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Abstract 24 

The AP-1 complex is essential for membrane protein traffic via its role in the 25 

pinching-off and sorting of secretory vesicles from the trans-Golgi and/or endosomes. 26 

While its essentiality is undisputed in metazoa, its role in model simpler eukaryotes 27 

seems less clear. Here we dissect the role of AP-1 in the filamentous fungus 28 

Aspergillus nidulans and show that it is absolutely essential for growth due to its role 29 

in clathrin-dependent maintenance of polar traffic of specific membrane cargoes 30 

towards the apex of growing hyphae. We provide evidence that AP-1 is involved in 31 

both anterograde sorting of RabE
Rab11

-labeled secretory vesicles and RabA/B
Rab5

-32 

dependent
 

endosome recycling. Additionally, AP-1 is shown to be critical for 33 

microtubule and septin organization, further rationalizing its essentiality in cells that 34 

face the challenge of cytoskeleton-dependent polarized cargo traffic. This work also 35 

opens a novel issue on how non-polar cargoes, such as transporters, are sorted to the 36 

eukaryotic plasma membrane. 37 

 38 

 39 

 40 

  41 
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Introduction 42 

All eukaryotic cells face the challenge of topological sorting of their biomolecules in 43 

their proper subcellular destinations. In particular, newly synthesized membrane 44 

proteins, which are translationally translocated into the membrane of the ER, follow 45 

complex, dynamic, and often overlapping, trafficking routes, embedded in the lipid 46 

bilayer of „secretory‟ vesicles, to be sorted to their final target membrane (Feyder et 47 

al., 2015; Viotti 2016). In vesicular membrane trafficking, the nature of the protein 48 

cargo and relevant adaptor proteins play central roles in deciding the routes followed 49 

and the final destination of cargoes. Despite the emerging evidence of alternative or 50 

non-conventional trafficking routes, cargo passage through a continuously maturing 51 

early-to-late Golgi is considered to be part of the major mechanism and the most 52 

critical step in membrane protein sorting. Following exit from the trans-Golgi network 53 

(TGN, also known as late-Golgi), cargoes packed in distinct vesicles travel to their 54 

final destination, which in most cases is the plasma membrane or the vacuole. This 55 

anterograde vesicular movement can be direct or via the endosomal compartment, and 56 

in any case assisted by motor proteins and the cytoskeleton (Bard and Malhotra 2006; 57 

Cai et al., 2007; Hunt and Stephens 2011; Anitei and Hoflack 2011; Guo et al., 2014). 58 

Membrane protein cargoes at the level of late Golgi can also follow the opposite 59 

route, getting sorted into retrograde vesicles, recycling back to an earlier 60 

compartment. Acquiring a “ticket” for a specific route implicates adaptors and 61 

accessory proteins, several of which are also associated with clathrin (Nakatsu and 62 

Ohno 2003; Robinson 2004; 2015).  63 

Apart from the COPI and COPII vesicle coat adaptors that mediate traffic 64 

between the ER and the early Golgi compartment (Lee et al., 2004; Zanetti et al., 65 

2011), of particular importance are the heterotetrameric AP (formally named after 66 
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Assembly Polypeptide and later as Adaptor Protein) complexes, comprising of two 67 

large subunits (also called adaptins; β-adaptin and γ- or α-adaptin), together with a 68 

medium-sized (μ) and a small (σ) subunit (Robinson 2004; 2015). Other adaptors, 69 

some of which display similarity to AP subunits, like the GGAs, epsin-related 70 

proteins, or components of the exomer and retromer complexes are also critical for the 71 

sorting of specific cargoes (Bonifacino 2004; 2014; Robinson 2015; Spang 2015; 72 

Anton et al., 2018). Importantly, the various cargo sorting routes are often 73 

overlapping and might share common adaptors (Hoya et al., 2017). Among the major 74 

AP complexes (Bonifacino 2014; Nakatsu et al., 2014), AP-1 and AP-2, which in 75 

most cells work to propel vesicle formation through recruitment of clathrin, are the 76 

most critical for cell homeostasis and function (Robinson 2004; 2015). In brief, AP-2 77 

is involved in vesicle budding for protein endocytosis from the PM, whereas AP-1 is 78 

involved in vesicle pinching-off from the TGN and/or endosomal compartments, 79 

although in the latter case it is still under debate whether secretory vesicles derive 80 

from the TGN, from the endosome, or from both (Nakatsu et al., 2014; Robinson 81 

2015). AP-1 was also shown to be responsible for retrograde transport from early 82 

endosomes in both yeast and mammalian cells, but also guiding recycling pathways 83 

from the endosome to the plasma membrane in yeast (Spang 2015). The undisputed 84 

essentiality of AP-1 and AP-2 in mammalians cells is however less obvious in simple 85 

unicellular eukaryotes, such as the yeasts Saccharomyces cerevisiae or 86 

Schizosaccharomyces pombe, where null mutants in the genes encoding AP subunits 87 

are viable, with only relatively minor growth or morphological defects (Meyer et al., 88 

2000; Valdivia et al. 2002; Ma et al., 2009; Yu et al., 2013; Arcones et al., 2016). In 89 

sharp contrast, the growth of AP-1 and AP-2 null mutants in the filamentous fungus 90 

Aspergillus nidulans is severally arrested after spore germination (Martzoukou et al., 91 
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2017 and results presented herein), reflecting blocks in essential cellular processes, 92 

probably similar to mammalian cells.   93 

In the recent years, A. nidulans is proving to be a powerful emerging system 94 

for studying membrane cargo traffic (Momany 2002; Taheri-Talesh et al., 2008; 95 

Steinberg et al., 2017). This is not only due to its powerful classical and reverse 96 

genetic tools, but also due to its specific cellular characteristics and way of growth. A. 97 

nidulans is  made of long cellular compartments (hyphae), characterized by polarized 98 

growth, in a process starting with an initial establishment of a growth site, followed 99 

by polarity maintenance and cell extension through the regulated continuous supply of 100 

vesicles towards the apex. A vesicle sorting terminal at the hyphal apex, termed 101 

Spitzenkörper (Spk), is thought to generate an exocytosis gradient, which when 102 

coupled with endocytosis from a specific hotspot behind the site of growth, termed 103 

endocytic collar, is able to sustain apical growth (Penalva 2015; Schultzhaus and 104 

Shaw 2015; Pantazopoulou 2016; Steinberg et al., 2017). Apical trafficking of 105 

cargoes, traveling from the endoplasmic reticulum (ER) through the different stages 106 

of early (cis-) and late (trans-) Golgi towards their final destination, and apical cargo 107 

endocytosis/recycling, are essential for growth, as null mutations blocking either 108 

Golgi function, microtubule organization or apical cargo recycling are lethal or 109 

severely deleterious (Fischer et al., 2008; Takeshita and Fischer 2011; Penalva 2015; 110 

Pantazopoulou 2016; Steinberg et al., 2017). Curiously, the role of AP complexes in 111 

A. nidulans or any other filamentous fungus, has not been studied, with the exception 112 

of our recent work on AP-2 (Martzoukou et al., 2017). In that study we showed that 113 

the AP-2 of A. nidulans has a rather surprising clathrin-independent essential role in 114 

polarity maintenance and growth, related to the endocytosis of specific polarized 115 

cargoes involved in apical lipid and cell wall composition maintenance. This was in 116 
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line with the observation that AP-2 β subunit (β2) lacks the ability to bind clathrin, 117 

which itself has been shown to be essential for the endocytosis of distinct cargoes, as 118 

for example various transporters (Martzoukou et al., 2017; Schultzhaus et al., 2017). 119 

In the current study, we focus on the role of the AP-1 complex in cargo trafficking in 120 

A. nidulans. We provide evidence that AP-1 is essential for fungal polar growth via its 121 

dynamic role in post-Golgi secretory vesicle polar sorting, proper microtubule 122 

organization and endosome recycling.   123 

 124 

Results 125 

The AP-1 complex localizes polarly in distinct cytoplasmic structures and is 126 

essential for growth  127 

In A. nidulans, the AP-1 adaptor complex is encoded by the genes AN7682 (ap-1
σ
), 128 

AN4207 (ap-1
γ
), AN3029 (ap-1

β
) and AN8795 (ap-1

μ
). In a previous study a 129 

knockout of the gene encoding the AP-1 σ subunit proved lethal, therefore we 130 

employed a conditional knock-down strain (Martzoukou et al., 2017), using the 131 

thiamine-repressible promoter thiAp (Apostolaki et al., 2012). The phenotypic analysis 132 

of this strain showed that repression of ap1
σ
 results in severely retarded colony 133 

growth, reflected at the microscopic level in wider and shorter hyphae with increased 134 

numbers of side branches and septa. Figure 1A and 1B highlight these results, further 135 

showing that thiAp–dependent full repression of not only ap-1
σ
, but also ap-1

β
 and ap-136 

1
μ
, results in lack of growth. Notably, besides increased numbers of side branches and 137 

septa, staining level and cortical localization of calcofluor white are modified upon 138 

repression of AP-1
σ
, suggesting altered chitin deposition (Figure 1B). Given that the 139 

genetic disruption of three AP-1 subunits appears to affect growth in A. nidulans 140 
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similarly and also that the inactivation of any subunit has been reported to disrupt the 141 

full complex in other organisms (Robinson 2015 and refs therein), the AP-1
σ 

subunit 142 

was chosen to further investigate the role of the AP-1 complex in intracellular cargo 143 

trafficking pathways. 144 

 145 

Figure 1. The AP-1 complex localizes in distinct polarly distributed structures 146 

and is essential for growth  147 

(A) Upper panel: Growth of isogenic strains carrying thiamine-repressible alleles of 148 
ap1

σ
, ap1

μ
 and ap1

β 
(thiAp-ap1

σ
, thiAp-ap1

μ
 and thiAp-ap1

β
) compared to wild-type 149 

(wt) in the absence (-) or presence (+) of thiamine. Lower panel: Western blot analysis 150 
comparing protein levels of FLAG-Ap1

σ
 in the absence (0h) or presence of thiamine, 151 

added for 2, 4, 6 or 16h (overnight culture, o/n). wt is a standard wild-type strain 152 

(untagged ap1
σ
) which is included as a control for the specificity of the α-FLAG 153 

antibody. Equal loading is indicated by actin levels. (B) Microscopic morphology of 154 
hyphae in a strain repressed for ap1

σ
 expression (+thi, lower panel) compared to wt 155 

(upper panel) stained with calcofluor white. Septal rings and side branches are 156 
indicated by arrows and arrowheads. Notice the differences in the calcofluor 157 

deposition at the hyphal head, tip and the sub apical segment (Lookup table [LUT] 158 
fire [ImageJ, National Institutes of Health]) (C) Subcellular localization of Ap1

σ
-GFP 159 

and Ap1
σ
-mRFP in isogenic strains and relative quantitative analysis of fluorescence 160 

intensity (right upper panel), highlighting the polar distribution of Ap1
σ
. Growth tests 161 

showing that the tagged versions of Ap1
σ
 are functional (right lower panel). (D) 162 

Subcellular localization of Ap1
σ
-GFP in isogenic strains carrying thiamine-repressible 163 

alleles of ap1
μ
 (left panels) or ap1

β 
(right panels)

 
in the absence (upper panels) or 164 

presence of thiamine (+thi, o/n). Notice that repression of expression of either the μ or 165 
the β subunit leads to diffuse cytoplasmic fluorescent of Ap1

σ
. (E) Subcellular 166 

localization of Ap1
σ
-GFP in the presence of FM4-64, which labels dynamically 167 

endocytic steps (PM, early endosomes, late endosomes/vacuoles). Notice that Ap1
σ
-168 

GFP structures do not co-localize with FM4-64, except a few cases observed in the 169 
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sub-apical region (indicated with an arrow at the 10 min picture). (F) Subcellular 170 

localization of Ap1
σ
-GFP in the presence of the vacuolar stain 7-amino-4-171 

chloromethylcoumarin (Blue CMAC). No Ap1
σ
-GFP/CMAC co-localization is 172 

observed. Unless otherwise stated, scale bars represent 5 μm.  173 

Figure 1C shows that expression of functional GFP- or mRFP-tagged AP-1
σ 

174 

has distinct localization in cytoplasmic puncta, the motility of which resembles a 175 

Brownian motion, being more abundant in the apical region of hyphae and apparently 176 

absent from the Spk. The distinct localization of AP-1
σ
 localization, which resembles 177 

the distribution of Golgi markers (see later), is lost and replaced by a fluorescence 178 

cytoplasmic haze when the β or μ subunits are knocked-down (Figure 1D).  179 

Noticeably, the majority of these foci are not stained by FM4-64 or CMAC (Figure 180 

1E, 1F), strongly suggesting that they are distinct from endosomes and vacuoles. 181 

 182 

Knockdown of AP-1 affects the localization of polarly localized cargoes  183 

As mentioned in the Introduction, polarized growth of fungal hyphae is sustained by 184 

the continuous delivery of cargo-containing secretory vesicles (SV) towards the 185 

hyphal apex and accumulation at the Spk before fusion with the plasma membrane 186 

(PM). Once localized in the PM at the hyphal apex, several cargoes diffuse laterally 187 

and get recycled through the actin-patch enriched subapical regions of the endocytic 188 

collar, balancing exocytosis with endocytosis (Harris 2005; Steinberg 2007; Berepiki 189 

et al., 2011; Takeshita et al., 2014; Penalva et al., 2017; Steinberg et al., 2017; Zhou et 190 

al., 2018). In order to study the potential implications of the AP-1 complex in these 191 

processes, we monitored the localization of specific established apical and collar 192 

markers in conditions where the ap-1
σ
 expression has been fully repressed. These 193 

markers include the secretory v-SNARE SynA and t-SNARE SsoA (Taheri-Talesh et 194 

al., 2008), the phospholipid flippases DnfA and DnfB that partially localize in the Spk 195 
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(Schultzhaus et al., 2015), the class III chitin synthase ChsB known to play a key role 196 

in hyphal tip growth and cell wall integrity maintenance (Yanai et al., 1994; Takeshita 197 

et al., 2015), the tropomyosin TpmA decorating actin at the Spk and on actin cables at 198 

the hyphal tip (Taheri-Talesh et al., 2008), and finally the endocytic patch specific 199 

marker AbpA marking the sites of actin polymerization (Araujo-Bazán et al., 2008), 200 

along with the endocytic markers SlaB and SagA (Araujo-Bazán et al., 2008; Hervás-201 

Aguilar and Peñalva, 2010; Karachaliou et al., 2013). Additionally, we also tested the 202 

localization of the UapA xanthine-uric acid transporter, for which our previous work 203 

suggested that it is not affected by the loss of function of the AP-1 complex 204 

(Martzoukou et al., 2017). 205 

Figure 2 highlights our results, which show that the localization of all markers 206 

tested is affected in the absence of AP-1
σ
, with the only clear exception being the 207 

plasma membrane transporter UapA. Additionally, the general positioning of nuclei 208 

also appears unaffected as indicated by labeled Histone 1 (Nayak et al., 2010). Of the 209 

markers tested, SynA, DnfA, DnfB and ChsB lose significantly their polar distribution 210 

and do not seem to properly reach the Spk, concomitant with their increased presence 211 

in distinct, rather static, cytoplasmic puncta of various sizes. The non-polar 212 

distribution of SsoA is generally conserved, but its cortical positioning is reduced and 213 

replaced by numerous cytoplasmic puncta.  All collar-associated markers (SagA, SlaB 214 

and AbpA) appear “moved” in an acropetal manner towards the hyphal tip. TpmA has 215 

also lost its proper localization at the hyphal tip, suggesting defective stabilization of 216 

actin filaments at the level of the Spk (Bergs et al., 2016). For relative quantification 217 

of fluorescence intensity see also Figure 2 Supplement 1. 218 

Previous studies have shown that mutations preventing endocytosis of polar 219 

markers result in a uniform rather than polarized distribution of cargoes (Schultzhaus 220 
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et al., 2015; Schultzhaus and Shaw, 2016; Martzoukou et al., 2017). In contrast, when 221 

exocytosis is impaired due to the absence of clathrin, several cargoes show 222 

predominantly non-cortical cytoplasmic localization (Martzoukou et al., 2017). Thus, 223 

our present observations strongly suggest that secretion and/or recycling is the process 224 

blocked in the absence of the AP-1 complex, while endocytosis remains functional. 225 

The latter is further supported by the fact that repression of AP-1 in the absence of a 226 

functional AP-2 complex, results in significant apparent cortical retention of specific 227 

cargoes, such as DnfA, despite the concurrent subapical accumulation of cytoplasmic 228 

DnfA-labeled structures (Figure 2B), which notably do not co-localize with endocytic 229 

membranes stained by FM4-64 (Figure 2 Supplement 2). 230 

 231 
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Figure 2. Lack of expression of AP-1 affects the topology of polar cargoes  232 

(A) Comparison of the cellular localization of specific GFP- or mRFP/mCherry-233 
tagged protein cargoes under conditions where ap1

σ
 is expressed (left panel) or fully 234 

repressed by thiamine (right panel, +thi). The cargoes tested are the UapA transporter, 235 
the SNAREs SynA and SsoA, phospholipid flippases DnfA and DnfB, chitin synthase 236 
ChsB, endocytic markers SagA and SlaB, the actin-polymerization marker AbpA, 237 
tropomyosin TpmA, and histone H1 (i.e. nuclei). Notice that when ap1

σ
 is fully 238 

repressed polar apical cargoes are de-polarized and mark numerous relatively static 239 
cytoplasmic puncta. (B) Localization of DnfA-GFP in strains carrying the ap2

σ
Δ null 240 

allele, or the ap2
σ
Δ null allele together with the repressible thiAp-ap1

σ
 allele, or an 241 

isogenic wild-type control (wt: ap2
σ+

 ap1
σ+

). Notice that loss of polar distribution due 242 
to defective apical endocytosis observed the ap2

σ
Δ strains (Martzoukou et al., 2017) 243 

persists when AP-1
σ
 is also repressed, indicating that in the latter case the majority of 244 

accumulating internal structures are due to problematic exocytosis of DnfA. Unless 245 

otherwise stated, scale bars represent 5 μm. 246 

 247 

AP-1 associates transiently with the trans-Golgi  248 

In A. nidulans, the process of maturation of Golgi has been extensively studied 249 

(Peñalva 2010; Pantazopoulou 2016; Steinberg et al., 2017). The markers syntaxin 250 

SedV
Sed5

 and the human oxysterol-binding protein PH domain (PH
OSBP

) are well-251 

established markers to follow the dynamics of early/cis-Golgi (Pinar et al., 2013) and 252 

late/trans-Golgi compartments (Pantazopoulou and Peñalva, 2009), respectively. Here 253 

we examined the possible association of the AP-1 complex with Golgi compartments 254 

using these markers. Figure 3A shows that AP-1
σ
 shows no co-localization, despite 255 

some topological proximity, with the early-Golgi, although in some cases it orbits 256 

around SedV marker (see also Video 1). Contrastingly, most AP-1
σ
 labeled structures 257 

show a significant degree of apparent association with PH
OSBP

, which suggests AP-1 258 

partially co-localizes with the late-Golgi (Figure 3B, see also Video 2). Notably, the 259 

degree of association of AP-1 with PH
OSBP

 has a transient character, as seen by the 260 

apparent progressive loss of co-localization. The increased association of AP-1
σ
 with 261 

late-Golgi is further supported by the effect of Brefeldin A, which leads to transient 262 
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Golgi collapse in aggregated bodies, several of which included the AP-1 marker 263 

(Figure 3C). Thermosensitive mutations in SedV (SedV-R258G) or the regulatory 264 

GTPase RabO
Rab1 

(RabO-A136D) are known to lead to early- or early/late-Golgi 265 

disorganization upon shift to the restrictive temperature (Pinar et al., 2013). These 266 

mutations led to AP-1
σ
 subcellular distribution modification, further supporting the 267 

association of AP-1 with late, but not with early Golgi. In particular, in SedV-R258G, 268 

AP-1
σ
 localization was less affected, whereas in RabO-A136D AP-1

σ
 fluorescence 269 

was significantly de-localized from distinct puncta to a cytoplasmic haze (Figure 3D). 270 

Finally, knockdown of RabC
Rab6

, another small GTPase responsible for Golgi 271 

network organization, also results in smaller AP-1
σ
 foci (Figure 3D), resembling the 272 

fragmented Golgi equivalents observed for PH
OSBP 

in a rabCΔ genetic background 273 

(Pantazopoulou and Penalva, 2011).  274 

 275 
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Figure 3: AP-1 associates transiently with the late-Golgi  276 

(A, B) Subcellular localization of Ap1
σ
-GFP relative to cis- (SedV-mCherry) and 277 

trans-Golgi (PH
OSBP

-mRFP) markers. Notice that Ap1
σ 

co-localizes significantly with 278 
the trans-Golgi marker PH

OSBP
, but not with the cis-Golgi marker SedV. This co-279 

localization is dynamic and transient, as shown in selected time lapse images on the 280 
right panels (see also relevant Videos 1 and 2). (C) Subcellular localization of Ap1

σ
 281 

and PH
OSBP

 in the presence of the inhibitor Brefeldin A, showing that a fraction of 282 
Brefeldin bodies (i.e. collapsed Golgi membranes) includes both markers, further 283 
supporting a transient AP-1/late Golgi association. (D) Subcellular localization of 284 
Ap1

σ
 in SedV

ts 
or RabO

ts
 thermosensitive mutants or a strain carrying a repressible 285 

rabC allele. These strains are used as tools for transiently blocking proper Golgi 286 
function. Notice that at the restrictive temperature (42 

o
C) Ap1

σ 
fluorescence becomes 287 

increasingly diffuse mostly in the RabO
ts 

mutant, whereas under RabC repressed 288 
conditions small Ap1

σ
–labeled

 
puncta increase in number. These results are 289 

compatible with the notion that AP-1 proper localization necessitates wild-type Golgi 290 
dynamics.  (E) Distribution of early and late Golgi markers SedV and PH

OSBP
 relative 291 

to ap1
σ
 expression or repression (+thi). Notice the effect of accumulation of Golgi 292 

towards the hyphal apex under repressed conditions. Unless otherwise stated, scale 293 
bars represent 5 μm.  294 

Importantly, knockdown of AP-1 had a moderate but detectable effect on the overall 295 

picture of early- or late-Golgi markers, which in this case seem re-located in the 296 

subapical region of the hypha, thus showing increased polarization (Figure 3E; Figure 297 

3 Supplement 1). The significance of this observation is discussed later.  298 

 299 

AP-1 associates with Clathrin via specific C-terminal motifs 300 

AP-1 and AP-2 association with clathrin is considered as a key interaction mediating 301 

the recognition of cargo prior to clathrin cage assembly in metazoa (Robinson, 2015). 302 

Clathrin-binding motifs, or boxes, have been identified in the hinge regions of the β 303 

subunits (Dell‟Angelica et al., 1998). In A. nidulans, clathrin light and heavy chains 304 

have been recently visualized (Martzoukou et al., 2017; Schultzhaus et al., 2017) and 305 

shown to dynamically decorate the late Golgi, also coalescing after Brefeldin A 306 

treatment (Schultzhaus et al., 2017). Given that AP-1
 
was shown here to associate 307 
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with late-Golgi, we tested whether it also associates with clathrin light and/or heavy 308 

chains, despite having a truncated C-terminal region (Martzoukou et al., 2017).  309 

Figures 4A and 4B suggest a high degree of co-localization of AP-1
σ
 with both 310 

clathrin light chain, ClaL, and heavy chain, ClaH. In the case of ClaL, co-migrating 311 

foci are often detected with AP-1
σ
, which once formed, move to all dimensions 312 

coherently (see also Video 3). In the case of ClaH, “horseshoe”-like structures appear 313 

to coalesce predominantly, which again are characterized by coherent movement with 314 

AP-1
σ
 (see also Video 4).  315 

 316 

Figure 4: C-terminal motifs in AP-1
β
 are essential for wild-type clathrin 317 

localization 318 

(A, B) Subcellular localization of Ap1
σ
 relative to that of clathrin light (ClaL) and 319 

heavy (ClaH) chains. Notice the significant co-localization of AP-1 with both clathrin 320 
chains, also highlighted by the co-migration of the two markers in Videos 3 and 4. (C, 321 
D) Subcellular distribution of Ap1

σ 
and clathrin light chain ClaL under conditions 322 

where claL or ap1
σ
 are repressed, respectively (+thi). Notice that repression of ClaL 323 
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expression has no significant effect on Ap1
σ
-GFP localization, whereas repression of 324 

Ap1
σ
 expression leads to more diffuse ClaL fluorescence with parallel appearance of 325 

increased numbers of cytoplasmic puncta. A similar picture is obtained when clathrin 326 
light and heavy chain localization are monitored under conditions of expression / 327 
repression of ap1

β
. These results are compatible with the idea that clathrin localization 328 

is dependent on the presence of AP-1, but not vice versa. (E) Effect of Ap1
β
 C-329 

terminal mutations modifying putative clathrin binding motifs (
709

NGF/A
711

 and 330 
632

DID/A
634

) on ClaL and ClaH distribution. Notice that replacement of 
709

NGF
711

, 331 
and to a lesser extend of 

632
DID

634
, by alanines, leads to modification of clathrin 332 

subcellular localization, practically identical to the picture observed in (D) when Ap1
β
 333 

expression is fully repressed. Unless otherwise stated, scale bars represent 5 μm. 334 

We also followed the localization of clathrin in the absence of AP-1, and vice 335 

versa, the localization of AP-1 in the absence of clathrin. Results in Figure 4C (upper 336 

panel) show that repression of ClaL expression does not affect the wild-type 337 

localization of AP-1
σ
. In contrast, repression of AP-1

σ
 leads to a prominent increase in 338 

rather static, ClaL-containing, cytoplasmic puncta (Figure 4C, lower panel). This 339 

suggests AP-1 functions upstream from ClaL, in line with the established role of AP-1 340 

in clathrin recruitment after cargo binding at late-Golgi or endosomal membranes. 341 

Since our results supported a physical and/or functional association of AP-1 342 

with clathrin, we addressed how this could be achieved given that the A. nidulans AP-343 

1
β
, which is the subunit that binds clathrin in metazoa and yeast (Gallusser and 344 

Kirchhausen, 1993), lacks canonical clathrin binding domains in its C-terminal 345 

region, but still possesses putative clathrin boxes (
630

LLDID
634 

and 
707

LLNGF
711

). 346 

Noticeably, these motifs resemble the LLDLF or LLDFD sequences, found at the 347 

extreme C-terminus of yeast AP-1
β
, which have been shown to interact with clathrin 348 

(Yeung and Payne, 2001). First, we showed that total repression of AP-1
β
 expression 349 

leads to a prominent increase in static ClaL or ClaH puncta, compatible with altered 350 

clathrin localization (Figure 4D, upper panels). Then we asked whether the putative 351 

clathrin boxes in AP-1
β
 play a role in the proper localization of clathrin. To do so, the 352 

707
LLNGF

711
 or/and 

630
LLDID

634
 motifs of AP-1

β
 were mutated in a genetic 353 
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background that also possesses a wild-type ap-1
β
 allele expressed via the repressible 354 

thiAp promoter. These strains allowed us to follow the localization of clathrin (claL or 355 

claH) when wild-type or mutant versions of ap-1
β
 were expressed. Figure 4D (lower 356 

panels) shows that mutations in 
707

LLNGF
711

, and to a much lesser extent 357 

630
LLDID

634
, lead to modification of clathrin localization, similarly to the picture 358 

obtained under total repression of AP-1
β
. Notably, the mutated versions of AP-1

β
 359 

partially restore the growth defects of repressed AP-1
β 

(Figure 4 Supplement 1). This 360 

suggests that interaction with clathrin via these boxes is not the primary determinant 361 

for the essentiality of AP-1 in fungal growth. 362 

 363 

AP-1 associates with RabE
Rab11

-labeled secretory vesicles 364 

The results obtained thus far suggested that the AP-1 complex is involved in post-365 

Golgi anterograde trafficking of secretory vesicles. In A. nidulans, such vesicles 366 

deriving from the late-Golgi, traffic along microtubule tracks towards regulated 367 

discharge at the apical plasma membrane level (Berepiki et al., 2011; Peñalva et al., 368 

2017; Steinberg et al., 2017; Zhou et al., 2018). Pivotal role in these early processes 369 

plays the small GTPase RabE
Rab11

, which recruited along with its regulators, precedes 370 

and very probably mediates late-Golgi exit of secretory vesicles towards the hyphal 371 

tip (Pantazopoulou et al., 2014; Pinar et al., 2015; Peñalva et al., 2017). Post-Golgi 372 

RabE labeled structures, including the Spk, do not co-localize with endosomes stained 373 

by FM4-64 or late-endosome/vacuoles stained by CMAC (Figure 5A, 5B). In 374 

contrast, they show a significant degree of association with AP-1
σ
, suggesting that the 375 

majority of these vesicles are coated by AP-1 (Figure 5C). This is particularly 376 
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prominent on foci of subapical regions (Figure 5C, right panels) and also at sites of 377 

newly emerging branches (Figure 5C, left panels).  378 

We further examined the association of AP-1 and RabE by following their 379 

localization in relevant knockdown mutants.  Given that the knockout of RabE proved 380 

lethal (results not shown), we monitored AP-1 localization in a knockdown strain 381 

where rabE expression can be totally repressed via the thiAp promoter. Similarly, we 382 

followed RabE localization in an analogous AP-1 knockdown mutant. Figure 5D 383 

(upper panel) shows that when RabE is fully repressed AP-1 fluorescence appears 384 

mostly as a cytoplasmic haze, suggesting that AP-1 acts downstream of RabE. 385 

Contrastingly, when AP-1 is repressed, RabE does not reach the Spk, while most 386 

fluorescence dissolves into scattered static puncta (Figure 5D, lower panel). This 387 

strongly suggests that polar secretion of RabE and apparently of secretory vesicles is 388 

blocked.  389 

Furthermore, upon repression of rabE, crucial apical markers like SynA or 390 

ChsB lose their polar distribution, failing to reach their proper destination at the cell 391 

cortex (Figure 5E, upper panels). This inhibition of targeting appears more dramatic 392 

than the one observed when AP-1 is repressed (see Figure 2), thus indicating the 393 

existence of possible alternative RabE-dependent, but AP-1 independent routes. In 394 

addition, clathrin labeled structures also lose their wild-type distribution under rabE 395 

repression conditions, resulting in scattered small puncta (Figure 5E, lower panels), 396 

resembling the phenotype observed for ClaL in the absence of a functional AP-1 397 

complex (see Figure 4C, 4D). Similar polar localization defects are observed in RabE-398 

labeled secretory vesicles in strains repressed for clathrin light chain, suggesting that 399 

the majority of secretory vesicles requires a clathrin coat to reach the Spk (Figure 5F). 400 

Given the fact that, unlike RabE, neither AP-1
σ
 nor clathrin appear to occupy the Spk, 401 
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it seems that secretory vesicles are uncoated from AP-1 and clathrin prior to their 402 

localization in Spk, and thus before actin-dependent localization at the apical PM. We 403 

also tested the relative localization of an apical marker (SynA) and RabE in a genetic 404 

background where Ap1
σ 

expression can be repressed. When Ap1
σ
 is expressed, SynA 405 

and RabE co-localize significantly, mostly evident in the Spk, whereas when Ap1
σ
 is 406 

repressed, co-localization persists but shows a more dispersed pattern and is 407 

practically absent from of Spk (Figure 5G). This strongly suggests the AP-1 is 408 

essential for anterograde movement of post-Golgi vesicles. 409 

 410 

Figure 5: AP-1 associates with RabE
Rab11

-labeled secretory vesicles 411 
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(A, B) Time course of RabE-GFP localization in the presence of FM4-64 or CMAC, 412 

indicating the non-endocytic character for RabE labeled structures. (C) Subcellular 413 
localization of Ap1

σ
–mRFP and RabE-GFP, showing significant co-localization in 414 

several fluorescent cytoplasmic puncta throughout the hyphae but more prominent at 415 
sub-apical regions and sites of branch emergence. Notice that co-localization is 416 
apparently excluded at the level of Spk, where RabE is prominent, whereas Ap1

σ
 is 417 

not. (D) Subcellular localization of Ap1
σ
–GFP or RabE-GFP in strains carrying 418 

thiamine-repressible thiAp-rabE or thiAp-ap1
σ
 alleles respectively, observed under 419 

conditions of expression (-thi) or repression (+thi). Notice that in the absence of rabE 420 
expression Ap1

σ
-labeled fluorescence appears as a cytoplasmic haze rather than 421 

distinct puncta (upper panels), while in the absence of ap1
σ
 expression, RabE 422 

fluorescence disappears from the Spk and is associated with numerous scattered 423 
bright puncta along the hypha (lower panels - 43.24% uniform distribution and 424 
intensity of puncta, 37.84% more than two brighter puncta close to the apex are 425 
observed, 18.9% one brighter mislocalized punctum at the apex is observed, n=37). 426 

(E) Subcellular localization of SynA, ChsB, ClaL and ClaH in strains carrying the 427 
thiamine-repressible thiAp-rabE allele, observed under conditions of expression (-thi) 428 
or repression (+thi) of rabE. Notice that in all cases the wild-type distribution of 429 
fluorescence is severely affected, resulting in loss of polarized structures and 430 
appearance of an increased number of scattered bright foci, the latter being more 431 
evident in ClaL and ClaH. (F) Localization of RabE-GFP in a strain carrying a 432 
thiamine-repressible thiAp-claL allele, observed under conditions of expression (-thi) 433 
or repression (+thi) of claL.  Notice the disappearance of RabE from the Spk and its 434 
association with numerous scattered bright clusters along the hypha, a picture similar 435 
to that obtained in absence of ap1

σ
 expression in (C). (G) Co-localization analysis of 436 

SynA and RabE in a strain carrying a thiamine-repressible thiAp-ap1
σ
 allele. Notice 437 

that when Ap1
σ
 is expressed, SynA and RabE co-localize intensively at the Spk but 438 

also elsewhere along the hypha, whereas when Ap1
σ
 expression is repressed (+thi), 439 

both fluorescent signals disappear from the Spk and appear mostly in numerous 440 
scattered and rather immotile puncta, several of which show double fluorescence. 441 

Unless otherwise stated, scale bars represent 5 μm.  442 

 443 

AP-1 associates with the microtubule cytoskeleton 444 

Previous studies have shown that RabE-labeled secretory vesicles utilize microtubule 445 

tracks and kinesin-1 for their anterograde traffic, and when present at the Spk use 446 

myosin-5 and actin cables to be delivered at the apical PM or eventually move back in 447 

retrograde direction powered by dynein motors (Zhang et al., 2011; Egan et al., 2012; 448 

Peñalva et al., 2017; Steinberg et al., 2017; Zhou et al., 2018). Here, we examined the 449 

possible association of AP-1 with specific dynamic elements of the cytoskeleton 450 

involved in cargo traffic. Figure 6A shows that AP-1 puncta decorate microtubules 451 
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labeled by alpha-tubulin, TubA. Noticeably, the path of motile AP-1 puncta is in most 452 

cases dictated by the direction of the microtubules. The association with the 453 

microtubule network is further supported by the effect of the anti-microtubule drug 454 

Benomyl, which results in an almost complete, but reversible, disassembly of 455 

microtubules with a parallel increase in Ap1
σ
-GFP labeled cytoplasmic haze (Figure 456 

6B, upper panel, mostly evident at 4-6 min). In contrast, inhibition of F-actin 457 

dynamics via Latrunculin B treatment shows that actin depolymerization does not 458 

lead to detectable modification of AP-1 localization (Figure 6B lower panel). This 459 

result is in agreement with the observation that AP-1 is excluded from the actin 460 

polymerization area.  461 

 Kinesins are motor proteins involved in the transport of secretory vesicles, 462 

early endosomes, organelles and also mRNA and dynein motors (Egan et al., 2012; 463 

Steinberg 2011; Bauman et al., 2012; Salogiannis and Reck-Peterson, 2017). Based 464 

on previous results showing that kinesin-1 KinA (Konzack et al., 2005; Zekert and 465 

Fischer, 2009) is the main motor responsible for anterograde traffic of RabE-labeled 466 

secretory vesicles, whereas kinesin-3 UncA has no significant role SV secretion  467 

(Peñalva et al., 2017), we tested whether KinA and UncA are involved in powering 468 

the motility of AP-1 on microtubules. The use of strains carrying deletions of KinA 469 

and UncA showed that the motility of AP-1 on microtubules is principally powered 470 

by KinA, the absence of which leads to a re-distribution and apparent “stalling” of 471 

Ap1
σ
- labeled foci at subapical regions, excluding localization at the hyphal tip area 472 

(Figure 6C). This picture is practically identical with the localization of apical 473 

cargoes, such as ChsB, in the absence of KinA (Takeshita et al., 2015). In the case of 474 

UncA, the Ap1
σ
-labeled foci appear to be largely unaffected, however more 475 

prominent localization at the level of Spk and also rather lateral accumulation of 476 
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relative foci is observed (55,2% of n=25 hyphae) (Figure 6C). These results suggest 477 

that UncA might have auxiliary roles in the anterograde traffic of Ap1-labeled 478 

secretory vesicles.  479 

 480 

 481 
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Figure 6: AP-1 associates with the cytoskeleton and affects septin organization 482 

(A) Relative Ap1
σ
-GFP and mCherry-TubA (α-tubulin) subcellular localization. 483 

Notice Ap1
σ
 fluorescent foci decorating dynamically TubA-labeled microtubules, as 484 

highlighted in the selected time lapse images on the lower panels. (B) Time course of 485 
treatment of strains expressing Ap1

σ
 and TubA with the anti-microtubule drug 486 

Benomyl (upper panels). Notice that Benomyl elicits an almost complete, but 487 
reversible, disassociation of Ap1

σ
 and TubA, resulting in diffuse cytoplasmic 488 

florescent signals. Contrastingly, treatment with the anti-actin drug Latrunculin B 489 
does not elicit a significant change in the polar distribution of Ap1

σ
 (lower panels). 490 

(C) Subcellular localization of AP-1 in wt and in strains lacking the kinesins KinA 491 
and UncA, respectively. Notice the absence of apical labeling of AP-1 in the kinAΔ 492 
strain, indicated with an arrowhead. (D) Subcellular organization of the microtubule 493 
network, as revealed by TubA-labeling, in a strain carrying a thiamine-repressible 494 
thiAp-ap1

σ
 allele, observed under conditions of expression (-thi) or repression (+thi) of 495 

ap1
σ
. Notice that the absence of Ap1

σ
 leads to a less orientated network, bearing 496 

vertical and curved microtubules, and in some cases the appearance of bright cortical 497 
spots (2-7 puncta/hypha, usually exhibiting perinuclear localization). (E) Subcellular 498 
localization of GFP-tagged versions of septins AspB, AspC, AspD and AspE in a 499 
strain carrying a thiamine-repressible thiAp-ap1

σ
 allele, observed under conditions of 500 

expression (-thi) or repression (+thi) of ap1
σ
. Notice that when ap1

σ
 is repressed, 501 

AspB, AspC and AspD form less higher order structures (HOS) such as filaments or 502 
bars (ap1

+
: 1.58 HOS/hypha, n=87, ap1

-
: 0.96 HOS/hypha, n=103) and instead label 503 

more cortical spots (see left panel for quantification), some of which appear as 504 
opposite pairs at both sides of the plasma membrane, resembling septum formation 505 
initiation areas. In contrast, AspE localization remains apparently unaffected under 506 

ap1
σ
 repression conditions. Unless otherwise stated, scale bars represent 5 μm. 507 

The functional association of AP-1 with the cytoskeleton was also investigated by 508 

following the appearance of microtubules in a strain lacking AP-1. Figure 6D shows 509 

that repression of AP-1 expression led to prominent changes in the microtubule 510 

network, as monitored by TubA-GFP fluorescence. These include more curved 511 

microtubules towards the apex, distinct bright spots at the periphery of the hyphal 512 

head and increased cross sections throughout the hypha, all together suggesting a 513 

possible continuous polymerization at the plus end and a problematic interaction with 514 

actin through cell-end markers (Takeshita et al., 2013; 2014; Zhou et al., 2018).  515 

 516 

AP-1 is critical for septin organization 517 
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Given the role of AP-1 in microtubule organization, we also studied its role on septin 518 

localization. Septins are less well characterized GTP-binding proteins, which form 519 

hetero-polymers associating into higher order structures, and are thought to play a 520 

central role in the spatial regulation and coordination of the actin and microtubule 521 

networks in most eukaryotes (Mostowy and Cossart, 2012; Spiliotis, 2018). In A. 522 

nidulans, five septins have been under investigation, the four core septins AspA-D, 523 

which form hetero-polymers appearing in various shapes, including spots, rings and 524 

filaments, and a fifth septin of currently unknown function, AspE, not involved in the 525 

hetero-polymer and appearing as dense cortical spots at the proximity of the plasma 526 

membrane (Hernadez Rodriguez and Momany, 2012; Hernadez Rodriguez et al., 527 

2014; Momany and Talbot, 2017). Figure 6E shows that upon AP-1 repression, 528 

hetero-polymer forming core septins AspB, AspC and AspD appear less in the form 529 

of filamentous structures, while distinct bright cortical spots tend to accumulate at the 530 

hyphal periphery, several of which possibly mark positions of new septa, in 531 

agreement with increased numbers of septa observed in the absence of AP-1. 532 

Interestingly, AspE, appears largely unaffected with the exception of the more 533 

frequent appearance of septa. All the above observations are in agreement with many 534 

other previously described phenotypes associating with AP-1 repression and suggest 535 

an implication of AP-1 in the processes regulating septin polymer formation. 536 

Noticeably, proper endosomal trafficking of septins at growth poles is necessary for 537 

growth in Ustilago maydis (Bauman et al., 2014). 538 

 539 

AP-1 is involved in endosome recycling  540 

The AP-1 complex has also been implicated in anterograde and retrograde traffic 541 

between endosomal compartments and the plasma membrane (Robinson 2004; 2015). 542 
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However, the existence of relative sorting or recycling endosome, originating from 543 

early endosomes (EE), has not been shown rigorously in filamentous fungi (Steinberg 544 

et al., 2017).  545 

 546 

 547 

 548 
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Figure 7: AP-1 is involved in endosome recycling  549 

(A) Selected time-lapse images showing the relative localization of Ap1
σ
 and RabB 550 

(early endosomal marker). Notice the dynamic association of AP-1 with RabB. (B) 551 
Subcellular localization of RabA (upper panels) and RabB (lower panels) in a strain 552 
carrying a thiamine-repressible thiAp-ap1

σ
 allele, observed under conditions of 553 

expression (-thi) or repression (+thi) of ap1
σ
. Notice the increased numbers and 554 

clustering of both endosomal markers in rather immotile puncta when AP-1 555 
expression is repressed. (C) Selected time-lapse images of RabB in a strain carrying a 556 
thiamine-repressible thiAp-ap1

σ
 allele, showing that the immotile RabB foci increase 557 

in number when ap1
σ
 is repressed (+thi). However, faster trafficking endosomes can 558 

still be observed, in both retrograde and anterograde direction. (D) Expression of 559 
RabB in a strain carrying a thiamine-repressible thiAp-ap1

σ
 allele, stained with 560 

CMAC. Notice that when ap1
σ
 expression is repressed (+thi), most immotile RabB 561 

puncta are stained with CMAC.(E) Working model summarizing major findings on 562 

the role of the AP-1 complex. Unless otherwise stated, scale bars represent 5 μm.   563 

 564 

Major determinants of EE identity are the Rab5 GTPases (Nielsen et al., 1999). The 565 

A. nidulans Rab5 paralogues RabA and RabB both localize to early endosomes 566 

moving on microtubule tracks, with RabB appearing also in relatively static late 567 

endosomes. Importantly, the RabA and RabE markers do not co-localize with RabE, 568 

which confirms that motile, anterograde-moving, secretory vesicles and motile 569 

endosomes are distinct entities (Pantazopoulou et al., 2014). Here, we investigated 570 

whether AP-1 associates with Rab5 endosomes.   571 

Figure 7A shows that AP-1 exhibits a degree of transient co-migration with 572 

RabB. The coalescence of fluorescence is mostly observed in ring-like structures, 573 

which tend to accumulate and convert to more compact forms, suggesting an 574 

involvement of AP-1 in recycling, without excluding an additional involvement in 575 

vacuolar degradation. Importantly, knockdown of AP-1 led to increased numbers of 576 

both RabA and RabB-labeled endosomes (Figure 7B), the majority of which are 577 

immotile. In fact, the motile subpopulation of endosomes appears unaffected (Figure 578 

7C). In the absence of AP-1, several distinct RabB foci were also stained by CMAC 579 

(Figure 7D), indicating that they are mini-vacuoles, resembling the phenotype of 580 
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RabA/B in the absence of RabS
Rab7

, a mediator of vacuolar degradation (Abenza et 581 

al., 2012). In summary, all evidence presented above strongly support that AP-1 is 582 

involved primarily in endosome recycling to the PM, and consequently in its absence, 583 

recycling endosomes seem to increase and eventually acquire an identity of 584 

degradative endosomes (see also Figure 7E). 585 

 586 

Discussion 587 

We have previously shown that the AP-2 complex of A. nidulans and probably other 588 

higher fungi have a clathrin-independent role in the endocytosis of cargoes necessary 589 

for apical recycling of plasma membrane and cell wall components, and thus for 590 

fungal polar growth maintenance. This was rather unexpected due to the generally 591 

accepted view that AP-2 functions uniquely as a cargo-clathrin adaptor, but also due 592 

to its compromised role in the growth of unicellular fungi. Thus, it seems that sorting 593 

and trafficking mechanisms are genetically and/or physiologically adaptable in order 594 

to meet the specific growth or homeostatic strategies different cells face. In the 595 

present work we functionally analyzed the AP-1 complex of A. nidulans, as a 596 

prototypic example of a simple eukaryote that exhibits continuous polar growth, and 597 

showed that AP-1 is indeed essential for cell survival and growth, in a way similar to 598 

metazoan cells (Bonifacino, 2014) and probably  plants  (Robinson and Pimpl, 2013).  599 

To our knowledge, no previous study has addressed the role of the AP-1 in 600 

filamentous fungi. 601 

In yeasts, which do not maintain polar growth and where the microtubule 602 

cytoskeleton is not critical for cargo traffic, AP-1 null mutants are viable, showing 603 

relatively moderate growth defects, which in some cases are associated with 604 

problematic traffic of specific cargoes, such as chitin synthase Chs3 (Valdivia et al. 605 
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2002; Ma et al., 2009; Yu et al., 2013; Arcones et al., 2016). Yeast AP-1 null mutants 606 

also have minor defects in lipid PtdIns(3,5)P2-dependent processes and show reduced 607 

ability to traffic ubiquitylated cargoes to the vacuole lumen (Phelan et al., 2006). 608 

Notably, in S. cerevisiae, there are two forms of AP-1 which share the same large 609 

(Apl2 and Apl4) and small (Aps1) subunits, but distinct medium subunits (Apm1 or 610 

Apm2) that seem to confer differential cargo recognition and sorting (Valdivia et al., 611 

2002; Renard et al., 2010; Whitfield et al., 2016). Additionally, in yeast, the AP-1 612 

complex seems to co-operate with the exomer, a non-essential, fungal-specific 613 

heterotetrameric complex assembled at the trans-Golgi network, for the delivery of a 614 

distinct set of proteins to the plasma membrane (Hoya et al., 2017; Anton et al., 615 

2018).  616 

Contrastingly to yeasts, repression of AP-1 expression in A. nidulans leads to 617 

lack of growth, which is related to its inability to maintain apical sorting of all polar 618 

cargoes tested, including those necessary for plasma membrane and cell wall 619 

biosynthesis. Thus, not only the growth phenotype, but also several underlying 620 

cellular defects in AP-1 null mutants resemble those obtained previously with AP-2 621 

loss-of-function mutants (Martzoukou et al., 2017). This is in perfect agreement with 622 

the notion that growth of filamentous fungi, unlike yeasts, requires polar apical 623 

exocytosis combined with subapical endocytosis and recycling to the apex of specific 624 

cargoes related to plasma membrane and cell wall modification (Taheri-Talesh et al., 625 

2008; Peñalva 2010; Shaw et al., 2011). Overall, results presented herein emphasize 626 

important differences in membrane trafficking mechanisms employed by yeasts and 627 

filamentous fungi, the latter proving a unique genetic and cellular system to dissect 628 

cargo sorting in cells characterized by membrane polarity. 629 
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Interestingly, despite the similarity in AP-2 and AP-1 phenotypic growth 630 

defects, AP-2 has been shown to act independently of clathrin at the PM, while AP-1 631 

is shown here to associate and function with clathrin at several post-Golgi membrane 632 

trafficking steps. The similarity of effects caused by null mutations in AP-1 and 633 

clathrin chains, concerning RabE
Rab11

-labeled secretory vesicle anterograde traffic and 634 

RabA/B
Rab5

-labeled endosome recycling, constitutes strong evidence that AP-1 635 

function is clathrin-dependent. Interestingly, however, the β subunit of AP-1 of A. 636 

nidulans and all higher fungi lacks the C-terminal appendage domain that contributes 637 

to clathrin-binding (Martzoukou et al., 2017). Here, we identified specific short motifs 638 

in the C-terminal region of AP-1
β 

that proved critical for proper clathrin subcellular 639 

localization and AP-1 function. These motifs (LLNGF and LLDID) resemble motifs 640 

shown previously to bind clathrin in yeast (Yeung and Payne, 2001). Thus, 641 

contrastingly to the fact that clathrin is dispensable for the function of AP-2 in polar 642 

cargo endocytosis it is essential for AP-1-driven polar exocytosis.  643 

A novel point of this work concerns the interaction of AP-1 with RabE
Rab11

. 644 

To our knowledge, such an interaction has only been described in a single report in 645 

mammalian cells (Parmar et al., 2016). In this case, Rab11 and AP-1 co-localize with 646 

the reptilian reovirus p14 FAST protein at the TGN. In metazoa, Rab11 acts as a 647 

molecular switch essential for building the necessary molecular machinery for 648 

membrane cargo trafficking to the cell surface via its localization and action at the 649 

trans-Golgi network, post-Golgi vesicles and specialized recycling endosomes (Welz 650 

et al., 2014). In A. nidulans, the Rab11 homologue RabE has been previously shown 651 

to mark similar subcellular compartments (e.g. late-Golgi and secretory vesicles) and 652 

to be involved in anterograde moving of cargoes to the Spk and eventually to the 653 

apical PM. Notably, however, RabE does not co-localize with RabA/B
Rab5

-labeled 654 
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endosomes. The present work strongly suggests that AP-1 and clathrin are 655 

sequentially recruited on cargoes, after RabE-dependent maturation of late-Golgi 656 

membranes to pre-secretory vesicles, and that secreted cargoes travel embedded 657 

within AP-1/clathrin-coated vesicle carriers on MT (see later) to the Spk.  At the Spk, 658 

AP-1/clathrin coat is most likely released, but RabE remains until the involvement of 659 

actin in the last step of fusion with the apical PM. 660 

The impressive similarity of the A. nidulans trafficking mechanisms with 661 

those of higher organisms is also reflected in the absolute need for proper microtubule 662 

(MT) cytoskeleton organization and dynamics (Fischer et al., 2008; Takeshita et al., 663 

2014). We showed that AP-1 is essential for MT organization and associates with 664 

microtubules, mainly via KinA. Thus, a specific kinesin motor provides the molecular 665 

link between cargo/AP-1/clathrin complexes and cytoskeletal tracks. This is very 666 

similar to what has been found in mammalian epithelial cells, where the molecular 667 

motor kinesin KIF13A connects AP-1 coated secretory vesicles containing mannose-668 

6-phosphate receptor to microtubule tracks, and thus mediates their transfer from the 669 

TGN to the plasma membrane (Nakagawa et al., 2000). Similarly, in HeLa cells 670 

another motor protein kinesin, KIF5, links TGN-derived endosomal vesicles via a 671 

direct interaction with Gadkin, a γ-BAR membrane accessory protein of the AP-1 672 

complex, with the microtubule cytoskeleton (Schmidt et al., 2009). Thus, tripartite 673 

complexes, including transmembrane cargoes, coat adaptors and motor kinesins, seem 674 

to constitute an evolutionary conserved molecular machinery for membrane protein 675 

subcellular transport in eukaryotes.  676 

One simple explanation for the essentiality of AP-1 in proper MT organization 677 

would be that, in its absence, membrane-associated polarity markers, such as Rho 678 

GTPases TeaA or TeaR, which are necessary for microtubule attachment to actin 679 
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(Fischer et al., 2008; Takeshita and Fischer, 2011; Takeshita et al., 2013; Takeshita 680 

2018), are not sorted correctly in the apex of growing hyphae. Lack of such cell-end 681 

markers is known to result in curved or zigzagged organization of MTs and less 682 

straight hyphae, compatible with the picture we obtained in the AP-1 null mutant. 683 

Importantly, we further supported the essential role of AP-1 in MT organization and 684 

function by showing the dramatic effect of the absence of AP-1 on the subcellular 685 

organization of septins, proteins that play fundamental roles in the ability of diverse 686 

fungi to undergo shape changes and organize the cytoskeleton for polar growth 687 

(Zhang et al., 2017; Momany and Talbot, 2017). 688 

Another notable finding of this work concerns the association of AP-1 with 689 

recycling endosomes, which represent a pathway distinct from that of RabE-labeled 690 

secretory vesicles. Thus, it seems that the combined action of two independent 691 

pathways serves the polar distribution of specific cargoes. In A. nidulans, early 692 

endosomes (EEs) marked by the homologues of the Rab5 family (RabA and RabB) 693 

are generated via endocytosis and are easily distinguishable due to their high and 694 

long-distance bidirectional motility (Abenza et al., 2009; Steinberg, 2014).  A fraction 695 

of EEs matures to less motile late endosomes or Multi-Vesicular Bodies (concurrent 696 

with increased replacing of RabA/B with RabS
Rab7

), which eventually fuse with 697 

vacuoles for cargo degradation (Abenza et al., 2010; 2012; Steinberg, 2014). Another 698 

fraction of EEs, mostly the one localized at the subapical collar region of hyphae 699 

where very active endocytosis takes place, apparently recycles back to the Spk and 700 

from there vesicular cargoes reach the PM (Steinberg, 2014). Whether this takes place 701 

directly or via retrograde transport to the late-Golgi and anterograde transport in 702 

secretory vesicles, is not clear and might well depend on the nature of the cargoes 703 

studied.  Here we showed that lack of AP-1 leads to a dramatic increase in non-motile 704 
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RabA/B endosomes, very probably reflecting enhanced maturation into Multi-705 

Vesicular Body endosomes, which suggests that AP-1 has a critical role in the fueling 706 

of recycling endosomes to the PM or the late-Golgi. Thus, a consequence of the lack 707 

of AP-1 function is compatible with the dramatic increase in static and larger 708 

endosomes observed. Similarly, lack of AP-1 function in mammalian cells leads to 709 

problematic maturation of early endosomes, associated with aberrant recycling in 710 

synapses (Candiello et al., 2016). 711 

 712 

Figure 8: Highly speculative scheme on the role of AP-1 in A. nidulans hyphal tip 713 
growth. 714 
 715 

Establishing the essential role of AP-1 in polar secretion of specific cargoes in 716 

A. nidulans (for a schematic view of our findings see Figure 7E and Figure 8), which 717 

will probably hold true for other filamentous fungi, also opens a novel little-studied 718 

issue.  How specific non-polar cargoes are sorted to the plasma membrane?  For 719 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/294223doi: bioRxiv preprint 

https://doi.org/10.1101/294223
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

example, here and previously, we showed that AP-1 and AP-2 complexes are 720 

redundant for the proper subcellular expression of transporters that are homogenously 721 

present in the PM of growing hyphae and which do not show any indication of polar 722 

localization. A critical question to answer is which route(s) and mechanism(s) 723 

transporters, and possibly other non-polar transmembrane cargoes (i.e. channels and 724 

receptors), use for their sorting, endocytosis or recycling. This question also concerns 725 

metazoan and plant cells, where non-polar sorting remains largely understudied. 726 

Finally, under the light of previous results obtained in yeast, metazoa or plants, our 727 

present work highlights the importance of using different model organisms to address 728 

common but evolutionary adaptable mechanisms for membrane cargo traffic in 729 

eukaryotes. 730 

 731 

Materials and methods 732 

Media, strains, growth conditions and transformation  733 

Standard complete and minimal media for A. nidulans were used (details in FGSC, 734 

http://www.fgsc.net.). Media and chemical reagents were obtained from Sigma-735 

Aldrich (Life Science Chemilab SA, Hellas) or AppliChem (Bioline Scientific SA, 736 

Hellas). Glucose 0.1-1 % (w/v) was used as a carbon source. NaNO3 and NH4
+
 737 

(Ammonium tartrate dibasic) were used as nitrogen sources at 10 mM. Thiamine 738 

hydrochloride (thi) was used at a final concentration of 10 μM. Transformation was 739 

performed as described previously in Koukaki et al. (2003), using an nkuA DNA 740 

helicase deficient (TNO2A7; Nayak et al., 2006) recipient strain or derivatives for “in 741 

locus” integrations of gene fusions, or deletion cassettes by the A. fumigatus markers 742 

orotidine-5‟-phosphate-decarboxylase (AFpyrG, Afu2g0836), GTP-cyclohydrolase II 743 

(AFriboB, Afu1g13300) and a pyridoxine biosynthesis gene (AFpyroA, Afu5g08090), 744 
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resulting in complementation of auxotrophies for uracil/uridine (pyrG89), riboflavin 745 

(riboB2) or pyridoxine (pyroA4), respectively. Transformants were verified by PCR 746 

and Southern analysis. Combinations of mutations and tagged strains with fluorescent 747 

epitopes, were generated by standard genetic crossing. E. coli strains used were dΗ5α. 748 

A. nidulans strains used in this study are listed in Supplementary Table 1. 749 

 750 

Nucleic acid manipulations and plasmid constructions 751 

Genomic DNA extraction from A. nidulans was performed as described in FGSC 752 

(http://www.fgsc.net). Plasmid preparation and DNA gel extraction were performed 753 

using the Nucleospin Plasmid kit and the Nucleospin Extract II kit (Macherey-Nagel, 754 

Lab Supplies Scientific SA, Hellas). Restriction enzymes were from Takara Bio (Lab 755 

Supplies Scientific SA, Hellas). DNA sequences were determined by Eurofins-756 

Genomics (Vienna, Austria). Southern blot analysis using specific gene probes was 757 

performed as described in Sambrook et al. (1989), using [
32

P]-dCTP labeled 758 

molecules prepared by a random hexanucleotide primer kit and purified on 759 

MicroSpin™ S-200 HR columns (Roche Diagnostics, Hellas). Labeled [
32

P]-dCTP 760 

(3000 Ci mmol
-1

) was purchased from the Institute of Isotops Co. Ltd, Miklós, 761 

Hungary. Conventional PCR reactions, high fidelity amplifications and site-directed 762 

mutagenesis were performed using KAPA Taq DNA and Kapa HiFi polymerases 763 

(Kapa Biosystems, Roche Diagnostics, Hellas). Gene fusion cassettes were generated 764 

by one step ligations or sequential cloning of the relevant fragments in the plasmids 765 

pBluescript SKII, or pGEM-T using oligonucleotides carrying additional restriction 766 

sites. These plasmids were used as templates to amplify the relevant linear cassettes 767 

by PCR. For ap1
β
 site directed mutations the relevant gene was cloned in the pBS-768 

argB plasmid (Vlanti and Diallinas, 2008). For primers see Supplementary Table 2.  769 
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 770 

Protein extraction and western blots  771 

Cultures for total protein extraction were grown in minimal media supplemented with 772 

NaNO3 or NH4
+
 at 25

o 
C. Total protein extraction was performed as previously 773 

described (Papadaki et al., 2017). Total proteins (30-50 μg estimated by Bradford 774 

assays) were separated in a polyacrylamide gel (8-10 % w/v) onto PVDF membranes 775 

(Macherey-Nagel, Lab Supplies Scientific SA, Hellas). Immunodetection was 776 

performed with a primary anti-FLAG M2 monoclonal antibody (Sigma-Aldrich), an 777 

anti-actin monoclonal (C4) antibody (MP Biomedicals Europe) and a secondary HRP-778 

linked antibody (Cell Signaling Technology Inc, Bioline Scientific SA, Hellas). Blots 779 

were developed using the LumiSensor Chemiluminescent HRP Substrate kit 780 

(Genscript USA, Lab Supplies Scientific SA, Hellas) and SuperRX Fuji medical X-781 

Ray films (FujiFILM Europe).  782 

 783 

Microscopy and Statistical Analysis 784 

Samples for wide-field epifluorescence microscopy were prepared as previously 785 

described (Martzoukou et al., 2017). Germlings were incubated in sterile 35mm μ-786 

dishes, high glass bottom (ibidi, Germany) in liquid minimal media for 16-22 h at 25° 787 

C. Benomyl, Latrunculin B, Brefeldin A and Calcofluor white were used at final 788 

concentrations of 2.5μg ml
-1

, 100μg ml
-1

, 100μg ml
-1

, 0,001% (w/v), respectively. 789 

FM4-64 and CMAC staining was according to Peñalva (2005) and Evangelinos et al. 790 

(2016), respectively. Images were obtained using a Zeiss Axio Observer Z1/Axio 791 

Cam HR R3 camera. Contrast adjustment, area selection and color combining were 792 

made using the Zen lite 2012 software. Sum Intensity Projections of selected frames 793 

were created using the “Z project” command of ImageJ software. ImageJ Plot profile 794 
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was used for measurements of fluorescence intensity (https://imagej.nih.gov/ij/). For 795 

quantifying dot density in Figure 6, ROIs were selected using the Area Selection tool 796 

and the Spot Detector plugin of ICY (http://icy.bioimageanalysis.org/). Tukey‟s 797 

Multiple Comparison test was performed (One-way ANOVA) using the Graphpad 798 

Prism software for the statistical analysis. Confidence interval was set to 95%.  Scale 799 

bars were added using the FigureJ plugin of the ImageJ software. Images were further 800 

processed and annotated in Adobe Photoshop CS4 Extended version 11.0.2.  801 
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 1228 

 1229 

Figure 2 Figure Supplement 1: Quantitative analysis of fluorescence intensity of 1230 
strains shown in Figure 2A, under ap1

σ
 expressed or fully repressed conditions (-thi, 1231 

+thi respectively) along 25 μm of hyphal tips. The region measured is depicted in the 1232 
cartoon on the top left. For details of fluorescence intensity measurements see 1233 

Materials and methods. 1234 
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Figure 2 Figure Supplement 2. Co-localization of DnfA-GFP with the endocytic dye 1236 

FM4-64 (10min) indicating that most immotile internal structures are not co-stained 1237 

with FM4-64. 1238 

 1239 

Figure 3 Figure Supplement 1: Quantitative analysis of fluorescence intensity of 1240 
strains shown in Figure 3E, under ap1

σ
 expressed or fully repressed conditions (-thi, 1241 

+thi respectively) along 25 μm of hyphal tips. For details of fluorescence intensity 1242 

measurements see Materials and methods. 1243 

 1244 

 1245 

Figure 4 Figure Supplement 1. Left panel: Growth test of a standard wild-type (wt), 1246 
a strain carrying a thiamine-repressible thip-ap1

β
 allele, and strains expressing ClaL-1247 

GFP and ClaH-GFP in the repressible thip-ap1
β
 background. Right panel: Growth test 1248 

of strains carrying the repressible thip-ap1
β
 allele “in locus”, together with wt or 1249 

mutated versions of Ap1
β
 expressed from plasmid integration events, as well as, 1250 

ClaL-GFP and ClaH-GFP alleles. Notice that expression of the mutated Ap1
β
 1251 

versions, which seem defective for clathrin recruitment, partially rescue growth when 1252 
thip-ap1

β
 allele is repressed. This, together with results presented in Figure 4, 1253 

indicates that total lack of growth observed in the absence of AP-1 is not simply due 1254 
defective interaction of AP-1 with clathrin.  1255 

 1256 

 1257 

 1258 

 1259 

 1260 

 1261 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/294223doi: bioRxiv preprint 

https://doi.org/10.1101/294223
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47 

 1262 

Supplementary Table 1. Strains used in this study. All strains carry the veA1 1263 
mutation affecting sporulation. pabaA1, pyroA4, riboB2, argB2, pyrG89, pantoB100, 1264 
biA1, nicA2 and inoB2 are auxotrophic mutations for p-aminobenzoic acid, 1265 
pyridoxine, riboflavin, arginine, uracil/uridine, D-pantothenic acid, nicotinic acid, 1266 
biotin and inositol respectively. yA2 and wA4 are mutations resulting in yellow and 1267 
white conidiospore colors respectively. 1268 

Name Genotype Reference 

TNO2A7 nkuAΔ::argB pyrG89 pyroA4 riboB2 8 

H1-mRFP H1-mRFP::AFriboB nkuAΔ::argB pyrG89 pyroA4 9 

mRFP-PH
OSBP

 pyroA4[pyroA::gpdA
m

p::mRFP-PH
OSBP

] inoB2 niiA4 wA4 10 

mCherry-sedV pyroA4[pyroA
mut

::gpdA
m

p::mcherry-sedV] nkuAΔ::bar, wA4, niiA4 inoB2 11 

sagA-GFP sagA-
(5xGA)

GFP::AFpyrG nkuAΔ::argB pyroA4 riboB2 pyrG89 4 

slaB-GFP slaB-GFP::AFpyrG  nkuAΔ::argB pyrG89 pyroA4 argB2 2 

mCherry-synA 

GFP-tpmA 

mCherry-synA::AFpyrG  yA::AFpyroA GFP-tpmA fwA1 pyrG89 pyroA4 nicA2 nkuAΔ::argB  16 

abpA-mRFP abpA-mRFP::AFpyrG  yA2 pabaA1 pyrG89 2 

ssoA-GFP GFP-ssoA::AFpyrG nkuAΔ::bar pyrG89 pyroA4 16 

rabOts rab1
A136D

::AFpyrG pabaA1 12 

sedVts sedV
R238G

::AFpyrG pyroA4 pyrG89 nkuAΔ::bar 12 

chsB-GFP alcAp::GFP-chsB::NCpyr4 nkuAΔ::argB pyrG89 pyroA4 17 

dnfA-GFP dnfA-GFP::AFpyrG nkuAΔ::argB pyrG89 pabaA1 pyroA4 13 

dnfB-GFP dnfB-GFP::AFpyrG nkuAΔ::argB pyrG89 pabaA1 pyroA4 13 

thiAp-ap1
σ
 thiAp::

FLAG
ap1

σ
::AFriboB nkuAΔ::argB pyrG89 pyroA4 riboB2 7 

ap2
σ
-mRFP ap2

σ
-

(5xGA)
mRFP::AFpyrG nkuAΔ::argB pyrG89 riboB2 pyroA4 7 

thiAp-claL thiAp::claL::AFpyrG nkuAΔ::argB pyroA4 riboB2 pyrG89 7 

thiAp-ap1
σ
 

uapA-GFP 

thiAp::
FLAG

ap1
σ
::AFriboB  alcAp-uapA-GFP pabaA1 7 

claL-GFP claL-
(5xGA)

GFP::AFpyrG nkuAΔ::argB pyroA4 riboB2 pyrG89 7 

claH-GFP claH-
(5xGA)

GFP::AFpyrG nkuAΔ::argB pyroA4 riboB2 pyrG89 7 

claL-mRFP claL-
(5xGA)

mRFP::AFpyrG nkuAΔ::argB pyroA4 riboB2 pyrG89 7 

thiAp-claH 

dnfA-GFP 

thiAp-claH::AFpyroA dnfA-GFP::AFpyrG nkuAΔ::argB pyrG89 pabaA1 pyroA4 7 

ap2Δ dnfA-GFP dnfA-GFP::AFpyrG ap2
σ
Δ::AFriboB nkuAΔ::argB pyrG89 pyroA4 7 

mCherry-rabA alcAp::mCherry-rabA::argB yA2 pantoB100 argB2 1 

mRFP-rabB alcAp::mRFP-rabB::pyroA niiA4 nkuAΔ::bar inoB2 pyroA4 wA3 1 

aspB-GFP aspB-GFP::AFpyrG pyrG89 argB2 pabaB22 nkuAΔ::argB riboB2 19 
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aspC-GFP aspC-GFP::AFpyrG pabaA6 biA1 6 

aspD-GFP aspD-GFP::AFpyrG argB2 riboB2 3 

aspE-GFP aspE-GFP::AFpyrG riboB2 3 

mCherry-tubA alcAp::mCherry-tubA::pyroA nkuAΔ::argB pyrG89 pyroA4 17 

GFP-kinA
rigor

 kinAΔ::NCpyr4 alcAp::GFP-kinA
rigor

::pyroA pyrG89 pyroA4 argB2 14, 20 

claH-GFP claH-
(5xGA)

GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

ap1
σ
-GFP ap1

σ
-

(5xGA)
GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

ap1
σ
-mRFP ap1

σ
-

(5xGA)
mRFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

mRFP-rabB 

ap1
σ
-GFP 

alcAp::mRFP-rabB::pyroA4 ap1
σ
-

(5xGA)
GFP::AFpyrG  nkuAΔ::argB This study 

thiAp-ap1
σ
 

mCherry-rabA 

thiAp::
FLAG

ap1
σ
::AFriboB alcAp::mCherry-rabA::argB nkuAΔ::argB pantoB100 pyroA4 This study 

thiAp-ap1
σ
 

mRFP-rabB 

alcAp::mRFP-rabB::pyroA thiAp::
FLAG

ap1
σ
::AFriboB nkuAΔ::argB riboB2 pyroA4 wA3 This study 

thiAp-ap1
σ
 GFP-

ssoA 

thiAp::
FLAG

ap1
σ
::AFriboB GFP-ssoA::AFpyrG pabaA1 This study 

thiAp-ap1
σ
 

mCherry-sedV 

thiAp::
FLAG

ap1
σ
::AFriboB pyroA4::[pyroA

mut
::gpdA

m
p::mcherry-sedV] nkuAΔ::bar inoB2 This study 

ap1
σ
-GFP 

mCherry-sedV 

ap1
σ
-

(5xGA)
GFP::AFpyrG pyroA4[pyroA

mut
::gpdA

m
p::mcherry-sedV] nkuAΔ::argB pyrG89 pyroA4 inoB2 This study 

thiAp-ap1
σ
 

sagA-GFP 

thiAp::
FLAG

ap1
σ
::AFriboB sagA-

(5xGA)
GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 (4) This study 

thiAp-ap1
σ
 slaB-

GFP 

thiAp::
FLAG

ap1
σ
::AFriboB slaB-GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

thiAp-ap1
σ
 

abpA-mRFP 

thiAp::
FLAG

ap1
σ
::AFriboB abpA-mRFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

thiAp-ap1
σ
 H1-

mRFP 

thiAp::
FLAG

ap1
σ
::AFriboB H1-mRFP::AFriboB This study 

ap1
σ
-GFP  

thiAp-ap1
μ
 

thiAp::ap1
μ
::AFriboB ap1

σ
-

(5xGA)
GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

ap1
σ
-GFP  

thiAp-ap1
β
 

thiAp::ap1
β
::AFriboB ap1

σ
-

(5xGA)
GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

thiAp-ap1
σ 

mCherry-tubA 

thiAp::
FLAG

ap1
σ
::AFriboB alcAp::mCherry-tubA:pyroA This study 

kinA
rigor

-GFP 

ap1
σ
-mRFP 

kinAΔ:pyr4 pyroA4[alcAp::kinA
rigor

-GFP:pyroA] ap1
σ
-

(5xGA)
mRFP::AFpyrG pyrG89 This study 

ap1
σ
-mRFP 

claH-GFP 

ap1
σ
-

(5xGA)
mRFP::AFpyrG claH-

(5xGA)
GFP::AFpyrG nkuAΔ::argB pyroA4 This study 

ap1
σ
-mRFP 

dnfA-GFP 

dnfA-GFP::AFpyrG ap1
σ
-

(5xGA)
mRFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 This study 

ap1
σ
-GFP 

mCherry-synA 

mCherry-synA::AFpyrG ap1
σ
-

(5xGA)
GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 nicA2 This study 
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thiAp-ap1
σ
  

dnfA-GFP 

ap2
σ
Δ 

thiAp::
FLAG

ap1
σ
::AFriboB ap2

σ
Δ::AFpyroA dnfA-GFP::AFpyrG nkuAΔ::argB pyroA4 This study 

thiAp-ap1
σ
  

dnfB-GFP 

thiAp::
FLAG

ap1
σ
::AFriboB dnfB-GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 This study 

thiAp-ap1
σ
  

claL-GFP 

thiAp::
FLAG

ap1
σ
::AFriboB claL-

(5xGA)
GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

ap1
σ
-GFP 

mCherry-tubA 

alcAp::mCherry-tubA::pyroA ap1
σ
-

(5xGA)
GFP::AFpyrG nkuAΔ::argB pyrG89 pyroA4 This study 

thiAp-rabE thiAp::rabE::AFriboB nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

thiAp-rabE  

ap1
σ
-GFP 

ap1
σ
-

(5xGA)
GFP::AFpyrG thiAp::rabE::AFriboB nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

ap1
σ
-GFP  

thiAp-claL 

ap1
σ
-

(5xGA)
GFP::AFpyrG thiAp::claL::AFriboB nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

thiAp-ap1
σ
 

aspB-GFP 

aspB-GFP::AFpyrG thiAp::
FLAG

ap1
σ
::AFriboB nkuAΔ::argB pyrG89 riboB2 pyroA4 This study 

thiAp-ap1
σ
 

aspC-GFP 

aspC-GFP::AFpyrG thiAp::
FLAG

ap1
σ
::AFriboB pabaA6 pyroA4 This study 

thiAp-ap1
σ
 

aspD-GFP 

aspD-GFP::AFpyrG thiAp::
FLAG

ap1
σ
::AFriboB riboB2 This study 

thiAp-ap1
σ
 

aspE-GFP 

aspE-GFP::AFpyrG thiAp::
FLAG

ap1
σ
::AFriboB pyroA4 This study 

thiAp-rabC thiAp::rabC::AFriboB nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

thiAp-rabC 

ap1
σ
-GFP 

thiAp::rabC::AFriboB ap1
σ
-

(5xGA)
GFP::AFpyrG nkuAΔ:argB pyrG89 pyroA4 riboB2 This study 

GFP-rabE GFP-rabE::AFpyrG pyrG89 pyroA4 riboB2 nkuAΔ:argB This study 

GFP-rabE  ap1
σ
-

mRFP 

ap1
σ
-

(5xGA)
mRFP::AFpyrG GFP-rabE::AFpyrG nkuAΔ:argB This study 

thiAp-ap1
σ 

mCherry-synA 

GFP-tpmA 

thiAp::
FLAG

ap1
σ
::AFriboB yA::AFpyroA GFP-tpmA AFpyrG::mCherry-synA nkuAΔ::argB pyrG89 This study 

ap1
σ
-GFP 

mRFP-PH
OSBP

 

ap1
σ
-

(5xGA)
GFP::AFpyrG [pyroA-gpdA

m
p::mRFP-PH

OSBP
]pyroA4 nkuAΔ::argB pyrG89 inoB2 This study 

thiAp-ap1
σ
 

mRFP-PH
OSBP

 

pyroA4[pyroA-gpdA
m

p::mRFP-PH
OSBP

] thiAp::
FLAG

ap1
σ
::AFriboB  This study 

thiAp-ap1
σ
ap2

σ
Δ 

dnfA-GFP 

thiAp::
FLAG

ap1
σ
::AFriboB ap2

σ
Δ::AFpyroA dnfA-GFP::AFpyrG nkuAΔ::argB pyroA4 This study 

rabO
ts
 ap1

σ
-GFP rab1

A136D
::AFpyrG ap1

σ
-

(5xGA)
GFP::AFpyrG pyroA4 This study 

sedV
ts
 ap1

σ
-GFP sedV

R238G
::AFpyrG ap1

σ
-

(5xGA)
GFP::AFpyrG nkuAΔ::bar pyroA4 This study 

thiAp-ap1
σ
 GFP-

rabE mCherry-

synA 

thiAp::
FLAG

ap1
σ
::AFriboB GFP-rabE::AFpyrG AFpyrG::mCherry-synA nkuAΔ::argB pyrG89 pyroA4 This study 

ap1
σ
-GFP 

uncAΔ 

ap1
σ
-

(5xGA)
GFP::AFpyrG uncAΔ::AFriboB nkuAΔ::argB pyrG89 riboB2 pyroA4 This study 
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thiAp-rabE claL-

GFP 

thiAp-rabE::AFriboB claL-
(5xGA)

GFP::AFpyrG nkuAΔ::argB pyrG89 riboB2 pyroA4 This study 

thiAp-rabE 

claH-GFP 

thiAp-rabE::AFriboB claH-
(5xGA)

GFP::AFpyrG nkuAΔ::argB pyrG89 riboB2 pyroA4 This study 

thiAp-claL GFP-

rabE 

thiAp-claL::AFriboB GFP-rabE::AFpyrG nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

thiAp-rabE 

mCherry-synA 

thiAp-rabE::AFriboB AFpyrG::mcherry-synA nkuAΔ::argB pyrG89 pyroA4 This study 

thiAp-rabE 

GFP-chsB 

thiAp-rabE::AFriboB AFpyrG::alcAp-GFP-chsB nkuAΔ::argB pyrG89 pyroA4 riboB2 This study 

thiAp-ap1
β
 claH-

GFP 

thiAp-ap1
β
::AFpyrG claH-

(5xGA)
GFP::AFpyrG argB2 This study 

thiAp-ap1
β
 claL-

GFP 

thiAp-ap1
β
::AFpyrG claL-(5xGA)GFP::AFpyrG argB2 This study 

thiAp-ap1
β
 claH-

GFP ap1
β
 

thiAp-ap1
β
::AFpyrG claH-

(5xGA)
GFP::AFpyrG ap1

β
::argB argB2 This study 

thiAp-ap1
β
 

claL-GFP ap1
β
 

thiAp-ap1
β
::AFpyrG claL-

(5xGA)
GFP::AFpyrG ap1

β
::argB argB2 This study 

thiAp-ap1
β
 claH-

GFP ap1
β
 

NGF/A 

thiAp-ap1
β
::AFpyrG claH-

(5xGA)
GFP::AFpyrG ap1

β
-N709A/G710A/F711A::argB argB2 This study 

thiAp-ap1
β
 claH-

GFP ap1
β
 

DID/A NGF/A 

thiAp-ap1
β
::AFpyrG claH-

(5xGA)
GFP::AFpyrG ap1

β
-D632A/I633A/D634AN709A/G710A/ F711A argB2 This study 

thiAp-ap1
β
 claL-

GFP ap1
β
 

NGF/A 

thiAp-ap1
β
::AFpyrG claL-

(5xGA)
GFP::AFpyrG ap1

β
-N709A/G710A/F711A::argB argB2 This study 

thiAp-ap1
β
 claL-

GFP ap1β 

DID/A NGF/A 

thiAp-ap1
β
::AFpyrG claL-

(5xGA)
GFP::AFpyrG ap1

β
-D632A/I633A/D634AN709A/G710A/ F711A::argB 

argB2 

This study 

 1269 

 1270 

 1271 

 1272 

 1273 

 1274 

 1275 

 1276 

 1277 

 1278 

 1279 
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 1280 

 1281 

Supplementary Table 2. Oligonucleotides used in this study for cloning purposes 1282 
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Oligonucleotides Sequence 
pGEM ap1

σ
-

(5xGA)
GFP::AFpyrG /   pGEM ap1

σ
-

(5xGA)
mRFP::AFpyrG 

ap1
σ
 5‟ ApaI F CGCGGGGCCCCATTTCTAGGGATGTGGCTGCAGG 

ap1
σ
 3‟ ORF XbaI NS R CGCGTCTAGACATGATCTTCGTAACCACATCTTCCTC 

ap1
σ
 3‟ XbaI F CGCGTCTAGAGAGCGTCATCAGTGATACGCTTC 

ap1
σ
 3„ NotI R CGCGGCGGCCGCGGGCGTGAGGATACCATCATCGAATG 

5xGA XbaI F CGCGTCTAGAGGAGCTGGTGCAGGCGCTGGAGCCGGTGCC 

AFpyrG XbaI R CGCGTCTAGAACTGTCTGAGAGGAGGCACTGATGCG 

pBS SKII claH-
(5xGA)

GFP::AFpyrG 

claH ORF KpnI F CGCGGGTACCCTGGACCAGCTCGCAGAACTTGAAG 

claH ORF NS SpeI R CGCGACTAGTGAAAGGACGGAACCCCGTGGCCTG 

claH 3‟ SpeI F CGCGACTAGTGCTCGCCTTGTCTTTTTGAGGGGTAG 

claH 3‟ NotI R CGCGGCGGCCGCGGACAATCAGATTGACAGGGAGGG 

5xGA SpeI F CGCGACTAGTGGAGCTGGTGCAGGCGCTGGAGCCGGTGCC 

AFpyrG SpeI R CGCGACTAGTACTGTCTGAGAGGAGGCACTGATGCG 

pGEM thiAp::ap1
μ
::AFriboB 

ap1
μ
 5‟ ApaI  F CGCGGGGCCCGATACGAGCGTTCAGGACCGCTTC 

ap1
μ
 5‟ SpeI R CGCGACTAGTGCACTTGCCACAACTCCAGTATTC 

ap1
μ
 ORF SpeI F CGCGACTAGTATGGCATCGGCGGTTTTCTTCCTAG 

ap1
μ
 ORF NotI R CGCGGCGGCCGCCAGTTCTGCGCGCATAAGAAACTC 

AFriboB SpeI R CCGGACTAGTCCCGGGCTGCAGGAATTCGATAAG 

thiAp SpeI R CGCGACTAGTGTTGACTCAGTTCAATGGTTCGAC 

pGEM thiAp::ap1
β
::AFriboB 

ap1
β
 5‟ ApaI  F CGCGGGGCCCCCAAGGCCGATTCGAACCGAGC 

ap1
β
 5‟ SpeI R CGCGACTAGTGCCCCTACTAGCTCTTCAGTCATAC 

ap1
β
 ORF SpeI F CGCGACTAGTATGGATTGTTGTGGACAGGGGAAG 

ap1
β
 ORF NotI R CGCGGCGGCCGCCACCAGAGAACACTCGGAATACC 

AFriboB SpeI R CCGGACTAGTCCCGGGCTGCAGGAATTCGATAAG 

thiAp SpeI R CGCGACTAGTGTTGACTCAGTTCAATGGTTCGAC 

pGEM thiAp::rabE::AFriboB 

rabE 5‟ ApaI F CGCGGGGCCCGAGTGCGGAATATGCCTCCACCTG 

rabE  5‟ SpeI R CGCGACTAGTAGCGAACAGTTAGATACACCGAGGG 

rabE  ORF SpeI F CGCGACTAGTATGGCTAACGACGAGTATGATGTGAG 

rabE  3‟ NotI R CGCGGCGGCCGCGCTAACGGCTGAGCTAGGTTACTG 

AFriboB SpeI R CCGGACTAGTCCCGGGCTGCAGGAATTCGATAAG 

thiAp SpeI R CGCGACTAGTGTTGACTCAGTTCAATGGTTCGAC 

pGEM thiAp::rabC::AFriboB 

rabC 5‟ ApaI F CGCGGGGCCCCAACGGTTATGGACGAAGTATGCGG 

rabC 5‟ XbaI R CGCGTCTAGAGGGGACAAGAGGTCAAATGTAAAGTC 

rabC ORF XbaI F CGCGTCTAGAATGGCTTCAGCATCAACGGCCGGG 

rabC 3‟ NotI R CGCGGCGGCCGCGGGTAGTTGAGCTCAACGCATCG 

AFriboB XbaI R CCGGTCTAGACCCGGGCTGCAGGAATTCGATAAG 

thiAp XbaI R CGCGTCTAGAGTTGACTCAGTTCAATGGTTCGAC 

pGEM uncA::AFriboB  

uncA 5‟ ApaI F CGCGGGGCCCCCGGCATAAGCTCTTCCTGCTATG 

uncA  5‟ SpeI R CGCGACTAGTGGAGCGGACAACAAATTGCGCACG 

uncA 3‟ SpeI F CGCGACTAGTCGCCGATGAAGATCTACACTGGAATG 

uncA 3‟ NotI R CGCGGCGGCCGCCTGGTGCTGAAGTCGTCTGTCGTC 

AFriboB SpeI F CCGGACTAGTAAGCTTGATATCACAATCAGCTTTTC 

AFriboB SpeI R CCGGACTAGTCCCGGGCTGCAGGAATTCGATAAG 

pGEM GFP-rabE::AFpyrG 

rabE 5‟ ApaI F CGCGGGGCCCGAGTGCGGAATATGCCTCCACCTG 

rabE  5‟ SpeI R CGCGACTAGTAGCGAACAGTTAGATACACCGAGGG 

rabE ORF SpeI F CGCGACTAGTATGGCTAACGACGAGTATGATGTGAG 

rabE ORF SpeI R CGCGACTAGTTTAACAGCATCCACCCTTGTTCTCGG 

rabE 3‟ SpeI F CGCGACTAGTCGTCAACAACGATTTGCGGTTCTG 

rabE 3‟ NotI R2 CGCGGCGGCCGCCTGTCCAGACCAAAGACCTCCGG 

sGFP XbaI F CGCGTCTAGAATGGTGAGCAAGGGCGAGGAG 

sGFP SpeI NS R CGCGACTAGTCTTGTACAGCTCGTCCATGCC 

AFpyrG SpeI F CGCGACTAGTGCCTCAAACAATGCTCTTCACCCTC 
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ap1
σ
-
(5xGA)

GFP::AFpyrG, claH-
(5xGA)

GFP::AFpyrG and ap1
σ
-
(5xGA)

mRFP::AFpyrG 1283 

constructs carry a 5 x Gly-Ala (5xGA) linker, amplified together with GFP or mRFP 1284 

and AFpyrG from plasmids p1439, or p1491 respectively (Szewczyk et al., 2006). 1285 
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