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Motivation: Current genotyping approaches for single nu-
cleotide variations (SNVs) rely on short, relatively accurate
reads from second generation sequencing devices. Presently,
third generation sequencing platforms able to generate much
longer reads are becoming more widespread. These platforms
come with the significant drawback of higher sequencing error
rates, which make them ill-suited to current genotyping algo-
rithms. However, the longer reads make more of the genome
unambiguously mappable and typically provide linkage infor-
mation between neighboring variants.
Results: In this paper we introduce a novel approach for
haplotype-aware genotyping from noisy long reads. We do this
by considering bipartitions of the sequencing reads, correspond-
ing to the two haplotypes. We formalize the computational
problem in terms of a Hidden Markov Model and compute pos-
terior genotype probabilities using the forward-backward algo-
rithm. Genotype predictions can then be made by picking the
most likely genotype at each site. Our experiments indicate that
longer reads allow significantly more of the genome to poten-
tially be accurately genotyped. Further, we are able to inde-
pendently validate with both Oxford Nanopore and Pacific Bio-
sciences sequencing data millions of variants previously identi-
fied by short-read technologies in the reference NA12878 sam-
ple, including hundreds of thousands of variants that were not
previously included in the high-confidence reference set.

Correspondence: t.marschall@mpi-inf.mpg.de, bpaten@ucsc.edu

1 Introduction
Reference based genetic variant identification comprises two
related processes: genotyping and phasing. Genotyping
refers to determining the individual’s genetic variants (geno-
type) at each site in the genome. A genotype at a given site
describes whether both chromosomal copies carry a variant
allele, only one of them, or whether the variant allele is not
present at all. Phasing refers to the determination of the indi-
vidual’s haplotypes, which consist of variants that lie near
each other on the same chromosome and are inherited to-
gether. To completely describe the genetic variation in an
organism, both genotyping and phasing are needed. Together
this process is called diplotyping.
Many existing variant analysis pipelines are designed for
short DNA sequencing reads (1, 2). Though short reads are
very accurate at a per-base level, they can suffer from being
difficult to unambiguously align to the genome, especially in
repetitive or duplicated regions (3). The result is that mil-
lions of bases of the reference human genome are not cur-
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Fig. 1. Motivation. Gray sequences illustrate the haplotypes, the reads are shown in
red and blue. The red reads originate from the upper haplotype, the blue ones from
the lower. Genotyping each SNV individually would lead to the conclusion that all
SNVs are heterozygous. Using the haplotype context reveals our uncertainty about the
genotype of the second SNV.

rently reliably genotyped by short reads, primarily in multi-
megabase gaps near the centromeres and short arms of chro-
mosomes (4). While short reads are unable to uniquely map
to these regions, long reads can potentially span into or even
across them. This makes it so long reads are advantageous
over short reads for tasks such as haplotyping, large struc-
tural variant detection, and de novo assembly (5–7). Here we
attempt to demonstrate their utility for more comprehensive
genotyping.
Long read DNA sequencing technologies are rapidly falling
in price and increasing in general availability. Such technolo-
gies include Single Molecule Real Time (SMRT) Sequencing
by Pacific Biosciences (PacBio), and nanopore sequencing
by Oxford Nanopore Technologies (ONT). However, due to
their historically greater relative cost and higher sequencing
error rates, little attention has been given thus far to the prob-
lem of genotyping single nucleotide variants (SNVs) with
long reads. Recently, (8) have taken first steps in this di-
rection, but their approach does not scale to process whole
human genomes in reasonable time.
For an illustration of the benefit of using long reads to diplo-
type, consider Figure 1. Shown are three SNV positions cov-
ered by long reads. The gray sequences represent the true
haplotype sequences and reads are colored in blue and red.
The colors correspond to the haplotype from which the re-
spective read stems from: the red ones from the upper se-
quence, and the blue ones from the lower one. Since se-
quencing errors can occur, the alleles supported by the reads
are not always equal to the true ones in the haplotypes shown
in gray. Considering the SNVs individually, we would prob-
ably genotype the first one as A/C, the second one as T/G
and the third one as G/C, since the number of reads support-
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ing each allele are the same, leading to a wrong genotype
prediction for the second SNV. However, if we knew from
which haplotype each read stems from, that is, if we knew
their colors, then we would be unsure about the genotype of
the second SNV. It could also be G/G or T/T, since the reads
stemming from the same haplotypes must support the same
alleles. Therefore, using haplotype information during geno-
typing makes it possible to compute more reliable genotype
predictions and to detect uncertainties.

Contributions. In this paper we show that for contempo-
rary long read technologies, read based phase inference can
be simultaneously combined with the genotyping process for
SNVs to produce accurate diplotypes and to detect variants
in regions not mappable by short reads. We show that key
to this inference is the detection of linkage relationships be-
tween heterozygous sites within the reads. To do this, we
describe a novel algorithm to accurately predict diplotypes
from noisy long reads that scales to deeply sequenced human
genome. We achieve this by considering bipartitions of all
given sequencing reads, corresponding to the two haplotypes
of an individual. The problem is formalized using a Hidden
Markov Model (HMM) from which we compute genotype
likelihoods using the forward-backward algorithm and finally
make genotype predictions by determining the likeliest geno-
type at each position.
We then apply this algorithm to diplotype one individual from
the 1000 Genomes Project, NA12878, using long reads from
both PacBio and ONT. NA12878 has been extensively se-
quenced and studied, and the Genome in a Bottle consortium
has published sets of highly confident variant calls (9). We
demonstrate that our method is accurate, can be used to con-
firm variants in regions of uncertainty, and allows for the dis-
covery of variants in regions unmappable using reads from
short DNA read sequencing technologies.

2 Methods
We describe a probabilistic model for diplotype and genotype
inference, and in this paper use it to find maximum posterior
probability genotypes. The approach builds upon the What-
sHap approach (10), but incorporates a full probabilistic al-
lele inference model into the problem. It has similarities to
that proposed by Kuleshov et al. (11), but we here frame the
problem using Hidden Markov Models (HMMs).

2.1 Alignment Matrix
Let M be an alignment matrix whose rows represent sequenc-
ing reads and whose columns represent genetic sites. Let
m be the number of rows, let n be the number of columns,
and let Mi,j be the jth element in the ith row. In each col-
umn let Σj ⊂Σ represent the set of possible alleles such that
Mi,j ∈ Σj ∪{−}, the “−” gap symbol representing a site at
which the read provides no information. We assume no row
or column is composed only of gap symbols, an uninteresting
edge case. An example alignment matrix is shown in Figure
2. Throughout the following we will be informal and refer to

a row i or column j, being clear from the context whether we
are referring to the row or column itself or the coordinate.

  1 2 3 4 5
1 A G T - -
2 A G T - -
3 - C - G -
4 - C T G -
5 - - T C T
6 - - T C T          

Fig. 2. Alignment Matrix. Here, the alphabet of possible alleles is the set of DNA
nucleotides, i.e. Σ = {A,C,G,T}

2.2 Genotype Inference Problem Overview
A diplotypeH = (H1,H2) is a pair of haplotype (segments);
a haplotype (segment) Hk = Hk

1 ,H
k
2 , . . . ,H

k
n is a sequence

of length n whose elements represents alleles such thatHk
j ∈

Σj . Let B = (B1,B2) be a bipartition of the rows of M into
two parts (sets): B1, the first part, and B2, the second part.
We use bipartitions to represent which haplotypes, of the two
in a genome, the reads came from. By convention we assume
that the first part of B are the reads arising from H1 and the
second part of B are the reads arising from H2.
The problem we analyze is based upon a probabilistic model
that essentially represents the (Weighted) Minimum Error
Correction (MEC) problem (12, 13), while modeling the evo-
lutionary relationship between the two haplotypes and so im-
posing a cost on bipartitions that create differences between
the inferred haplotypes.
For a bipartition B, and making an i.i.d. assumption between
sites in the reads:

P (H|B,M) =
n∏

j=1

∑
Zj∈Σj

P (H1
j |B1,Zj)P (H2

j |B2,Zj)P (Zj)

where P (Zj) is the prior probability of the ancestral allele
Zj of the two haplotypes at column j, by default we can use a
simple flat distribution over ancestral alleles (but see below),
and the posterior probability P (Hk

j |Bk,Zj) =

P (Hk
j |Zj)

∏
{i∈Bk:Mi,j 6=−}P (Mi,j |Hk

j )∑
Yj∈Σj

P (Yj |Zj)
∏
{i∈Bk:Mi,j 6=−}P (Mi,j |Yj)

for k ∈ {1,2}, where the probability P (Hk
j |Zj) is the prob-

ability of the haplotype allele Hk
j given the ancestral allele

Zj , for this we can use a continuous time Markov model for
allele substitutions, such as Jukes-Cantor (14), or some more
sophisticated model that factors the similarities between alle-
les (see below). Similarly P (Mi,j |Hk

j ) is the probability of
observing allele Mi,j in a read given the haplotype alleleHk

j .
The genotype inference problem we consider is finding for
each site:

argmax
(H1

j
,H2

j
)
P (H1

j ,H
2
j |M) = argmax

(H1
j

,H2
j
)

∑
B

P (H1
j ,H

2
j |B,M)

i.e. finding the genotype (H1
j ,H

2
j ) with maximum posterior

probability for a generative model of the reads embedded in
M.
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2.3 A Graphical Representation Of Read Par-
titions

For a column j in M, a row i is active if the first non-gap
symbol in row i occurs at or before column j and the last
non-gap symbol in row i occurs at or after column j. Let Aj

be the set of active rows of column j. For a column j a row
i is terminal if its last non-gap symbol occurs at column j
or j = n. Let A′j be the set of active, non-terminal rows of
column j.
Let Bj = (B1

j ,B
2
j ) be a bipartition of Aj into a first part

B1
j and a second part B2

j . Let Bj be the set of all possi-
ble such bipartitions of the active rows of j. Similarly, let
Cj = (C1

j ,C
2
j ) be a bipartition of A′j , and Cj be the set of all

possible such bipartitions of the active, non-terminal rows of
j.
For two bipartitions B = (B1,B2) and C = (C1,C2), B is
compatible with C if the subset of B1 in C1 ∪C2 is a sub-
set of C1, and, similarly, the subset of B2 in C1 ∪C2 is a
subset of C2. Note this definition is symmetric and reflexive,
although not transitive.
Let G = (VG,EG) be a directed graph. The vertices VG are
the set of bipartitions of both the active rows and the active,
non-terminal rows for all columns of M and a special start
and end vertex, i.e. VG = {start,end}∪ (

⋃
j Bj ∪Cj) The

edges EG are a subset of compatibility relationships, such
that (1) for all j there is an edge (Bj ∈ Bj,Ci ∈ Cj) if Bj

is compatible with Cj , (2) for all 0 < j < n there is an edge
(Cj ∈Cj,Bj+1 ∈Bj+1) if Cj is compatible with Bj+1, (3)
there is an edge from the start vertex to each member of B1,
and (4) there is an edge from each member of Bn to the end
vertex (Note that Cn is empty and so contributes no vertices
to G). Figure 3 shows an example graph.

  1 2 3
1 A - -
2 T A -
3 - A -
4 - - T          

1,2 / .

1 / 2

2 / 1

. / 1,2

4 / .

. / 4

2,3 / .

2 / 3

3 / 2

. / 2,3

B1 C1 B2 C2 B3start end

Fig. 3. Example Graph. Left: An alignment matrix. Right: The corresponding directed
graph representing the bipartitions of active rows and active non-terminal rows, where
the labels of the nodes indicate the partitions, e.g. ‘1,2 / .’ is shorthand for A =
({1,2},{}}).

The graph G has a large degree of symmetry and the follow-
ing properties are easily verified:

• For all j and all Bj ∈ Bj, the indegree and outdegree
of Bj is 1.

• For all j the indegree of all members of Cj is equal.

• Similarly, for all j the outdegree of all members of Cj
is equal.

Let the maximum coverage, denoted maxCov, be the max-
imum cardinality of a set Aj over all j. By definition:
maxCov ≤ m. Using the above properties it is easily ver-
ified that: (1) the cardinality of G (number of vertices) is

bounded by this maximum coverage, being less than or equal
to 2 + (2n− 1)2maxCov , and (2) the size of G (number of
edges) is at most 2n2maxCov .
Let a directed path from the start vertex to the end vertex be
called a diploid path, D = (D1 = start,D2, . . . ,D2n+1 =
end). The graph is naturally organized by the columns of M,
so that D2j = (B1

j ,B
2
j ) ∈Bj and D2j+1 = (C1

j+1,C
2
j+1) ∈

Cj for all 0 < j ≤ n. Let BD = (B1
D,B

2
D) denote a pair of

sets, where B1
D is the union of the first parts of the vertices

of D2, . . . ,D2n+1 and, similarly, B2
D is the union of second

parts of the vertices of D2, . . . ,D2n+1.
B1

D and B2
D are disjoint because otherwise there must exist

a pair of vertices within D that are incompatible, which is
easily verified to be impossible. Further, because D visits
a vertex for every column of M, it follows that the sum of
the cardinalities of these two sets is m. BD is therefore a
bipartition of the rows of M which we call a diploid path
bipartition.
Lemma 1: The set of diploid path bipartitions is the set of
bipartitions of the rows of M and each diploid path defines a
unique diploid path bipartition.

Proof: We first prove that each diploid path defines a
unique bipartition of the rows of M. For each column j of M,
each vertex Bj ∈Bj is a different bipartition of the same set
of active rows. Bj is by definition compatible with a diploid
path bipartition of a diploid path that contains it, and incom-
patible with every other member of Bj. It follows that for
each column j two diploid paths with the same diploid path
bipartition must visit the same node in Bj, and, by identical
logic, the same node in Cj, but then two such diploid paths
are therefore equal.
There are 2m partitions of the rows of M. It remains to
prove that there are 2m diploid paths. By the structure of the
graph the set of diploid paths can be enumerated backwards
by traversing right-to-left from the end vertex by depth-first
search and exploring each incoming edge for all encountered
nodes. As stated previously, the only vertices with indegree
greater than one are, for all j are the members of Cj, and
each member of Cj has the same indegree. For all j the in-
degree of Cj is clearly 2|Cj |−|Bj |: two to the power of the
number of number of active, terminal rows at column j. The
number of possible paths must therefore be

∏n
j=1 2|Cj |−|Bj |.

As each row is active and terminal in exactly one column, we
obtain m=

∑
j |Cj |− |Bj | and therefore:

2m =
n∏

j=1
2|Cj |−|Bj |

.

2.4 A Hidden Markov Model For Genotype
and Diplotype Inference

In order to infer diplotypes, we define a Hidden Markov
Model which is based on G, but additionally represents all
possible genotypes at each genomic site (i.e. in each B col-
umn). To this end, we define the set of states Bj×Σj ×Σj ,
which contains a state for each bipartition of the active rows
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at position j and all possible assignments of alleles in Σj to
the two partitions. Additionally, the HMM contains a hid-
den state for each bipartition in Cj, exactly as defined for G
above. Transitions between states are defined by the compat-
ibility relationships of the corresponding bipartitions as be-
fore. This HMM construction is illustrated in Figure 4.
For all j and all Cj ∈ Cj each outgoing edge has transition
probability P (a1,a2) =

∑
Zj
P (a1|Zj)P (a2|Zj)P (Zj),

where (Bj ,a1,a2) ∈ Bj ×Σj ×Σj is the state being tran-
sitioned to. Similarly, each outgoing edge of the start node
has transition probability P (a1,a2). The outdegree of all
remaining nodes is 1, and so these edges have transition
probability 1.
The start node, the end node and members of Cj for all j are
silent states, and hence do not emit symbols. For all j, mem-
bers of Bj×Σj×Σj output the entries in the j-th column of
M that are different from “–”. We assume every matrix entry
to be associated with an error probability, which we can com-
pute from P (Mij |Hk

j ) defined previously. Based on this, the
probability of observing a specific output column of M can
be easily calculated.

start

B2C1 B3C2

end

1,2 / .
T|T

1,2 / .
T|G

1,2 / .
G|T

1 / 2
T|T

1 / 2
T|G

1 / 2
G|T

1,2 / .

1,2 / .
A|A

1,2 / .
A|C

1,2 / .
C|A

1 / 2
A|A

1 / 2
A|C

1 / 2
C|A

. / .

3 / .
G|G

3 / .
G|A

3 / .
A|G

1 / 2

1,2 / .
G|G

1 / 2
G|G

1 / 2
C|C

1,2 / .
C|C

3 / .
A|A

x x{G,A} {G,A}B1  x x{T,G} {T,G} x x{A,C} {A,C}

1  2  3
T

AG
G

C -
-

- -

1
2
3
 

Fig. 4. Genotyping HMM. Colored states correspond to bipartitions of reads and
allele assignments at that position. States in C1 and C2 correspond to bipartitions
of reads covering positions 1 and 2 or 2 and 3, respectively. In order to compute
genotype likelihoods after running the forward-backward algorithm, states of the same
color have to be summed up in each column.

2.4.1 Computing Genotype Likelihoods
The goal is to compute genotype likelihoods for the possible
genotypes for each variant position using the HMM defined
above. Performing the forward-backward algorithm returns
forward and backward probabilities of all hidden states. Us-
ing those, the posterior distribution of a state (B,a1,a2) ∈
Bj ×Σj ×Σj corresponding to bipartition B and assigned
alleles a1 and a2, can be computed as

P ((B,a1,a2)|M) = αj(B,a1,a2) ·βj(B,a1,a2)∑
B′∈B(Aj)

∑
a′

1,a′
2∈Σj

αj(B′,a′1,a′2) ·βj(B′,a′1,a′2)

(1)
where αj(B,a1,a2) and βj(B,a1,a2) denote forward and
backward probabilities of the state (B,a1,a2) and B(Aj) the
set of all bipartitions of Aj . The above term represents the
probability for a bipartition B = (B1,B2) of the reads in Aj

and alleles a1 and a2 assigned to these partitions. In order to
finally compute the likelihood for a certain genotype, one can

marginalize over all bipartitions of a column, and all allele
assignments corresponding to that genotype.
Example 2.1: In order to compute genotype likelihoods for
each column of the alignment matrix, posterior state proba-
bilities corresponding to states of the same color in Figure 4
need to be summed up. For the first column, adding up the
red probabilities gives the genotype likelihood of genotype
T/T , blue of genotype G/T and yellow of G/G.

2.5 Implementations
We created two independent software implementations of this
model, one based upon WhatsHap and one from scratch,
which we call MarginPhase. Each uses different optimiza-
tions and heuristics that we briefly describe.

2.5.1 WhatsHap Implementation
We extended the implementation of WhatsHap (10,
bitbucket.org/whatshap/whatshap) to enable
haplotype aware genotyping of bi-allelic variants based
on the above model. WhatsHap focuses on re-genotyping
variants, i.e. it assumes SNV positions to be given. In
order to detect variants, a simple SNV calling pipeline was
developed. It is based on samtools mpileup (15) which
provides information about the bases supported by each
read covering a genomic position. A set of SNV candidates
was generated by selecting genomic positions at which
the frequency of a non-reference allele is above a fixed
threshold (0.25 for PacBio data, 0.4 for Nanopore data) and
the absolute number of reads supporting the non-reference
allele is at least 3.

Allele Detection. In order to construct the alignment ma-
trix, a crucial step is to determine for each of the reads,
whether it supports the reference or the alternative allele at
each of n given genomic positions. In WhatsHap, this is
done based on re-aligning sections of the reads (16). Given
an existing read alignment from the provided BAM file, its
sequence in a window around the variant is extracted. It is
aligned to the corresponding region of the reference sequence
and additionally, to the alternative sequence, which is artifi-
cially produced by inserting the alternative allele into the ref-
erence. The alignment cost is computed by using affine gap
costs. Phred scores representing the probabilities for open-
ing and extending a gap, and for a mismatch in the alignment
can be estimated from the given BAM file. The allele leading
to a lower alignment cost is assumed to be supported by the
read and reported in the alignment matrix. If both alleles lead
to the same cost, the corresponding matrix entry is “–”. The
absolute difference of both alignment scores is assigned as
a weight to the corresponding entry in the alignment matrix.
It can be interpreted as a phred scaled probability for the al-
lele being wrong and is utilized for the computation of output
probabilities.

Read Selection. Our algorithm enumerates all bipartitions
of reads covering a variant position and thus has a runtime
exponential in the maximum coverage of the data. To ensure
that this quantity is bounded, the same read selection step
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implemented previously in the WhatsHap software is run be-
fore constructing the HMM and computing genotype likeli-
hoods. Briefly, a heuristic approach described in (17) is ap-
plied, which selects phase informative reads iteratively taking
into account the number of heterozygous variants covered by
the read and its quality.

Transitions. Defining separate states for each allele as-
signment in Bj enables to easily incorporate prior genotype
likelihoods by weighting transitions between states in Cj−1
and Bj×Σj ×Σj . Since there are two states correspond-
ing to a heterozygous genotype in the bi-allelic case (0|1 and
1|0), the prior probability for the heterozygous genotype is
equally spread between these states.
In order to compute such genotype priors, the same likeli-
hood function underlying the approaches described in (18)
and (19) was utilized. For each SNV position, the model
computes a likelihood for each SNV to be absent, heterozy-
gous or homozygous based on all reads that cover a partic-
ular site. Each read contributes a probability term to the
likelihood function, which is computed based on whether it
supports the reference or the alternative allele (18). Further-
more, the approach accounts for statistical uncertainties aris-
ing from read mapping and has a runtime linear in the number
of variants to be genotyped (19). Prior genotype likelihoods
are computed before read selection. In this way, information
of all input reads covering a position can be incorporated.

2.5.2 MarginPhase Implementation
MarginPhase (github.com/benedictpaten/
marginPhase) is an experimental, open source im-
plementation of the described HMM written in C. It differs
from the WhatsHap implementation in the method it uses
to explore bipartitions and the method to generate allele
support probabilities from the reads.

Read Bipartitions. The described HMM scales exponen-
tially in terms of increasing read coverage. For typical 20-
60x sequencing coverage (i.e. avg. number of active rows
per column) it is impractical to store all the possible bipar-
titions of the rows of the matrix. MarginPhase implements
a simple, greedy pruning and merging heuristic outlined in
recursive pseudocode in Algorithm 1.
The procedure computePrunedHMM takes an alignment ma-
trix and returns a connected subgraph of the HMM for M
that can be used for inference, choosing to divide the input
alignment matrix into two if the number of rows exceeds a
threshold t, recursively.
The sub-procedure mergeHMMs takes two pruned HMMs
for two disjoint alignment matrices with the same number
of columns and joins them together in the natural way such
that if at each site i there are |B1

i | states in HMM1 and |B2
i |

in HMM2 then the resulting HMM will have |B1
i | × |B2

i |
states. This is illustrated in Figure 5. In the experiments used
here t= 8 and v = 0.01.

Allele Supports. In MarginPhase the alignment matrix has
a site for each base in the reference genome. To generate
the allele support from the reads, for each read we calculate

Algorithm 1
1: procedure COMPUTEPRUNEDHMM(M)
2: if maxCov ≥ t then
3: Divide M in half to create two matrices, M1 and

M2, such that M1 is the first n
2 rows of M

and M2 is the remaining rows of M.
4: HMM1← computePrunedHMM(M1)
5: HMM2← computePrunedHMM(M2)
6: HMM← mergeHMMs(HMM1,HMM2)
7: else
8: Let HMM be the read partitioning HMM for M.
9: return subgraph of HMM including visited states

and transitions each with posterior probability of
being visited ≥ v, and which are on a path from
the start to end nodes.

  1 2 3
1 A - -
2 T A -          

1,2 / .

1 / 2

2 / 1

. / 1,2

. / .

2 / .

. / 2

B1 C1 B2 C2 B3start end

   1 2 3
1' - A -
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Fig. 5. The merger of two read partitioning HMMs with the same number of columns.
Top and middle: Two HMMs to be merged; bottom: the merged HMM. Transition and
emission probabilities not shown.

the posterior probability of each allele using the implementa-
tion of the banded forward-backward pairwise alignment de-
scribed in (20). The result is that for each reference base, for
each read that overlaps (according to an initial guide align-
ment extracted from the SAM/BAM file) the reference base
we calculate the probability of each possible nucleotide (i.e. {
‘A’, ‘C’, ‘G’, ‘T’ }). Gaps are ignored and treated as missing
data. This approach allows summation over all alignments
within the band.

3 Results
3.1 Data Preparation and Evaluation
To test our methods, we used sequencing data for NA12878
from two different long read sequencing technologies.
NA12878 is a participant from the 1000 Genomes Project (2)
who has been extensively sequenced and analyzed. We used
Oxford Nanopore reads from (7) and the PacBio reads were
from (25). Both sets of reads were aligned to GRCh38 with
minimap2, a mapper designed to align error-prone long
reads (26).
To ensure that any variants we found were not artifacts of
misalignment, we filtered out reads flagged as secondary or
supplementary, as well as reads with a mapping quality score
less than 30. Genome-wide, this left approximately twelve
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Fig. 6. Reach of short read and long read technologies. The callable and mappable regions for NA12878 spanning various repetitive or duplicated sequences on GRCh38 is shown.
Feature locations are determined based on BED tracks downloaded from the UCSC Genome Browser (21). Other than the Gencode regions (22, 23), all features are subsets of the
Repeat Masker (24) track. Four coverage statistics for long reads (reds) and three for short reads (blues) are shown. PacBio and Nanopore describe areas where at least one primary
read with GQ ≥ 30 has mapped, and Long Read Mappable describes where this is true for at least one of the long read technologies. Long Read Callable describes areas where
both read technologies have coverage of at least 10 and less than twice the median coverage. GIAB High Confidence, GATK Callable and Short Read Mappable are the regions
associated with the evaluation callsets. For the feature-specific plots, the numbers on the right detail coverage over the feature and (parenthesized) coverage over the genome.

million Nanopore reads and thirty-four million PacBio reads.
The Nanopore reads had a median depth of 37× and length
of 5950, including a set of ultra-long reads with lengths up to
900 kilobases. The PacBio reads had a median depth of 46×
and length of 2650.

To validate the performance of our methods, we use callsets
from Genome in a Bottle’s (GIAB) benchmark small variant
calls v3.3.2 (9). First, we compare against the set of high con-
fidence calls from GIAB, generated by a consensus algorithm
spanning multiple sequencing technologies and variant call-
ing programs. The high confidence regions associated with
this callset exclude structural variants, modeled centromeres,
and heterochromatin. We use this to show our method’s ac-
curacy in well-understood and easy-to-map regions of the
genome, though this may overestimate the performance of
our tool across the whole genome.

We also analyze our results compared to two callsets
which were used in the construction of GIAB’s high con-
fidence variants, one made by GATK HaplotypeCaller v3.5
(GATK/HC, 1) and the other by Freebayes 0.9.20 (27), both
generated from a 300× PCR-free Illumina sequencing run

(9).
All of our evaluation statistics were generated with the tool
vcfeval from Real Time Genomics (28). We restrict the
analysis to SNVs due to the error distribution of both PacBio
and Nanopore long reads which leads to insertions and dele-
tions being the most common type of sequencing error by far
(29, 30).

3.2 Long Read Coverage
We determine the regions where long and short reads can be
mapped to the human genome. In Figure 6 we plot various
coverage metrics for short and long reads against different
genomic features, mostly selected for being repetitive or du-
plicated.
The callsets on the Illumina data made by GATK/HC and
FreeBayes come with two BED files describing where calls
were made with some measure of confidence. The first,
which we describe in Figure 6 as Short Read Mappable, was
generated using GATK CallableLoci v3.5 and includes re-
gions where there is a) at least a read depth of 20, and b)
at most a read depth of twice the median depth, only in-
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cluding reads with map quality at or above 20. This defi-
nition of callable only considers read mappings. The second,
described as GATK Callable, was generated by examining
the GVCF output from GATK/HC and excluding areas with
genotype quality less than 60. This is a more sophisticated
definition of callable as it reflects the effects of homopoly-
mers and tandem repeats. We use these two BED files in our
analysis of how short and long reads map differently in vari-
ous areas of the genome.
For long reads, we show four coverage statistics. The records
marked as “Mappable” describe areas where there is at least
one high quality long read mapping (PacBio, Nanopore, and
Long Read Mappable for areas where at least one of the tech-
nologies mapped). The Long Read Callable entries cover a
conservative region which has a sufficient read depth to illus-
trate the efficacy of our method; it covers regions where both
sequencing technologies had a minimum depth of ten and
maximum of 2× the median depth (similar to the Callable-
Loci metric).
The plot shows that in almost all cases, long reads map to
more area than is callable by short reads. Centromeres and
Tandem Repeats are outliers to this generalization, where nei-
ther PacBio nor Nanopore cover appreciably more than Illu-
mina.

3.3 Comparison Against High Confidence
Truthset

To validate our method, we first analyzed the SNV detec-
tion and genotyping performance of our algorithm using the
GIAB high confidence callset as a benchmark. All variants
reported in these statistics fall within the GIAB high confi-
dence regions.
Figure 7 (top) shows precision and recall of our algorithms
on both the PacBio and Oxford Nanopore data sets. Margin-
Phase and WhatsHap perform similarly overall. MarginPhase
achieved higher precision and recall on Nanopore reads, with
precision of 0.7686 and recall of 0.8089, compared to What-
sHap’s precision of 0.7131 and recall of 0.7248 on the same
set of Nanopore reads. WhatsHap obtains better results on
PacBio data, with a precision of 0.9738 and recall of 0.9593,
compared to MarginPhase’s precision of 0.9497 and recall of
0.9147.
In addition to considering the two methods individually, we
examine a combined set of variants which occur in both the
calls made by WhatsHap on the PacBio reads and Margin-
Phase on the Nanopore data and where both tools report the
same genotype. This improves the precision to 0.9969 at a re-
call of 0.7859. In further analysis, we refer to this combined
variant set as Long Read Variants. It reflects a high precision
subset of long read variants, validated independently by both
sequencing technologies.
In order to further analyze the quality of the genotype pre-
dictions of our methods, we computed the genotype concor-
dance of our callsets with respect to the GIAB ground truth
inside of the high confidence regions. This was done by con-
sidering all variant positions correctly identified by Margin-
Phase and WhatsHap, and finding what fraction of these were

also correctly genotyped (homozygous or heterozygous) with
respect to the truth set. Figure 7 (bottom) shows the results.
On the PacBio data, WhatsHap genotypes 99.78% of the vari-
ants contained in the truth set correctly, and MarginPhase
genotypes 96.59% correctly. On the Nanopore data, Margin-
Phase performs slightly better by genotyping 98.02% of the
SNVs contained in the GIAB callset correctly, while What-
sHap computed correct genotypes for 97.42% of the variants
overlapping the GIAB truth set. Considering the intersection
of the WhatsHap calls on PacBio, and MarginPhase calls on
Nanopore data (i.e. our Long Read Variants set), we obtain a
genotype concordance of 99.98%.
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wh-PB

wh-NP

98.02

99.78

96.59

97.42

wh-PB

mp-NP

+ 99.98

0% 20% 40% 60% 80% 100%
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recall
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0.8089
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0.9738 0.9593
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0.7859

1.0
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WhatsHap Intersection

(wh-PB, mp-NP)

Fig. 7. Precision and Recall (Top) of MarginPhase and WhatsHap on PacBio and
Nanopore data sets in GIAB high confidence regions. Genotype Concordance
(Bottom) (wrt. GIAB high confidence calls) of MarginPhase (mp, top) and What-
sHap (wh, middle) callsets on PacBio (PB) and Nanopore (NP) data. Furthermore,
genotype concordance for the intersection of the calls made by WhatsHap on the
PacBio and MarginPhase on the Nanopore reads is shown (bottom).

3.4 Cutting and Downsampling Reads
Our genotyping model incorporates haplotype information
into the genotyping process by using the property that long
sequencing reads can cover multiple variant positions. There-
fore, one would expect the genotyping results to improve as
the length of the provided sequencing reads increases. Fur-
thermore, the coverage of the data would also affect the geno-
typing results.

In order to examine how the genotyping performance de-
pends on the length of the sequencing reads and the coverage
of the data, the following experiment was performed using
WhatsHap. Both data sets (PacBio, Nanopore) were down-
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Fig. 8. Genotyping Errors (wrt. to GIAB calls) as a function of coverage. The full
length reads were used for genotyping (blue) and additionally, reads were cut such as
to cover at most two variants (red) and one variant (yellow). Solid lines correspond to
PacBio, dashed lines to Nanopore data.

sampled to average coverages 10×,20×,25× and 30×. All
SNVs inside of the high confidence regions in the GIAB truth
set were re-genotyped from each of the resulting downsam-
pled read sets, as well as from the full coverage data sets. Two
versions of the genotyping algorithm were considered. First,
the full length reads as given in the BAM files were provided
to WhatsHap. Second, in an additional step prior to genotyp-
ing, the aligned sequencing reads were cut into shorter pieces
such that each resulting fragment covered at most two vari-
ants. Additionally, we cut reads into fragments covering only
one variant position. The genotyping performances of these
genotyping procedures were finally compared by determin-
ing the amount of incorrectly genotyped variants.
Figure 8 shows the results of this experiment. On both data
sets, the genotyping error increases as the length of reads de-
creases. Especially at lower coverages, the genotyping algo-
rithm benefits from using the full length reads, which leads to
much lower genotyping errors compared to using the shorter
reads. In general, the experiment demonstrates that incorpo-
rating haplotype information gained from long reads does in-
deed improve the genotyping performance. Computing geno-
types based on bipartitions of reads that represent possible
haplotypes of the individual helps to reduce the number of
genotyping errors, since it makes it easier to detect sequenc-
ing errors in the given reads.

3.5 Callset Consensus Analysis
In Figure 9, we further dissect the relation of our intersection
call set (Long Read Variants) to the GIAB truth set as well
as to the callsets from GATK/HC and FreeBayes, which both
contributed to the GIAB truth set.
Figure 9a reveals that 399 156 variants present in our Long
Read Variants callset were called by both the GATK Hap-
lotype Caller and FreeBayes, but are not in the GIAB truth
set. To gather additional support for the quality of these
calls, we consider two established quality metrics: the transi-
tion/transversion ratio (Ti/Tv), and the heterozygous/non-ref
homozygous ratio (het/hom) (31). The Ti/Tv ratio of these

variants is 2.10 and the het/hom ratio is 1.29. These ratios
are comparable to those of the GIAB truth set, which are
2.10 and 1.55, respectively. An examination of the Platinum
Genomes benchmark set (32), an alternative to GIAB, reveals
71371 such long-read validated variants outside of their ex-
isting truth set.
We hypothesized that a callset based on long reads is par-
ticularly valuable in regions that were previously difficult to
characterize. To investigate this, we separately examined the
intersections of our Long Read Variants callset with the two
short-read callsets both inside the GIAB high confidence re-
gions and outside of them, see Figure 9b and Figure 9c, re-
spectively. These Venn diagrams clearly indicate that the
concordance of GATK and FreeBayes was indeed substan-
tially higher in high confidence regions than outside. An el-
evated false positive rate of the short-read callers outside the
high confidence regions is a plausible explanation for this ob-
servation. Interestingly, the fraction of calls concordant be-
tween FreeBayes and GATK for which we gather additional
support is considerably lower outside the high confidence re-
gions. This is again compatible with an increased number
of false positives in the short read callsets, but we empha-
size that these statistics should be interpreted with care in the
absence of a reliable truth set for these regions.

3.6 Candidate Novel Variants
To demonstrate that our method allows for variant calling on
more regions of the genome than short read variant calling
pipelines, we have identified 15 498 variants which lie out-
side of the Short Read Mappable area, but inside the Long
Read Callable regions, i.e. regions in which there is sequenc-
ing depth of at least 10 and not more than 2× the median
depth for both sequencing technologies. We determined that
4.43 megabases of the genome (0.146%) is only mappable by
long reads in this way.
Table 1 describes the counts of all variants found in each of
the regions from Figure 6, as well as the counts for candi-
date variants, among the different types of genomic features
described in Section 3.2. Over two thirds of the candidate
variants occurred in the repetitive or duplicated regions de-
scribed in the UCSC Genome Browser’s repeatMasker track.
The transition/transversion ratio of NA12878’s 15 498 candi-
date variants is 1.64, and the heterozygous/homozygous ratio
of these variants is 0.31. Given that we observe one candi-
date variant in every 325 haplotype bases, compared to one
variant in every 1151 haplotype bases in the GIAB truth set,
these candidate variants exhibit a 3.6× increase in the haplo-
type variation rate.

4 Discussion
We present a method that uses a Hidden Markov Model to
partition long reads into haplotypes, which we found to im-
prove the quality of variant calling. This is evidenced by our
experiment in cutting and downsampling reads, where reduc-
ing the number of variants spanned by any given read leads
to decreased performance at all levels of read coverage.
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Fig. 9. Confirming Short Read Variants. We examine all distinct variants found by our method, GIAB High Confidence, GATK/HC, and FreeBayes. Raw variant counts appear on
top of each section, and the percentage of total variants is shown on bottom.
Table 1. Distribution of candidate novel variants across different regions of interest.
All variants refers to the variants in the Long Read Variants set, and Novel Variant
Candidates are those described in Section 3.6.

All Variants Novel Variant
Candidates

Total 2,913,942 15,498
Gencode v27 (ALL) 1,363,064 5,594
Gencode v27 exome 86,357 538
Repeat Masker 1,583,684 10,677
LINEs 690,859 5,161
SINEs 421,340 1,432
Segmental Duplications 157,341 5,683
Tandem Repeats 96,871 5,437
Centromeres 18,644 2,031
Telomeres 295 14

Our analysis of the method against a high confidence truth set
in high confidence regions shows false discovery rates (corre-
sponding to one minus precision) between three and six per-
cent for PacBio, and between twenty-four and twenty-nine
percent for Nanopore. However, when considering a conser-
vative set of variants confirmed by both long read technolo-
gies the false discovery rate drops to around 0.3%, compara-
ble with contemporary short read methods in these regions.
In analyzing the area of the genome with high quality long
read mappings, we found roughly a half a percent of the
genome (approximately fifteen megabases) that is mappable
by long reads but not by short reads. This includes one per-
cent of the human exome, as well as over ten percent of seg-
mental duplications. Even though some of these areas have
low read counts in our experimental data, the fact that they
have high quality mappings means that they should be ac-
cessible with sufficient sequencing. We note that this is not
the case for centromeric regions, where Illumina reads were
able to map over twice as much as we found in our PacBio
data. This may be a result of the low quality in long reads
preventing them from uniquely mapping to these areas with
any appreciable level of certainty.
Over our entire set of called variants, the Ti/Tv and het/hom
ratios were similar to those reported by the truth set. The
Ti/Tv ratio of 2.18 is slightly above the 2.10 reported in the

GIAB callset, and the Het/Hom ratio of 1.36 is lower than the
1.55 found in the GIAB variants. In the 15 498 novel variant
candidates produced by our method in regions unmappable
by short reads, the Ti/Tv ratio of 1.64 is slightly lower than
that of the truth set, but this is not unexpected due to the fact
that gene-poor regions such as the ones these variants are in
tend to have more transversions away from C:G pairs (33).
However, we note that the Het/Hom ratio dropped to 0.31.
This could be due to either systematic biases in our callset
or in the reference genome. The rate of variation in these re-
gions was also notably different than in the high confidence
regions, where we find three variants per thousand haplotype
bases (3.6× the rate in high confidence regions). A previous
study analyzing NA12878 (34) also found an elevated vari-
ation rate in regions where it is challenging to call variants,
such as low complexity regions and segmental duplications.
Furthermore, the study showed that there tends to be a clus-
tering in these regions, which we also observe.

The high precision of our intersected Nanopore/PacBio long
read variants set makes it useful as strong evidence for con-
firming existing variant calls. As shown in the read cover-
age analysis, in both the GIAB and Platinum Genomes ef-
forts many regions cannot be called with high confidence. In
the excluded regions of GIAB we found just under 400 thou-
sand variants using both Nanopore and PacBio reads with our
methods, which were additionally confirmed with Illumina
reads by two other variant callers, FreeBayes and GATK/HC.
Given the extensive support of these variants from multiple
sequencing technologies and variant callers, these variants
are good candidates for addition to the GIAB truth set. Ex-
pansion of benchmark sets to harder-to-genotype regions of
the human genome is generally important for the develop-
ment of more comprehensive genotyping methods, and we
plan to work with these efforts to use our results. Further, our
method is likely to prove useful for future combined diplo-
typing algorithms when both genotype and phasing is re-
quired, for example as may be used when constructing phased
diploid de novo assemblies (35) or in future hybrid long/short
read diplotyping approaches.
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