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Abstract

Motivation: In biology, we are often faced with multiple datasets recorded on the same set of objects, such
as multi-omics and phenotypic data of the same tumors. These datasets are typically not independent from
each other. For example, methylation may influence gene expression, which may, in turn, influence drug
response. Such relationships can strongly affect analyses performed on the data, as we have previously
shown for the identification of biomarkers of drug response. Therefore, it is important to be able to chart
the relationships between datasets.
Results: We present iTOP, a methodology to infer a topology of relationships between datasets. We base
this methodology on the RV coefficient, a measure of matrix correlation, which can be used to determine
how much information is shared between two datasets. We extended the RV coefficient for partial matrix
correlations, which allows the use of graph reconstruction algorithms, such as the PC algorithm, to infer
the topologies. In addition, since multi-omics data often contain binary data (e.g. mutations), we also
extended the RV coefficient for binary data. Applying iTOP to pharmacogenomics data, we found that
gene expression acts as a mediator between most other datasets and drug response: only proteomics
clearly shares information with drug response that is not present in gene expression. Based on this result,
we used TANDEM, a method for drug response prediction, to identify which variables predictive of drug
response were distinct to either gene expression or proteomics.
Availability: An implementation of our methodology is available in the R package iTOP on CRAN.
Additionally, an R Markdown document with code to reproduce all figures is provided as Supplementary
Material.
Contact: a.k.smilde@uva.nl and l.wessels@nki.nl
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Rapid developments in high throughput measurement techniques together
with rapid reduction in profiling costs have, for many biological problems,
endowed us with multiple molecular datasets recorded on the same set
of objects. For example, pharmacogenomics data contain, in addition to
cancer type and drug response, various omics datasets (mutation, copy
number aberration (CNA), methylation, gene expression and proteomics)

recorded on the same set of tumor cell lines (4; 6). While this provides an
unprecedented view on the underlying biological problem, it also comes
with some unique challenges. Specifically, the recorded datasets are not
independent of each other, but are characterized by specific relationships.
For example, copy number alterations and methylation changes may
influence gene expression, which may, in turn, influence drug response. As
we have demonstrated earlier (1), these relationships can have profound
effects on further integrative analyses, especially biomarker discovery. It is
therefore imperative to obtain a full quantitative characterization of these

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 3, 2018. ; https://doi.org/10.1101/293993doi: bioRxiv preprint 

https://doi.org/10.1101/293993


“aben-et-al-2018” — 2018/4/3 — page 2 — #2

2 Aben et al.

x1 x2 x3

Ground truth

x1 x2 x3

Partial correlations

e.g. cor(x1, x3 | x2) ≈ 0

X1 X2

X1 X2

Shared information

No shared information

B

X1

X2

X3
C

X1 X2 X3

D

x1 x2 x3
Correlations

EA

Mutations CNA

Drug response

Proteomics Gene expression

Methylation Cancer type

Fig. 1. High-level overview of this work. (A) The goal of this work is to infer a topology of relationships between pharmacogenomics datasets (an example topology is illustrated here). (B)
When two datasets share information (i.e. when their RV coefficient is non-zero), we will indicate them as connected in a topology. (C) A topology of three datasets that all share information.
We will convert this topology to the one depicted in (D) if the shared information between X1 and X3 is fully contained in X2 . (E) To create these topologies we will draw on methods for
inferring a topology between single variables using partial correlations. Top: the original causality graph. Middle: the topology as inferred using correlations. Bottom: the inferred topology
using partial correlations.

relationships, such as the illustrative topology of relationships between
datasets depicted in Figure 1A.

Here we set out to characterize the relationships between datasets
in terms of the amount of information that is shared between a pair of
datasets, and, more importantly, how this shared information manifests
itself in the relationship of a pair of datasets to a third dataset. For example,
suppose we have two datasets, X1 and X2. Suppose we can characterize the
amount of shared information between X1 and X2 by a number between 0
and 1, with 0 being no shared information and 1 representing maximal
overlap in information (Figure 1B). This characterization of pairwise
relationships can be informative as such, as it can reveal whether, for
example, there is any shared information between gene expression and
mutation data. If we now introduce a third dataset, X3, we can also quantify
the amount of information shared between X1 and X3 and X2 and X3.
Assuming that these relationships are non-zero, we obtain the graph in
Figure 1C. Now it becomes particularly interesting to know whether the
shared information between X1 and X3 depends on X2. Specifically, is
the shared information between X1 and X3 contained in the information in
X2? In other words, does X2 mediate the effect of X1 on X3? When these
questions can be answered for all datasets at hand, it reveals the minimal
graph that represents the conditional relationships between all datasets.
As the number of datasets grows, such a graph not only gives a very
concise overview of the relationships, but it is also an important guide in
structuring the analyses aimed at finding biomarkers of a given phenotype.
More specifically, suppose that X1, X2 and X3 represent mutation, gene
expression and drug response data for a cell line panel, and that our goal
is to extract molecular biomarkers of drug response. Assume that, from
our analyses, it emerged that all the information shared between mutation
(X1) and drug response (X3) is contained in the gene expression data (X2)
(Figure 1D). This implies that we only need to employ gene expression
data to find biomarkers of drug response.

To infer dataset topologies, we draw upon the approaches employed
to infer topologies between single variables (instead of matrices).

Specifically, for our earlier example, we can employ partial correlation,
e.g. cor(x1, x3|x2), to quantify the amount of information that is shared
between two variables (x1 and x3) that is not present in the other variable
(x2). If the effect of x1 on x3 is (almost fully) mediated through x2,
it follows that cor(x1, x3|x2) ≈ 0, which implies that we can remove
the direct link between x1 and x3 (Figure 1E). Graph reconstruction
algorithms, such as the PC algorithm (12; 2), use this property to infer
the topology between multiple variables.

Here, we propose iTOP, a methodology for inferring topologies
between datasets. As with topology inference for single variables, this
methodology consists of two components: 1) a measure of (conditional)
similarity between datasets and 2) the PC algorithm that employs the
(conditional) similarity measure to perform structure learning, i.e. to infer
the topology. As similarity measure we employ the RV coefficient (9), a
measure of matrix correlation. The basic idea of the RV coefficient is that
datasets are correlated when they have a similar configuration (e.g. similar
clustering) of the objects. We extend the RV coefficient to be applicable
to binary data by using Jaccard similarity to determine the configuration
of objects. This allows us to measure the shared information between
any of the molecular datasets, including intrinsically binary datasets such
as mutation data. In addition, to measure conditional matrix similarity,
we extend the RV coefficient for partial matrix correlations. This allows
us to quantify the amount of information that is shared between two
datasets (matrices), but not present in the other dataset, analogous to single
variables.

We employ iTOP, i.e. partial matrix correlation in conjunction with
the PC algorithm, to infer a topology of relationships between datasets.
First, we will demonstrate the RV coefficient with both extensions (i.e.
for partial matrix correlations and for binary data) on artificial data.
Subsequently, we will use this to infer the topology of relationships
between the pharmacogenomics datasets. We show that gene expression
acts as a mediator between most other datasets and the drug response, and
that only proteomics clearly shares information with drug response that
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is not present in gene expression. Based on this result, we will employ
TANDEM, a method for drug response prediction from multiple datasets
(1), to identify markers predictive of drug response that are distinct for
proteomics and gene expression.

2 Methods and Materials

2.1 Matrix correlation using the RV coefficient

For dataset i, consider Xi the n× pi data matrix with objects in the rows
and variables in the columns. Here, we assume Xi to be column-centered
(of note, there is no need to scale the columns of Xi). We define the
corresponding n× n configuration matrix Si as follows:

Si = XiXTi

Now consider a second dataset j, whose data matrix Xj has the same
objects on the same rows as Xi, but has a different set of variables. Hence,
Xj is of size n × pj . Analogous to Xi, we will define a configuration
matrix Sj for Xj .

Sj = XjXTj
Using the configuration matrices Si and Sj , we can then determine the

matrix correlation between these matrices using the RV coefficient:

RV (Si, Sj) =
vec(Si)T vec(Sj)√

vec(Si)T vec(Si)× vec(Sj)T vec(Sj)

Where vec(S) is the n2 × 1 vector in which the columns of S are
stacked on top of each other. When Xi and Xj are column-centered, then
mean(vec(Si)) = 0 and mean(vec(Sj)) = 0, which means we can
interpret the above as a Pearson correlation coefficient.

RV (Si, Sj) = cor(vec(Si), vec(Sj))

2.2 The modified RV coefficient

For data matrices X where the number of variables is much greater than
the number of objects (i.e. p � n), the RV coefficient is known to be
biased upwards (10; 8). To account for this bias, we subtract the diagonal
from the configuration matrix, as in the modified RV coefficient (10).

S̃i = Si − diag(Si)

S̃j = Sj − diag(Sj)

RV (S̃i, S̃j) =
vec(S̃i)T vec(S̃j)√

vec(S̃i)T vec(S̃i)× vec(S̃j)T vec(S̃j)

For a more complete discussion of the modified RV coefficient, as well
as our rationale for not using the adjusted RV coefficient (8) instead, we
refer to the Supplementary Material.

2.3 Partial matrix correlations

We extend the above matrix correlation formulation to partial matrix
correlations. Consider a third dataset, the n × pk matrix Xk , that will
be processed as above.

Sk = XkXTk

S̃k = Sk − diag(Sk)

We can then compute the partial matrix correlation between dataset i
and j, corrected for dataset k, as

RV (S̃i, S̃j |S̃k) = cor(vec(S̃i), vec(S̃j)|vec(S̃k))

Of note, the concept of partial matrix correlations has been explored
previously by Smouse et al. (1986) (11), who based their measure on the

Mantel Test (7). For a discussion of the Mantel Test and why we prefer to
base our measure of partial matrix correlation on the RV coefficient, we
refer to the Supplementary Materials.

2.4 Statistical inference for partial matrix correlations

We provide two methods for statistical inference for partial matrix
correlations: significance estimates and confidence intervals. We note that
these cannot be determined analytically (e.g. using Fisher Transformation,
which is commonly used to derive a p-value for Pearson correlations), as
the entries in vec(S) are not i.i.d.: multiple entries in vec(S) correspond
to the same object in S. Instead, we will discuss a permutation test
for significance estimates and a bootstrapping procedure for calculating
confidence intervals.

We used a permutation test to assess significance of a (partial) matrix
correlation. In every permutation, the objects of every dataset were
independently shuffled and the (partial) matrix correlation was computed
on the shuffled data. Subsequently, the observed (partial) matrix correlation
was compared to the permuted values, and the p-value was set to

p =


∑nperm

i=1 1RVobs<RVi
nperm

, for RVobs ≥ 0∑nperm
i=1 1RVobs>RVi

nperm
, for RVobs < 0

Where1A is the indicator function that equals 1 whenA is true,RVobs
is the observed (partial) matrix correlation, RVi the permutated (partial)
matrix correlation from the ith permutation and nperm the number of
permutations. Throughout the manuscript, we used nperm = 1000.

We used a percentile bootstrap procedure to calculate confidence
intervals. In each bootstrap, objects were obtained by drawing complete
cases randomly (with replacement) from the dataset, after which the
(partial) matrix correlation was calculated as defined above. The 99%
percentile interval of the obtained (partial) matrix correlations was then
used as a confidence interval. Throughout the manuscript, we used 1000
bootstraps to determine a confidence interval.

We note that row-wise permutation of the data matrices (X[ind, ],
with ind the indices of the objects after permutation) is equivalent
to permutation of both the rows and the columns of the configuration
matrices (S[ind, ind]). Using this property, we decided to permute
the configuration matrices, as this prevents having to calculate the
configuration matrix in each permutation and hence greatly speeds up
the calculations. A similar approach was used for bootstrapping.

2.5 Binary similarity measures

An advantage of converting the data matrices X to configuration matrices
S is that it allows us to use different similarity measures for different data
types. For example, for continuous data, we use:

S = XXT

Note that each entry of S corresponds to an inner product between
different objects in X, i.e.

S = XXT =


xT1 x1 xT1 x2 · · · xT1 xn
xT2 x1 xT2 x2 · · · xT2 xn

...
...

. . .
...

xTn x1 xTn x2 · · · xTn xn


Where xi is the i’th row in X and n is the number of rows in X. We

will refer to this similarity measure as ‘inner product similarity’.
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2.5.1 Jaccard similarity
For binary data, we use Jaccard similarity. Jaccard similarity is defined
as the ratio of the number of elements where these vectors have ones in
common and the total number of positions where ones occur in any of
these two vectors. Consider the following contingency table.

y = 0 y = 1

x = 0 a c
x = 1 b d

Where a is the number of elements where x = 0 and y = 0, b is the
number of elements where x = 1 and y = 0, etc. The Jaccard Similarity
can then be written as:

Jaccard(x, y) =
d

b+ c+ d

When all x = 0 and all y = 0, then b = c = d = 0, which would
result in Jaccard(x, y) = 0/0. In these cases, we define the Jaccard
similarity as Jaccard(x, y) = 0.

Note that the Jaccard similarity is based on the number of positive
matches (d) and not at all on the number of negative matches (a). This is
in line with our intuition of similarity in the binary data at hand (mutation,
CNA and cancer type). For example, when two objects share the same
mutations, we think this should contribute more to their similarity than the
number of mutations that both objects lack.

We define configuration matrices using the Jaccard similarity in the
following way:

S = Jaccard_config(X)

=


Jaccard(x1, x1) Jaccard(x1, x2) · · · Jaccard(x1, xn)
Jaccard(x2, x1) Jaccard(x2, x2) · · · Jaccard(x2, xn)

...
...

. . .
...

Jaccard(xn, x1) Jaccard(xn, x2) · · · Jaccard(xn, xn)



2.5.2 Kernel centering
We used kernel centering to center the configuration matrix S rather than
the underlying data matrix X. Essentially, kernel centering is double
centering (i.e. column- and row-wise centering) of the configuration matrix
S (or in other words: the kernel), which we will show to be equal to
first column-centering the data matrix X and then computing S = XXT .
Consider X the original data matrix and X the column-centered data matrix.
Likewise, consider S the original configuration matrix and S the centered
configuration matrix. Finally, consider m the column-wise means of X and
n the number of rows in X. We will first consider an example using inner

Table 1. Overview of the pharmacogenomics datasets used in this manuscript.

Dimensionality Source Type Missing values

Mutation 300 GDSC1000 Binary No
CNA 425 GDSC1000 Binary No
Methylation 14,429 GDSC1000 Continuous No
Cancer type 31 GDSC1000 Binary No
Gene expression 17,419 GDSC1000 Continuous No
Proteomics 452 MCLP Continuous Yes
Drug response 265 GDSC1000 Continuous Yes

products as a similarity measure.

S = XXT

S = XXT

=
(

X− 1mT
)(

X− 1mT
)T

=

(
X−

11TX
n

)(
X−

11TX
n

)T
= XXT −

11TXXT

n
−

XXT 11T

n
+

11TXXT 11T

n2

= S−
11T S
n
−

S11T

n
+

11T S11T

n2

Interestingly, the final term expresses the kernel centered S in terms of
the non-centered S. This allows us to center configuration matrices that are
not based on inner-product similarity, such as S = Jaccard_config(X).
Column-centering X (the input space) makes no sense here, as the
resulting matrix would not consist of 0s and 1s anymore and hence
Jaccard_config(X) is not defined. However, we can use kernel
centering here to center the so-called kernel space corresponding to S.

S = Jaccard_config(X)

S = S−
11T S
n
−

S11T

n
+

11T S11T

n2

2.6 Pharmacogenomics data

The mutation, copy number aberration (CNA), methylation, cancer type,
gene expression and drug response data were sourced from GDSC1000
(4), and the proteomics data were sourced from MCLP (6) (Table 1). For
the mutation and CNA data, we used the reduced set of Cancer Functional
Events (CFEs) (4), resulting in 300 and 425 binary variables respectively.
For the methylation data, we used the CpG-island summarized data,
resulting in 14,426 continuous variables. For the cancer type data, we
used the classification into 30 TCGA cancer types or ‘OTHER’, resulting
in 31 binary variables (4). For gene expression data, we used the gene level
summarized data, resulting in 17,419 continuous variables. The proteomics
data consist of 452 variables, of which 108 represent phospho-protein
levels and the remaining 344 represent protein abundance levels. For the
drug response data, we used the IC50-values (concentration at which half
of the cells are killed) for all 265 drugs.

Of the 282 cell lines that were profiled in both GDSC1000 and MCLP,
266 cell lines were characterized across all seven datasets. This number
was further reduced due to missing values in the proteomics and drugs
response data. For the proteomics data, after removing all variables with
>30% missing values, we retained 186 variables. Subsequently, after
removing all objects with >30% missing values, we retained 221 objects.
We then intersected all datasets with these 221 objects and applied the
same two steps to the drug response data, where we retained 206 objects
and 217 variables. These 206 objects cover 27 of the 31 cancer types in the
GDSC1000 data. The remaining missing values (1% for the proteomics
and 5% for the drug response) were imputed using SVD imputation (13)
as implemented in the R package bcv.

3 Results

3.1 The RV coefficient

To illustrate the RV coefficient, consider the following example. Figure 2A
represents data matrix X1, a dataset with two variables and 100 objects,
where the first 50 objects form the green cluster and the second 50 objects
form the purple cluster. The second data matrix, X2 (Figure 2B), also

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted April 3, 2018. ; https://doi.org/10.1101/293993doi: bioRxiv preprint 

https://doi.org/10.1101/293993


“aben-et-al-2018” — 2018/4/3 — page 5 — #5

iTOP: Inferring the Topology of Omics Data 5

●
●

●

●

●

●

●●
●

●

●●

●

●
●●● ●

●

●
●

●

●● ●

●

●●
●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●
●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ● ●

●●●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●
●

●

●

● ●

●

●●
●

●

●

●●

●

●●

●
●

●
●●

●
● ●

●

●

●

●

●
●

●

●

11
13

48
15

33
42

9
6

39
21

20
25

18
26

40
2

30
44

27
23

12
16

5
17

32
37

50
38

1
29

35
43

22
47

7
10

31
19

8
4

41
24

36
49

28
46

34
45

3
14

71
61

66
70

87
83

92
94

78
63

60
98

75
58

81
54

67
84

85
79

73
64

56
82

51
57

80
62

89
55

68
69

53
76

97
86

95
77

93
74

88
65

96
52

72
99

100
59

90
91

11 13 48 15 33 42 9 6 39 21 20 25 18 26 40 2 30 44 27 23 12 16 5 17 32 37 50 38 1 29 35 43 22 47 7 10 31 19 8 4 41 24 36 49 28 46 34 45 3 14 71 61 66 70 87 83 92 94 78 63 60 98 75 58 81 54 67 84 85 79 73 64 56 82 51 57 80 62 89 55 68 69 53 76 97 86 95 77 93 74 88 65 96 52 72 99 100
59 90 91

−4e+05

−2e+05

0 2e+05

4e+05

C
o

n
fi

g
u

ra
ti

o
n

 m
at

ri
ce

s
D

at
a 

m
at

ri
ce

s

RV(X1, X2) 
 → cor(vec(S1), vec(S2)) ≈ 1

X1 X2 X3

S1 S2 S3
Inner product

SimilarDissimilar

RV(X2, X3) 
 → cor(vec(S2), vec(S3)) ≈ 0

A B C

D E F

Fig. 2. The RV coefficient explained using three simple example datasets. The data matrices X1 , X2 and X3 (represented in A-C) are converted to configuration matrices S1 , S2 and S3

respectively (D-F). Using the configuration matrices, it can be readily seen thatRV (X1,X2) ≈ 1 andRV (X1,X3) ≈ 0.

consists of two variables and the same 100 objects with the same clustering
as in X1. The third data matrix, X3 (Figure 3C), is again a dataset with two
variables and the same objects as before, but now without any apparent
clustering.

When converting these data matrices to configuration matrices
(similarity matrices), which indicate the configuration of the different
objects with respect to each other, it can be readily observed that X1

and X2 contain the same information in terms of clustering (Figure 2D
& E). Indeed, when computing the RV coefficient between X1 and X2

(by computing the Pearson correlation of the vectorized forms of the
corresponding configuration matrices, see Methods and Materials), we
obtain an RV coefficient close to one, indicating a strong relationship.
Conversely, when computing the RV coefficient between X2 and X3,
where the latter contains no clustering information, we see that the
configuration matrices are very different and RV (X2,X3) ≈ 0 (Figure
2C & F).

3.2 Extending the RV coefficient for partial matrix
correlations

We illustrate partial matrix correlations using the following example.
Consider three datasets: X1, X2 and X3. Let X1 affect X2, and let X2

affect X3 (Figure 3). Observe that, consistent with the proposed causality,
X1 is most similar to X2 (only the purple cluster in the bottom-left has
been moved) and X3 is most similar to X2 (only the blue cluster in the
bottom-right has been moved). This of course means that RV (X1,X2)

andRV (X2,X3) will be non-zero. However, note that alsoRV (X1,X3)

will be non-zero, as X1 and X3 do share information: the top three clusters
have the same configuration in both datasets. Therefore, if we were to infer
a topology based on the matrix correlations, we cannot rule out a direct
link from X1 to X3.

Using the partial matrix correlationRV (X1,X3|X2), we can rule out
a direct link from X1 to X3. As X2 has the same configuration in the top
three clusters, correcting for X2 results inRV (X1,X3|X2) = 0.005 ≈ 0.
Therefore, using partial matrix correlations, we can indeed reconstruct the
original topology.

3.3 Extending the RV coefficient for binary data

The RV coefficient has been proposed for comparing data matrices
containing continuous values. Specifically, in the original formulation
of the RV coefficient, the configuration matrices are determined using
the inner product between objects (Methods and Materials), which is
tailored to comparing continuous values. To determine (partial) matrix
correlations for datasets containing binary values, we propose to create
the configuration matrices using Jaccard similarity, which determines
similarity between binary variables (Methods and Materials). We assessed
the performance of this approach using a simulation study.

First, to establish a reference, we performed a simulation study in
which two continuous valued matrices were compared. In this simulation,
the values in X1 and X2 were randomly drawn fromN(10, 1) andN(0, 1)

respectively, whereN(µ, σ) represents a Gaussian distribution with mean
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RV(X1, X3 | X2) → cor(vec(S1), vec(S3) | vec(S2)) ≈ 0
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Fig. 3. Illustration of the partial matrix correlation. (A) We will create artificial data such that X1 influences X2 , which in turn influences X3 . (B) Artificial data consistent with the
abovementioned causality, resulting inRV (X1,X3|X2) ≈ 0.

µ and standard deviation σ. Subsequently, we defined a third matrix as
X3 = (1−α)X1+αX2. We comparedRV (X1,X3) for different values
ofα, and both with and without column-wise centering of the data matrices
(Figure 4A). Regardless of centering, we found that RV (X1,X3) = 1

for α = 0 and RV (X1,X3) ≈ 0 for α = 1, as expected. For
intermediate values of α however, we see big differences between the
approach using centering and the one without centering. Without centering,
RV (X1,X3) remains very close to 1 for values ofα approaching 1, which
is counterintuitive. With centering, RV (X1,X3) slowly decreases to 0 as
α increases, which is according to expectation. These differences can be
attributed to the fact that inner product distance is dependent on the relative

position of the objects with respect to the origin: in the uncentered case, for
α ≤ 0.9, the vectors representing the objects in X1 and X3 will be highly
collinear, resulting in an RV coefficient close to one (Supplementary Figure
1). This experiment emphasizes the importance of centering the data prior
to applying the RV coefficient.

We then performed a simulation in which two binary valued matrices
were compared. Values in X1 were randomly drawn from Binom(0.5)

(Binomial distribution with p = 0.5). X2 was set equal to X1, but with
α the fraction of binary values that were flipped. We varied α only up to
0.5, as this is the point at which the configuration of objects in X1 and X2

is maximally apart (at α = 1, X1 and X2 are simply inverted and, given
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that the RV coefficient is rotation independent, the resulting RV coefficient
will be 1 again). AgainRV (X1,X2) was compared for different values of
α and both with and without centering (Figure 4B). As binary data cannot
be column centered (it would not be binary anymore after centering), we
instead used kernel centering to center the configuration matrix obtained
using the Jaccard similarity (Methods and Materials). For α = 0,
RV (X1,X2) = 1, both with and without centering, as the two matrices
are exactly the same. However, for α in (0,50], RV (X1,X2) remained
very close to 1 in the uncentered case, while it slowly decreased to 0 in
the centered case. Hence, as at α = 0.5 the configuration of X1 and X2

is maximally apart, the centered case is preferable.
Using these simulation experiments, we have shown that the Jaccard

similarity can be used to construct configuration matrices for binary data.
Additionally, we have shown the importance of centering and that kernel
centering can be used for the binary case.

3.4 Application to pharmacogenomics data

We applied the RV coefficient with both extensions to a collection of
pharmacogenomics data (a combination of GDSC1000 (4) and MCLP
(6), see Methods and Materials) to infer how the different datasets
in this collection are related to each other. This collection consists of
3 binary datasets (mutation, CNA and cancer type) and 4 continuous
datasets (methylation, gene expression, proteomics and drug response).
Intersecting the objects that are present in all datasets resulted in data for
206 objects.

We used the PC algorithm (2; 12) (Supplementary Materials) to
study the relationships between datasets. Briefly put, this algorithm starts
out with a fully connected graph, where each node corresponds to a
dataset, and removes the edge between two datasets X1 and X2 when
RV (X1,X2|C) ≈ 0 (i.e. when it is not significantly different from 0).
This step is repeated for increasingly larger sets of C, from C = ∅ (no
datasets) to C = U \ {X1,X2} (all datasets except X1 and X2), until

either the edge is removed or all possible sets have been assessed. Finally,
the PC algorithm attempts to, under certain assumptions, determine the
directionality of the edges. However, for the pharmacogenomics data, the
algorithm was unable to infer the directionality of any edge in the graph.

Using the approach outlined above, the PC algorithm essentially
summarizes the set of all 560 partial matrix correlations in a topology. An
important caveat of this approach is that it uses the absence of a significant

Mild association

Strong association

Mutation

CNA

Methylation Cancer type

Gene expression

Proteomics

Drug response

Fig. 5. Relationships between datasets in the pharmacogenomics data, as determined using
the PC algorithm run on the partial matrix correlations. An edge indicates that two datasets
share information that is not present in any of the other datasets.
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Fig. 6. The (partial) matrix correlations for different RV (X1,X2|X3) in the pharmacogenomics data. For each bar in the barplot, X1 and X2 are indicated by the black blocks, and X3

is indicated by the red block. A (partial) matrix correlation was significant when p < 0.01. The error bars indicate the 99% confidence interval. Abbreviations: mut, mutation; meth,
methylation; expr, gene expression; prot, proteomics; drug, drug response.
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association to determine the absence of a relation between two datasets.
As this may not always be true (there may be such a relation, but we may
not have enough objects to detect it), we will also inspect the underlying
(partial) matrix correlations and their confidence intervals for the most
important hypotheses generated from the topology.

Figure 5 shows the topology resulting from the PC algorithm. Gene
expression takes up a strikingly central position in the graph, being
connected to all other data types. Using the underlying partial correlations
and their confidence intervals, we verify that gene expression acts as a
mediator between the ‘upstream data’ (mutation, CNA, methylation and
cancer type) on the one hand and the drug response data on the other hand:
the partial matrix correlations between these datasets and the drug response
drop to nearly zero when correcting for gene expression (Figure 6A).

Proteomics also takes up an interesting position in the graph.
The proteomics data shows a very strong relationship with gene
expression (RV = 0.76). Interestingly, using the underlying
partial matrix correlations, we see that this relationship fully contains
the information shared between the upstream data and proteomics:
RV (Xi, proteomics | expression) ≈ 0, for each dataset Xi in the
upstream datasets (Figure 6B). Finally, gene expression and proteomics
share information with drug response that is not present in the
other dataset: RV (expression, drug response | proteomics) > 0 and
RV (proteomics, drug response | expression) > 0 (Figure 6C). Hence,
even though gene expression and proteomics share a large amount of
information, they both contain unique information with respect to drug
response.

Overall, we have shown here that our methodology can be used to infer
how different datasets are related to each other.

3.5 Identifying which variables predictive of drug response
are distinct to either gene expression or proteomics

The topology that we have inferred suggests that for accurate prediction of
drug response we only need gene expression and proteomics. Indeed, when
we train Elastic Net models (17) (Supplementary Materials) to predict the
drug response from either all datasets (other than drug response) or from
only gene expression and proteomics, we found that they result in virtually
identical predictive performance (Supplementary Figure 2A).

We then asked which variables are both predictive of drug response
and distinct to either gene expression or proteomics. To answer this
question, we used TANDEM (1) (Supplementary Materials). Briefly, given
a response vector y (e.g. drug response of a single drug) and two datasets
X1 and X2 (e.g. gene expression and proteomics), TANDEM uses two
stages of Elastic Net regression to first identify all variables in X1 that are
associated with y, and then identify all variables in X2 that are associated
with y but whose information is not present in X1.

For each drug, we trained two TANDEM models:

• GEXunique: a model that uses proteomics in the first stage and gene
expression in the second stage, thereby identifying variables with
information that is unique to the gene expression data.

• PROTunique: the counterpart of GEXunique, with gene expression in the
first stage and proteomics in the second stage.

We found that GEXunique mostly uses proteomics data and PROTunique

mostly uses gene expression data, while both achieve similar predictive
performance (Supplementary Figure 2B-D. This is of course not very
surprising, as we have already seen using the RV coefficient that a lot of
information is shared between the gene expression and proteomics data.

For each drug and for both TANDEM models, we then determined
variable importance scores (Supplementary Materials) and averaged these
over drugs to identify variables that made the largest overall contribution
to the prediction of drug response. For GEXunique, the most important

gene expression variable was ABCB1 expression. ABCB1 is a protein in
the cell membrane that pumps foreign substances (including drugs) out of
the cell. As such, it is known to be associated with resistance to a wide
range of drugs (3). The proteomics data we considered here did not contain
ABCB1, hence it is not unexpected that this information is not present in
the proteomics data.

For PROTunique, the most important variable was MEK1 S217/S221
phosphorylation (pMEK1). The phosphorylation of MEK1 indicates
MAPK pathway activation and is hence associated to sensitivity to MAPK
pathway inhibitors, such as BRAF, MEK and ERK inhibitors. As the
proteomics data contains both phosphorylation and protein abundance
variables, we wondered whether one of these classes might be enriched
in the distinct proteomics – drug response part. However, we found
no significant difference between the variable importance scores in the
PROTunique models for these two classes (p = 0.68, Mann-Whitney U
Test) (Supplementary Figure 2E).

Altogether, we have shown here that, informed by the topology of the
datasets we inferred with iTOP, we can identify which variables correspond
to distinct gene expression – drug response and proteomics – drug response
relationships.

4 Discussion
In this work, we have introduced iTOP, a methodology to infer a topology
of relationships between datasets. To this end, we have extended the
RV coefficient for partial matrix correlations, allowing one to identify
how much information is shared between two datasets, but not present
in other datasets. In addition, we have also extended the partial RV
coefficient for binary data, using the Jaccard coefficient. We have tested
both extensions using artificial data and used them to infer a topology of
the pharmacogenomics data. Finally, we have zoomed in on part of the
topology and have identified variables predictive of drug response that are
distinct to either gene expression or proteomics using TANDEM.

An important caveat of the PC algorithm used in our approach is that
the absence of a significant p-value does not necessarily mean the absence
of a relationship between two datasets: it can also mean this relationship is
present, but that we did not have enough power to detect it. Of note,
this also means that the inferred topology can change as the number
of objects increases, simply because this enhances our ability to detect
very small effects. For these reasons, we suggest to not solely rely on
p-values to determine the absence or presence of these links. Instead, we
suggest using the PC algorithm as a tool to summarize the results from the
numerous possible partial matrix correlations into a topology, after which
the hypotheses generated from this topology should also be assessed by
inspecting the relevant (partial) matrix correlations and their confidence
intervals. These values will give an indication of both the strength of the
associations and how well we can estimate these, and may hence suggest
the inclusion of an association that is strong but uncertain, or the exclusion
of a certain – but weak – association.

We note that there are other options for binary similarity measures
besides the Jaccard coefficient. For example, we have considered the
phi coefficient, which is the Pearson correlation applied to binary
measurements (15; 16). The main benefit of the phi coefficient is that it is a
centered measure and hence kernel centering of the resulting configuration
is not required. A minor disadvantage of the phi coefficient is that it is not
defined in cases where objects consist of only zeroes or only ones. This
can be easily circumvented however, for example by defining phi(x,y) =
0 in these cases. The main disadvantage of the phi coefficient lies in its
definition of similarity: for the phi coefficient, both coinciding zeroes and
ones contribute towards similarity, whereas for the Jaccard similarity only
coinciding ones do. We believe objects are similar when they share the
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same mutations (rather than the absence of mutations) and hence prefer
the Jaccard similarity here.

In future work, the RV coefficient could be further extended for other
types of data. For example, a matrix with ordinal data could be converted
into a configuration matrix using the Spearman rank correlation or the
rOZ coefficient similarity (14; 16). Additionally, other semi-positive
definite kernels that describe the similarity between objects could be
used as a configuration matrix. For example, if we were to consider a
dataset that is represented as a graph (where each node corresponds to an
object), then a configuration matrix could be constructed using a graph
diffusion kernel (5). Finally, as many multi-omics data contain patient
survival data, defining a configuration matrix for survival data opens
up interesting avenues for future research. For each of these extensions,
careful assessment of the need of kernel centering will be required.

We believe that iTOP can be applied to a broad range of data, beyond
the pharmacogenomics data analyzed here. Essentially, for all data in
which the same objects have been characterized in multiple modalities, this
methodology can be used to infer a topology of relationships between the
resulting datasets. Hence, as multi-omics and phenotypic data is collected
for increasingly more experiments, we believe our methodology will be
highly relevant and widely applicable.
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