- 1 Synonymous lysine codon usage modification in a mobile antibiotic resistance gene
- 2 similarly alters protein production in bacterial species with divergent lysine codon usage
- 3 biases because it removes a duplicate AAA lysine codon.
- 4
- 5 Mohammed Alorabi^{1,2}, Aisha M. AlAmri^{1,3}, Yuiko Takebayashi¹, Kate J. Heesom⁴ and
- 6 Matthew B. Avison^{1*}.

7

- ⁸ ¹School of Cellular & Molecular Medicine, University of Bristol. United Kingdom.
- 9 ²College of Sciences, Taif University, Taif, Kingdom of Saudi Arabia.
- ¹⁰ ³College of Applied Medical Sciences, Imam Abdurahman Bin Faisal University.
- 11 Dammam. Kingdom of Saudi Arabia.
- 12 ⁴Bristol Proteomics Facility, University of Bristol. United Kingdom

13

- 14 *Correspondence: Matthew B. Avison, School of Cellular & Molecular Medicine,
- 15 Biomedical Sciences Building, University Walk, Bristol. BS81TD. UK. bimba@bris.ac.uk.

16 **+44(0)1173312063.**

17 Abstract

18	The mobile antibiotic resistance gene <i>bla</i> IMP-1 is clinically important and has a synonymous
19	AAA:AAG lysine codon usage bias of 73:27. This bias is like that seen in experimentally
20	determined highly expressed genes in Escherichia coli and Acinetobacter baumanii, but
21	quite different from that seen in <i>Pseudomonas aeruginosa</i> (26:74 AAA:AAG). Here we
22	show that, paradoxically, shifting the AAA:AAG lysine codon bias to 8:92 in bla_{IMP-1}
23	expressed from a natural promoter results in significantly more IMP-1 production in all
24	three species. Sequential site directed mutagenesis revealed that increased IMP-1
25	production occurs following removal of an AAA,AAA double lysine codon and that
26	otherwise, lysine codon usage had no observable impact on IMP-1 production. We
27	conclude that ribosomal slippage at this poly-adenosine region reduces efficient
28	translation of IMP-1 and that punctuating the region with guanine reduces ribosomal
29	slippage and increases IMP-1 production.

30

32 Introduction

Synonymous codon usage bias (SCUB) is a term describing the common finding that 33 organisms favour the use of certain triplet codons in DNA to encode certain amino acids. 34 Since SCUB varies between organisms, and between different genes in a single organism, 35 the implication is that optimal SCUB varies between different organisms, and that certain 36 37 genes are selected to be closer to the optimal SCUB than others (1). One dominant hypothesis is that highly expressed genes have "optimised" SCUB and that this is selected 38 because optimal codons are translated more quickly and/or more efficiently than sub-39 optimal ones. This is particularly important when the demand for a protein is high (1). 40 Indeed, it is well known that SCUB optimization – adapting the SCUB of a recombinant gene 41 to match that of highly expressed genes – increases recombinant protein production in a 42 43 heterologous host (2). The success of this methodological approach has been used to advance the translationally-selective hypothesis to explain SCUB. However, most codon 44 usage optimization procedures involve the over-expression of recombinant genes using 45 hyper-strong, inducible promoters and high copy number vectors, with a desire to make a 46 47 single protein represent a high percentage of total protein in the cell (3). This is not likely to reflect the situation encountered by a gene in a natural setting with a natural promoter on 48 the chromosome or a low copy number plasmid. 49

SCUB is particularly relevant in the context of horizontal gene transfer. Whilst sub-optimal
SCUB is not always seen in horizontally acquired genes, depending on their origins, for those
that are sub-optimal, selective pressure is expected to be applied over time to optimise
SCUB; a process referred to as "codon usage amelioration" (4). Antibiotic resistance in
bacteria is one of the most pressing threats to human health and horizontal gene transfer is

one of the most important means for a bacterium to acquire antibiotic resistance (5). It is 55 56 evident that many mobile genetic elements are of low guanine plus cytosine (GC) content and carry a related SCUB biased towards low GC codons (6). So, in this context, the impact 57 of SCUB on gene expression is not only academic, but it is also of significant practical 58 59 interest. The aim of the work reported in this paper was to test the hypothesis that SCUB change can affect the absolute amount of active protein produced in a predictable manner 60 61 using a natural plasmid system and an intermediate strength natural promoter using a 62 clinically important, mobile antibiotic resistance gene.

63

64 Results and Discussion

The bla_{IMP-1} metallo- β -lactamase-encoding gene cassette, which confers resistance to the 65 carbapenems, a class of "last resort" antibiotics, has a GC content of 39% (7). However, it 66 has been found widely among Gram-negative bacteria with varying genomic GC contents 67 68 (8). For example, it is commonly found in *Escherichia coli* and other Enterobacteriaceae which have genomic GCs of ≈50%. Accordingly, if SCUB affects translational efficiency 69 and/or rate, one would expect the amount if IMP-1 enzyme should be seen to increase in 70 71 Enterobacteriaceae if the SCUB of bla_{IMP-1} is ameliorated to match the optimal SCUB of this family, as represented by E. coli. To test this, specific imipenemase activity was measured in 72 73 extracts of *E. coli* MG1655 transformants carrying pHIMP or pHEcIMP, being the cloned 74 wild-type or *E. coli* SCUB optimised *bla*_{IMP-1} gene cassette, respectively, each under the control of an identical, natural, intermediate-strength integron promoter, and each ligated 75 into a broad host-range, low copy number vector derived from a natural antibiotic 76 77 resistance plasmid: RK2 (9). We can confirm that pHIMP is a truly natural expression system

because imipenemase activity in an MG1655 transformant carrying pNIMP (the natural 78 79 *bla*_{IMP-1} encoding plasmid) and MG1655(pHIMP) were the same (**Figure 1**). If the hypothesis being tested is correct, it was expected that optimisation of $bla_{\text{IMP-1}}$ to a SCUB closer to 80 optimal in *E. coli* genes would increase IMP-1 production relative to wild-type. However, this 81 82 was not observed. The pHEcIMP variant synthesised to match the "optimal" SCUB of E. coli presumed highly expressed genes (ribosomal protein and translation elongation factor 83 84 genes) based on the OPTIMIZER algorithm (10) was expressed at lower levels than than the 85 wild-type gene (p<0.0001) (Figure 1).

It was considered possible that the effect seen here is due to stability changes at the 5' end 86 of the codon-optimised bla_{IMP-1} mRNA. Strong regions of secondary structure at the 5' ends 87 of mRNA molecules are likely to cause ribosomal occlusion leading to the exposure of mRNA 88 89 to nuclease digestion (11). Furthermore, it has previously been shown that synonymous mutations that increase mRNA secondary structure (high folding energy) at the beginning of 90 the transcript can reduce protein production by inhibiting the initiation and initial phase of 91 92 translation elongation (12-14). It was confirmed that codon optimization increased the 93 energy required to unfold the mRNA. The Gibbs free energy value of the whole mRNA 94 molecule was -183 (wild type *bla*_{IMP-1}) changing to -229 for the *E. coli* codon optimised variant. Just looking at the 5' third of the mRNA, which is thought to be particularly 95 important, the folding energy calculated showed the same effect: moving from -50 for wild-96 97 type *bla*_{IMP-1} to -67 for the *E. coli* variant.

Figure 1 shows evidence, therefore, that codon optimization can have negative effects on
 gene expression in a natural expression system, but it was considered of interest to see how
 much of a change in IMP-1 production would occur upon site-directed mutation of

individual codons. Twenty six of 246 (10.6%) of IMP-1's amino acids are lysine. The lysine 101 102 codon AAA is in the majority in bla_{IMP-1} (19/26; 73%) and AAG accounts for the rest. Rather than relying on theoretical lists of "highly expressed genes" to define the "optimal" SCUB for 103 lysine codons in bla_{MP-1} , we measured protein abundance using LC-MS/MS proteomics. In so 104 105 doing we defined the 20 most highly abundant proteins in three test species during growth 106 under the conditions we would also use to test IMP-1 production (Tables 1-3). Analysis of 107 lysine SCUB in the genes encoding these 20 proteins from each species revealed an AAA 108 percentage of 84% for Acinetobacter baumannii, 80% for E. coli and 24% for Pseudomonas *aeruginosa* (Tables 4-6). We sub-cloned the wild-type bla_{IMP-1} gene from pHIMP into the 109 110 pSU18 cloning vector and used site directed mutagenesis to dramatically reduced the AAA lysine codon usage of *bla*_{IMP-1} in the resultant pSUHIMP-WT plasmid to 2/26 or 8% AAA in 111 plasmid pSUHIMP-KV. Plasmids were used to transform an E. coli clinical isolate to 112 113 chloramphenicol resistance. The wild-type and lysine codon-variant *bla*_{IMP-1} genes were also 114 sub-cloned into the broad host-range vector pUBYT, generating pUBYTHIMP-WT and pUBYTHIMP-KV, which were used to transform P. aeruginosa PA01 or A. baumannii CIP 70-115 116 10 to kanamycin resistance. We then used proteomics to measure the abundance of IMP-1 in these transformants, which was normalised using the abundance of vector-encoded Cat 117 (in E. coli pSUHIMP-WT and -KV transformants) or AphA (in A. baumannii and P. aeruginosa 118 119 pUBYTHIMP-WT and -KV transformants) to take into consideration plasmid copy number 120 and protein loading. Our expectation given the hypothesis that SCUB is selected based on translation rate or efficiency was that as AAA usage was reduced to 2/26 from a wild-type 121 position of 19/26, which is close to optimal in A. baumannii (22/26) and E. coli (21/26) there 122 would be a reduction in IMP-1 production. The case in *P. aeruginosa* was not so clear, given 123 that the optimal AAA usage in this species is 6/26. Here, the variant is closer to optimal than 124

125the wild-type gene, so we might expect an increase in IMP-1 production. We did see this: a1261.5-fold increased normalised IMP-1 production in PA01(pUBYTHIMP-KV) compared with127PA01(pUBYTHIMP-WT), p=0.04 for an unpaired t-test, n=3. However, the variant also128supported higher IMP-1 protein production in *E. coli* (2.2-fold, p=0.005 n=3) and *A.*129baumannii (3.2-fold, p=0.002, n=3) (Figure 2).

130 These data show that the simple idea of optimization based on average SCUB – even when that average is taken from highly expressed genes confirmed by proteomics - is rather 131 132 naïve. The codons in an mRNA affect its folding, which affects its stability and the rate of translation initiation and elongation; local and global charged tRNA levels affect translation 133 elongation rate, and this must be optimised and even varied during the translation of an 134 mRNA to allow accurate protein folding (11-14). Our finding of increased IMP-1 production 135 136 when AAG lysine codons dominate is not due to relative tRNA abundance since there is only one lysine-tRNA, which recognises both AAA and AAG codons (15). Lysine tRNA/codon 137 specific nucleases have been reported in E. coli (16), and it is conceivable that AAA/tRNA 138 interactions preferably promote mRNA cleavage, but the effect we report was seen in three 139 140 very distinct species, and there is no evidence that AAG/anticodon interactions mean less 141 cleavage, even in E. coli (16). The most likely explanation for our findings is a report that duplicate AAA lysine codons lead to ribosomal sliding and increased aberrant translation of 142 an mRNA in E. coli (17). We analysed the concatenated sequence data for the genes 143 encoding the 20 most abundant proteins in E. coli and found that there are eleven AAA, AAA 144 double lysine codons, comprising 7.8% of all AAA codons. In contrast there are eleven 145 146 AAA, AAG or AAG, AAA and two AAG, AAG double lysine codons and one AAG, AAG, AAG triple 147 lysine codon found amongst these 20 genes, comprising 26.1% of all AAG codons. This

suggests that there is selective pressure for the inclusion of AAG codons preferentially 148 149 where two or more lysines are encoded together. Within the 17 AAA to AAG mutations made in our lysine codon modified bla_{IMP-1} gene (Figure 3) one is part of an AAA, AAA double 150 lysine codon, with both codons being converted into AAG in the same mutagenesis step 151 (mutations 6 and 7). To test the specific effects of this mutagenesis step, we measured 152 imipenemase activity in cell extracts of E. coli MG1655 transformants carrying pSUHIMP 153 154 variants having an accumulating number of AAA to AAG mutations, from 1 to 17, starting at 155 the 5' end of the gene. Figure 4 shows that carrying *bla*_{IMP-1} with 6 or more mutations gives levels of IMP-1 enzyme activity not significantly different from that provided by pSUHIMP-156 KV, having all 17 mutations (p>0.1). Importantly, introduction of mutations 6 and 7, where 157 IMP-1 enzyme activity significantly increases from basal (p<0.03) is the point at which the 158 AAA, AAA double lysine codon is converted to AAG, AAG. Therefore, based on previously 159 160 published work using in vitro translation experiments (17), we conclude that there is 161 ribosomal slippage at the AAA, AAA run located in the *bla*_{IMP-1} mRNA, reducing the amount of active IMP-1 protein produced. Breaking up this run with AAG codons means more 162 163 correct translation and so more IMP-1 enzyme activity. Importantly, we see this effect in all three species tested, despite their divergence. There is no evidence for mutation in the 164 AAA, AAA run in any *bla*_{IMP-1} variant sequence in the Genbank nucleotide sequence database, 165 166 according to blastn, so the increased IMP-1 enzyme production stimulated by this mutation 167 is seemingly not under strong selective pressure *in vivo*. However, there are two IMP variants where the second lysine codon in this run has been mutated in a non-synonymous 168 way. The most common of these is IMP-22 (18). 169

170	In conclusion, codon "optimisation" and mutations that change SCUB to be more closely
171	aligned or more distantly aligned to highly expressed genes in multiple bacteria do not
172	guarantee higher levels of gene expression. Indeed, for synonymous lysine codon changes,
173	the increase in IMP β -lactamase production when SCUB was moved further from "optimal"
174	is paradoxical and is most likely to be cause by reduced aberrant protein production that
175	occurs when AAA codons are present in duplicate (17). Care should therefore be taken when
176	interpreting the potential impact of synonymous mutations that affect codon usage in
177	horizontally acquired genes carried on natural plasmids and expressed from native
178	promoters without experimental determination of the effect of these mutations on protein
179	abundance or some phenotypic proxy thereof.

180

181 Experimental

182 <u>Bacterial Strains</u>

Bacterial strains used in the study were *E. coli* TOP10 (Invitrogen), MG1655 (19) and a clinical
isolate from urine (a gift from Dr Mandy Wooton, Public Health Laboratory for Wales); *P. aeruginosa* PA01 (20) and *A. baumanii* CIP 70-10 (21)

186 Molecular Biology

- 187 The *bla*_{IMP-1} gene was amplified using PCR. Template DNA was extracted from *P. aeruginosa*
- 188 clinical isolate 206-3105A (a gift from Dr Mark Toleman, Department of Medical
- 189 Microbiology, Cardiff University) by suspending a loop-full of bacteria from a fresh Nutrient
- 190 Agar plate (Oxoid) in 100 μ l of molecular biology grade water. The tube was then incubated
- 191 at 95°C for 15 min and centrifuged at 13,000 rpm for 10 min. The supernatant was removed
- as a source of template DNA. The integron promoter type upstream of bla_{IMP-1} in isolate

193 206-3105A is PcH1 (22), and there is a *bla*_{OXA-2} gene cassette downstream from bla_{IMP-1}

194 (Genbank accession: AP012280.1). PCR used forward primers which were designed to

amplify from the 5' end of the wild-type PcH1 promoter (5'-

196 ACCCAGTGGACATAAGCCTGTTCGGTTCGTAAACT-3') into the 5' end of the *bla*_{OXA-2} gene

197 cassette, (5'-AGCGAAGTTGATATGTATTGTG-3'). Each PCR reaction mixture contained 20 ng

198 of template DNA, 0.4 μmol of each primer, 12.5 μl of RedTaq PCR-ready reaction mix

199 (Sigma-Aldrich) and 8.5 µl of molecular biology grade water. PCR reactions were processed

200 in PTC-100 thermal cycler (Bio-Rad, UK) in 0.2 ml PCR tubes (Starlabs). PCR reaction cycles

were 10 min at 95°C, followed by 35 cycles of, 1 min denaturation at 95°C, 1 min annealing

at 58°C and 2 min extension at 72°C. The final step was an extension at 72°C for 10 min. The

203 PCR amplicon was TA cloned into the pCR2.1TOPO cloning vector (Invitrogen), removed with

204 EcoRI and ligated into EcoRI linearised RK2-derived vector pRW50 (9) to create the

recombinant plasmid pHIMP or the broad host range p15A derived vector pSU18 (23) to

create the recombinant plasmid pSUHIMP.

The *E. coli* codon optimized *bla*_{IMP-1} gene variant was designed using the program
OPTIMIZER (10) and the variant, including up- and down-stream sequences identical to
those seen in pHIMP was synthesized by GeneArt (Thermo-Fisher) and provided, cloned into
the cloning vector pMK as the vector pMKH*Ec*IMP. The optimised gene was amplified by PCR
using pMKH*Ec*IMP as template and cloned into pRW50, as described for the wild-type gene
to create the recombinant plasmid pH*Ec*IMP.

Site directed mutagenesis was performed using the QuikChange[®] Lightning Site-Directed
Mutagenesis Kit (Agilent, UK) according to the manufacturer's instructions and pSUHIMP as
the template. The 17 individual AAA to AAG mutations (Figure 3) were introduced in 14

separate mutagenesis steps, each creating a variant with an increasing number of mutations

- starting at the 5' end of the gene. The primers were designed using the mutagenesis kit
- 218 manufacturer's instructions and are shown in **Table 7**.
- 219 For transformation of *A. baumannii* and *P. aeruginosa bla*_{IMP-1} wild type and variants were
- subcloned into vector pUBYT being the plasmid pYMAb2 (24) which we modified to remove
- the OXA promotor region (located upstream of the multiple cloning site) by PCR
- amplification using primers, 5'-GCAAGAAGGTGATGAATCTACA-3' and 5'-
- 223 GTGGCAGCAGCCAACTCA-3' followed by digestion with XbaI and ligation to produce a
- 224 circular product.

225 Measuring imipenemase specific activity in cell extracts

A volume of 0.5 ml of overnight nutrient bacterial broth culture was added to a 10 ml of 226 fresh nutrient broth which was incubated at 37°C with shaking until an OD₆₀₀ of 0.5-0.6 was 227 reached. The cells were then pelleted by centrifugation at 4,500 rpm for 10 min at 4°C. The 228 229 pellet was re-suspended in 1 ml of 50 mM HEPES (containing 100 μ M ZnCl₂ at pH 7) and transferred to a tube of lysing matrix B (Fisher Scientific, UK). The cells were lysed using a 230 Ribolyser (Hybaid, UK) at speed of 6.0 for 40 s followed by centrifugation at 13,000 rpm for 231 1 min to pellet cell debris. The supernatant was used for enzyme activity measurement. 232 Total protein concentration was determined using the Bio-Rad protein assay reagent 233 234 according to the manufacturer's instructions. To measure the imipenemase activity in an extract, 100 μ l of extract was added to 900 μ l of HEPES buffer (containing ZnCl₂, as above) 235 236 and 0.1 mM imipenem. Change of absorbance was monitored at 299 nm over 10 min. Specific enzyme activity (pmol imipenem hydrolysed per mg of protein per sec) in each 237

- 238 extract was calculated using 7000 M⁻¹ as the extinction coefficient of imipenem and dividing
- enzyme activity with the total amount of protein in each assay.

240 mRNA Secondary Structure Prediction

- 241 To assess the presence of significant secondary structure in the transcript of wild-type
- 242 *bla*_{IMP-1} and the *E. coli* SCUB optimized variant, the Mfold program
- (http://unafold.rna.albany.edu/?q=mfold) was used to predict the folding of the mRNA
 sequences.

245 <u>Preparation of samples from cultured bacteria and proteomics analysis</u>

246 Bacterial cultures were incubated 50 ml Nutrient Broth (Sigma) with shaking (160 rpm) at 247 37° C until OD₆₀₀ reached 0.6-0.8. Cells in cultures were pelleted by centrifugation (10 min, 248 $4,000 \times g$, $4^{\circ}C$) and resuspended in 35 mL of 30 mM Tris-HCl, pH 8 and broken by sonication 249 using a cycle of 1 sec on, 1 sec off for 3 min at amplitude of 63% using a Sonics Vibracell VC-505TM (Sonics and Materials Inc., Newton, Connecticut, USA). The sonicated samples were 250 251 centrifuged at 8,000 rpm (Sorvall RC5B PLUS using an SS-34 rotor) for 15 min at 4°C to pellet 252 intact cells and large cell debris and protein concentration in the supernatant was 253 determined using the Bio-Rad Protein Assay Reagent according to the manufacturer's 254 instructions. One microgram of total protein was separated by SDS-PAGE using 11% acrylamide, 0.5% bis-acrylamide (Bio-Rad) gels and a Bio-Rad Mini-Protein Tetracell 255 chamber model 3000X1. Gels were run at 150 V until the dye front had moved 256 257 approximately 1 cm into the separating gel. Proteins in gels were stained with Instant Blue (Expedeon) for 5 min and de-stained in water. The 1 cm of gel lane containing each sample 258 was cut out and proteins subjected to in-gel tryptic digestion using a DigestPro automated 259

260	digestion unit (Intavis Ltd). The resulting peptides were fractionated using an Ultimate 3000
261	nanoHPLC system in line with an LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific)
262	as previously described (25). The raw data files were processed and quantified using
263	Proteome Discoverer software v1.4 (ThermoScientific) and searched against the UniProt P.
264	aeruginosa PA01 database (5563 proteins; UniProt accession UP000002438), the A.
265	baumannii ATCC 17978 database (3783 proteins; UniProt accession UP0006737) or the E.
266	coli MG1655 database (4307 proteins; UniProt accession UP000000625). The database file is
267	provided as supplementary data. Proteomic searches against the databases was were
268	performed using the SEQUEST (Ver. 28 Rev. 13) algorithm. Protein Area measurements were
269	calculated from peptide peak areas using the "Top 3" method (26) and were then used to
270	calculate the relative abundance of each protein. Proteins with fewer than three peptide
271	hits were excluded from the analysis.
271 272	hits were excluded from the analysis. Codon Usage Calculation
272	Codon Usage Calculation
272 273	<u>Codon Usage Calculation</u> The open reading frames of the 20 most highly expressed genes in each species were
272 273 274	Codon Usage Calculation The open reading frames of the 20 most highly expressed genes in each species were downloaded from Genbank and concatenated into a single reading frame. The codon usage
272 273 274 275	Codon Usage Calculation The open reading frames of the 20 most highly expressed genes in each species were downloaded from Genbank and concatenated into a single reading frame. The codon usage calculator (https://www.biologicscorp.com/tools/CodonUsageCalculator#.WrZ021jFl2w) was
272 273 274 275 276	Codon Usage Calculation The open reading frames of the 20 most highly expressed genes in each species were downloaded from Genbank and concatenated into a single reading frame. The codon usage calculator (https://www.biologicscorp.com/tools/CodonUsageCalculator#.WrZ021jFl2w) was
272 273 274 275 276 277	Codon Usage Calculation The open reading frames of the 20 most highly expressed genes in each species were downloaded from Genbank and concatenated into a single reading frame. The codon usage calculator (https://www.biologicscorp.com/tools/CodonUsageCalculator#.WrZ02IjFl2w) was applied to this concatenated open reading frame using the standard genetic code table.

281 A

282	Additio	onal support came from a grant to M.B.A. from the British Society for Antimicrobial
283	Chemo	otherapy. M.A. and A.M.A were both supported by Postgraduate Scholarships from the
284	Cultura	al Bureau of the Kingdom of Saudi Arabia.
285		
286	Transp	parency Declaration
287	None t	to declare – All authors.
288		
289	Refere	ences
290	1.	Supek F. The Code of Silence: Widespread Associations Between Synonymous Codon
291		Biases and Gene Function. J Mol Evol. 2016;82:65-73.
292	2.	Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O. Codon
293		optimization can improve expression of human genes in Escherichia coli: A multi-
294		gene study. Protein Expr Purif. 2008;59:94-102.
295	3.	Hannig G, Makrides SC. Strategies for optimizing heterologous protein expression in
296		Escherichia coli. Trends Biotechnol. 1998;16:54-60.
297	4.	Medrano-Soto A, Moreno-Hagelsieb G, Vinuesa P, Christen JA, Collado-Vides J.
298		Successful lateral transfer requires codon usage compatibility between foreign genes
299		and recipient genomes. Mol Biol Evol. 2004;21:1884-94.
300	5.	von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen
301		LB, Savelkoul PH, Wolffs PF. Dissemination of Antimicrobial Resistance in Microbial
302		Ecosystems through Horizontal Gene Transfer. Front Microbiol. 2016;7:173.
303	6.	Rocha EP, Danchin A. Base composition bias might result from competition for
304		metabolic resources. Trends Genet. 2002;18:291-4.

305	7.	Osano E, Arakawa Y, Wacharotayankun R, Ohta M, Horii T, Ito H, Yoshimura F, Kato
306		N. Molecular characterization of an enterobacterial metallo beta-lactamase found in
307		a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob
308		Agents Chemother. 1994;38:71-8.
309	8.	Walsh TR. Clinically significant carbapenemases: an update. Curr Opin Infect Dis.
310		2008;21:367-71.
311	9.	Lodge J, Fear J, Busby S, Gunasekaran P, Kamini NR. Broad host range plasmids
312		carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol Lett.
313		1992;74:271-6.
314	10.	Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S. OPTIMIZER: a web server for
315		optimizing the codon usage of DNA sequences. Nucleic Acids Res. 2007;35:W126-31.
316	11.	lost I, Dreyfus M. The stability of Escherichia coli lacZ mRNA depends upon the
317		simultaneity of its synthesis and translation. EMBO J. 1995;14:3252-61.
318	12.	Jacques N, Dreyfus M. Translation initiation in Escherichia coli: old and new
319		questions. Mol Microbiol. 1990;4:1063-7.
320	13.	Mohsen AW, Vockley J. High-level expression of an altered cDNA encoding human
321		isovaleryl-CoA dehydrogenase in Escherichia coli. Gene. 1995;160:263-7.
322	14.	Nilsson LO, Mannervik B. Improved heterologous expression of human glutathione
323		transferase A4-4 by random silent mutagenesis of codons in the 5' region. Biochim
324		Biophys Acta. 2001;1528:101-6.
325	15.	Kramer EB, Farabaugh PJ. The frequency of translational misreading errors in E. coli
326		is largely determined by tRNA competition. RNA. 2007;13:87-96.

327	16. Meidler R, Morad I, Amitsur M, Inokuchi H, Kaufmann G. Detection of anticodon
328	nuclease residues involved in tRNALys cleavage specificity. J Mol Biol. 1999;287:499-
329	510.
330	17. Koutmou KS, Schuller AP, Brunelle JL, Radhakrishnan A, Djuranovic S, Green R.
331	Ribosomes slide on lysine-encoding homopolymeric A stretches. Elife. 2015;4. doi:
332	10.7554/eLife.05534.
333	18. Pellegrini C, Mercuri PS, Celenza G, Galleni M, Segatore B, Sacchetti E, Volpe R,
334	Amicosante G, Perilli M. Identification of <i>bla</i> (IMP-22) in <i>Pseudomonas</i> spp. in urban
335	wastewater and nosocomial environments: biochemical characterization of a new
336	IMP metallo-enzyme variant and its genetic location. J Antimicrob Chemother.
337	2009;63:901-8.
338	19. Guyer MS, Reed RR, Steitz JA, Low KB. Identification of a sex-factor-affinity site in E.
339	coli as gamma delta. Cold Spring Harb Symp Quant Biol. 1981;45:135-40.
340	20. Holloway BW. Genetic recombination in <i>Pseudomonas aeruginosa</i> . J Gen Microbiol.
341	1955;13:572-81.
342	21. Bouvet PJM, Grimont PAD. Taxonomy of the genus Acinetobacter with the
343	recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp.
344	nov., Acinetobacter johnsonii sp. nov. and Acinetobacter junii sp. nov. and emended
345	descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst
346	Bacteriol 1986;36:228–240.
347	22. Jové T, Da Re S, Denis F, Mazel D, Ploy MC. Inverse correlation between promoter
348	strength and excision activity in class 1 integrons. PLoS Genet. 2010;6:e1000793.

349	23. Bartolomé B, Jubete Y, Martínez E, de la Cruz F. Construction and properties of a
350	family of pACYC184-derived cloning vectors compatible with pBR322 and its
351	derivatives. Gene. 1991;102:75-8.
352	24. Kuo SC, Yang SP, Lee YT, Chuang HC, Chen CP, Chang CL, Chen TL, Lu PL, Hsueh PR,
353	Fung CP. Dissemination of imipenem-resistant Acinetobacter baumannii with new
354	plasmid-borne <i>bla</i> OXA-72 in Taiwan. BMC Infect Dis. 2013;13:319
355	25. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Schneiders T,
356	Heesom KJ, Avison MB. Envelope proteome changes driven by RamA overproduction
357	in <i>Klebsiella pneumoniae</i> that enhance acquired β -lactam resistance. J Antimicrob
358	Chemother. 2018;73:88-94.
359	26. Silva JC, Gorenstein M V, Li G-Z, Vissers JPC, Geromanos SJ. Absolute quantification
360	of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics.

361 2006;5:144-156.

362 Tables

Accession	Description	Gene	Mean
		Name	Abundance
			(<i>n</i> =3)
POCE48	Elongation factor Tu	b3980	6.184E+08
POA9B2	Glyceraldehyde-3-phosphate	b1779	3.399E+08
	dehydrogenase A		
P69776	Major outer membrane lipoprotein Lpp	b1677	2.654E+08
P0A7J3	50S ribosomal protein L10	b3985	2.539E+08
P06996	Outer membrane protein C	b2215	2.425E+08
P02359	30S ribosomal protein S7	b3341	2.357E+08
POA7R1	50S ribosomal protein L9	b4203	2.253E+08
P0A7L0	50S ribosomal protein L1	b3984	2.219E+08
P60438	50S ribosomal protein L3	b3320	2.022E+08
P0AG55	50S ribosomal protein L6	b3305	1.825E+08
P0A910	Outer membrane protein A	b0957	1.780E+08
P0A7W1	30S ribosomal protein S5	b3303	1.752E+08
P62399	50S ribosomal protein L5	b3308	1.743E+08
P0A6M8	Elongation factor G	b3340	1.644E+08
P0A7V8	30S ribosomal protein S4	b3296	1.642E+08
POA7R5	30S ribosomal protein S10	b3321	1.622E+08
P0AG67	30S ribosomal protein S1	b0911	1.541E+08
P0A7X3	30S ribosomal protein S9	b3230	1.486E+08
POA7J7	50S ribosomal protein L11	b3983	1.434E+08
P0A7K2	50S ribosomal protein L7/L12	b3986	1.422E+08

363 **Table 1:** The 20 most highly abundant proteins in *E. coli* during growth in Nutrient Broth

Table 2: The 20 most highly abundant proteins in *P. aeruginosa* during growth in Nutrient

366 Broth

Accession	Description	Gene Name	Mean
			Abundance
			(<i>n</i> =3)
P09591	Elongation factor Tu	PA4265	1.215E+09
P30718	60 kDa chaperonin	PA4385	8.267E+08
Q9HWP9	Uncharacterized protein	PA4132	5.857E+08
Q9I2V5	Aconitate hydratase B	PA1787	4.160E+08
P13794	Outer membrane porin F	PA1777	3.949E+08
P05384	DNA-binding protein HU-beta	PA1804	3.624E+08
Q9HVC4	50S ribosomal protein L25	PA4671	3.562E+08
Q9HWC6	50S ribosomal protein L1	PA4273	3.536E+08
Q9HWE1	30S ribosomal protein S3	PA4257	3.471E+08
Q9HWE7	50S ribosomal protein L5	PA4251	3.181E+08
Q9HZ71	30S ribosomal protein S1	PA3162	3.074E+08
Q9HWD5	50S ribosomal protein L3	PA4263	3.037E+08
Q9HWD1	30S ribosomal protein S7	PA4267	3.020E+08
Q9HWD6	50S ribosomal protein L4	PA4262	2.792E+08
Q9HWD8	50S ribosomal protein L2	PA4260	2.691E+08
Q9HWF0	50S ribosomal protein L6	PA4248	2.658E+08
Q9HWC7	50S ribosomal protein L10	PA4272	2.490E+08
Q9HVL6	50S ribosomal protein L21	PA4568	2.433E+08
082851	Elongation factor Ts	PA3655	2.337E+08
052759	30S ribosomal protein S4	PA4239	2.276E+08

- 368 **Table 3**: The 20 most highly abundant proteins in *A. baumannii* during growth in Nutrient
- 369 Broth

Accession	Description	Gene Name	Mean
			Abundance
			(<i>n</i> =3)
B7I876	Outer membrane protein A	AB57_3344	2.562E+08
B7I359	50S ribosomal protein L7/L12	AB57_0368	1.138E+08
B2HZ92	50S ribosomal protein L18	AB57_3514	9.635E+07
BOVSP5	60 kDa chaperonin	AB57_06545	9.230E+07
B7IB16	Peroxiredoxin	AB57_1341	8.615E+07
B7GW08	30S ribosomal protein S3	AB57_3524	8.434E+07
B7IA20	50S ribosomal protein L15	AB57_3511	8.280E+07
B7I3K0	Elongation factor Ts	AB57_2755	8.274E+07
B7H1K1	50S ribosomal protein L1	AB57_0366	7.769E+07
B7I6T2	Succinyl-CoA ligase [ADP-forming] subunit	AB57_3123	7.753E+07
	beta		
B7IBC1	30S ribosomal protein S6	AB57_2509	7.533E+07
B7I1W2	ATP synthase subunit alpha	AB57_0191	7.474E+07
B7IBK5	Chaperone protein DnaK	AB57_0048	6.976E+07
B7IA15	30S ribosomal protein S4	AB57_3506	6.646E+07
B7I1W4	ATP synthase subunit beta	AB57_0193	6.254E+07
B7I358	50S ribosomal protein L10	AB57_0367	6.189E+07
B0VQT3	50S ribosomal protein L6	AB57_3515	6.138E+07
B7IAS9	50S ribosomal protein L19	AB57_3615	6.042E+07
B7IA27	50S ribosomal protein L5	AB57_3518	5.886E+07
B7GYM8	Elongation factor G	AB57_06485	5.795E+07

371 **Table 4:** Codon Usage Table for 20 Most Highly Expressed Genes in *E. coli*

TTT	F	0.18	5.7	(28)	TCT S	0.	43 :	18.8	(93)	TAT	Y	0.19	5.0	(25)	TGT	С	0.37	1.4	(7)
TTC	F	0.82	25.8	(128)	TCC S	0.	35 :	15.1	(75)	TAC	Y	0.81	21.4	(106)	TGC	C	0.63	2.4	(12)
TTA	L	0.03	1.8	(9)	TCA S	0.	92	0.8	(4)	TAA	*	0.95	3.8	(19)	TGA	*	0.05	0.2	(1)
TTG	L(s)	0.03	1.8	(9)	TCG S	0.	90	0.2	(1)	TAG	*	0.00	0.0	(0)	TGG	W	1.00	6.7	(33)
СТТ	L	0.03	2.2	(11)	CCT P	0.	99	3.0	(15)	CAT	н	0.26	3.8	(19)	CGT	R	0.71	40.5	(201)
CTC	L	0.03	2.4	(12)	CCC P	0.	91	0.4	(2)	CAC	н	0.74	10.7	(53)	CGC	R	0.28	16.1	(80)
CTA	L	0.00	0.0	(0)	CCA P	0.	14	4.6	(23)	CAA	0	0.12	4.0	(20)	CGA	R	0.00	0.0	(0)
CTG	L(s)	0.88	63.3	(314)	CCG P	0.	76	25.6	(127)	CAG	Q	0.88	30.1	(:	149)	CGG	R	0.01	0.4	(2)
ATT	I	0.17	8.9	(44)	ACT T	0.	46	26.0	(129)	AAT	N	0.08	3.6	(18)	AGT	S	0.05	2.0	(10)
ATC			44.4			ACC T			27.6			AAC		0.92			194)	AGC			6.7		33)
ATA			0.0			ACA T			2.0			AAA		0.80		•	293)	AGA			0.4		2)
			24.0			ACG T			1.0	0		AAG		0.20		•	73)	AGG		0.00			0)
AIG	11(3)	1.00	24.0	(119)	ACU I	0.	02	1.0	(5)	AAU	ĸ	0.20	14./	(15)	AUU	ĸ	0.00	0.0	(0)
GTT	V	0.57	55.1	(273)	GCT A	0.	51 !	54.5	(270)	GAT	D	0.28	16.5	(82)	GGT	G	0.59	53.2	(264)
GTC	V	0.06	5.8	(29)	GCC A	0.	97	7.5	(37)	GAC	D	0.72	42.0	(208)	GGC	G	0.40	35.7	(177)
GTA	V	0.28	27.0	(134)	GCA A	0.	25	27.0	(134)	GAA	Е	0.81	56.9	(282)	GGA	G	0.00	0.4	(2)
GTG	V	0.09	9.1	(45)	GCG A	0.	16 :	17.4	(86)	GAG	Е	0.19	13.3	(66)	GGG	G	0.01	0.8	(4)

372

373 Codon usage for a concatenated sequence representing the open reading frames of the

genes encoding the 20 most abundant proteins, as shown in Table 1.

Values shown: Codon, Amino Acid, codon usage (fraction of 1), usage per 1000 in total

376 sequence, (absolute usage in total sequence).

Table 5: Codon Usage Table for 20 Most Highly Expressed Genes in *P. aeruginosa*

TTT F	0.08 2.1 (11)	TCT S	0.04 1.9 (10)	TAT Y	0.07 1.4 (7)	TGT C	0.03 0.2 (1)
TTC F	0.92 25.6 (132)	TCC S	0.48 23.3 (120)	TAC Y	0.93 18.8 (97)	TGC C	0.97 5.2 (27)
TTA L	0.00 0.2 (1)	TCA S	0.00 0.0 (0)	TAA *	0.75 2.9 (15)	TGA *	0.20 0.8 (4)
TTG L(s)	0.01 1.2 (6)	TCG S	0.16 7.8 (40)	TAG *	0.05 0.2 (1)	TGG W	1.00 5.0 (26)
CTT L	0.01 1.0 (5)	CCT P	0.08 2.7 (14)	CAT H	0.24 4.3 (22)	CGT R	0.44 29.3 (151)
CTC L	0.12 9.7 (50)	CCC P	0.17 6.2 (32)	CAC H	0.76 13.4 (69)	CGC R	0.50 33.0 (170)
CTA L	0.00 0.4 (2)	CCA P	0.01 0.2 (1)	CAA Q	0.15 5.2 (27)	CGA R	0.01 0.6 (3)
CTG L(s)	0.84 66.5 (343)	CCG P	0.75 27.0 (139)	CAG Q	0.85 29.3 (151)	CGG R	0.04 2.7 (14)
ATT I	0.09 4.8 (25)	ACT T	0.12 5.2 (27)	AAT N	0.08 2.5 (13)	AGT S	0.02 1.2 (6)
ATC I	0.91 48.3 (249)	ACC T	0.85 37.1 (191)	AAC N	0.92 30.5 (157)	AGC S	0.30 14.4 (74)
ATA I	0.00 0.0 (0)	ACA T	0.01 0.4 (2)	AAA K	0.24 17.1 (88)	AGA R	0.00 0.2 (1)
ATG M(s)	1.00 23.3 (120)	ACG T	0.02 0.8 (4)	AAG K	0.76 55.5 (286)	AGG R	0.00 0.2 (1)
GTT V	0.20 20.0 (103)	GCT A	0.27 29.5 (152)	GAT D	0.22 11.6 (60)	GGT G	0.35 32.2 (166)
GTC V	0.42 42.1 (217)	GCC A	0.51 55.7 (287)	GAC D	0.78 41.9 (216)	GGC G	0.62 56.7 (292)
GTA V	0.12 12.0 (62)	GCA A	0.08 8.3 (43)	GAA E	0.57 43.1 (222)	GGA G	0.01 1.0 (5)
GTG V	0.27 26.8 (138)	GCG A	0.14 15.1 (78)	GAG E	0.43 32.6 (168)	GGG G	0.02 1.9 (10)

379 Codon usage for a concatenated sequence representing the open reading frames of the

380 genes encoding the 20 most abundant proteins, as shown in Table 2.

Values shown: Codon, Amino Acid, codon usage (fraction of 1), usage per 1000 in total

382 sequence, (absolute usage in total sequence).

383 **Table 6:** Codon Usage Table for 20 Most Highly Expressed Genes in A. baumannii

TTC F 0.69 20.1 (120) TCC S 0.01 0.5 (3) TAC Y 0.54 12.6 (75) TGC C 0.20 0.8 (55 TTA L 0.37 28.5 (170) TCA S 0.19 8.4 (50) TAA * 1.00 3.4 (20) TGA * 0.00 0.0 (0 TTG L(s) 0.19 14.9 (89) TCG S 0.05 2.2 (13) TAG * 0.00 0.0 (0) TGG W 1.00 3.7 (222 CTT L 0.37 28.5 (170) CCT P 0.35 11.9 (71) CAT H 0.16 1.7 (10) CGT R 0.88 46.5 (277 CTC L 0.02 1.3 (8) CCC P 0.00 0.0 (0) CAC H 0.84 8.9 (53) CGC R 0.11 5.7 (34 CTA L 0.03 2.4 (14) CCA P 0.05 18.6 (111) CAA Q 0.82 33.4 (199) CGA R 0.00 0.0 (0 CTG L(s) 0.02 1.2 (7) CCG P 0.09 3.2 (19) CAG Q 0.18 7.2 (43) CGG R 0.00 0.2 (1 ATT I 0.43 2													
TTA L 0.37 28.5 (170) TCA S 0.19 8.4 (50) TAA * 1.00 3.4 (20) TGA * 0.00 0.0 (0 TTG L(s) 0.19 14.9 (89) TCG S 0.05 2.2 (13) TAG * 0.00 0.0 (0) TGG * 1.00 3.7 (22 CTT L 0.37 28.5 (170) CCT P 0.35 11.9 (71) CAT H 0.16 1.7 (10) CGT R 0.88 46.5 (277 CTC L 0.02 1.3 (8) CCC P 0.00 0.0 (0) CAC H 0.84 8.9 (53) CGC R 0.11 5.7 (34 CTA L 0.03 2.4 (14) CCA P 0.55 18.6 (111) CAA Q 0.82 33.4 (199) CGA R 0.00 0.0 (0 CTG L(s) 0.02 1.2 (7) CCG P 0.04 3.2 (19) CAG Q 0.18 7.2 (43) CGG R 0.00 0.2 (1	TTT F	0.31	8.9 (53)	TCT S	0.56 24.5 ((146)	ΤΑΤ Υ	0.46 10.9 (65)	TGT C	0.80 3.4 (20)
TTG L(s) 0.19 14.9 (89) TCG S 0.05 2.2 (13) TAG * 0.00 0.0 (0) TGG W 1.00 3.7 (22 CTT L 0.37 28.5 (170) CCT P 0.35 11.9 (71) CAT H 0.16 1.7 (10) CGT R 0.88 46.5 (277 CTC L 0.02 1.3 (8) CCC P 0.00 0.0 (0) CAC H 0.84 8.9 (53) CGC R 0.11 5.7 (34 CTA L 0.03 2.4 (14) CCA P 0.55 18.6 (111) CAA Q 0.82 33.4 (199) CGA R 0.00 0.0 (0 CTG L(s) 0.02 1.2 (7) CCG P 0.09 3.2 (19) CAG Q 0.18 7.2 (43) CGG R 0.00 0.2 (1 ATT I 0.43 27.7 (165) ACT T 0.64 34.7 (207) AAT N 0.20 7.4 (44) AGT S 0.04 1.8 (11 ATC I 0.57 37.2 (222) ACC T 0.04 2.2 (13) AAC N 0.80 30.4 (181) AGC S 0.11 5.7 (38 ATA I 0.00 0.0 (0) ACA T 0.28 15.3 (91) AAA K 0.84 61.4 (366) AGA R 0.01 0.3 (2 ATG M(s) 1.00 24.0 (143) ACG T 0.03 1.7 (10) AAG K 0.16 11.9 (TTC F	0.69	20.1 (120)	TCC S	0.01 0.5 ((3)	TAC Y	0.54 12.6 (75)	TGC C	0.20 0.8 (5)
CTT L 0.37 28.5 (170) CCT P 0.35 11.9 (71) CAT H 0.16 1.7 (10) CGT R 0.88 46.5 (277 CTC L 0.02 1.3 (8) CCC P 0.00 0.0 (0) CAC H 0.84 8.9 (53) CGC R 0.11 5.7 (34 CTA L 0.03 2.4 (14) CCA P 0.55 18.6 (111) CAA Q 0.82 33.4 (199) CGA R 0.00 0.0 (0 CTG L(s) 0.02 1.2 (7) CCG P 0.09 3.2 (19) CAG Q 0.18 7.2 (43) CGG R 0.00 0.0 (0 ATT I 0.43 27.7 (165) ACT T 0.64 34.7 (207) AAT N 0.20 7.4 (44) AGT S 0.04 1.8 (11 ATC I 0.57 37.2 (222) ACC T 0.04 2.2 (13) AAC N 0.80 30.4 (181) AGC S 0.15 6.4 (<	TTA L	0.37	28.5 (170)	TCA S	0.19 8.4 ((50)	TAA *	1.00 3.4 (20)	TGA *	0.00 0.0 (0)
CTC L 0.02 1.3 (8) CCC P 0.00 0.0 (0) CAC H 0.84 8.9 (53) CGC R 0.11 5.7 (34 CTA L 0.03 2.4 (14) CCA P 0.55 18.6 (111) CAA Q 0.82 33.4 (199) CGA R 0.00 0.0 (0 CTG L(s) 0.02 1.2 (7) CCG P 0.09 3.2 (19) CAG Q 0.18 7.2 (43) CGG R 0.00 0.0 (0 ATT I 0.43 27.7 (165) ACT T 0.64 34.7 (207) AAT N 0.20 7.4 (44) AGT S 0.04 1.8 (11 ATC I 0.57 37.2 (222) ACC T 0.04 2.2 (13) AAC N 0.80 30.4 (181) AGC S 0.15 6.4 (38 ATA I 0.00 0.0 (0) ACA T 0.28 15.3 (91) AAA K 0.84 61.4 (366) AGA R 0.01 0.3 (<td>TTG L(s)</td> <td>0.19</td> <td>14.9 (</td> <td>89)</td> <td>TCG S</td> <td>0.05 2.2 (</td> <td>(13)</td> <td>TAG *</td> <td>0.00 0.0 (</td> <td>0)</td> <td>TGG W</td> <td>1.00 3.7 (</td> <td>22)</td>	TTG L(s)	0.19	14.9 (89)	TCG S	0.05 2.2 ((13)	TAG *	0.00 0.0 (0)	TGG W	1.00 3.7 (22)
CTA L 0.03 2.4 (14) CCA P 0.55 18.6 (111) CAA Q 0.82 33.4 (199) CGA R 0.00 0.0 (0 CTG L(s) 0.02 1.2 (7) CCG P 0.09 3.2 (19) CAG Q 0.18 7.2 (43) CGG R 0.00 0.2 (11 ATT I 0.43 27.7 (165) ACT T 0.64 34.7 (207) AAT N 0.20 7.4 (44) AGT S 0.04 1.8 (11 ATC I 0.57 37.2 (222) ACC T 0.04 2.2 (13) AAC N 0.80 30.4 (181) AGC S 0.15 6.4 (38 ATA I 0.00 0.0 (0) ACA T 0.28 15.3 (91) AAA K 0.84 61.4 (366) AGA R 0.01 0.3 (2 ATG M(s) 1.00 24.0 (143) ACG T 0.03 1.7 (10) AAG K 0.16 11.9 (71) AGG R 0.00 0	CTT L	0.37	28.5 (170)	CCT P	0.35 11.9 ((71)	CAT H	0.16 1.7 (10)	CGT R	0.88 46.5 (277)
CTG L(s) 0.02 1.2 (7) CCG P 0.09 3.2 (19) CAG Q 0.18 7.2 (43) CGG R 0.00 0.2 (1 ATT I 0.43 27.7 (165) ACT T 0.64 34.7 (207) AAT N 0.20 7.4 (44) AGT S 0.04 1.8 (11 ATC I 0.57 37.2 (222) ACC T 0.04 2.2 (13) AAC N 0.80 30.4 (181) AGC S 0.15 6.4 (38 ATA I 0.00 0.0 (0) ACA T 0.28 15.3 (91) AAA K 0.84 61.4 (366) AGA R 0.01 0.3 (2 ATG M(s) 1.00 24.0 (143) ACG T 0.03 1.7 (10) AAG K 0.16 11.9 (71) AGG R 0.00 0.0 (0 0.00 0.0 (0 0.00 0.0 (0 0.00 0.0 (0 0.00 0.0 (0 0.00 0.0 (0 0.00 0.0 (CTC L	0.02	1.3 (8)	CCC P	0.00 0.0 ((0)	CAC H	0.84 8.9 (53)	CGC R	0.11 5.7 (34)
ATT I 0.43 27.7 (165) ACT T 0.64 34.7 (207) AAT N 0.20 7.4 (44) AGT S 0.04 1.8 (11 ATC I 0.57 37.2 (222) ACC T 0.04 2.2 (13) AAC N 0.80 30.4 (181) AGC S 0.15 6.4 (38 ATA I 0.00 0.0 (0) ACA T 0.28 15.3 (91) AAA K 0.84 61.4 (366) AGA R 0.01 0.3 (2 ATG M(s) 1.00 24.0 (143) ACG T 0.03 1.7 (10) AAG K 0.16 11.9 (71) AGG R 0.00 0.0 (0 GTT V 0.55 47.5 (283) GCT A 0.54 63.9 (381) GAT D 0.44 24.8 (148) GGT G 0.80 69.1 (412 GTC V 0.03 2.9 (17) GCC A 0.02 1.8 (11) GAC D 0.56 31.4 (187) GGC G 0.18 15.4 (92 GTA V 0.35 30.2 (180) GCA A 0.28 33.0 (197) GAA E 0.84 65.7 (392) GGA G 0.02 1.3 (88	CTA L	0.03	2.4 (14)	CCA P	0.55 18.6 ((111)	CAA Q	0.82 33.4 (199)	CGA R	0.00 0.0 (0)
ATC I 0.57 37.2 (222) ACC T 0.04 2.2 (13) AAC N 0.80 30.4 (181) AGC S 0.15 6.4 (38 ATA I 0.00 0.0 (0) ACA T 0.28 15.3 (91) AAA K 0.84 61.4 (366) AGA R 0.01 0.3 (22 ATG M(s) 1.00 24.0 (143) ACG T 0.03 1.7 (10) AAG K 0.16 11.9 (71) AGG R 0.00 0.0 (0 GTT V 0.55 47.5 (283) GCT A 0.54 63.9 (381) GAT D 0.44 24.8 (148) GGT G 0.80 69.1 (412 GTC V 0.03 2.9 (17) GCC A 0.02 1.8 (11) GAC D 0.56 31.4 (187) GGC G 0.18 15.4 (92 GTA V 0.35 30.2 (180) GCA A 0.28 33.0 (197) GAA E 0.84 65.7 (392) GGA G 0.02 1.3 (8	CTG L(s)	0.02	1.2 (7)	CCG P	0.09 3.2 ((19)	CAG Q	0.18 7.2 (43)	CGG R	0.00 0.2 (1)
ATA I 0.00 0.0 ACA T 0.28 15.3 91 AAA K 0.84 61.4 366 AGA R 0.01 0.3 2 ATG M(s) 1.00 24.0 (143 ACG T 0.03 1.7 10 AAG K 0.16 11.9 71 AGG R 0.01 0.3 2 GTT V 0.55 47.5 (283) GCT A 0.54 63.9 (381) GAT D 0.44 24.8 (148) GGT G 0.80 69.1 (412 GTC V 0.03 2.9 (17) GCC A 0.02 1.8 (11) GAC D 0.56 31.4 (187) GGC G 0.18 15.4 (92 GTA V 0.35 30.2 (180) GCA A 0.28 33.0 (197) GAA E 0.84 65.7 (392) GGA G 0.02 1.3 (88	ATT I	0.43	27.7 (165)	ΑСΤ Τ	0.64 34.7 ((207)	AAT N	0.20 7.4 (44)	AGT S	0.04 1.8 (11)
ATG M(s) 1.00 24.0 (143) ACG T 0.03 1.7 (10) AAG K 0.16 11.9 (71) AGG R 0.00 0.0 (10) GTT V 0.55 47.5 (283) GCT A 0.54 63.9 (381) GAT D 0.44 24.8 (148) GGT G 0.80 69.1 (412) GTC V 0.03 2.9 (17) GCC A 0.02 1.8 (11) GAC D 0.56 31.4 (187) GGC G 0.18 15.4 (92) GTA V 0.35 30.2 (180) GCA A 0.28 33.0 (197) GAA E 0.84 65.7 (392) GGA G 0.02 1.3 (11)	ATC I	0.57	37.2 (222)	ACC T	0.04 2.2 ((13)	AAC N	0.80 30.4 (181)	AGC S	0.15 6.4 (38)
GTT V 0.55 47.5 (283) GCT A 0.54 63.9 (381) GAT D 0.44 24.8 (148) GGT G 0.80 69.1 (412 GTC V 0.03 2.9 (17) GCC A 0.02 1.8 (11) GAC D 0.56 31.4 (187) GGC G 0.18 15.4 (92 GTA V 0.35 30.2 (180) GCA A 0.28 33.0 (197) GAA E 0.84 65.7 (392) GGA G 0.02 1.3 (80)	ATA I	0.00	0.0 (0)	ΑСΑ Τ	0.28 15.3 ((91)	AAA K	0.84 61.4 (366)	AGA R	0.01 0.3 (2)
GTC V 0.03 2.9 (17) GCC A 0.02 1.8 (11) GAC D 0.56 31.4 (187) GGC G 0.18 15.4 (92 GTA V 0.35 30.2 (180) GCA A 0.28 33.0 (197) GAA E 0.84 65.7 (392) GGA G 0.02 1.3 (8	ATG M(s)	1.00	24.0 (143)	ACG T	0.03 1.7 ((10)	AAG K	0.16 11.9 (71)	AGG R	0.00 0.0 (0)
GTA V 0.35 30.2 (180) GCA A 0.28 33.0 (197) GAA E 0.84 65.7 (392) GGA G 0.02 1.3 (8	GTT V	0.55	47.5 (283)	GCT A	0.54 63.9 ((381)	GAT D	0.44 24.8 (148)	GGT G	0.80 69.1 (412)
	GTC V	0.03	2.9 (17)	GCC A	0.02 1.8 ((11)	GAC D	0.56 31.4 (187)	GGC G	0.18 15.4 (92)
	GTA V	0.35	30.2 (180)	GCA A	0.28 33.0 ((197)	GAA E	0.84 65.7 (392)	GGA G	0.02 1.3 (8)
	GTG V	0.07	5.7 (34)	GCG A	0.16 18.8 ((112)	GAG E	0.16 12.7 (76)	GGG G	0.00 0.3 (2)

385 Codon usage for a concatenated sequence representing the open reading frames of the

386 genes encoding the 20 most abundant proteins, as shown in Table 3.

Values shown: Codon, Amino Acid, codon usage (fraction of 1), usage per 1000 in total

388 sequence, (absolute usage in total sequence).

Primer Name	Primer Sequence	Variant
a78g_F	5'-CGCAGCAGAGTCTTTGCCAGATTTAAA G ATTGAAAAGCTTGAT-3'	M1
a153g_F	5'-GTGGGGCGTTGTTCCTAA G CATGGTTTGGTGG-3'	M2
a216g_F	5'-GACACTCCATTTACGGCTAA G GATACTGAAAAGTTAGTCAC-3'	M3
a261g_a267g_F	5'-TGGTTTGTGGAGCGTGGCTATAA G ATAAA G GGCAGCATTTCC-3'	M4,5
a375g_a378g_F	5'-CAAATGAACTGCTTAA G AA G GACGGTAAGGTTCAAGCCAC-3'	M6,7
a435g_a441g_F	5'-GGCTAGTTAA G AATAA G ATTGAAGTTTTTTATCCAGGCCCG-3'	M8,9
a510g_F	5'-GGTTTGGTTGCCTGAAAGGAA G ATATTATTCGGTGGTTGTTTT-3'	M10
a537g_F	5'-CGGTGGTTGTTTTATTAA G CCGTACGGTTTAGGCAATTTGG-3'	M11
a597g_F	5'-CTTGGCCAAAGTCCGCCAAGTTATTAAAGTCCAAATATGG-3'	M13
a612g_F	5'-CGCCAAGTTATTAAAGTCCAA G TATGGTAAGGCAAAACTGGTT-3'	M14
a627g_F	5'-CCAAGTATGGTAAGGCAAA G CTGGTTGTTCCAAGTCA-3'	M15
a675g_F	5'-GACGCATCACTCTTGAAGCTTACATTAGAGCAGGC-3'	M16
a729g_F	5'-GTTAAACGAAAGTAAAAAACCATCAAA G CCAAGCAACTAAATTTC-3'	M17 (KV)

Table 7: Primers used for Site Directed Mutagenesis

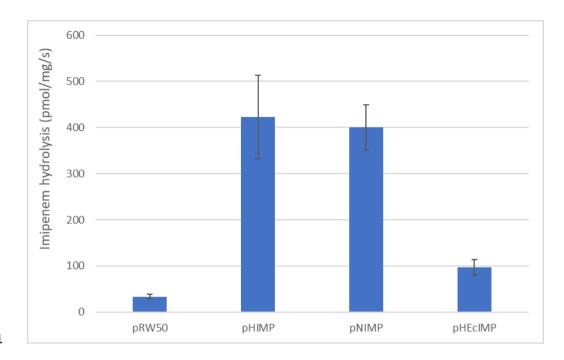
391 Figure Legends

392 Figure 1: Impact of codon usage "optimisation" on IMP-1 enzyme activity in *E. coli*.

- 393 IMP-1 enzyme activity was measured using imipenem as substrate in whole cell extracts of
- *E. coli* MG1655 carrying empty vector pRW50, or this vector with the wild-type (pHIMP) or
- 395 codon-optimised (pHEcIMP) *bla*_{IMP-1} gene, each expressed from a hybrid strength integron
- promoter; or carrying a natural IMP-1 encoding plasmid originally from *P. aeruginosa*, which
- is the source of the cloned *bla*_{IMP-1} and upstream/promoter sequence (pNIMP). Data are
- 398 means +/- Standard Deviation, *n*=4.

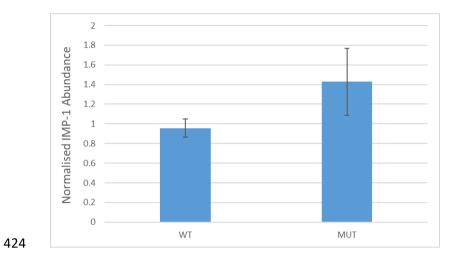
399 Figure 2. Impact of AAA to AAG lysine codon conversion on IMP-1 protein production.

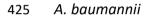
- 400 IMP-1 protein abundance in clinical isolates of *P. aeruginosa*, *A. baumannii* and *E. coli*
- 401 carrying the cloned wild-type *bla*_{IMP-1} gene (WT) and a variant having 17 AAA to AAG
- 402 mutations (MUT). Protein abundance was measured in sonicated cell extracts and
- 403 normalised using the abundance of the dominant selectable marker protein for the cloning
- 404 vector carrying *bla*_{IMP-1}. This was, for *E. coli*, where pSU18 was the cloning vector, Cat
- 405 (chloramphenicol acetyl transferase) and for *P. aeruginosa* and *A. baumannii*, where pUBYT
- 406 was the cloning vector, AphA (aminoglycoside [Kanamycin] phosphotransferase). Data are
- 407 means +/- Standard Error of the Mean, *n*=3.

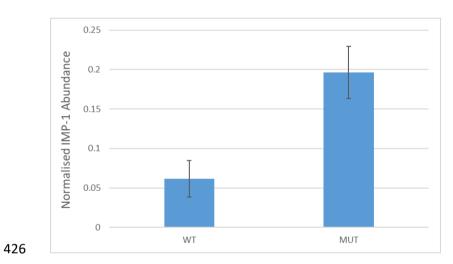

408 Figure 3. AAA to AAG lysine codon conversions in *bla*_{IMP-1}

The 17 AAA lysine codons converted to AAG are marked and sequentially numbered in the blaIMP-1 coding sequence. In some cases, two adjacent mutations were made at using a single primer in the same mutagenesis step, and are labelled as such: M x,y where x and y represent the two sequential mutations.

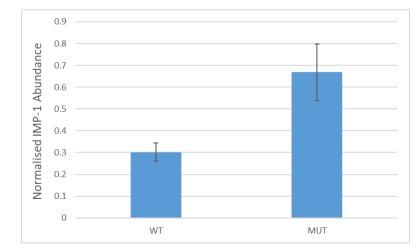
413 Figure 4. Impact of sequential AAA to AAG lysine codon conversion on IMP-1 production in

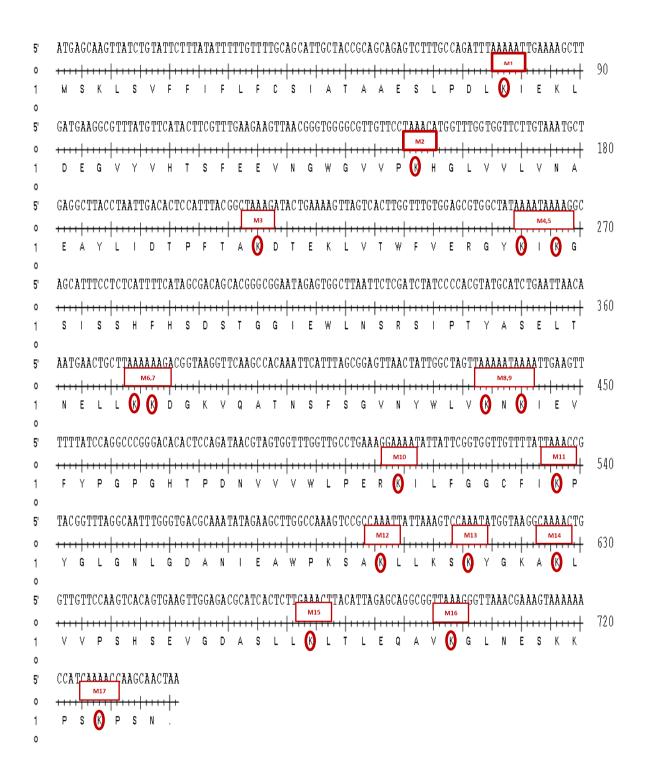

- 414 **E. coli**
- 415 IMP-1 enzyme activity was measured using imipenem as substrate in whole cell extracts of
- 416 E. coli MG1655 carrying bla_{IMP-1} cloned using pSU18 with one to seventeen AAA to AAG
- 417 mutations; each mutagenesis step being shown in figure 3. Some steps involved two
- 418 adjacent mutations, e.g. M4,5. Data are means +/- Standard Deviation, *n*=4.

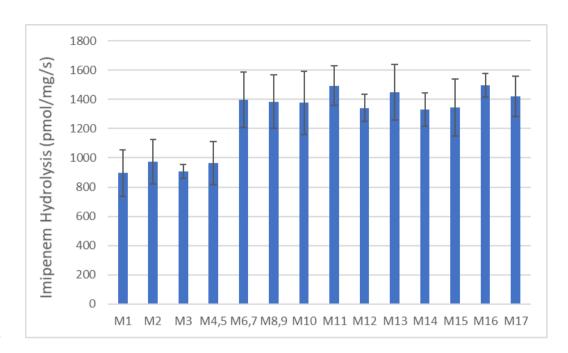

420 Figure 1



422 Figure 2


423 P. aeruginosa.





429 Figure 3.

431 Figure 4.

