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Abstract

Summary: Biomolecules shift their structures as a function of temperature and concentrations of protons,

ions, small molecules, proteins, and nucleic acids. These transitions impact or underlie biological

function and are being monitored at increasingly high throughput. For example, folding transitions for

large collections of RNAs can now be monitored at single residue resolution by chemical mapping

techniques. LIkelihood-based Fits of Folding Transitions (LIFFT) quantifies these data through well-defined

thermodynamic models. LIFFT implements a Bayesian framework that takes into account data at all

measured residues and enables visual assessment of modeling uncertainties that can be overlooked in

least-squares fits. The framework is appropriate for multimodal techniques ranging from chemical mapping

including multi-wavelength spectroscopy.

Availability: Freely available MATLAB package at https://ribokit.stanford.edu/LIFFT/.

Contact: rhiju@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

Biomolecules and their complexes underlie all core processes in molecular

biology and human disease and their functions typically depend on a

panoply of folded, partially folded, and unfolded states. Probing these

states is a major part of modern biochemistry and biophysics and is the

focus of important technology development. For example, RNA chemical

mapping, also known as structure mapping or footprinting, can measure the

reactivity of each residue of an RNA to one or more chemical modification

reagents [(Kwok et al., 2015) and refs. therein]. Mapping these chemical

reactivities as a function of the biological partners’ concentrations or

of solution conditions provides a route to discover and quantitatively

characterize structural transitions of RNA.

After acquiring rich, multi-residue data for a structural transition,

the next step is to fit and summarize these data in terms of a defined

thermodynamic model. However, it is often difficult to assess uncertainties

in these models. To address this problem for RNA chemical mapping, we

developed an in-house Bayesian tool to scan over model parameters and to

visualize possible correlations or nonlinearities in their uncertainties. The

tool has been effective in numerous systems, including noncanonical RNA

motifs stabilized through computational design (Das et al., 2010), glycine-

sensing bacterial riboswitches (Kladwang et al., 2012), a metal ion core

in a group I self-splicing intron (Frederiksen et al., 2012), RNA structures

designed through the internet-scale design project Eterna (Lee et al., 2014;

Cordero and Das, 2015), and chemically modified RNAs interacting with

the Puf protein (Vaidyanathan et al., 2017). The resulting software has now

been named LIkelihood-based Fits of Folding Transitions (LIFFT) and is

being made available for wider use, including applications beyond RNA

mapping.

Given experimental data Dij measured for a molecule under

measurement conditions i = 1, 2, . . . N (e.g., different Mg2+

concentrations) at residues (or wavelengths) j = 1, 2, . . .M , the goal

is to fit this matrix of data to a model D
pred
ij :

D
pred
ij =

∑

a

f i
aC

a
j (1)

where Ca
j are the predicted data observable for each assumed state

a (e.g., unfolded and folded) and f i
a are the fractions of the molecule

population in each state a under each condition i, which depend on

the assumed thermodynamic model. A common use case involves fitting

Mg2+-dependent RNA folding to a Hill binding curve:

f i
unfolded = 1− f i

folded =
1

1 + ([Mg2+i )]/Kd)n
(2)

where the two fit parameters are the apparent dissociation constant

Kd and apparent Hill coefficient n (Lipfert et al., 2014). Bayes’ theorem
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gives the appropriate probability for assessing such a model. The posterior

probability of the model given the data is:

P (model | data) ∝ L(data | model)P (model) (3)

The likelihood L(data | model) is assumed to take a Gaussian form

involving (initially unknown) experimental errors σj at each residue (or

wavelength) j:

L(data | model) ∝
∏

i,j

1

σj

exp−
(αiDij −D

pred
ij )2

2σ2
j

(4)

Here, αi are normalization values for each data condition i. The second

term in Equation (3) is the prior, P (model):

P (model) ∝

[

∏

i,j

exp−
s2j

2σ2
j

]

×exp−
(f1

unfolded − 1.0)2 + (fN
unfolded)

2

2b2

(5)

This prior prevents the estimated errors at each residue σj from

dropping to zero; the sj values set floors on σj , and are chosen by default

to be 10% of the mean data value at the residue j. The remaining terms

in the prior ensure that the population fraction of the first state (unfolded)

transitions from near 1.0 to near 0.0 (i.e., the experiment has been designed

to capture the entire transition); the parameter b is chosen by default to be

0.05. All parameter choices can be changed by the user.

To visualize the full behavior of the posterior probability, theLIFFT.m

function accepts a grid of candidate values for the input parameters (e.g.,

Kd and n). For each such setting of parameters, the tool optimizes the

state chemical mapping patterns Ca
j , the fitted error at each residue σj ,

and normalization values αi (subject to the constraint 1

N

∑

i αi = 1.0)

through iterative optimization (Supplemental Information). A refinement

of the best parameter values is also carried out through MATLAB’s

fminsearch functionality. Uncertainties in the fit parameters are

estimated based on how far the parameters must be shifted from this best

fit to observe the log-posterior drop by 2.0 (corresponding to two standard

errors in each parameter if the uncertainties are Gaussian); these numbers

provide convenient summary statistics for publication. The matrix of log

posterior probability vs. each parameter setting is also returned for use

in downstream statistical calculations; see, e.g., Supporting Information

of (Frederiksen et al., 2012). For a data set mapping 60 residues at 16

conditions and a 20 by 20 grid of input parameters, the calculation takes

less than 2 seconds on a MacBook laptop (2.9 GHz Intel Core i7) with

four CPU cores.

Figure 1 shows representative output for a Mg2+ binding curve

measured for a domain of the signal recognition particle stabilized by

two Rosetta-designed mutations, assessed by dimethyl sulfate probing

(Das et al., 2010)). In this case, the log-posterior plot (Fig. 1A) shows

contours shaped like a tilted egg near the best fit: there are weak, non-

linear correlations between uncertainties in the dissociation constant and

apparent Hill coefficient. The fit is excellent, with low residuals (Fig. 1B),

and gives n = 1.74+0.97
−0.56, Kd = 0.061+0.020

−0.016 mM. The final fits pass

through the chemical reactivity data at user-selected residues that lie inside

the SRP loop (Fig. 1C). A similar LIFFT quantitation for data for the wild

type RNA (n = 2.22+1.29
−0.71 ; Kd = 0.150+0.045

−0.023 mM) showed that the

mutant required less Mg2+ to fold (confirming a stabilization by 1.1±0.4

kcal/mol, using the thermodynamic framework described in (Lipfert et al.,

2014); uncertainties are 2 standard errors).

In addition to the Hill fit, several other thermodynamic models are

available in LIFFT. For riboswitches that bind a single ligand, users can

enforce n = 1 in the Hill fit, equation (2). For modeling molecules that

bind up to two ligands, the Hill fit is incorrect (Kuriyan et al., 2012),

but the correct model is supplied with LIFFT (Kladwang et al., 2012;

K = 0.0612 + 0.0198 - 0.0158 

n
Hill

 = 1.74 + 0.97 - 0.56 
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Fig. 1. Output from LIFFT for Mg2+-induced folding of a re-designed signal recognition

particle RNA domain, probed by dimethyl suldate mapping. (A) Log-posterior contour

map. (B) Heat maps of input data, best fit, and absolute values of residuals. (C) Fit curves

overlaid on user-specified residues. Concentration units are mM. Data from (Das et al.,

2010)

.

Frederiksen et al., 2012). Thermal melts (in which molecular structure is

monitored vs. temperature) can be fit to models with constant enthalpy

and entropy differences between states (Vaidyanathan et al., 2017). Any

other model that depends on up to two thermodynamic parameters can be

supplied. Models with multiple transitions can be handled by separating

out data subsets that define distinct transitions (Frederiksen et al., 2012).

Demonstrations on actual data sets for each of the above test cases are

provided under lifft_demo.m and run successfully with MATLAB

R2014a, R2016a, and R2017b on Mac OS 10.12.6.
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