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1 ABSTRACT 
 
Animals rely on learned associations to make decisions. Associations can be based on 

relationships between object features (e.g., the three-leaflets of poison ivy leaves) and outcomes 

(e.g., rash). More often, outcomes are linked to multidimensional states (e.g., poison ivy is green 

in summer but red in spring). Feature-based reinforcement learning fails when the values of 

individual features depend on the other features present. One solution is to assign value to 

multifeatural conjunctive representations. We tested if the hippocampus formed separable 

conjunctive representations that enabled learning of response contingencies for stimuli of the 

form: AB+, B-, AC-, C+. Pattern analyses on functional MRI data showed the hippocampus 

formed conjunctive representations that were dissociable from feature components and that these 

representations influenced striatal PEs. Our results establish a novel role for hippocampal pattern 

separation and conjunctive representation in reinforcement learning.  
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Most North American hikers develop a reflexive aversion to poison ivy, which causes a 

painful rash, and learn to recognize its compound leaf with three leaflets that is green in summer 

and red in spring and autumn. The relationship between color and season distinguishes poison 

ivy from other plants like boxelder, which looks similar but is green in spring. Such learning 

problems are challenging because similar conjunctions of features can require different responses 

or elicit different predictions about future events. Responses and predictions also depend on the 

status of other features or context. In such problems, simple feature-response learning is 

insufficient and representations that include multiple features (leaf shape, color, season) must be 

learned. 

Learning in the brain encode qualitatively distinct representations depending on the brain 

systems being considered. Theories posit that reinforcement learning likewise operates over 

multiple types of representations1. Theoretical and empirical work suggest the hippocampus 

rapidly forms conjunctive representations of arbitrary sets of co-occurring features2, making the 

hippocampus critical for episodic memory3. During encoding of conjunctive representations, 

hippocampal computations establish minimal representational overlap between traces of events 

with partially shared features, a process called pattern separation4,5, which reduces interference 

between experiences with overlapping features. One solution to multifeatural learning problems 

that require stimuli with overlapping features to be associated with different outcomes is to 

encode neurally separable conjunctive representations, putatively through hippocampal-

dependent computations, and to assign value to each “separated” representation, putatively 

through hippocampal-striatal interactions. The same circuit and computational properties that 

make the hippocampus vital for episodic memory can also benefit striatal-dependent 

reinforcement learning by providing separated conjunctive representations over which value 

learning can occur.  

Stimulus-response learning occurs by the incremental adjustment of synapses on striatal 

neurons6. Thalamic and sensory cortical inputs encode single stimuli, such as a reward-

associated light, and are strengthened in response to phasic dopamine reward prediction errors 

(PEs)7–9. This system allows for incremental learning about individual feature values. Although 

the hippocampus is not critical for associating value with individual features or items10, it 

provides dense input to the striatum11. These synapses are strengthened by phasic dopamine 
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release via D1 receptors12 and might represent conjunctions of features distributed in space or 

time6. We used a non-spatial, probabilistic stimulus-response learning task including stimuli with 

overlapping features to test the role of the hippocampus and its interaction with the striatum in 

value learning over conjunctive codes. We hypothesized that hippocampal pattern separation 

computations and hippocampal-to-striatal projections would form a conjunctive-value learning 

system that worked in tandem with a feature-value learning system implemented in sensory 

cortical-to-striatal projections.  

We compared hippocampal representational codes to those of four other cortical areas 

that could contribute to learning in our task: perirhinal (PRc) and parahippocampal (PHc) 

cortices, inferior frontal sulcus (IFS), and medial orbitofrontal cortex (mOFC). The PRc and PHc 

gradually learn representations of individual items13,14. Cortical learning is generally too slow to 

form representations linking multiple items2, and pattern separation likely depends on 

hippocampal computations5. We therefore predicted PRc and PHc would not form pattern-

separated representations of conjunctions with overlapping features. The IFS supports the 

representation of abstract rules15,16 that often describe conjunctive relationships (e.g., “respond to 

stimuli with both features A and B”17, but our task included design features intended to biased 

subjects away from rule-based learning, and thus we predicted the IFS would not form pattern-

separated representations of conjunctions. Finally, the mOFC is involved in outcome 

evaluation18–20, has been proposed to provide a state representation in learning tasks21 and 

receives dense medial temporal lobe inputs22. Due to its prominent role in reward processing, we 

predicted that the mOFC representations would be organized around the probability of reward 

associated with the stimuli, rather than idiosyncratic stimulus features. We designed our task and 

analyses to test for a hippocampal role in encoding conjunctive representations that serve as 

inputs for striatal associative learning.  

 

2 RESULTS 

2.1 Behavioral Results 

Subjects learned stimulus-outcome relationships that required the formation of 

conjunctive representations. Our task was based on the “simultaneous feature discrimination” 

rodent behavioral paradigm23. Task stimuli consisted of four feature configurations (AB, AC, B, 

C). We used a speeded reaction time (RT) task in which a target “go” stimulus was differentially 
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predicted by the four stimuli (Figure 1). AB and C predicted the target 70% of the time and B 

and AC 30% of the time. To earn money, subjects pressed a button within a limited response 

window after target onset. The response window was set adaptively for each subject and adjusted 

over the course of the run. Each feature was associated with the target 50% of the time, but 

stimuli were more (70%) or less (30%) predictive of the target. Optimal performance required 

learning the value of stimuli as distinct conjunctions of features (i.e., conjunctive 

representations).  

Figure 1. Task design 

AB+, B- and AC- trials. The target appeared at fixation 600 ms after stimulus 

 onset. Stimuli were always presented for 2000 ms. Feedback indicated whether subjects 

responded quickly enough to earn a reward. Note that faces were used instead of objects, but we 

have replaced the image of a face with an image of a guitar to conform to Biorxiv policy. 

 

We first tested whether subjects learned predictive relationships between the stimuli and 

the target. Subjects were faster in responding to the target when it followed stimuli that were 

more reliably linked to target onset (AB+ and C+) than those that were less reliably linked (AC- 

and B-), F(1,26) = 13, p = .001,  = .08, Figure 2b. Further, reaction times for target-predictive 

stimuli decreased over the course of each run, Z = -2.04, p = .041, mixed effects model with 

subject as a random intercept, and the adaptive RT threshold decreased as well (Figure S1). As a 

ed 
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result of faster RTs, subjects had a higher hit rate for target stimuli, F(1,26) = 43, p < .001, �
�

�  = 

.35, Figure 2a. In addition, subjects were more likely to make false alarms to target-predictive 

stimuli when the target did not appear, F(1,26) = 34, p = .001, �
�

�= .14, Figure 2c.  

We aimed to identify the mechanism by which subjects learned stimulus-outcome 

relationships by fitting four computational models: 

1) No Learning Model: subjects ignored predictive information and responded as fast as possible 

after target.  

2) Feature RL: subjects learned values for individual features but not conjunctions. For 

multifeatural cues, value was updated for each feature.  

3) Conjunctive RL: subjects learned values for each distinct stimulus. Value was updated for one 

representation on each trial (for “AB”, value updated for AB but not A or B).  

4) Value Spread RL: subjects learned values of stimuli but confused stimuli that shared common 

features (e.g., AB and B). This model spreads value updates between stimuli that shared 

features (for AB trial, some of value update was applied to B). 

 

Stimuli that are highly predictive of targets are associated with faster responses, 

permitting us to fit each model to the RT data. We first compared the Conjunctive model, which 

implements the experimenter-defined optimal task strategy, with the Feature and No Learning 

models. The Feature model uses a simpler and commonly used learning strategy, also referred to 

as “function approximation” or “feature weight” learning24. Although feature learning is not 

adaptive for the task, it may be the default learning strategy and exert an influence on learning25. 

Both the Feature and Conjunctive models have 2 free parameters: learning rate (�), and a 

regression weight relating values to reaction times (�). We assessed model fits using a cross-

validated predictive likelihood method. The Conjunctive model outperformed the No Learning 

model, T = 136, p = .028, Wilcoxon test, Figure 1c, but was only marginally better than the 

Feature Model, T = 158, p = .08, Figure 1c. We next assessed the relative fits of these three 

models with a random-effects Bayesian procedure that gives probabilities that each model would 

generate the data of a random subject26. We found the most likely model was the Conjunctive 

model (protected exceedance probabilities (pEP): Conjunctive 92.3%, Feature 3.9%, No 

Learning 3.7%), which suggests subjects learned predictive relationships. Overall, there was 

mixed evidence in support of learning about conjunctions. 
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We reasoned that these results could be explained by subjects forming conjunctive 

representations and simultaneously learning the predictive value of individual features. This 

behavior could arise if hippocampal pattern separation was partially effective in encoding 

distinct representations for each stimulus5 and/or stimulus representations in the hippocampus 

and feature representations in cortex were simultaneously reinforced during learning27. We fit a 

Value Spread model that allowed for value updates to spread between stimuli with overlapping 

features. A parameter ω specifies the degree to which value updates spread to other stimuli with 

shared features, resulting in 3 free parameters (ω, �, �). This model outperformed both the 

Conjunctive, T = 124, p = .015, and Feature models, T = 115, p = .009; Wilcoxon tests, Figure 

2f, on the cross-validation analysis. Bayesian model comparison confirmed the Value Spread 

model was the most likely model, pEP: 89.9%, Figure 2e. Values from the Value Spread model 

were anticorrelated with reaction times, mean r = .43, t(30) = 20, p < .001, Fisher corrected. In 

addition, fitted regression weights for the Value Spread model were significantly less than 0, T = 

64, p < .001, Wilcoxon test, indicating that stimuli more strongly associated with the target are 

associated with faster reaction times. Fits of spread parameter ω (mean: .44, SD: .25, Table S1) 

indicated that for any given value update to the current stimulus (e.g., AB), about half that update 

was also applied to overlapping stimuli (e.g., B). Note mixed conjunctive and feature learning 

could also arise if the predictions of independent feature and conjunctive learnings systems were 

mixed at the time of outcome prediction. However, we were unable to reliability to fit such a 

model to our data. Therefore, we cannot adjudicate between spreading of value updates during 

learning versus mixed predictions of independent systems. Nonetheless, both models share the 

core feature that subjects form conjunctive representations of multifeatural stimuli but also learn 

about individual stimulus features.  
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Figure 2.  Behavior and Modeling Results 

a) Proportion of target trials in which the subject responded quickly enough to the target to earn a

reward. Stimuli that are associated with the target (AB+, C+; green) have a higher hit rate than 

those that are not (AC-, B-; blue). In addition, stimuli with single features (B, C) are associated 

with a lower hit rate than those with two features (AB, AC). Further, this feature effect interacts 

with the target outcome effect. 

b) Reaction times for each of the stimulus types. Reaction times are faster for stimuli associated 

with a target. The use of an adaptive RT threshold made relatively small differences in reaction 

times between conditions result in larger differences in hit rate in A.  

c) False alarms for each stimulus type. Subjects are more likely to respond when no target 

occurred for stimuli that are associated with the target.  

d) Value estimates from the Value Spread, Conjunctive and Feature models. The Conjunctive 

model shows an effect of target, such that AB+ and C+ have higher value than B- and AC-. The 
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Feature model shows an effect of features, such that AB+ and AC- have a higher value than B+ 

and C-. Only the Value Spread model shows both the effect of target and the interaction between 

target and the number of features (present in A, B and C). 

e) Bayesian random effects model comparison showed the Value Spread RL model most likely 

accounted for behavior. Protected exceedance probabilities sum to 1 across models and because 

they express a group random-effects measure, there are no error bars.  

f) Cross-validation model comparison showed the Value Spread RL model best predicted unseen 

data. Log predictive likelihoods closer to 0 indicate better performance. Likelihoods are 

expressed per trial to normalize across differences in the number of responses between subjects. 

The dashed black line indicates the performance of the null model. 

 

Our behavioral analysis showed a main effect of target, which is consistent with 

Conjunctive learning and cannot be explained by Feature learning, Figure 2d. However, we 

observed an additional main effect of the number of features (single versus double). Subjects 

were faster, F(1,26) = 7.6, p = .01, �
�

�= .02, had a higher hit rate, F(1,26) = 27, p < .001, �
�

�= .11, 

and made more false alarms, F(1,26) = 7.9, p = .008, �
�

�= .01, for two feature stimuli. 

Conjunctive learning cannot account for this effect, whereas Feature learning predicts this main 

effect, Figure 2d. This is because our models were initialized with zero values, which introduces 

a bias towards learning from target appearance relative to target non-appearance that disappears 

over time. This initialization improved the fit of all models. Because of this, the A feature in the 

Feature model has positive value despite being non-predictive of reward, leading to a higher 

value for conjunctions. Therefore, behavioral performance shows signatures of both Conjunctive 

and Feature learning. 

Finally, we also observed an interaction between target association and the number of 

features, such that subjects showed an especially higher hit rate, F(1,26) = 9.7, p = .004, �
�

�= .05, 

and higher false alarm rate, F(1,26) = 14.8, p < .001, �
�

�  = .03, for AC- relative to B- trials. Only 

the Value Spread model, which mixes Feature and Conjunctive learning, can account for this 

interaction, Figure 2d. This interaction occurs in the Value Spread model because the bias 

towards learning about targets rapidly overwhelms the difference in AB+ and C+ due to feature 

learning, whereas the relatively slower initial learning about non-targets emphasizes the 

difference between AC- and B-. In sum, behavior shows patterns consistent with both 
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Conjunctive and Feature learning, and the Value Spread model best accounts for the qualitative 

features of the data.  

Response times exhibit base rate effects: if many recent trials required a response, the 

response on the subsequent trial is likely to be faster28. Such effects could be misinterpreted as 

feature learning if temporally adjacent target trials happen to share features. Our task design 

mitigated this concern because different trial types were randomly intermixed. Nonetheless, we 

formally tested whether such base rate effects could contribute to behavior and influence the 

performance of the Value Spread model. We augmented the Value Spread model with an 

additional base-rate learning mechanism. This agent learns the probability of a target, 

unconditional on the identity of the current stimulus. The values from this agent and the values 

from the Value Spread were entered as regressors on reaction time. The five parameters of this 

model (ω, �Value Spread, �Value Spread, �Base Rate, �Base Rate) were fit simultaneously. This addition did 

not significantly improve the likelihood of the Value Spread model, Wilcoxon T = 172, p = .14. 

Therefore, inclusion of base rate effects adds complexity without significantly improving the 

quality of model fits. Further, the regression betas on both the Value Spread RL value estimate 

and the Base Rate values were negative and significant (Value Spread RL T = 84, p = .002; Base 

Rate RL T = 136, p = .028), indicating that higher values from both agents are each associated 

with faster reaction times. Fits to the spread parameter, � (mean: .41), indicate a relatively strong 

mixing of Conjunctive and Feature learning, even when accounting for response perseveration 

effects. We conclude that base rate effects did not qualitatively influence performance of the 

Value Spread model.  

It has been proposed that subjects rely on hippocampal learning early in probabilistic 

reward tasks, and then transfer to using striatal learning over time29. We ran an additional control 

analysis to ensure that the performance of the Value Spread model across all trials did not reflect 

a transfer of learning from pure Conjunctive to pure Feature learning. We binned trials into early 

and late epochs, collapsing across runs. We examined the likelihood of the data for each epoch 

under the maximum likelihood parameter estimates for each model, Figure S1. We found an 

overall effect of epoch, Z = 4.7, p < .001, such that behavior was better fit by the models for later 

trials. However, we found no evidence of an interaction of model type (Feature versus 

Conjunctive) by epoch (early versus late), p > .2. These results indicate that performance of the 

Value Spread model likely does not reflect a transition from Feature to Conjunctive learning. 
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2.2 Striatal Prediction Error Analysis 

Our behavioral analyses suggested subjects used a reinforcement learning strategy to 

acquire stimulus-outcome relationships, with learning best described by a model that spreads 

value updates among stimuli sharing features. Because striatal BOLD responses track reward 

PEs30, we predicted that these BOLD responses would co-vary with PEs derived from the Value 

Spread model. The key feature of this model is the spread of learning between stimuli sharing 

features, suggesting that subjects learn jointly about conjunctions and features. We sought to 

distinguish the contribution of Conjunctive learning, which learns independently about each 

stimulus, from that of Feature learning, which causes learning to spread across stimuli that share 

features. Such a distinction could emerge if the striatum integrated predictions arising from 

inputs from feature representations in sensory cortex and conjunctive representations in the 

hippocampus. A feature PE regressor was constructed from the Feature RL model. A conjunctive 

PE regressor was constructed by computing the difference between the feature regressor and PEs 

computed from the Conjunctive RL model. This regressor captures unique variance associated 

with PEs derived from a model that learns values for conjunctions (see Methods). In addition, 

constructing this regressor as a difference reduces the shared variation between the feature and 

conjunctive regressors. However, there remains shared variation between these regressors, r(118) 

= -.59, p < .001, and this shared variability reduces our ability to detect significant effects. 

Nonetheless, we found robust Feature PE responses in the bilateral medial caudate (whole-brain 

corrected threshold p < .05; Figure 2a). To confirm that this result was not driven by a higher 

response to targets than non-targets, we extracted single trial betas from an anatomical striatal 

mask31 crossed with a statistically-independent functional mask of Feature PE activation, and 

confirmed using a mixed-effects model with random-intercepts for subjects that both the target 

outcome, t(31) = 49.7; p < .001; dz = 8.9, and the feature PE, t(31) = 5.7; p < .001; dz = 1.02, 

contribute to the striatal outcome response. We use dz to refer to Cohen’s d for one-sample tests. 

We next extracted parameter estimates from this ROI and observed these same voxels also 

showed evidence of a Conjunction PE response, t(31) = 4.1; p < .001; dz = 0.72; Figure 2b. Note 

that this result is not driven by target coding because the Conjunction PE difference regressor is 

anticorrelated with target occurrence (r = -.28), yet both show a positive relationship with striatal 
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BOLD. Together, these results confirm that striatal BOLD tracked reinforcement learning PEs 

that mixed learning about conjunctions and features.  

 

Figure 3. Striatal error response. 

a) Regions responsive to PEs from Feature RL model (whole-brain analysis; p < .05).  

b) An ROI analysis of striatum showed that voxels with responses that scaled with PEs from the 

Feature RL model also scaled with PEs from the Conjunctive RL model. The Feature PE bar is a 

statistically independent depiction of the striatal response in (a). The Conjunction PE bar shows 

that errors from a conjunctive learning system correlated with striatal BOLD above and beyond 

errors from a feature learning system. Dots correspond to individual runs with the subject 

intercepts removed. 

 
2.3 Pattern Similarity Analysis 

We hypothesized the hippocampus formed conjunctive representations of task stimuli, 

which served as inputs to striatum for reinforcement learning. We used a pattern similarity 

analysis (PSA) to probe the representational content of hippocampus32. The PSA compares the 

similarity of activity patterns among different trials as a function of experimental variables of 

interest. We computed similarity matrices from the hippocampus, IFS, PRc, PHc and mOFC. 

The average similarity for each stimulus comparison is plotted in Figure S4.  
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Figure 4. Pattern similarity analysis. 

a) A regression analysis on PSA matrices showed strong within-stimulus coding in all ROIs 

except mOFC, and within-stimulus coding was significantly stronger in hippocampus relative to 

other regions. The y-axis shows regression weights from a within-stimulus regressor on the PSA 

matrix of each ROI.  

b) PHc, PRc, IFS and mOFC showed increased similarity for pairs of stimuli that shared features 

and significantly more similarity for these pairs than the hippocampus, consistent with pattern-

separated representations in the hippocampus. Green violins show the null distributions of 

regression coefficients from 10,000 randomly permuted PSA matrices. The y-axis shows 

regression weights from an overlapping-versus-non-overlapping stimuli regressor on the 

between-stimuli correlations from the PSA matrix of each ROI. 

 

We first tested whether representations of stimuli in the hippocampus remained stable 

across trials because to be useful for learning, a region must have consistent representations 

across presentations of a stimulus. We ran a regression analysis on PSA matrices to assess the 

similarity among representations from different presentations of a stimulus. We tested the 

significance of each effect by permuting the PSA matrices 10,000 times to build a null 

distribution of regression coefficients. All ROIs had significantly higher similarity for repetitions 

of the same stimulus (within-stimulus similarity) than for pairs of different stimuli (between-

stimulus similarity; all p < .001, FDR corrected) except for the mOFC, p > .3. Therefore, all 

ROIs except for the mOFC have representations that are driven by the stimulus. Across-region 

comparisons showed the hippocampus had stronger within-stimulus coding than PRc, p < .001, 

PHc, p < .001, IFS, p < .001 and mOFC, p < .001, FDR corrected, Figure 3a, indicating the 

hippocampus had the most stable representations of task stimuli.  

 

A 

es 

ns 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/293332doi: bioRxiv preprint 

https://doi.org/10.1101/293332
http://creativecommons.org/licenses/by-nc/4.0/


Our central hypothesis was that the hippocampus, not PRc, PHc, mOFC nor IFS, would 

form conjunctive representations of stimuli. Representations of stimuli that shared features (AB 

and B) should be pattern separated, and therefore less correlated with one another, in 

hippocampus but should be more correlated with one another in cortical regions like PRc and 

PHc that provide inputs to the hippocampus. Our task intentionally included speeded responses 

and probabilistic outcomes, features that are known to bias subjects away from employing rule-

based strategies33. As a result, predicted that the IFS should not have pattern-separated 

representations of conjunctions. Finally, because mOFC is not associated with pattern separation, 

we predicted that the mOFC would not have pattern separated responses. We tested whether the 

representational structure in each ROI was more similar for stimuli sharing common features 

than for stimuli that lacked feature overlap [(AB, AC), (AB, B), (AC, C)] versus [(AB, C), (AC, 

B), (B, C)]. We note that this analysis is orthogonal to the previous within-stimulus analysis and 

provides an independent test of stimulus coding fidelity. We also note that all our stimuli, 

including single-feature stimuli, are in reality conjunctions of features because they are 

experienced in our task context (i.e., for common task context X; stimuli are truly ABX, ACX, 

BX, CX). Therefore, rather than testing for differences between conjunctive and non-conjunctive 

stimuli, our overlap regressor tests for similarity in representations between conjunctive stimuli 

that share a salient feature versus those that do not. All control ROIs showed a significant effect 

of overlap, PRc: p = .01, PHc: p = .009, IFS: p < .001, and mOFC: p < .001, FDR corrected, 

Figure 3b, but the hippocampus did not, p > .3. Critically, the hippocampus showed significantly 

lower representational overlap than PRc, p = .015, PHc, p = .015, IFS, p = .002 and mOFC, p = 

.002, all FDR corrected. Control analyses ruled out potential confounds arising from feature 

hemifield and reproduced these findings using a parametric mixed-effects model (Supplemental 

Information). There is a correlation between the overlap regressor and the effect of response, i.e., 

comparisons between stimuli with the same target outcome versus different target outcome (r = 

.09). We included nuisance regressors to control for this effect. In addition, this correlation can 

only introduce a spurious increase in our overlap measure if cortical ROIs are more similar when 

the outcomes are different (because there are more pairs with different outcomes in the non-

overlap condition; [(AB+, AC-), (AB+, B-), (AC-, C+)] versus [(AB+, C+), (AC-, B-), (B-, C+). 

Empirically, the effect of response is positive in all regions except mOFC (Figure S5), indicating 

residual effect of response coding not accounted for by our regression approach would lead to an 
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underestimate in our main finding of interest. In sum, relative to the control ROIs, the 

hippocampus formed more pattern-separated conjunctive representations of stimuli.  

Hippocampal representations of conjunctions could serve as inputs to the striatal 

reinforcement learning system. If this is the case, then variability in the formation of pattern-

separated conjunctive representations in hippocampus should correlate with striatal learning 

about conjunctions. When the hippocampus demonstrates relatively more pattern-separated 

representations, the striatal error signal should more strongly track PEs estimated from the 

Conjunctive RL model. To examine this relationship, we fit a mixed effects model of the 

conjunctive component of the striatal PE, with subject as a random intercept and hippocampal 

overlap as a random slope. The hippocampal overlap term was negatively related to the striatal 

conjunctive PE, t(31) = -3.43, p = .003, dz = -0.62, Figure S2. The conjunctive PE represents 

variance explained over-and-above the effect of feature PE and is therefore a more sensitive 

measure of the degree of conjunctive PE coding in the hippocampus. As expected, there was no 

relationship between hippocampal overlap and the striatal feature PE, p > .2, and this finding 

suggests that general signal quality fluctuations did not contribute to the effect. Control analyses 

showed that this result persisted even when accounting for inter- and intra-individual differences 

in how well subjects learned (Supplemental Analyses), suggesting that it was not entirely driven 

by how much attention subjects paid to the task. However, attention is likely to be an important 

driver of both hippocampal pattern separation and striatal learning. Given our model that 

representations in both sensory cortex and HPC project to the striatum to influence learning, a 

relative increase in overlapping representations in any of these regions should be associated with 

a reduced conjunctive component of the striatal prediction error. We observed similar 

relationships in our medial temporal lobe (MTL) cortical ROIs and IFS, but not OFC 

(Supplemental Information). Finally, we observed a positive relationship between the strength of 

within-stimulus similarity in the hippocampus and striatal conjunctive PE, t(31) = 2.49, p = .013, 

dz = 0.45, although this result depended on the exclusion of an outlier subject (Figures S2). 

Again, this finding suggests that the results were not driven by general signal quality issues, as 

stimulus identity and stimulus overlap showed opposing relationships to the conjunctive PE in 

the predicted direction. In sum, the more the hippocampus established pattern-separated 

representations of stimuli, the more striatal error signals reflected learning signals arising from a 

conjunctive state space. 
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We next tested whether there was a relationship between hippocampal overlap and 

behavior. We computed an index that measures the extent to which subjects used Conjunctive 

learning (see Methods) for each run of subjects’ behavior. We fit a mixed-effects model of this 

measure with random intercepts for subjects and included a nuisance covariate that measured 

how well subjects learned in each run, relative to chance. This helps to ensure that the 

relationship is not due to fluctuations in participant engagement. Contrary to our predictions, we 

did not find any relationship between overlap in any of our ROIs and this measure. Variability 

between runs in this measure may be too large to detect fine scale relationships with behavior. 

We next examined whether conjunctive learning was related to univariate signal magnitude, and 

found that runs with stronger hippocampal activity were also runs with the most conjunctive 

learning, t(31) = 3.1, p = .01, dz = 0.56, FDR corrected. This relationship was nonsignificant in 

other ROIs, all p > 1. Therefore, univariate signal in the hippocampus is predictive of 

conjunctive learning. 

 

2.4 Representation of stimuli according to their association with the target 

 How the hippocampus represents stimuli with similar associations is a question of current 

debate. Computational models suggest that the hippocampus supports feedback learning by 

representing stimuli with similar outcomes more similarly34. This grouping facilitates 

responding, while also allowing generalization of knowledge across related items27,35,36. 

However, an alternative perspective maintains that in order to maintain distinct representations 

of related items, the hippocampus orthogonalizes stimuli with related outcomes more strongly. 

Recent work has shown that learning drives representations of stimuli with similar outcomes 

apart in the hippocampus, resulting in representations of similar items that are even more distinct 

than representations of unrelated items37,38. We conducted an exploratory analysis to assess how 

our ROIs represented stimuli according to the strength of their association with the target, Figure 

5a. We used the values from the Value Spread model to compute a value regressor that was 

higher when stimulus-target associations are more similar. This regressor had a negative 

relationship to hippocampal pattern similarities, which shows that the hippocampus represents 

stimuli with similar values more distinctly, p < .001, FDR corrected. We also observed this 

relationship in the PRc, p < .001 and PHc, p = .001. In contrast, the mOFC showed a positive 

effect of value, representing stimuli with similar association to the target more similarly, p = 
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.001, FDR corrected. Similar to the overlap analysis, we also found a marginal effect of higher 

striatal conjunctive PE on runs in which trials with similar outcomes are represented more 

dissimilarly in the hippocampus, t(31) = -2.24, dz = -0.40, p = .063, and PRc, t(31) = -2.48, p = 

.063,  dz = -0.45, FDR corrected.  

Figure 5. Pattern similarity analysis of stimulus value. 

a) A regression analysis on PSA matrices showed strong that stimuli with similar associations to 

the target are further apart in representational space in the hippocampus, PHc, and PRc. In 

contrast, they are closer together in representational space in the mOFC. The y-axis shows 

regression weights from value similarity regressor on the PSA matrix of each ROI.  

b) Hippocampus, PHc, IFS and PRc representations for stimuli with similar associations with the 

target moved further apart in representational space over the course of a run.  In contrast, in 

mOFC, representations became more similar. Green violins show the null distributions of 

regression coefficients from 10,000 randomly permuted PSA matrices. The y-axis shows 

regression weights from the interaction of the value similarity regressor with a regressor that 

encodes comparisons between trials late in learning versus comparisons between trials early in 

learning.  

 

Because previous work showed that representations became progressively more 

dissimilar over the course of learning, we tested whether this effect interacted with task epoch. 

For this analysis, we constructed a new model with an additional interaction term between 

stimulus value and an epoch regressor, which was positive for comparisons between stimuli late 

in the run and negative for comparisons between stimuli early in the run. We found an 

interaction in the hippocampus, p =.01, FDR corrected, such that the representational distance 

between stimuli with similar values increased over the run, Figure 5b. We also observed this 

effect in PHc, p < .001, IFS, p < .001 and PRc, p = .035, FDR corrected. In contrast, in mOFC, 

 

he 
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we found the opposite: representational distance for stimuli with similar values decreased over 

the run, p = .01, FDR corrected. 

 

2.5 Representational Content Analysis 

The previous analyses show that the hippocampus has the most distinct representations of 

stimuli that share features among our regions of interest. However, the demonstration of no 

significant increase in similarity of hippocampal representations for feature-sharing stimuli begs 

for a more direct test of pattern separation. To directly test this hypothesis, we probed the content 

of hippocampal and cortical ROI representations using estimates of categorical feature coding 

acquired from independent localizer data. If hippocampal conjunctive representations are pattern 

separated from their constituent features, then they are not composed of mixtures of 

representations of those features39,40 (Figure 4a). Unlike high-level sensory cortex, the 

hippocampal representation of {face and house} would not be a mixture of the representation of 

{face} and {house}39. We predicted that the hippocampal representations of two-feature stimuli 

({face and house} trials) in our learning task should be dissimilar from representations of faces 

and houses in the localizer. Hippocampal representations of one-feature trials ({face} trials), 

which are less conjunctive because they contain only one task-relevant feature, should be more 

similar to representations of the same one-feature category (e.g., faces) in the localizer. In 

contrast, cortical representations of both two-feature and single-feature trials should be similar to 

representations of their corresponding features in the localizer (Figure 4a). We predicted that 

hippocampal representations would be less similar to feature templates than cortical ROIs, and 

that only the hippocampus would show would less similarity for two-feature than single-feature 

trials.  

We correlated the patterns in each ROI with the corresponding localizer feature templates 

(Methods) but were unable to detect reliable feature responses from IFS or mOFC in the 

localizer data41. We found significant similarity among task patterns and feature templates for all 

conditions, p < .001, FDR corrected, except for hippocampal responses to conjunctive stimuli, p 

= .116, Figure 6. The hippocampus had lower similarity to feature templates than PRc, p < .001, 

and PHc, p < .001. This effect was not likely driven by regional signal quality differences, as the 

hippocampus had the strongest within-stimulus coding (Figure 4a). The hippocampal feature 

template was more similar to the response to a single-feature stimulus than to a two-feature 
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stimulus, p < .001, consistent with a gradient in pattern separation as the number of task-relevant 

features increased. This effect was larger in the hippocampus than either PRc, p < .001, or PHc, p 

< .001. We confirmed these results using a parametric mixed effects analysis and also performed 

a control analysis to verify the results were not driven by stimulus-general activation (Figure S6). 

Unexpectedly, we observed that similarity in PRc and PHc was stronger for two-feature than for 

single-feature stimuli, both p < .001; in the mixed effects model, this result was marginal in PRc 

and nonsignificant in PHc and should be interpreted with caution.  
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Figure 6. Representational content analysis. 

a) Neural predictions: top panel is putative neural ensembles in high-level sensory cortex 

(parahippocampal, PHc; perirhinal, PRc) for task stimuli42. Two-feature stimulus should be 

represented as union of responses to component features. The lower panel shows putative neural 
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ensembles in the hippocampus; the neural representation of two-feature conjunctions should be 

orthogonal to responses to its component features.  

b) Hippocampal representations were less similar to feature templates than PRc and PHc 

representations, consistent with increased conjunctive coding. In the hippocampus, 

representational similarity to templates was higher for single-feature than two-feature stimuli, 

consistent with increased pattern separation for stimuli with multiple task-relevant features. PRc 

and PHc showed increased similarity for two-feature relative to one-feature stimuli.  

 

3 DISCUSSION 

We tested whether pattern separation in hippocampus enabled learning stimulus-outcome 

relationships over multifeatural stimuli. We used a novel reinforcement learning task that 

required learning over non-spatial conjunctions of features. The hippocampus encoded stable 

representations across repetitions of a stimulus, and conjunctive representations were distinct 

from the representations of composite features. The hippocampus showed stronger evidence for 

pattern-separated conjunctive representations than PRc, PHc, IFS and mOFC. Hippocampal 

coding was also related to PE coding in the striatum. Our results suggest that the hippocampus 

provides a pattern-separated state space that supports the learning of outcomes associated with 

conjunctive codes. 

Our finding of overlapping representations of conjunctions that share features in PRc and 

PHc, in combination with our finding of mixed conjunctive and feature learning in both behavior 

and the striatal error response, suggests that feature representations influence learning even when 

they do not benefit performance. The striatum receives inputs from diverse cortical and 

subcortical areas and may integrate predictions from systems that represent the environment in 

different ways (e.g., conjunctive versus feature)43,44. It seems reasonable that, over longer 

training periods, subjects would learn to down-weight the influence of cortico-striatal synapses 

representing uninformative features. Attention may support this process by influencing the 

relative strength of representations of conjunctions versus features24. Future work should 

examine learning over longer timescales in order to evaluate how attention may influence 

cortical and hippocampal processing in order to prioritize learning about more informative 

aspects of the environment. 
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Lesion studies showing dissociations between the hippocampus and striatum in learning45 

along with some imaging studies demonstrating a negative relationship between hippocampal 

and striatal learning signals29 have led to the hypothesis that these regions compete during 

learning and that learning transfers from hippocampal to striatal systems over time. By contrast, 

other evidence document cooperative interactions. For example, neurons in the striatum 

represent spatial information derived from hippocampal inputs46 and contextual information in 

the hippocampus drives the formation of conditioned place preferences via its connection to 

ventral striatum43,47. These findings, in concert with our own, support a model in which 

hippocampal information about spatial contexts, location, or conjunctions serve as inputs for 

striatal associative learning.  

Our finding that the hippocampus represents stimuli with similar outcomes more 

differently, and that this representational distance increases during learning, is consonant with 

recent demonstrations of repulsion of hippocampal representations of related memories in 

navigation38 and in relational learning37. These findings, together with the present results, 

suggest that the hippocampus dynamically increases the representational distance between 

overlapping experiences that may otherwise be subject to integration in cortical circuits. 

However, our results are inconsistent with a related study investigating hippocampal 

involvement in value-based decision-making48. Barron et. al pre-exposed subjects to individual 

foods (e.g, tea and jelly) and then asked them to simulate the value of a food that combines the 

individual foods (e.g, tea flavored jelly). They observed repetition suppression for compounds 

(AB) that were preceded by their components (A or B), indicating a representation of the features 

as part of the compound. The inconsistency between our results could arise because the task in 

Barron et. al required subjects to integrate singletons to imagine the value of a conjunction, 

whereas our task required subjects to distinguish between singletons and conjunctions. This 

distinction is reflected in a large literature showing that the hippocampus maintains distinct 

representations of related experiences49 while also maintaining a representation of the 

relationships between them35,36,50. Goal-directed attention may play an important role in 

determining which aspect of hippocampal function comes to dominate the hippocampal 

representation51. In our data, attention could be a mediating variable that drives both the 

hippocampal response, striatal learning signals and fluctuations in behavioral performance. Our 

finding of a selective relationship between hippocampal BOLD and behavioral performance 
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against a simple model in which wholesale fluctuations in participant engagement underlie our 

effects. Rather, attention may selectively influence the fidelity of hippocampal representations of 

conjunctions in order to support conjunctive learning.  

Our results complement and extend a recent investigation of the role of the hippocampus 

in conjunctive learning52. In this task, subjects were required to learn the relationship between 

conjunctions of cues and a weather outcome. They observed a univariate relationship between 

the hippocampus BOLD and the degree of conjunctive learning, as well as a correlation between 

hippocampus and nucleus accumbens that relates to conjunctive learning. In addition to these 

univariate effects, they also observed a within-stimulus similarity effect in the hippocampus but 

did not investigate stimulus overlap nor the representations of other cortical ROIs. Our results 

therefore provide a unique demonstration that the hippocampal code is more pattern separated 

than other cortical ROIs during conjunctive learning. 

We contend the hippocampus forms representations of conjunctions of features that are 

reinforced via dopamine release on hippocampal-striatal synapses, but the hippocampus could 

form a representation of the temporal sequence of task events34. In AB+ trials, AB could trigger a 

representation of the target in the hippocampus, and this target representation could then feed 

into the striatum or prefrontal cortex to drive responses. This model is similar to the idea that the 

hippocampus encodes a “successor representation” for reinforcement learning53 in which the 

target representation occurs in proportion to the probability of each stimulus preceding the target. 

The hippocampus-to-striatum connectivity and successor representation explanations of our 

results differ in mechanism, but share the requirement of a conjunctive representation in the 

hippocampus. Future work should directly test the role of hippocampal sequence representation 

in reinforcement learning. 

We did not find evidence for the coding of stimulus identity in the mOFC; however, we 

found that the mOFC represented stimuli with similar strength associations to the target more 

similarly. Further, this effect increased from early to late in runs, such that mOFC 

representations of stimuli with similar target associations moved closer together in 

representational space. These findings support a model in which the mOFC representation is 

primarily driven by outcome prediction and outcome representation (Figure S5). This finding is 

inconsistent with the strongest version of a recent theory suggested that the OFC supports a state 

space representation in learning tasks21. However, that theory suggests that the OFC is 
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particularly important for representing aspects of the state space that are unavailable in the 

immediate sensorium, such as information held in working memory. Our task has no requirement 

for such a function. It is also possible that OFC state representations are structured so as to be 

most useful for behavior. Specifically, the OFC could represent just two states corresponding to 

different action policies ({AB+, C+} versus {AC-, B-}). We prefer the interpretation that the 

mOFC representations in our task are driven by the subjective value of the stimuli, because the 

target is associated with the possibility for reward18. Finally, our distinct findings between 

mOFC and hippocampal representations echo recent investigations of context-based decision in 

rodents showing that the hippocampal representation is primarily driven by the context54, 

whereas the orbitofrontal cortex representation is primarily driven by reward value55.  

 The circuit properties of the hippocampus allow it to rapidly bind distributed cortical 

representations of features into orthogonalized conjunctive representations. Hippocampal pattern 

completion, triggered by partial cues, along with recurrent outputs back to sensory cortex allow 

the hippocampus to reactivate the ensemble of event features that constitute the retrieval of an 

episodic memory2,56. Dense inputs to the striatum suggest hippocampal representations could 

also form the basis for associative learning over conjunctive codes. Our results extend the role of 

the hippocampus to include building conjunctive representations that are useful for striatal 

outcome and value learning.  

 
 
4 METHODS 

 
4.1 Data and Software Availability 

 All MRI and behavioral data will be made available at OpenfMRI, and all analysis code 

will be made available on GitHub prior to publication. Key resources are listed in Table S2.  

4.2 Experimental Model and Subject Details 

 The study design and methods were approved by the Stanford Institutional Review 

Board. Forty subjects provided written informed consent. Data from eight subjects were 

excluded from analyses: One ended the scan early due to claustrophobia; three had scanner-

related issues that prevented reconstruction or transfer of their data; two had repeated extreme 

(>2mm) head movements across most runs; and two subjects demonstrated extremely poor 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/293332doi: bioRxiv preprint 

https://doi.org/10.1101/293332
http://creativecommons.org/licenses/by-nc/4.0/


performance, as indexed by less than $2.50 of earnings (see below for payment details). Note 

that our task is calibrated to the individual subjects’ practice data in such a way that a simple 

target detection strategy would be expected to earn $7.50, and any effort to learn the task should 

improve on these earnings. This left 32 subjects in the analysis cohort, 19 females, mean age 

22.1 years, SD 3.14, range 18 to 29. Due to an error, behavioral data for one subject were lost; 

thus, while her imaging data were included in fMRI analyses, all behavioral analyses were 

conducted with a sample of 31 subjects.  

 

4.3 Task 

Subjects performed a target detection task in which performance could be improved by 

learning predictive relationships between visually presented stimuli and the target. The target 

appeared 70% of the time for two-feature stimulus AB as well as the single-feature stimulus C, 

and 30% of the time for two-feature stimulus AC as well as the single-feature stimulus B. The 

task bears strong similarities to the “ambiguous feature discrimination task” used to study rodent 

learning23. Subjects were instructed that they would earn 25¢ for each correct response, lose 25¢ 

for each incorrect response, or no money for responses that are slower than threshold or missed.  

Response time (RT) thresholds were calibrated for each subject so that responses initiated 

by perception of target onset would lead to success on 50% of trials. This procedure incentivizes 

subjects to learn predictive information in order to respond more quickly. Before scanning, 

subjects performed a simplified target-detection trial in which they responded to a probabilistic 

target with no predictive relationships between the cue and target. During this session, RT 

thresholds were adjusted by 30 ms increments on each trial (fast-enough responses reduced the 

threshold while too-slow responses increased it). During the task, we continued to make smaller 

changes (10 ms) so that the threshold could change if subjects became progressively faster. 

Earning rewards on more than 50% of trials required anticipating target onset based on the 

preceding stimulus (A, B, AB, or AC). Subjects were instructed that in order to earn the most 

money, they should learn which stimuli predicted the target and respond as quickly as possible, 

even if the target has not yet appeared. These instruction were meant to bias subjects towards an 

instrumental learning strategy, rather than an explicit rule-based learning strategy33.  

Subjects performed one practice run and were instructed on the types of relationships 

they might observe. During fMRI scanning, subjects performed three runs of the task. Each run 
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consisted of 10 trials for each stimulus (AB+, AC-, B-, C+), resulting in 40 total trials per run. 

Features A, B, and C were mapped to a specific house, face, and body part image for the duration 

of the run. Subjects were not pre-exposed to the specific stimuli. The category-to-stimulus 

mapping was counterbalanced across runs, resulting in each visual category being associated 

with each feature type (A, B or C) over the course of three runs. The counterbalancing of 

category-to-stimulus mapping ensures that any carry-over effects of learning across runs can 

only have a detrimental and noisy effect on learning that would work against our hypotheses. In 

addition, we verbally emphasized that mappings changed between runs. Further, different 

participants saw different stimuli within each category and different stimuli across runs. Each 

subject encountered the same pseudo-random trial sequence of both stimuli and targets, which 

facilitated group modeling of parametric prediction error effects. Features could appear on either 

the left or the right of a fixation cross, with the assignment varying randomly on each trial. For 

single-feature stimuli, the contralateral location was filled with a phase-scrambled image 

designed to match the house/face/body part features on low-level visual properties. The target 

stimulus was a car image and was consistent across all trial types. On trials where the target 

appeared, it did so 600 ms after the onset of the visual cues. Inter-trial intervals and the interval 

between the stimulus/stimulus+target and feedback were taken from a Poisson distribution with a 

mean of 5 s, truncated to have a minimum of 2 s and maximum of 12 s. Visual localizer task 

details are described in SI Methods.  

 

4.4 Behavioral Analysis 

We used reaction time data from subjects to infer learning in the task, an approach that 

has been used successfully in a serial reaction time task57. Log-transformed reaction times were 

fit with linear regression, with the difference with the difference that we jointly fit the parameters 

of the regression model and the parameters of a reinforcement learning model. Specifically, we 

modeled reaction time with a value regressor taken from a reinforcement learning model: 

 

������� �  ����� �  α	
� � �����] 
 

where 
� is an indicator on whether or not the target appeared, α is the learning rate, and s is the 

state. These values represent the strength of association between a stimulus and a target/outcome, 
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and are not updated based on the reward feedback, which also depends on whether the subject 

responded quickly enough. The values we measured are more relevant for learning because they 

correspond to the probability that the subject should respond to the stimulus. We constructed 

values from three different models that made different assumptions about the underlying task 

representation. For the Conjunctive and Value Spread models, the state corresponded to the 

current stimulus s �{B, C, AB, AC}. For the Feature model, the states were single features s 

�{A, B, C} and in two-feature trials (e.g., AB), the value was computed as the sum of the 

individual feature values (e.g., V(AB) = V(A) + V(B)), and both feature values were updated 

after feedback. Finally, the base rate learning maintained a single state representation for all four 

stimuli. 

The Value Spread RL model was a variant of the Conjunctive model in which a portion 

of the value update blends onto the overlapping stimulus: 

 

�������� �  ������ �  α	
� � ������ 
 ωO�s, ���, � �� � s  

 

 where O�s, ��� is an indicator function that is equal to 1 when the two stimuli share a feature and 

0 otherwise, and ω is a spread parameter that controls the magnitude of the spread. For example, 

if the current stimulus is AB, a proportion of the value update for AB would spread to B and to 

AC. We allowed value to spread between any stimuli sharing features (e.g., an AB trial would 

lead to updates of both AC and B). This approach reflects the fact that not only will conjunctions 

activate feature representations in cortex, but features can activate conjunctive representations, a 

property that has been extensively studied in transitive inference tasks58. We fit the Conjunctive 

RL model, the Feature RL model, and the Value Spread RL model using Scipy’s minimize 

function. The linear regression weights were fit together with the parameters of the learning 

model. We calculated likelihoods from the regression fits using the standard regression formula 

that assumes normally distributed errors (�2�:  

�� �  ���� � 1
√2��� �  1

2��
 �!"�

�

���

�  #����
�

�� 

Where n is the number of trials, the ��� are k different estimates of value at trial t, and the  #� are 

regression coefficients. Finally, we fit a null No Learning model with no value regressor (and 

therefore fits to only mean RT). Model comparison procedures are described in detail in 
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Supplemental Methods. 

 In order to analyze the relationship between striatal BOLD and model-derived prediction 

error, we modeled the Feature model prediction error as well as the difference between the 

Conjunctive model prediction error and the Feature model prediction error. This subtraction 

approach has three advantages: 1) it reduces the shared variance considerably from modeling the 

two prediction errors (feature and conjunction, r(118) = .79, Note that the correlation flips sign 

because of the subtraction); 2) it provides a stronger test about whether conjunctive 

representations contribute to striatal error responses, because that contribution must be over and 

above the contribution of a feature learning model; and 3) together, the two regressors combined 

are a first-order Taylor approximation to a hybrid model that weighs contributions of a 

conjunctive and a feature learning mechanism. This hybrid model is conceptually very similar to 

the Value Spread model, although distinct in minor aspects. This means that we can model the 

data by supposing a hybrid mechanism, as we found in behavior, while also separately 

examining components of that hybrid mechanism. 

In order to compute our conjunctive learning index we computed the likelihood of the 

data for each run and subject under the maximum likelihood parameters for the Value Spread 

model and the Conjunctive model. We computed the difference in likelihood between the 

models. This measure reflects the extent to which the Conjunctive model accounts for the data 

better than the Value Spread model. For our nuisance regressor, we computed the difference in 

likelihoods between the Value Spread and the no learning model. 

 

 

4.5 fMRI Modeling 

fMRI acquisition and preprocessing as well as ROI selection procedures are described in 

detail in SI Methods and ROIs are depicted in Figure S3. Analysis was conducted using an event-

related model. Separate experimental effects were modeled as finite impulse responses 

(convolved with a standard hemodynamic response function). We created separate GLMs for 

whole brain and for pattern similarity analyses (PSA). For the whole brain analysis, we modeled 

the 1) stimulus period as an epoch with a duration of 2 s (which encompasses the stimulus, target 

and response) and 2) the feedback period as a stick function. In addition, we included a 

parametric regressor of trial-specific prediction errors extracted from a Feature reinforcement 
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learning model that learns about A, B, and C features independently, without any capacity for 

learning conjunctions. In addition, we included a regressor that was computed by taking the 

difference between the Feature RL errors and the Conjunctive RL model errors. This regressor 

captured variance that was better explained by Conjunctive RL prediction errors than by Feature 

RL prediction errors. Both parametric regressors were z-scored and were identical across all 

subjects. We included nuisance regressors for each slice artifact and the first principal 

component of the deep white matter, which captures residual nuisance components of the whole-

brain signal. Following standard procedure when using ICA denoising, we did not include 

motion regressors as our ICA approach is designed to remove motion-related sources of noise. 

GLMs constructed for PSA had two important differences. First, we did not include parametric 

prediction error regressors. Second, we created separate stimulus regressors for each of the 40 

trials. Models were fit separately for individual runs and volumes of parameter estimates were 

shifted into the space of the first run. Fixed effects analyses were run in the native space of each 

subject. We estimated a nonlinear transformation from each subject’s T1 anatomical image to the 

MNI template using ANTs. We then concatenated the functional-to-structural and structural-to-

MNI transformations to map the fixed effects parameter estimates into MNI space. Group 

analyses were run using FSL’s FLAME tool for mixed effects.  

 

4.6 PSA Analysis 

We were interested in distinguishing the effect of different experimental factors on the 

representational similarity matrices (PSM). PSM preprocessing is described in SI Methods. We 

constructed linear models of each subject’s PSM. We included main regressors of interest as well 

as several important regressors that controlled for similarities arising from task structure. The 

main regressors of interest were  1) a “within-stimulus similarity” regressor that was 1 for pairs 

of stimuli that were identical and 0 otherwise and 2) an “overlap” regressor that was coded as 1 

for pairs of stimuli that shared features, -1 for those that did not, and 0 for pairs of the same 

stimuli. We also included exploratory regressors of interest 3) a “prediction error” regressor that 

was computed as the absolute value of the difference in trial-specific prediction errors, extracted 

from the Value Spread reinforcement learning model, between the two stimuli (Figure S5), 4) a 

“value” regressor that was computed as the absolute value of the difference in trial-specific 

updated values, extracted from the Value Spread reinforcement learning model, between the two 
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stimuli (Figure 5). We included two nuisance regressors that model task-related sources of 

similarity that are not of interest: 5) a “response” regressor that was coded as 1 for stimuli that 

shared a response (both target or both non-target) and -1 otherwise, 6) a “target” regressor that 

was coded as 1 for stimuli that both had a target, -1 for both non-target, and 0 otherwise. Finally, 

we included nuisance regressors for  7) the mean of the runs and 8) two “time” regressors that 

accounted for the linear and quadratic effect of time elapsed between the pair of stimuli and 9) 

the interaction between the time regressor and the within-stimulus similarity regressor. We 

included this last interaction because within-stimulus similarity effects were by far the most 

prominent feature of the PSA, and temporal effects were therefore more likely to have larger 

effects on this portion of the PSMs. We included prediction error (3) and value (4) regressors 

because we were interested in exploratory analyses of these effects based on theoretical work 

suggesting that the hippocampus pattern separates stimuli based on the outcomes they predict34. 

Both the value and the prediction error regressors were orthogonalized against the response and 

target regressors, thereby assigning shared variance to the regressors modeling outcomes. All 

regressors were z-scored so that their beta weights could be meaningfully compared. 

Correlations, our dependent variable, were Fisher transformed so that they followed a normal 

distribution. To assess the significance of the regression weights as well as differences between 

regions, we compared empirical regression weights (or differences between them) to a null 

distribution of regression weights (or differences between them) generated by shuffling the 

values of the PSA matrices 10,000 times. In addition, we fit a linear mixed effects model using R 

with subject as a random intercept, ROI as a dummy code with hippocampus as the reference, 

and ROI by task interactions for each of the above regressors. Using random slopes resulted in 

convergence errors, and so we did not include them. By using both a parametric and a 

nonparametric approach to assessing our data, we gained confidence that our results are robust to 

differences in power between different statistical analysis techniques due to outliers or violations 

of distribution assumptions. 

 

6.7 Representational Content Analysis 

Data from the localizer task were preprocessed and analyzed in the same manner as the 

main task data. GLMs were constructed for each run and included a boxcar regressor for every 

miniblock with 4-s width, as well as a nuisance regressor for the targets, each slice artifact and 
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the first principal component of the deep white matter. To compute template images, we 

computed the mean across repetitions of each stimulus class (face, place, character, object, body 

part). For the representational content analysis depicted in Figure 4, we computed the 

correlations as follows: Assume that A is a face, B is a house, and C is a body part. For “single-

feature” stimuli, we computed the similarity of B trials with the house template and C trials with 

the body part template. For “two-feature” stimuli, we computed the similarity of AB trials with 

the house template and AC trials with the body part template. Therefore, within each run, the 

task-template correlations for AB and B (and AC and C) were computed with respect to the same 

feature template. This means that any differences between AB and B (or AC and C) correlations 

reflect differences in the task representations, rather than potential differences in the localizer 

representations. We repeated this for each run’s stimulus category mappings.  
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