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1 ABSTRACT 
 
Animals rely on learned associations to make decisions. Associations can be based on 

relationships between object features (e.g., the three-leaflets of poison ivy leaves) and outcomes 

(e.g., rash). More often, outcomes are linked to multidimensional states (e.g., poison ivy is green 

in summer but red in spring). Feature-based reinforcement learning fails when the values of 

individual features depend on the other features present. One solution is to assign value to 

multifeatural conjunctive representations. We tested if the hippocampus formed separable 

conjunctive representations that enabled learning of response contingencies for stimuli of the 

form: AB+, B-, AC-, C+. Pattern analyses on functional MRI data showed the hippocampus 

formed conjunctive representations that were dissociable from feature components and that these 

representations influenced striatal PEs. Our results establish a novel role for hippocampal pattern 

separation and conjunctive representation in reinforcement learning.  
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3 INTRODUCTION 

Most North American hikers develop a reflexive aversion to poison ivy, which causes a 

painful rash, and learn to recognize its compound leaf with three leaflets that is green in summer 

and red in spring and autumn. The relationship between color and season distinguishes poison ivy 

from other plants like boxelder, which looks similar but is green in spring. Such learning problems 

are challenging because similar conjunctions of features can require different responses or elicit 

different predictions about future events. Responses and predictions also depend on the status of 

other features or context. In such problems, simple feature-response learning is insufficient and 

representations that include multiple features (leaf shape, color, season) must be learned. 

Learning systems in the brain encode qualitatively distinct representations, and theories 

posit that reinforcement learning operates over multiple types of representations (1). Theoretical 

and empirical work suggest the hippocampus rapidly forms conjunctive representations of 

arbitrary sets of co-occurring features (2), making the hippocampus critical for episodic memory 

(3). During encoding of conjunctive representations, hippocampal computations likely establish 

minimal representational overlap between traces of events with partially shared features, so-called 

pattern separation (4, 5), which reduces interference between experiences with overlapping 

features. One solution to multifeatural learning problems that require stimuli with overlapping 

features to be associated with different outcomes is to encode neurally separable conjunctive 

representations, putatively through hippocampal-dependent computations, and to assign value to 

each “separated” representation, putatively through hippocampal-striatal interactions. The same 

circuit and computational properties that make the hippocampus vital for episodic memory can 

also benefit striatal-dependent reinforcement learning by providing separated conjunctive 

representations over which value learning can occur.  

Stimulus-response learning occurs by the incremental adjustment of synapses on striatal 

neurons (6). Thalamic and sensory cortical inputs encode single stimuli, such as a light, and are 

strengthened in response to phasic dopamine reward prediction errors (PEs; 7-10). This system 

allows for incremental learning about individual feature values. Although the hippocampus is not 

critical for associating value with individual features or items (11), it provides dense input to the 

striatum (12). These synapses are strengthened by phasic dopamine release via D1 receptors (13) 
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and might represent conjunctions of features distributed in space or time (6). We used a non-

spatial, probabilistic stimulus-response learning task including stimuli with overlapping features 

to test the role of the hippocampus and its interaction with the striatum in value learning over 

conjunctive codes. We hypothesized hippocampal pattern separation computations and 

hippocampal-to-striatal projections would form a conjunctive-value learning system that worked 

in tandem with a feature-value learning system implemented in sensory cortical-to-striatal 

projections.  

We compared hippocampal representational codes to those of three other cortical areas 

that could contribute to learning in our task: perirhinal (PRc) and parahippocampal (PHc) 

cortices and inferior frontal sulcus (IFS). The PRc and PHc gradually learn representations of 

individual items (14, 15). Cortical learning is generally too slow to form representations linking 

multiple items (2), and pattern separation likely depends on hippocampal computations (5). We 

therefore predicted PRc and PHc would not form pattern-separated representations of 

conjunctions with overlapping features. The IFS supports the representation of abstract rules (16, 

17) that often describe conjunctive relationships (e.g., “respond to stimuli with both features A 

and B”, (18), but because our task biased subjects away from rule-based learning we predicted 

the IFS would not form pattern-separated representations of conjunctions. We designed our task 

and analyses to test for a hippocampal role in encoding conjunctive representations that serve as 

inputs for striatal associative learning.  

 

4 RESULTS 

4.1 Behavioral Results 

Subjects learned stimulus-outcome relationships that required the formation of 

conjunctive representations. Our task was based on the “simultaneous feature discrimination” 

rodent behavioral paradigm (19). Task stimuli consisted of four feature configurations (AB, AC, 

B, C). We used a speeded reaction time (RT) task in which a target “go” stimulus was 

differentially predicted by the four stimuli (Figure 1a). AB and C predicted the target 70% of the 

time and B and AC 30% of the time. To earn money, subjects pressed a button within a limited 

response window after target onset. Each feature was associated with the target 50% of the time, 

but stimuli were more (70%) or less (30%) predictive of the target. Optimal performance 
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required learning the value of stimuli as distinct conjunctions of features (i.e., conjunctive 

representations).  

We tested whether subjects learned stimulus-outcome relationships with four 

computational models: 

1) No Learning Model: subjects ignored predictive information and responded as fast as possible 

after target.  

2) Feature RL: subjects learned values for individual features but not conjunctions. For 

multifeatural cues, value was updated for each feature.  

3) Conjunctive RL: subjects learned values for each distinct stimulus. Value was updated for one 

representation on each trial (for “AB”, value updated for AB but not A or B).  

4) Hybrid RL: subjects learned values of stimuli but confused stimuli that shared common 

features (e.g., AB and B). This model spreads value updates between stimuli that shared 

features (for AB trial, some of value update was applied to B). 

Stimuli that are highly predictive of targets should be associated with faster responses, 

permitting us to fit each model to the RT data. We first compared the Conjunctive model, which 

implements the experimenter-defined optimal task strategy, with the Feature and No Learning 

models. The Feature model uses a simpler and commonly used learning strategy (20). We 

assessed model fits using a cross-validated predictive likelihood method. The Conjunctive model 

outperformed the No Learning model (T = 136, p = .028, Wilcoxon test, Figure 1c) but was only 

marginally better than the Feature Model (T = 158, p = .08, Figure 1c). We next assessed the 

relative fits of these three models with a random-effects Bayesian procedure that gives 

probabilities that each model would generate the data of a random subject (21). We found the 

most likely model was the Conjunctive model (protected exceedance probabilities (pEP): 

Conjunctive 92.3%, Feature 3.9%, No Learning 3.7%), which suggests subjects learned 

predictive relationships. Overall, there was mixed evidence in support of learning about 

conjunctions. 

We reasoned that these results could be explained by subjects forming conjunctive 

representations but also confusing stimuli with overlapping features. This behavior could arise if 

hippocampal pattern separation was partially effective in encoding distinct representations for 

each stimulus (5) and/or stimulus representations in the hippocampus and feature representations 

in cortex were simultaneously reinforced during learning (22). We fit a Hybrid model that 
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allowed for value updates to spread between stimuli with overlapping features. A parameter ω 

specifies the degree to which value updates spread to other stimuli with shared features. This 

model outperformed both the Conjunctive (T = 124, p = .015) and Feature models (T = 115, p = 

.009; Wilcoxon tests, Figure 1c) on the cross-validation analysis. Bayesian model comparison 

confirmed the Hybrid model was the most likely model (pEP: 89.9%, Figure 1b). Fits of spread 

parameter ω (mean: .44, SD: .25, Table S1) indicated that for any given value update to the 

current stimulus (e.g., AB), about half that update was also applied to overlapping stimuli (e.g., 

B). These results support subjects forming conjunctive representations of multifeatural stimuli 

but blending value learning across stimuli with shared features.  

 
Figure 1. Task design and behavior. 
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a) AB+, B- and AC- trials. The target appeared at fixation 600 ms after stimuli onset. Stimuli 

were always presented for 2000 ms. Feedback indicated whether subjects responded quickly 

enough to earn a reward. Note that stimuli were faces, places and houses. The face image has 

been replace with a guitar to conform with BioArxiv requirements. 

b) Bayesian random effects model comparison showed the Hybrid RL model most likely 

accounted for behavior. Protected exceedance probabilities sum to 1 across models and because 

they express a random-effects measure, there are no error bars.  

c) Cross-validation model comparison showed the Hybrid RL model best predicted unseen data. 

Log predictive likelihoods closer to 0 indicate better performance. 

 

 

4.2 Striatal Prediction Error Analysis 

Our behavioral analyses suggested subjects used a reinforcement learning strategy to 

acquire stimulus-outcome relationships, with learning best described by a model that spread 

value updates among stimuli sharing features. Because striatal BOLD responses track reward 

PEs (23), we predicted these BOLD responses would co-vary with PEs derived from the Hybrid 

model. The key feature of this model is the spread of learning between stimuli sharing features, 

suggesting that subjects learn jointly about conjunctions and features. We sought to distinguish 

the contribution of Conjunctive learning, which learns independently about each stimulus, from 

that of Feature learning, which causes learning to spread across stimuli that share features. A 

feature PE regressor was constructed from the Feature RL model. A conjunctive PE regressor 

was constructed by computing the difference between the feature regressor and PEs computed 

from the Conjunctive RL model. This regressor captures unique variance associated with PEs 

derived from a model that learns values for conjunctions. We found robust Feature PE responses 

in the bilateral medial caudate (whole-brain corrected threshold p < .05; Figure 2a). We next 

extracted parameter estimates from an anatomical striatal mask (24) crossed with a statistically-

independent functional mask of Feature PE activation and observed these same voxels also 

showed evidence of a Conjunction PE response (t(31) = 4.1; p < .001; dz = 0.72; Figure 2b), 

confirming striatal BOLD tracked reinforcement learning PEs that mixed learning about 

conjunctions and features.  
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Figure 2. Striatal error response. 

a) Regions responsive to PEs from Feature RL model (whole-brain analysis; p < .05).  

b) An ROI analysis of striatum showed that voxels with responses that scaled with PEs from the 

Feature RL model also scaled with PEs from the Conjunctive RL model. The Feature PE bar is a 

statistically independent depiction of the striatal response in (a). The Conjunction PE bar shows 

that errors from a conjunctive learning system correlated with striatal BOLD above and beyond 

errors from a feature learning system. 

 

4.3 Pattern Similarity Analysis 

We hypothesized the hippocampus formed conjunctive representations of task stimuli, 

which served as inputs to striatum for reinforcement learning. We used a pattern similarity 

analysis (PSA) to probe the representational content of hippocampus (25). The PSA compares 

the similarity of activity patterns among different trials as a function of experimental variables of 

interest. We computed similarity matrices from the hippocampus, IFS, PRc, and PHc. 
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Figure 3. Pattern similarity analysis. 

a) A regression analysis on PSA matrices showed strong within-stimulus coding in all ROIs, and 

within-stimulus coding was significantly stronger in hippocampus relative to other regions. The 

y-axis shows regression weights from a within-stimulus regressor on the PSA matrix of each 

ROI.  

b) PHc, PRc, and IFS showed increased similarity for pairs of stimuli that shared features and 

significantly more similarity for these pairs than the hippocampus, consistent with pattern-

separated representations in the hippocampus. Green violins show the null distributions of 

regression coefficients from 10,000 randomly permuted PSA matrices. The y-axis shows 

regression weights from an overlapping-versus-non-overlapping stimuli regressor on the 

between-stimuli correlations from the PSA matrix of each ROI. 

We first tested whether representations of stimuli in the hippocampus remained stable 

across trials because to be useful for learning, a region must have consistent representations 

across presentations of a stimulus. We ran a regression analysis on PSA matrices to assess the 

similarity among representations from different presentations of a stimulus. We tested the 

significance of each effect by permuting the PSA matrices 10,000 times to build a null 

distribution of regression coefficients. All ROIs had significantly higher similarity for repetitions 

of the same stimulus (within-stimulus similarity) than for pairs of different stimuli (between-

stimulus similarity; all p < .001, FDR corrected). Across-region comparisons showed the 

hippocampus had stronger within-stimulus coding than PRc (p < .001), PHc (p < .001), and IFS, 

(p < .001, FDR corrected, Figure 3a), indicating the hippocampus had the most stable 

representations of task stimuli.  
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Our central hypothesis was that the hippocampus, not PRc, PHc, or IFS, would form 

conjunctive representations of stimuli. Representations of stimuli that shared features (e.g., AB 

and B) should be pattern separated, and therefore less correlated, in hippocampus but more 

similar in cortical regions like PRc and PHc that provide inputs to the hippocampus. Because our 

task biased subjects away from a rule-based strategy, we predicted that the IFS should not have 

pattern-separated representations of conjunctions. We tested whether the representational 

structure in each ROI was more similar for stimuli sharing common features than for stimuli that 

lacked feature overlap. All control ROIs showed a significant effect of overlap (PRc: p = .008, 

PHc: p = .008, IFS: p < .001, FDR corrected, Figure 3b) but the hippocampus did not (p > .3). 

Critically, the hippocampus showed significantly lower representational overlap than PRc (p = 

.026), PHc (p = .026), and IFS (p = .002, all FDR corrected). Control analyses ruled out potential 

confounds arising from feature hemifield and reproduced these findings using a parametric 

mixed-effects model (Supplemental Information). Relative to the control ROIs, the hippocampus 

formed more pattern-separated conjunctive representations of stimuli.  

Hippocampal representations of conjunctions could serve as inputs to the striatal 

reinforcement learning system. Variability in the formation of pattern-separated conjunctive 

representations in hippocampus should correlate with striatal learning about conjunctions. When 

the hippocampus demonstrates relatively more pattern-separated representations, the striatal error 

signal should more strongly track PEs estimated from the Conjunctive RL model. To examine 

this relationship, we fit a mixed effects model of the conjunctive component of the striatal PE, 

with subject as a random intercept and hippocampal overlap as a random slope. The hippocampal 

overlap term was negatively related to the striatal conjunctive PE (t(31) = -3.43, p = .001, dz = -

0.62, Figure S1). We observed similar relationships in our medial temporal lobe (MTL) cortical 

ROIs (Supplemental Information) and a positive relationship between the strength of within-

stimulus similarity in the hippocampus and striatal conjunctive PE, although this last result 

depended on the exclusion of an outlier subject (Figures S1). In sum, the more the hippocampus 

established pattern-separated representations of stimuli, the more striatal error signals tracked the 

true conjunctive state space. 

 

4.4 Representational Content Analysis 
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The previous analyses show that the hippocampus has the most distinct representations of 

stimuli that share features among our regions of interest. However, the null effect of stimulus 

overlap in the hippocampus cannot confirm that this area contains pattern-separated 

representations. To directly test this hypothesis, we probed the content of its representations 

using estimates of categorical feature coding acquired from independent localizer data. If 

hippocampal conjunctive representations are pattern separated from their constituent features, 

then they are not composed of mixtures of representations of those features (26, 27) (Figure 4a). 

Unlike high-level sensory cortex, the hippocampal representation of {face and house} would not 

be a mixture of the representation of {face} and {house} (26). We predicted the hippocampal 

representations of two-feature stimuli ({face and house} trials) in our learning task should be 

dissimilar from representations of faces and houses in the localizer. Hippocampal representations 

of one-feature trials ({face} trials), which are less conjunctive because they contain only one 

task-relevant feature, should be more similar to representations of the same one-feature category 

(e.g., faces) in the localizer. In contrast, cortical representations of both two-feature and single-

feature trials should be similar to representations of their corresponding features in the localizer 

(Figure 4a). We predicted hippocampal representations would be less similar to feature templates 

than cortical ROIs, and only the hippocampus would show would less similarity for two-feature 

than single-feature trials.  

We correlated the patterns in each ROI with the corresponding localizer feature templates 

(Methods) but were unable to detect reliable feature responses from IFS in the localizer data (c.f. 

28). We found significant similarity among task patterns and feature templates for all conditions 

(p < .001, FDR corrected) except for hippocampal responses to conjunctive stimuli (p = .116). 

The hippocampus had lower similarity to feature templates than PRc (p < .001) and PHc (p < 

.001). This effect was not likely driven by regional signal quality differences, as the 

hippocampus had the strongest within-stimulus coding (Figure 3a). The hippocampal feature 

template was more similar to the response to a single-feature stimulus than to a two-feature 

stimulus (p < .001), consistent with a gradient in pattern separation as the number of task-

relevant features increased. This effect was larger in the hippocampus than either PRc (p < .001) 

or PHc (p < .001). We confirmed these results using a parametric mixed effects analysis and also 

performed a control analysis to verify the results were not driven by stimulus-general activation 

(Figure S4). Unexpectedly, we observed that similarity in PRc and PHc was stronger for two-
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feature than for single-feature stimuli (both p < .001); in the mixed effects model, this result was 

marginal in PRc and nonsignificant in PHc and should be interpreted with caution.  

 
Figure 4. Representational content analysis. 

a) Neural predictions: top panel is putative neural ensembles in high-level sensory cortex 

(parahippocampal, PHc; perirhinal, PRc) for task stimuli (29). Two-feature stimulus should be 
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represented as union of responses to component features. The lower panel shows putative neural 

ensembles in the hippocampus; the neural representation of two-feature conjunctions should be 

orthogonal to responses to its component features.  

b) Hippocampal representations were less similar to feature templates than PRc and PHc 

representations, consistent with increased conjunctive coding. In the hippocampus, 

representational similarity to templates was higher for single-feature than two-feature stimuli, 

consistent with increased pattern separation for stimuli with multiple task-relevant features. PRc 

and PHc showed increased similarity for two-feature relative to one-feature stimuli.  

 

5 DISCUSSION 

 

We tested whether pattern separation in hippocampus enabled learning stimulus-outcome 

relationships over multifeatural stimuli. We used a novel reinforcement learning task that 

required learning over non-spatial conjunctions of features. The hippocampus encoded stable 

representations across repetitions of a stimulus, and conjunctive representations were distinct 

from the representations of composite features. The hippocampus showed stronger evidence for 

pattern-separated conjunctive representations than PRc, PHc, and IFS. Hippocampal coding was 

also related to PE coding in the striatum. Our results suggest that the hippocampus provides a 

pattern-separated state space that supports the learning of outcomes associated with conjunctive 

codes. 

There is increased interest in a potential role of the hippocampus and MTL systems in 

reinforcement learning. Deep convolutional neural networks trained on natural images produce 

patterns of responses strikingly similar to the inferotemporal (IT) processing hierarchy (30), and 

when combined with reinforcement learning, these networks can learn to achieve human-level 

performance on video games (31). This model has been augmented with an MTL-cortex-like 

system that retrieves related memories during learning, and the model can learn some games 

nearly as quickly as humans (32). Such work illustrates the importance of similarity-based recall, 

a function associated with MTL cortical computation (14, 33), for effective reinforcement 

learning. Our data suggest future models that exploit the computational and representational 

properties of hippocampus will benefit from an enhanced ability to distinguish between similar 

stimuli and environments with different associated outcomes.  
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Lesion studies showing dissociations between the hippocampus and striatum in learning 

(34) along with some imaging studies demonstrating a negative relationship between 

hippocampal and striatal learning signals (35) have led to the hypothesis that these regions 

compete during learning. By contrast, other evidence document cooperative interactions. For 

example, neurons in the striatum represent spatial information derived from hippocampal inputs 

(36) and contextual information in the hippocampus drives the formation of conditioned place 

preferences via its connection to ventral striatum (37, 38). These findings support a model in 

which hippocampal information about spatial contexts, location, or conjunctions serve as inputs 

for striatal associative learning. 

We contend the hippocampus forms representations of conjunctions of features that are 

reinforced via dopamine release on hippocampal-striatal synapses, but the hippocampus could 

form a representation of the temporal sequence of task events (39). In AB+ trials, AB would 

trigger a representation of the target in the hippocampus, and this target representation could then 

feed into the striatum or prefrontal cortex to drive responses. This model is similar to the idea 

that the hippocampus encodes a “successor representation” for reinforcement learning (40) in 

which the target representation occurs in proportion to the probability of each stimulus preceding 

the target. Both explanations differ in mechanism but require a conjunctive representation in the 

hippocampus. Future work should directly test the role of hippocampal sequence representation 

in reinforcement learning. 

 The circuit properties of the hippocampus allow it to rapidly bind distributed cortical 

representations of features into orthogonalized conjunctive representations. Hippocampal pattern 

completion, triggered by partial cues, along with recurrent outputs back to sensory cortex allow 

the hippocampus to reactivate the ensemble of event features that constitute the retrieval of an 

episodic memory (2, 41). Dense inputs to the striatum suggest hippocampal representations could 

also form the basis for associative learning over conjunctive codes. Our results extend the role of 

the hippocampus to include building conjunctive representations that are useful for striatal 

outcome and value learning.  
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6 METHODS 

 
6.1 Data and Software Availability 

All MRI and behavioral data will be made available at OpenfMRI, and all analysis code will be 

made available on GitHub prior to publication. Key resources are listed in Table S2.  

 

6.2 Experimental Model and Subject Details 

 The study design and methods were approved by the Stanford Institutional Review 

Board. Forty subjects provided written informed consent. Data from eight subjects were 

excluded from analyses: One ended the scan early due to claustrophobia; three had scanner-

related issues that prevented reconstruction or transfer of their data; two had repeated extreme 

(>2mm) head movements across most runs; and two subjects demonstrated extremely poor 

performance, as indexed by less than $2.50 of earnings (see below for payment details). Note 

that our task is calibrated to the individual subjects’ practice data in such a way that a simple 

target detection strategy would be expected to earn $7.50, and any effort to learn the task should 

improve on these earnings. This left 32 subjects in the analysis cohort, 19 females, mean age 

22.1 yrs, SD 3.14, range 18 to 29. Due to an error, behavioral data for one subject were lost; thus, 

while her imaging data were included in fMRI analyses, all behavioral analyses were conducted 

with a sample of 31 subjects.  

 

6.3 Task 

Subjects performed a target detection task in which performance could be improved by 

learning predictive relationships between visually presented stimuli and the target. The target 

appeared 70% of the time for two-feature stimulus AB as well as the single-feature stimulus C, 

and 30% of the time for two-feature stimulus AC as well as the single-feature stimulus B. The 

task bears strong similarities to the “ambiguous feature discrimination task” used to study rodent 

learning (19). Subjects were instructed that they would earn 25¢ for each correct response, lose 

25¢ for each incorrect response, or no money for withheld responses. Response time (RT) 

thresholds were calibrated for each subject during training so that responses initiated by 

perception of target onset would lead to success on 50% of trials. Earning rewards on more than 
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50% of trials therefore required anticipating target onset based on the preceding stimulus (A, B, 

AB, or AC). During the experiment, RT thresholds were slowly adjusted to account for gradual 

speeding of responses over the course of the task. Subjects were instructed that in order to earn 

the most money, they should learn which stimuli predicted the target and respond as quickly as 

possible, even if the target has not yet appeared. These instruction were meant to bias subjects 

towards an instrumental learning strategy, rather than an explicit rule-based learning strategy 

(42).  

Subjects performed one practice run and were instructed on the types of relationships 

they might observe. During fMRI scanning, subjects performed three runs of the task. Each run 

consisted of 10 trials for each stimulus (AB+, AC-, B-, C+), resulting in 40 total trials per run. 

Features A, B, and C were mapped to a specific house, face, and body part image for the duration 

of the run. The category-to-stimulus mapping was counter-balanced across runs, resulting in each 

visual category being associated with each feature type (A, B or C) over the course of three runs. 

Further, different participants saw different stimuli within each category. Each subject 

encountered the same pseudo-random trial sequence of both stimuli and targets, which facilitated 

group modeling of parametric prediction error effects. Features could appear on either the left or 

the right of a fixation cross, with the assignment varying randomly on each trial. For single-

feature stimuli, the contralateral location was filled with a phase-scrambled image designed to 

match the house/face/body part features on low-level visual properties. Inter-trial intervals and 

the interval between the stimulus/stimulus+target and feedback were taken from a Poisson 

distribution with a mean of 5 s, truncated to have a minimum of 2 s and maximum of 12 s. Visual 

localizer task details are described in SI Methods.  

 

6.4 Behavioral Analysis 

We used reaction time data from subjects to infer learning in the task, an approach that 

has been used successfully in a serial reaction time task (43). Log-transformed reaction times 

were fit with linear regression. For the three RL models, we modeled reaction time with a value 

regressor taken from a simple reinforcement learning model: 

 

𝑉(𝑠)%&' = 	𝑉(𝑠)% + 	α[𝑅% − 𝑉(𝑠)%] 
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where 𝑅% is an indicator on whether or not the target appeared, α is the learning rate, and s is the 

state. These values represent the strength of association between a stimulus and a target/outcome, 

and are not updated based on the reward feedback, which also depends on whether the subject 

responded quickly enough. The values we measured are more relevant for learning because they 

correspond to the probability that the subject should respond to the stimulus. For the Conjunctive 

and Hybrid models, the state corresponded to the current stimulus s ∈{B, C, AB, AC}. For the 

Feature model, the states were single features s ∈{A, B, C} and in two-feature trials (e.g., AB), 

the value was computed as the sum of the individual feature values (e.g., V(AB) = V(A) + V(B)), 

and both feature values were updated after feedback.  

The Hybrid RL model was a variant of the Conjunctive model in which a portion of the 

value update blends onto the overlapping stimulus: 

 

𝑉(𝑠0)%&' = 	𝑉(𝑠0)% + 	α[𝑅% − 𝑉(𝑠)%] ∗ ωO(s, 𝑠0), ∀	𝑠0 ≠ s  

 

 where O(s, 𝑠0) is an indicator function that is equal to 1 when the two stimuli share a feature and 

0 otherwise, and ω is a spread parameter that controls the magnitude of the spread. For example, 

if the current stimulus is AB, a proportion of the value update for AB would spread to B and to 

AC. We allowed value to spread between any stimuli sharing features (e.g., an AB trial would 

lead to updates of both AC and B). This approach reflects the fact that not only will conjunctions 

activate feature representations in cortex, but features can activate conjunctive representations, a 

property that has been extensively studied in transitive inference tasks (44). We fit the 

Conjunctive RL model, the Feature RL model, and the Hybrid RL model using Scipy’s minimize 

function. The linear regression weights were fit together with the parameters of the learning 

model. The fitted regression weights for the Hybrid model were significantly less than 0, T = 64, 

p < .001, Wilcoxon test, indicating that stimuli more strongly associated with the target are 

associated with faster reaction times. Finally, we fit a null No Learning model with no value 

regressor (and therefore fits to only mean RT). Model comparison procedures are described in 

detail in SI Methods. 

 

6.5 fMRI Modeling 

fMRI acquisition and preprocessing as well as ROI selection procedures are described in 
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detail in SI Methods. Analysis was conducted using an event-related model. Separate 

experimental effects were modeled as finite impulse responses (convolved with a standard 

hemodynamic response function). We created separate GLMs for whole brain and for pattern 

similarity analyses (PSA). For the whole brain analysis, we modeled the 1) stimulus period as an 

epoch with a duration of 2 s (which encompasses the stimulus, target and response) and 2) the 

feedback period as a stick function. In addition, we included a parametric regressor of trial-

specific prediction errors extracted from a Feature reinforcement learning model that learns 

about A, B, and C features independently, without any capacity for learning conjunctions. In 

addition, we included a regressor that was computed by taking the difference between the 

Feature RL errors and the Conjunctive RL model errors. This regressor captured variance that 

was better explained by Conjunctive RL prediction errors than by Feature RL prediction errors. 

Both parametric regressors were z-scored and were identical across all subjects. We included 

nuisance regressors for each slice artifact and the first principal component of the deep white 

matter, which captures residual nuisance components of the whole-brain signal. Following 

standard procedure when using ICA denoising, we did not include motion regressors as our ICA 

approach is designed to remove motion-related sources of noise. GLMs constructed for PSA had 

two important differences. First, we did not include parametric prediction error regressors. 

Second, we created separate stimulus regressors for each of the 40 trials. Models were fit 

separately for individual runs and volumes of parameter estimates were shifted into the space of 

the first run. Fixed effects analyses were run in the native space of each subject. We estimated a 

nonlinear transformation from each subject’s T1 anatomical image to the MNI template using 

ANTs. We then concatenated the functional-to-structural and structural-to-MNI transformations 

to map the fixed effects parameter estimates into MNI space. Group analyses were run using 

FSL’s FLAME tool for mixed effects.  

 

6.6 PSA Analysis 

We were interested in distinguishing the effect of different experimental factors on the 

representational similarity matrices (PSM). PSM preprocessing is described in SI Methods. We 

constructed linear models of each subject’s PSM. We included main regressors of interest as well 

as several important regressors that controlled for similarities arising from task structure. The 

linear model included: 1) a nuisance “response” regressor that was coded as 1 for stimuli that 
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shared a response (both target or both non-target) and -1 otherwise, 2) a nuisance “target” 

regressor that was coded as 1 for stimuli that both had a target, -1 for both non-target, and 0 

otherwise, 3) a “within-stimulus similarity” regressor that was 1 for pairs of stimuli that were 

identical and 0 otherwise, 4) an “overlap” regressor that was coded as 1 for pairs of stimuli that 

shared features, -1 for those that did not, and 0 for pairs of the same stimuli, 5) a “prediction 

error” regressor that was computed as the absolute value of the difference in trial-specific 

prediction errors, extracted from the Hybrid reinforcement learning model, between the two 

stimuli (Figure S3), 6) a “value” regressor that was computed as the absolute value of the 

difference in trial-specific updated values, extracted from the Hybrid reinforcement learning 

model, between the two stimuli (Figures S3), 7) nuisance regressors for the mean of the runs, and 

8) two “time” regressors that accounted for the linear time elapsed between the pair of stimuli 

and its interaction with the within-stimulus similarity regressor. We included this last interaction 

because within-stimulus similarity effects were by far the most prominent feature of the PSA, 

and temporal effects were therefore more likely to have larger effects on this portion of the 

PSMs. We included prediction error (5) and value (6) regressors because we were interested in 

exploratory analyses of these effects based on theoretical work suggesting that the hippocampus 

pattern separates stimuli based on the outcomes they predict (39). Both the value and the 

prediction error regressors were orthogonalized against the response and target regressors, 

thereby assigning shared variance to the regressors modeling outcomes. All regressors were z-

scored so that their beta weights could be meaningfully compared. Correlations, our dependent 

variable, were Fisher transformed so that they followed a normal distribution. To assess the 

significance of the regression weights as well as differences between regions, we compared 

empirical regression weights (or differences between them) to a null distribution of regression 

weights (or differences between them) generated by shuffling the values of the PSA matrices 

10,000 times. In addition, we fit a linear mixed effects model using R with subject as a random 

intercept, ROI as a dummy code with hippocampus as the reference, and ROI by task 

interactions for each of the above regressors. Using random slopes resulted in convergence 

errors, and so we did not include them. By using both a parametric and a nonparametric approach 

to assessing our data, we gained confidence that our results are robust to differences in power 

between different statistical analysis techniques due to outliers or violations of distribution 

assumptions. 
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6.7 Representational Content Analysis 

Data from the localizer task were preprocessed and analyzed in the same manner as the 

main task data. GLMs were constructed for each run and included a boxcar regressor for every 

miniblock with 4-s width, as well as a nuisance regressor for the targets, each slice artifact and 

the first principal component of the deep white matter. To compute template images, we 

computed the mean across repetitions of each stimulus class (face, place, character, object, body 

part). For the representational content analysis depicted in Figure 4, we computed the 

correlations as follows: Assume that A is a face, B is a house, and C is a body part. For “single-

feature” stimuli, we computed the similarity of B trials with the house template and C trials with 

the body part template. For “two-feature” stimuli, we computed the similarity of AB trials with 

the house template and AC trials with the body part template. Therefore, within each run, the 

task-template correlations for AB and B (and AC and C) were computed with respect to the same 

feature template. This means that any differences between AB and B (or AC and C) correlations 

reflect differences in the task representations, rather than potential differences in the localizer 

representations. We repeated this for each run’s stimulus category mappings.  
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