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   2	
  

Single-particle tracking (SPT) combined with Photoactivated Localization Microscopy 1	
  

(sptPALM) provides an opportunity to perform complex molecular biology 2	
  

experiments inside living cells. By tracking the motion of DNA repair proteins in vivo, 3	
  

information can be extracted not only about their diffusion, but also about the kinetics 4	
  

and spatial distribution of DNA binding1-3. From a methodological point of view, a 5	
  

Total Internal Reflection Microscope equipped with a sensitive detector (usually an 6	
  

EM-CCD camera4) is commonly used, allowing detection of individual fluorophores. 7	
  

The signal from individual emitters can be analysed and the position of a given 8	
  

fluorophore established with high accuracy (up to a single nm) by Gaussian fitting. To 9	
  

determine the mobility of each fluorophore, the positions of individual molecules are 10	
  

linked into trajectories over multiple frames using a tracking algorithm5.  11	
  

 12	
  

Since most proteins in bacteria are present at a copy number, which is too high to 13	
  

resolve individual fluorophores, photoactivable fluorescent proteins (PAFPs i.e. 14	
  

PAmCherry) can be used, allowing the level of active fluorophores to be controlled 15	
  

(e.g. by varying the intensity of a 405 nm photoactivation laser) such that ~1 16	
  

fluorophore is active per cell. This allows for the consecutive observation of all 17	
  

labelled proteins1-3. As an alternative to PAFPs, protein tags (i.e. HaloTag), which 18	
  

bind organic fluorophores provided externally can also be used. Once a functional 19	
  

fusion of the protein of interest to a fluorescent label has been constructed, the 20	
  

experiment can begin.  21	
  

 22	
  

One example of the power of sptPALM was a study of the Nucleotide Excision Repair 23	
  

(NER) pathway in Escherichia coli6. Fusions of UvrA and UvrB - the proteins that 24	
  

initiate NER, to PAmCherry were introduced into the chromosome and their 25	
  

behaviour was studied in cells, before and after DNA lesions were induced by 26	
  

exposure to UV light. A movie was recorded with 15 ms frame rate and the positions 27	
  

of the fluorophores were localised in each frame and linked into trajectories. For each 28	
  

trajectory, an apparent diffusion coefficient was calculated based on the distance 29	
  

between subsequent localisations5 (Fig1. A). Molecules bound to DNA showed a 30	
  

minimal change in position, whereas freely diffusing molecules showed large 31	
  

displacements between consecutive frames. The different populations of UvrA and 32	
  

UvrB molecules were quantified by fitting the distribution of apparent diffusion 33	
  

coefficients from tens of thousands of molecules (Fig1. B, C). 34	
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UvrA was found to bind DNA stably for ~3 s (~40% of molecules) or interact with 1	
  

DNA transiently (low ms range) (Fig1. B). It was proposed that the transient protein-2	
  

DNA binding is a part of the initial DNA search process, whereas longer binding is a 3	
  

damage verification step. On the other hand, UvrB showed very different behaviour, 4	
  

with the majority of UvrB molecules freely diffusing throughout the cytoplasm (Fig1. 5	
  

C). Cell exposure to UV light caused the recruitment of most UvrA and UvrB 6	
  

molecules to DNA (75% and 60% of molecules, respectively) to repair UV-induced 7	
  

lesions. These sptPALM experiments showed that, in contrast to some historical in 8	
  

vitro experiments, UvrA and UvrB rarely form a complex in solution; instead, UvrA is 9	
  

a DNA damage sensor, recruiting UvrB to DNA only after damage detection. 10	
  

Furthermore, by using catalytic mutants of UvrA, it was possible to decipher the roles 11	
  

of the two ATP binding sites present in each UvrA molecule, showing that 12	
  

cooperative action in both sites is necessary to recruit UvrB to DNA damage sites6. 13	
  

 14	
  

Cautionary notes: 15	
  

Previously, one of the key factors preventing the wider adoption of SPT and sptPALM 16	
  

in microbiology has been limited access to the sophisticated equipment and custom-17	
  

written data analysis tools required for imaging single molecules. However, as these 18	
  

techniques increase in popularity, commercial single-molecule microscopes are 19	
  

becoming more affordable and data analysis tools for SPT are becoming more 20	
  

available7, opening access to this technique for non-specialist users. 21	
  

 22	
  

Last but not least, the critical step in all SPT experiments is the construction of a 23	
  

fusion between the protein of interest and the fluorescent tag. Occasionally, this 24	
  

results in an inactive protein. Therefore, the functionality of each fusion protein must 25	
  

be carefully verified. If the fusion is non-functional, the fluorescent tag can be placed 26	
  

at the other end of the protein or the length and nature of the linker can be adjusted 27	
  

to suppress the interference of the tag. 28	
  

 29	
  

Conclusion:  30	
  

SPT is a powerful method, allowing biochemical experiments to be performed in the 31	
  

native environment of living cells. When combined with perturbations such as protein 32	
  

mutations, deletions, or overexpression it can be used to gain deep mechanistic 33	
  

understanding of molecular pathways, and it has been applied not just to the field of  34	
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DNA repair2,3,8, but also to study the stringent response9, transcription1,10 and 1	
  

translation11. SPT is becoming more and more popular, not only in the field of 2	
  

microbiology but also in the eukaryotic field12. Furthermore, the availability of user-3	
  

friendly microscopes and analysis tools13 will pave the way for STP to become a 4	
  

standard tool in any laboratory. 5	
  

 6	
  

 7	
  
 8	
  
Figure 1. In vivo characterization of UvrA and UvrB proteins 9	
  
(A) The example image of a single immobile UvrA-PAmCherry molecule localized and tracked at 10	
  
15ms exposures within five consecutive frames (top) and the example image of five consecutive 11	
  
frames showing fast diffusing UvrB-PAmCherry molecule (bottom). On the right, example cell is shown 12	
  
with multiple trajectories recorder for many individual UvrA molecules (B) Distribution of apparent 13	
  
diffusion coefficients (D*) of tracked UvrA molecules, fitted with a two species model: first immobile, 14	
  
DNA-bound population (~42%) and second mobile population of slowly diffusing molecules (~58%). 15	
  

(Inset) The distribution of D* values of tracked UvrA molecules after exposure to 50  J m
−2

 ultraviolet 16	
  
light (UV). (C) Distribution of D* values of tracked UvrB molecules, fitted with a three species model 17	
  
established that ~15% of UvrB molecules were immobile, ~24% diffusing slowly and ~61% fast 18	
  
diffusing. (Inset) The distribution of D* values of tracked UvrB molecules after exposure to ultraviolet 19	
  
light (UV). 20	
  
 21	
  

 22	
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