was no
241	match to its nucleotide sequence in the NCBI database. This plasmid harbored three
242	conjugal transfer genes <i>traB</i> , <i>traE</i> and truncated <i>traK</i> . Since the ST59 is the major
243	genotype in both MSSA and MRSA in Taiwan (43), the occurrence of the Tn1546-
244	ermB plasmid in ST59 needs more attention.
245	Previously the Tn1546 element has only been found in pLW1043 (44) and pBRZ01
246	(45) in S. aureus. The repA gene of the four plasmids in the present study was
247	different from that in pLW1043 (44) or pBRZ01 (45). The size of the <i>repA</i> gene is

248 960 bp in pLW1043, 984 bp in pBRZ01, 861 bp in pSaa6159 (backbone of

249	pNTUH_1027 and pNTUH_6457945), 984 bp in pCA-347 (backbone of
250	pNTUH_5066148), and 945 bp in pWBG744 (backbone of pNTUH_9948). This is
251	the first report of the occurrence of the $Tn1546$ element in new plasmids.
252	Although the overall prevalence of Tn1546-ermB or its plasmids in S. aureus
253	isolates was low, the Tn1546-ermB element has existed from at least 2002 to the
254	present; perhaps there are reservoirs in other species. It is known that the $Tn1546$
255	element originated in <i>E. faecium</i> . However, the sequence of the 14.5-kb Tn1546-ermB
256	element is more similar to that in pMCCL2 of Macrococcus caseolyticus (6, 10).
257	Studies on other species may provide more information. In addition, transposon
258	Tn1546 is the prototype of vanA-carrying transposons; if S. aureus was able to
259	acquire the Tn1546-ermB element, it is likely that it could obtain the Tn1546-vanA
260	element. The transfer of vancomycin resistance to S. aureus has occurred in vivo by
261	interspecies transfer of Tn1546 from a co-isolate of E. faecalis (44). Recently, Rossi
262	et al. reported that a conjugative plasmid carrying the Tn1546-vanA element could be
263	transferred to other staphylococci (46). Thus, the occurrence of Tn1546 in S. aureus
264	should be monitored.

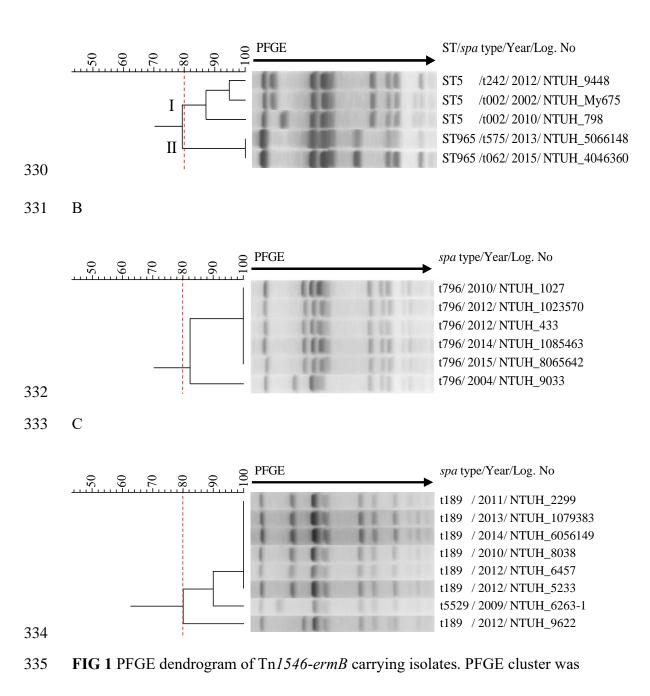
266 MATERIALS AND METHODS

267	Bacterial isolates. All isolates were recovered from blood. The MSSA were
268	collected during the period between 2000 and 2015 and the MRSA were between
269	2006 and 2015 at the Bacteriology Laboratory, National Taiwan University Hospital,
270	a 2,500-bed teaching hospital in northern Taiwan. Only one isolate per patient was
271	collected in this study. S. aureus was identified by the Vitek2 system and nuc gene
272	detection (47). Resistance to methicillin was confirmed by mecA PCR.
273	Detection of Tn1546-ermB element structure in erythromycin-resistant
274	isolates. The Tn1546-ermB element was initially detected by the presence of the tnp
275	gene of Tn1546 and <i>ermB</i> gene by PCR (10). The Tn1546-ermB element structure
276	was mapped by PCR using six primer sets which are listed in Table 2, and the
277	positions of the primers are indicated in Fig. 4. The Tn1546-ermB element structures
278	were determined by combining the PCR mapping results and the profiles of resistance
279	determinants.
280	spa typing, multi-locus sequence typing (MLST), and pulsed-field gel
281	electrophoresis (PFGE). To determine the genetic relatedness of Tn1546-ermB-
282	carrying isolates, spa typing, MLST, and PFGE were performed. The spa typing was
283	performed as described previously (48). MLST was carried out to determine the
284	sequence types (STs), which were assigned using the S. aureus MLST database

285	(<u>www.mlst.net</u>) (49). PFGE was performed as described previously (50). The DNA in
286	gel plugs were digested with SmaI (New England BioLabs, Ipswich, MA, USA) and
287	then separated in a CHEF-DR III apparatus (Bio-Rad Laboratories, Hercules, CA,
288	USA). Plugs were applied to wells in 0.8% (w/v) agarose gels (Bio-Rad). PFGE was
289	carried out at 200 V and 12°C for 20 h, with a pulse angle of 120° and pulse times
290	ranging from 5 to 60 s. The pulsotypes were analyzed by BioNumerics software
291	version 4.0 (Applied Maths, Sint-Martens-Latem, Belgium).
292	S1 nuclease digestion-PFGE. Detection of the presence of plasmids by S1
293	nuclease digestion-PFGE was performed as described previously (50). Plug slices
294	were incubated at 37°C for 45 min with 1-10 unit of Aspergillus oryzae S1 nuclease
295	(Invitrogen) in 150 μl of 50 mM NaCl, 30 mM sodium acetate (pH 4.6) and 1 mM
296	zinc acetate. The plugs were applied to wells of 1.2% (w/v) agarose gels (Bio-Rad),
297	and run in a CHEF-DR III apparatus (Bio-Rad Laboratories) with a pulse angle of
298	120° and pulse times of 45 s for 14 h and 25 s for 6 h, at 200 V in 0.5X Tris-Borate-
299	EDTA (TBE) buffer (51). The linear form of the plasmids separated from the
300	chromosome DNA and the size of plasmids were estimated.
301	Conjugation test. To determine the transfer frequency in vitro, strain RN2677 was
302	used as the recipient in the conjugation test, and mating was carried out on LB agar
303	medium without selection (52). After 24 h, the mixed cultures were taken from the

304	plates, suspended in brain-heart infusion (BHI) broth medium, and then plated onto
305	MHA agar medium containing erythromycin (0.5 μ g/ml) and rifampicin (80 μ g/ml), at
306	37°C and 24 h. Confirmation of transconjugants was carried out by testing for the
307	presence of the <i>ermB</i> gene by PCR. The transconjugants were also checked by <i>spa</i>
308	typing (the spa type of RN2677 is t211) (52).
309	Southern blot hybridization. DNA was electrophoresed, depurinated, denaturated,
310	neutralized, and transferred to a Hybond-N ⁺ nylon membrane (Amersham Pharmacia
311	Biotech, Buckinghamshire, UK) using the Vacuum Blotting System (VacuGene TM
312	XL, Amersham Pharmacia Biotech, Buckinghamshire, UK). Hybridization with the
313	PCR DIG Probe Synthesis Kit (Roche Diagnostics GmbH, Penzberg, Germany) was
314	performed using a Hybridization Incubator Model 1000 (Robbins Scientific).
315	Detection was performed with the Anti-Digoxigenin-AP and DIG Luminescent
316	Detection Kit (Roche Diagnostics GmbH, Penzberg, Germany) and results were
317	captured with the LAS-4000 Imaging System (FUJI FILM Life Science, Japan).
318	Sequencing of plasmids. We used "Long accurate PCR in vitro cloning kit"
319	(Takara Shuzo Co. Ltd., Japan) to amplify and clone the fragments of plasmids in ST5
320	NTUH_9448 MSSA, ST7 NTUH_1027 MSSA, ST59 NTUH_3874 MSSA, ST188
321	NTUH_6457 MRSA and ST965 NTUH_5066148 MRSA. The PCR products were
322	analyzed on the ABI 3730xl DNA Analyzer (Applied Biosystems).

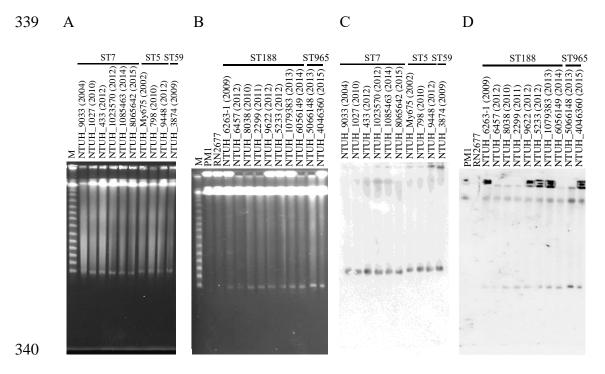
323 Nucleotide sequence accession numbers. The nucleotide sequences of five


324 plasmids: pNTUH_9448 in ST5 MSSA, pNTUH_1027 in ST7 MSSA, pNTUH_3874

in ST59 MSSA, pNTUH_6457 in ST188 MRSA and pNTUH_5066148 in ST965

- 326 MRSA have been deposited in the DNA Data Bank of Japan (DDBJ) database under
- accession numbers LC377536 to LC377540.

328 FIGURE



assigned to isolates having 80% or greater similarity from the dendrograms (A) Three

337 ST5 MSSA isolates (pulsotype I) and two ST965 MRSA isolates (pulsotype II) (B)

338 Six ST7 MSSA isolates (C) Eight ST188 MRSA isolates.

341 **FIG 2** S1 nuclease PFGE and Southern blot hybridization with *ermB*. The S1

342 nuclease PFGE from three ST5 MSSA, six ST7 MSSA, one ST59 MSSA, eight

343 ST188 MRSA, and two ST965 MRSA was examined. The PM1 strain harboring a 26-

kb plasmid and *ermB* gene located on chromosome was used as a positive control.

345 Strain RN2677, lacking the plasmid and *ermB* gene, was used as a negative control.

346 The size of the M marker starts at 48.5 kb and increases 48.5 kb with each

347 successively larger band. (A, B) The bands indicated the plasmids. The size of

348 plasmids is estimated between 23.1 kb and 48.5 kb. (C, D) DNA was hybridized with

349 the Dig-labelled *ermB*-specific probe and amplified by PCR using primers ermB-f and

350 ermB-r. Positive signal of *ermB* was detected in respective bands.

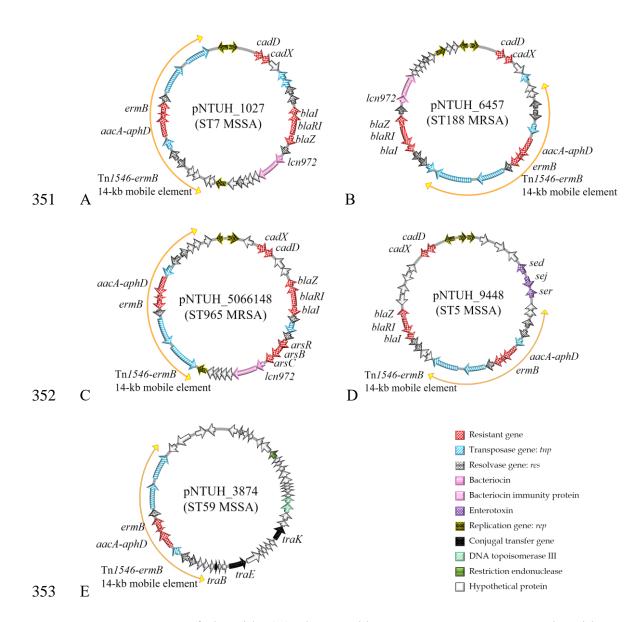
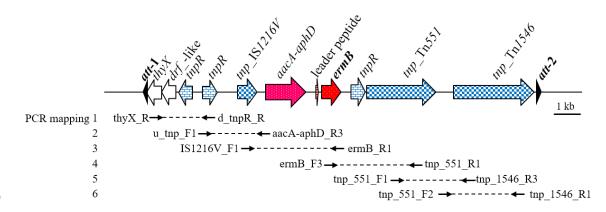



FIG 3 Structure of plasmids. (A) The 35.2-kb ST7 MSSA NTUH 1027 plasmid 354 included 14.5-kb Tn1546-ermB element and 20.7-kb backbone which is similar to 355 356 pSaa6159, harboring bacteriocin Lcn972 (lcn972 gene, pink stripe). The Tn1546-357 ermB element was inserted at the eleven o'clock position in pNTUH 1027. (B) The 35.2-kb ST188 MRSA NTUH 6457 plasmid included 14.5-kb Tn1546-ermB element 358 and 20.7-kb backbone which is similar to pSaa6159, harboring bacteriocin Lcn972 359 (lcn972 gene, pink stripe). The Tn1546-ermB element was inserted at the three o'clock 360 position in pNTUH 6457. (C) The 39.2-kb ST965 MRSA NTUH 5066148 plasmid 361 contained the 14.5-kb Tn1546-ermB and a 24.7-kb backbone which is similar to pCA-362

- 363 347, harboring bacteriocin Lcn972 (*lcn972* gene, pink stripe). (D) The 42.5-kb ST5
- 364 MSSA NTUH 9448 plasmid included 14.5-kb Tn1546-ermB element and 27.2-kb
- 365 pWBG744, harboring three enterotoxin genes *sed*, *sej*, and *ser* (purple mesh). (E) The
- 366 46.8-kb ST59 MSSA NTUH_3874 plasmid harbored three conjugal genes *traB*, *traE*,
- 367 and *traK*.
- 368

369

370 **FIG 4** Position of PCR primers for detection of the Tn1546-ermB element structure

amplicons for PCR mapping 1, 2, 3, 4, 5 and 6 are approximately 1.9 kb, 2.8 kb, 3.7

372 kb, 3.5 kb, 3.1 kb, and 3.2 kb, respectively.

TABLE 373

374 **TABLE 1** Distribution of MLST and *spa* types in Tn1546-ermB carrying MSSA and MRSA

Organism	Year	No. of <i>ermB</i> carried $(\%)^a$	No. of Tn1546 carried $(\%)^{b}$	MLST (No. of isolates)	spa type (No. of isolates)
				ST7 (6)	t796 (6)
MSSA	2000-2015	112 (32.9)	10 (8.9)	ST5 (3)	t002 (2), t242 (1)
				ST59 (1)	t216 (1)
MRSA	2006-2015	224 (15 7)	10 (4 5)	ST188 (8)	t189 (7), t5529(1)
MKSA	2000-2015	224 (15.7)	10 (4.5)	ST965 (2)	t575 (1), t062 (1)

375

a: Percentage of *ermB* in erythromycin-resistant isolates.

b: Rate of Tn*1546* in *ermB*-positive isolates.

Primer name	Sequence (5' to 3')	Application
thyX_R	CCTGTACCCTCTTGATGAGAGG	PCR mapping for Tn1546-ermB element
u_tnp_F1	CATAACACTGATTCTATCAGCC	PCR mapping for Tn1546-ermB element
d_tnpR_R	CTACTAGAAAACGGTCAGC	PCR mapping for Tn1546-ermB element
IS1216V_F1	CCGTGGGCTACTATCTTCGTT	PCR mapping for Tn1546-ermB element
aacA-aphD_R3	CATCTTCCCAAGGCTCTG	PCR mapping for Tn1546-ermB element
ermB_F3	GCCAGCGGAATGCTTTCATCCTAAACC	PCR mapping for Tn1546-ermB element
ermB_R1	AGTAACGGTACTTAAATTGTTTAC	PCR mapping for Tn1546-ermB element
tnp_551_F1	CGGTATCCTGGGTGT	PCR mapping for Tn1546-ermB element
tnp_551_R1	ATTTCTGATGCGAGG	PCR mapping for Tn1546-ermB element
tnp_551_F2	ACTAGGTCGCATTGAAAAGAG	PCR mapping for Tn1546-ermB element
tnp_1546_R3	GTGTAGTAGGTTCCTAGCAC	PCR mapping for Tn1546-ermB element
turn 1546 D1		PCR mapping for Tn1546-ermB element
tnp_1546_R1	AGGGATGCTGAAACTTTTCC	and detection <i>tnp</i> of Tn1546
ermB-f		Detection <i>ermB</i> , and <i>ermB</i> probe for
UIIID-I	GAAAAAGTACTCAACCAAATA	Southern blot hybridization
ermB-r		Detection <i>ermB</i> , and <i>ermB</i> probe for
	AGTAACGGTACTTAAATTGTTTAC	Southern blot hybridization
tnp_1546_F3	GGCGCATGTATGAAGACTC	Detection <i>tnp</i> of Tn1546

TABLE 2 Primers used for PCR mapping of Tn1546-ermB element

TABLE 3 Transfer frequency of plasmids by conjugation

Donor MSSA				MIC of transconjugant (µg/ml)	
Strain	Genotype	Plasmid size (kb)	Transfer frequency ^a	Erythromycin	Gentamicin
NTUH_9448	ST5/spa t242	42.5	3.1 X 10 ⁻¹⁰	>256	8
NTUH_1027	ST7/ <i>spa</i> t796	35.2	10-7	>256	8
NTUH_3874	ST59/spa t216	46.8	4.4 X 10 ⁻¹⁰	>256	8
NTUH_5066148	ST965/spa t575	35.2	1.5 X 10 ⁻¹⁰	>256	64

^a Transconjugant per donor cell.

REFERENCES

383	1.	Chambers HF, DeLeo FR. 2009. Waves of resistance: Staphylococcus aureus
384		in the antibiotic era. Nat Rev Microbiol 7:629-641.
385	2.	Franklin D. Lowy, M.D. 1998. Staphylococcus aureus infections. N Engl J
386		Med 339: 520-532.
387	3.	Chang S-C, Hsieh W-C, Liu C-Y. 2000. High prevalence of antibiotic
388		resistance of common pathogenic bacteria in Taiwan. Diagn Microbiol Infect
389		Dis 36: 107-112.
390	4.	Hsueh P-R, Liu C-Y, Luh K-T. 2002. Current status of antimicrobial
391		resistance in Taiwan. Emerg Infect Dis 8:132-137.
392	5.	Thakker-Varia S, Jenssen W, Moon-McDermott L, Weinstein M, Dubin D.
393		1987. Molecular epidemiology of macrolides-lincosamides-streptogramin B
394		resistance in Staphylococcus aureus and coagulase-negative staphylococci.
395		Antimicrob Agents Chemother 31: 735-743.
396	6.	Hiramatsu K, Ito T, Tsubakishita S, Sasaki T, Takeuchi F, Morimoto Y,
397		Katayama Y, Matsuo M, Kuwahara-Arai K, Hishinuma T. 2013. Genomic
398		Basis for Methicillin Resistance in Staphylococcus aureus. Infect Chemother
399		45: 117-136.
400	7.	Novick R, Murphy E, Gryczan T, Baron E, Edelman I. 1979. Penicillinase
401		plasmids of Staphylococcus aureus: restriction-deletion maps. Plasmid 2:109-
402		129.
403	8.	Hung W-C, Takano T, Higuchi W, Iwao Y, Khokhlova O, Teng L-J,
404		Yamamoto T. 2012. Comparative Genomics of Community-Acquired ST59
405		Methicillin-Resistant Staphylococcus aureus in Taiwan:Novel Mobile
406		Resistance Structures with IS1216V. PLoS One 7:e46987.

407	9.	Navaneeth BV. 2006. A preliminary in vitro study on inducible and
408		constitutive clindamycin resistance in Staphylococcus aureus from a South
409		Indian tertiary care hospital. Int J Infect Dis 10:184-185.
410	10.	Wan T-W, Hung W-C, Tsai J-C, Lin Y-T, Lee H, Hsueh P-R, Lee T-F, Teng
411		L-J. 2016. Novel Structure of Enterococcus faecium-Originated ermB-Positive
412		Tn1546-Like Element in Staphylococcus aureus. Antimicrob Agents
413		Chemother 60: 6108-6114.
414	11.	Hung W-C, Wan T-W, Kuo Y-C, Yamamoto T, Tsai J-C, Lin Y-T, Hsueh P-
415		R, Teng L-J. 2016. Molecular Evolutionary Pathways toward Two Successful
416		Community-Associated but Multidrug-Resistant ST59 Methicillin-Resistant
417		Staphylococcus aureus Lineages in Taiwan: Dynamic Modes of Mobile
418		Genetic Element Salvages. PLoS One 11:e0162526.
419	12.	Périchon B, Courvalin P. 2009. VanA-type vancomycin-resistant
420		Staphylococcus aureus. Antimicrob Agents Chemother 53:4580-4587.
421	13.	Willems RJ, Top J, van den Braak N, van Belkum A, Mevius DJ,
422		Hendriks G, van Santen-Verheuvel M, van Embden JD. 1999. Molecular
423		diversity and evolutionary relationships of Tn1546-like elements in
424		enterococci from humans and animals. Antimicrob Agents Chemother 43:483-
425		491.
426	14.	Freitas AR, Tedim AP, Francia MV, Jensen LB, Novais C, Peixe L,
427		Sánchez-Valenzuela A, Sundsfjord A, Hegstad K, Werner G. 2016.
428		Multilevel population genetic analysis of vanA and vanB Enterococcus
429		faecium causing nosocomial outbreaks in 27 countries (1986–2012). J
430		Antimicrob Chemother 71:3351-3366.
431	15.	Foglia G, Del Grosso M, Vignaroli C, Bagnarelli P, Varaldo PE, Pantosti

432		A, Biavasco F. 2003. Molecular analysis of Tn1546-like elements mediating
433		high-level vancomycin resistance in Enterococcus gallinarum. J Antimicrob
434		Chemother 52: 772-775.
435	16.	Clark NC, Weigel LM, Patel JB, Tenover FC. 2005. Comparison of
436		Tn1546-like elements in vancomycin-resistant Staphylococcus aureus isolates
437		from Michigan and Pennsylvania. Antimicrob Agents Chemother 49:470-472.
438	17.	Huh JY, Lee WG, Lee K, Shin WS, Yoo JH. 2004. Distribution of insertion
439		sequences associated with Tn1546-like elements among Enterococcus faecium
440		isolates from patients in Korea. J Clin Microbiol 42:1897-1902.
441	18.	Khan MA, Van Der Wal M, Farrell DJ, Cossins L, Van Belkum A, Alaidan
442		A, Hays JP. 2008. Analysis of VanA vancomycin-resistant Enterococcus
443		faecium isolates from Saudi Arabian hospitals reveals the presence of clonal
444		cluster 17 and two new Tn1546 lineage types. J Antimicrob Chemother
445		62: 279-283.
446	19.	Heaton MP, Discotto LF, Pucci MJ, Handwerger S. 1996. Mobilization of
447		vancomycin resistance by transposon-mediated fusion of a VanA plasmid with
448		an Enterococcus faecium sex pheromone-response plasmid. Gene 171:9-17.
449	20.	Wang J-L, Wang J-T, Chen S-Y, Chen Y-C, Chang S-C. 2010. Distribution
450		of staphylococcal cassette chromosome mec types and correlation with
451		comorbidity and infection type in patients with MRSA bacteremia. PLoS One
452		5: e9489.
453	21.	Chen P-Y, Chuang Y-C, Wang J-T, Chang S-C. 2015. Impact of prior
454		healthcare-associated exposure on clinical and molecular characterization of
455		methicillin-susceptible Staphylococcus aureus bacteremia: results from a
456		retrospective cohort study. Medicine 94:e474.

457	22.	Chang C-	J, Chen N-C	C, Lao C-K	Huang Y-C.	. 2015. Nasal	Staphylococcus
-----	-----	----------	-------------	------------	------------	---------------	----------------

- 458 *aureus* and methicillin-resistant *S. aureus* carriage among janitors working in
- 459 hospitals in northern Taiwan. PLoS One **10**:e0138971.
- 460 23. Chen C-J, Huang Y-C, Su L-H, Wu T-L, Huang S-H, Chien C-C, Chen P-
- 461 Y, Lu M-C, Ko W-C. 2014. Molecular Epidemiology and Antimicrobial
- 462 Resistance of Methicillin-Resistant *Staphylococcus aureus* Bloodstream
- 463 Isolates in Taiwan, 2010. PLoS One **9**:e101184.
- 464 24. Ho P-L, Lai EL, Chow K-H, Chow LS, Yuen K-Y, Yung RW. 2008.
- 465 Molecular epidemiology of methicillin-resistant *Staphylococcus aureus* in
- 466 residential care homes for the elderly in Hong Kong. Diagn Microbiol Infect
- 467 Dis **61:**135-142.
- 468 25. Ip M, Wang Z, Lam WY, Zhou H, Tsui S. 2014. Draft genome sequence of
- 469 methicillin-resistant *Staphylococcus aureus* CUHK_188 (ST188), a health
- 470 care-associated bacteremic isolate from Hong Kong. Genome Announc471 2:e00255-00214.
- 472 26. Liu C, Chen Z-j, Sun Z, Feng X, Zou M, Cao W, Wang S, Zeng J, Wang Y,
- 473 Sun M. 2015. Molecular characteristics and virulence factors in methicillin-
- 474 susceptible, resistant, and heterogeneous vancomycin-intermediate
- 475 *Staphylococcus aureus* from central-southern China. J Microbiol Immunol
 476 Infect **48**:490-496.
- 477 27. Ko KS, Lee J-Y, Baek JY, Peck KR, Rhee J-Y, Kwon KT, Heo ST, Ahn K478 M, Song J-H. 2008. Characterization of *Staphylococcus aureus* nasal carriage
 479 from children attending an outpatient clinic in Seoul, Korea. Microb Drug
- 480 Resist **14:**37-44.
- 481 28. Qiao Y, Ning X, Chen Q, Zhao R, Song W, Zheng Y, Dong F, Li S, Li J,

482		Wang L. 2014. Clinical and molecular characteristics of invasive community-
483		acquired Staphylococcus aureus infections in Chinese children. BMC Infect
484		Dis 14:582.
485	29.	Kos VN, Desjardins CA, Griggs A, Cerqueira G, Van Tonder A, Holden
486		MT, Godfrey P, Palmer KL, Bodi K, Mongodin EF. 2012. Comparative
487		genomics of vancomycin-resistant Staphylococcus aureus strains and their
488		positions within the clade most commonly associated with Methicillin-
489		resistant S. aureus hospital-acquired infection in the United States. mBio
490		3: e00112-00112.
491	30.	Chua K, Seemann T, Harrison PF, Davies JK, Coutts SJ, Chen H, Haring
492		V, Moore R, Howden BP, Stinear TP. 2010. Complete genome sequence of
493		Staphylococcus aureus strain JKD6159, a unique Australian clone of ST93-IV
494		community methicillin-resistant Staphylococcus aureus. J Bacteriol 192:5556-
495		5557.
496	31.	Chua KY, Seemann T, Harrison PF, Monagle S, Korman TM, Johnson
497		PD, Coombs GW, Howden BO, Davies JK, Howden BP. 2011. The
498		dominant Australian community-acquired methicillin-resistant Staphylococcus
499		aureus clone ST93-IV [2B] is highly virulent and genetically distinct. PLoS
500		One 6: e25887.
501	32.	Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K-i, Oguchi A, Nagai Y,
502		Iwama N, Asano K, Naimi T. 2002. Genome and virulence determinants of
503		high virulence community-acquired MRSA. Lancet 359: 1819-1827.
504	33.	Shearer JE, Wireman J, Hostetler J, Forberger H, Borman J, Gill J,
505		Sanchez S, Mankin A, LaMarre J, Lindsay JA. 2011. Major families of
506		multiresistant plasmids from geographically and epidemiologically diverse

507	staphylococci.	G3	1:581-591
507	staphylococcı.	G3	1:581-59

508	34.	Stegger M, Driebe EM, Roe C, Lemmer D, Bowers JR, Engelthaler DM,
509		Keim P, Andersen PS. 2013. Genome sequence of Staphylococcus aureus
510		strain CA-347, a USA600 methicillin-resistant isolate. Genome Announc
511		1: e00517-00513.
512	35.	Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L,
513		Oguchi A, Aoki K-i, Nagai Y. 2001. Whole genome sequencing of meticillin-
514		resistant Staphylococcus aureus. Lancet 357:1225-1240.
515	36.	O'Brien FG, Eto KY, Murphy RJ, Fairhurst HM, Coombs GW, Grubb
516		WB, Ramsay JP. 2015. Origin-of-transfer sequences facilitate mobilisation of
517		non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus.
518		Nucleic Acids Res 43: 7971-7983.
519	37.	Ramsay JP, Kwong SM, Murphy RJ, Yui Eto K, Price KJ, Nguyen QT,
520		O'Brien FG, Grubb WB, Coombs GW, Firth N. 2016. An updated view of
521		plasmid conjugation and mobilization in Staphylococcus. Mob Genet Elements
522		6: e1208317.
523	38.	Haaber J, Penadés JR, Ingmer H. 2017. Transfer of Antibiotic Resistance in
524		Staphylococcus aureus. Trends Microbiol 25:893-905.
525	39.	O'brien F, Ramsay J, Monecke S, Coombs G, Robinson O, Htet Z,
526		Alshaikh F, Grubb W. 2015. Staphylococcus aureus plasmids without
527		mobilization genes are mobilized by a novel conjugative plasmid from
528		community isolates. J Antimicrob Chemother 70:649-652.
529	40.	Bayles KW, Iandolo JJ. 1989. Genetic and molecular analyses of the gene
530		encoding staphylococcal enterotoxin D. J Bacteriol 171:4799-4806.
531	41.	Omoe K, Hu D-L, Takahashi-Omoe H, Nakane A, Shinagawa K. 2003.

532		Identification and characterization of a new staphylococcal enterotoxin-related
533		putative toxin encoded by two kinds of plasmids. Infect Immun 71:6088-6094.
534	42.	Zhang S, Iandolo JJ, Stewart GC. 1998. The enterotoxin D plasmid of
535		Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS
536		Microbiol Lett 168:227-233.
537	43.	Higuchi W, Takano T, Teng L-J, Yamamoto T. 2008. Structure and specific
538		detection of staphylococcal cassette chromosome mec type VII. Biochem
539		Biophys Res Commun 377: 752-756.
540	44.	Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan
541		SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC. 2003. Genetic analysis
542		of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science
543		302: 1569-1571.
544	45.	Panesso D, Planet PJ, Diaz L, Hugonnet J-E, Tran TT, Narechania A,
545		Munita JM, Rincon S, Carvajal LP, Reyes J. 2015. Methicillin-susceptible,
546		vancomycin-resistant Staphylococcus aureus, Brazil. Emerg Infect Dis
547		21: 1844.
548	46.	Rossi F, Diaz L, Wollam A, Panesso D, Zhou Y, Rincon S, Narechania A,
549		Xing G, Di Gioia TS, Doi A. 2014. Transferable vancomycin resistance in a
550		community-associated MRSA lineage. N Engl J Med 370: 1524-1531.
551	47.	Odd G. Brakstad, Kjetill Aasbakk, Maeland JA. 1992. Detection of
552		Staphylococcus aureus by Polymerase Chain Reaction Amplification of the
553		nuc Gene. J Clin Microbiol 30: 1654-1660.
554	48.	B. Shopsin, M. Gomez, S. O. Montgomery, D. H. Smith M, Waddington,
555		D. E. Dodge, D. A. Bost, M. Riehman S, Naidich, Kreiswirth. BN. 1999.
556		Evaluation of Protein A Gene Polymorphic Region DNA Sequencing for

557		Typing of <i>Staphylococcus aureus</i> Strains. J Clin Microbiol 37: 3556–3563.
558	49.	Mark C. Enright, Nicholas P. J. Day, Catrin E. Davies, Sharon J. Peacock,
559		Spratt. BG. 2000. Multilocus Sequence Typing for Characterization of
560		Methicillin-Resistant and Methicillin-Susceptible Clones of Staphylococcus
561		aureus. J Clin Microbiol 38:1008–1015.
562	50.	Murray B, Singh K, Heath JD, Sharma B, Weinstock G. 1990. Comparison
563		of genomic DNAs of different enterococcal isolates using restriction
564		endonucleases with infrequent recognition sites. J Clin Microbiol 28:2059-
565		2063.
566	51.	Barton BM, Harding GP, Zuccarelli AJ. 1995. A general method for
567		detecting and sizing large plasmids. Anal Biochem 226:235-240.
568	52.	Rahman M, Connolly S, Noble W, Cookson B, Phillips I. 1990. Diversity of
569		staphylococci exhibiting high-level resistance to mupirocin. J Med Microbiol
570		33: 97-100.

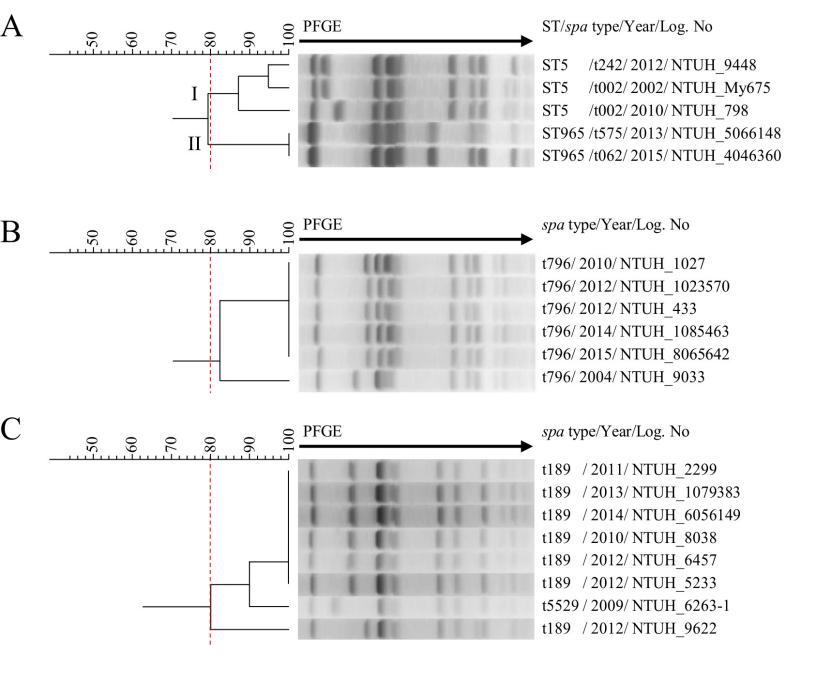


FIG 1 PFGE dendrogram of Tn1546-ermB carrying isolates.

PFGE cluster was assigned to isolates having 80% or greater similarity from the dendrograms (A) Three ST5 MSSA isolates (pulsotype I) and two ST965 MRSA isolates (pulsotype II) (B) Six ST7 MSSA isolates (C) Eight ST188 MRSA isolates.

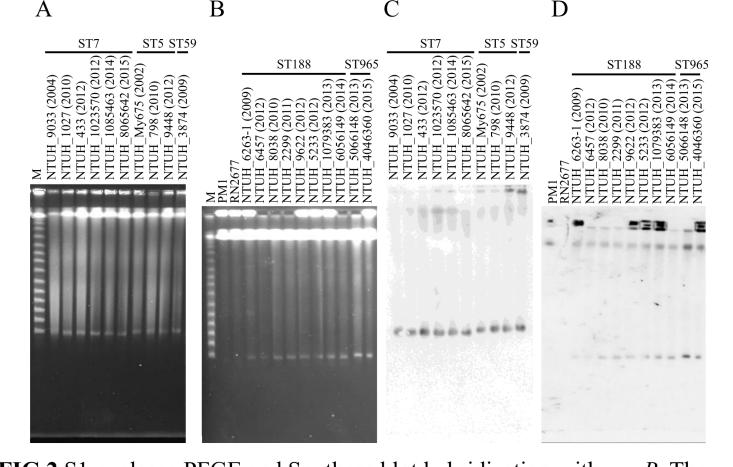


FIG 2 S1 nuclease PFGE and Southern blot hybridization with ermB. The S1 nuclease PFGE from three ST5 MSSA, six ST7 MSSA, one ST59 MSSA, eight ST188 MRSA, and two ST965 MRSA was examined. The PM1 strain harboring a 26-kb plasmid and ermB gene located on chromosome was used as a positive control. Strain RN2677, lacking the plasmid and ermB gene, was used as a negative control. The size of the M marker starts at 48.5 kb and increases 48.5 kb with each successively larger band. (A, B) The bands indicated the plasmids. The size of plasmids is estimated between 23.1 kb and 48.5 kb. (C, D) DNA was hybridized with the Dig-labelled ermBspecific probe and amplified by PCR using primers ermB-f and ermB-r. Positive signal of *ermB* was detected in respective bands.

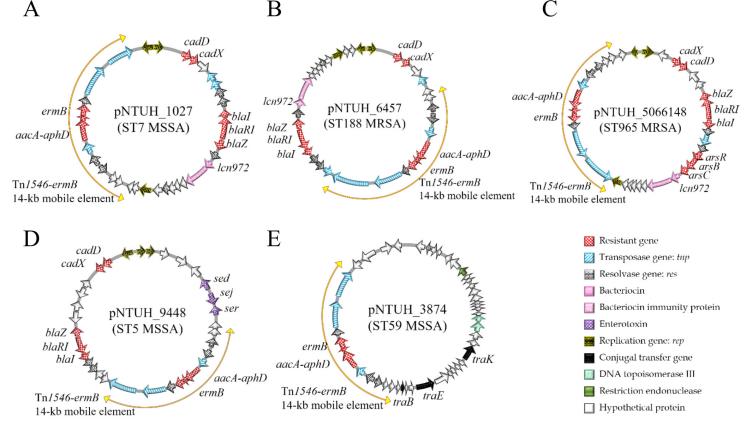


FIG 3 Structure of plasmids. (A) The 35.2-kb ST7 MSSA NTUH 1027 plasmid included 14.5-kb Tn1546-ermB element and 20.7-kb backbone which is similar to pSaa6159, harboring bacteriocin Lcn972 (lcn972 gene, pink stripe). The Tn1546-ermB element was inserted at the eleven o'clock position in pNTUH 1027. (B) The 35.2-kb ST188 MRSA NTUH 6457 plasmid included 14.5-kb Tn1546-ermB element and 20.7-kb backbone which is similar to pSaa6159, harboring bacteriocin Lcn972 (lcn972 gene, pink stripe). The Tn1546-ermB element was inserted at the three o'clock position in pNTUH 6457. (C) The 39.2-kb ST965 MRSA NTUH 5066148 plasmid contained the 14.5-kb Tn1546-ermB and a 24.7-kb backbone which is similar to pCA-347, harboring bacteriocin Lcn972 (lcn972 gene, pink stripe). (D) The 42.5-kb ST5 MSSA NTUH_9448 plasmid included 14.5-kb Tn1546-ermB element and 27.2-kb pWBG744, harboring three enterotoxin genes sed, sej, and ser (purple mesh). (E) The 46.8-kb ST59 MSSA NTUH_3874 plasmid harbored three conjugal genes *traB*, *traE*, and *traK*.

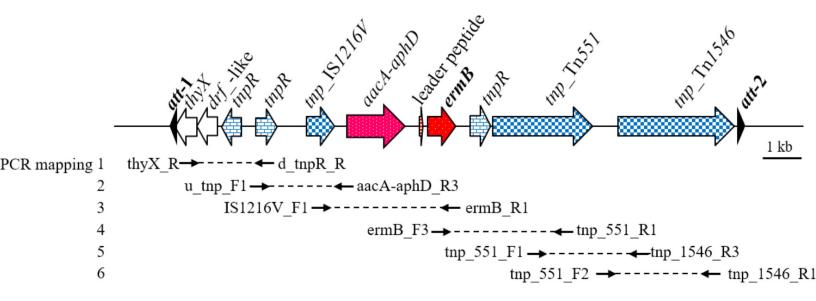


FIG 4 Position of PCR primers for detection of the Tn1546-

ermB element structure amplicons for PCR mapping 1, 2, 3,

4, 5 and 6 are approximately 1.9 kb, 2.8 kb, 3.7 kb, 3.5 kb,

3.1 kb, and 3.2 kb, respectively.