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ABSTRACT

Numerous studies have proposed biomarkers based on magnetic resonance imaging (MRI) to detect and predict the risk
of evolution toward Alzheimer’s disease (AD). While anatomical MRI captures structural alterations, studies demonstrated
the ability of diffusion MRI to capture microstructural modifications at an earlier stage. Several methods have focused on
hippocampus structure to detect AD. To date, the patch-based grading framework provides the best biomarker based on the
hippocampus. However, this structure is complex since the hippocampus is divided into several heterogeneous subfields
not equally impacted by AD. Former in-vivo imaging studies only investigated structural alterations of these subfields using
volumetric measurements and microstructural modifications with mean diffusivity measurements. The aim of our work is to
study the efficiency of hippocampal subfields compared to the whole hippocampus structure with a multimodal patch-based
framework that enables to capture subtler structural and microstructural alterations. To this end, we analyze the significance
of the different hippocampal subfields for AD diagnosis and prognosis with volumetric, diffusivity measurements and a novel
multimodal patch-based grading framework that combines structural and diffusion MRI. The experiments conducted in this work
showed that the whole hippocampus provides the most discriminant biomarkers for advanced AD detection while biomarkers
applied into subiculum obtain the best results for AD prediction, improving by 2% the accuracy compared to the whole
hippocampus.

Introduction
Alzheimer’s disease (AD) is an irreversible neurodegenerative process leading to mental dysfunctions. Subjects presenting Mild
Cognitive Impairment (MCI) have higher risk to develop AD1. To study the preclinical phase of the disease, the Alzheimer’s
disease neuroimaging initiative (ADNI) was set up based on two MCI definitions: early MCI (eMCI) and late MCI (lMCI). eMCI
represents subjects with cognitive impairment milder than lMCI which is composed of amnesic MCI2. Such clinical symptoms
caused by changes like synaptic and neuronal losses that lead to structural and micro-structural alterations. Neuroimaging
studies performed on AD subjects revealed that brain structure alterations are advanced when diagnosis is established and
emphasized the need to study the early stages of the disease.

The improvement of medical imaging techniques such as magnetic resonance imaging (MRI) enabled the development of
efficient biomarkers detecting alterations caused by AD3. Over the past years, many methods have been proposed to perform
automatic detection of alterations associated with AD. First, studies proposed methods based on specific regions of interest
(ROI) capturing alterations at an anatomical scale. Among structures impacted by AD, previous investigations focused on
hippocampus (HIPP)4–6, entorhinal cortex (EC)7–9, parahippocampal gyrus, amygdala10 or parietal lobe11, 12. Alterations on
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these structures are usually estimated using volume13, 14, shape15, 16, or cortical thickness17, 18 measurements. Second, beside
ROI-based methods, whole brain analysis performed on structural MRI (s-MRI) have been proposed to detect areas impacted
by AD at a voxel scale. These methods are usually based on voxel-based morphometry (VBM) or tensor-based morphometry
(TBM) frameworks19. It is interesting to note that both VBM and ROI-based studies confirmed that medial temporal lobe is a
key area to detect the first signs of AD20–25. These studies also showed that HIPP is one of the earliest region altered by AD
in the medial temporal lobe26. Moreover, HIPP volume is one of the criterion that can be used to confirm the diagnosis of
AD in clinical routines27. Recently, advanced methods were proposed to capture subtler structural alterations of HIPP9, 28–30.
Those techniques demonstrated an increase of detection and prediction performances at different AD stages compared to
volume-based methods30. Among them, patch-based grading (PBG) methods demonstrated competitive results to detect the
earliest stages of AD before a clinical diagnosis can be made9, 29, 31. The main idea of this approach is to capture inter-subject
pattern similarities via non-local comparisons between two groups of subjects. Such methods have shown their ability to predict
AD more than seven years before the conversion to dementia32 and might help for a differential diagnosis33.

Thus, the hippocampus has been one of the most studied structures in order to diagnose AD. However, this structure
is complex and not homogeneous. HIPP is subdivided into several subfields, each one having specific characteristics. The
terminology differs across segmentation protocol34 but the most recognized definition35 mainly divides HIPP into the subiculum,
the cornu ammonis (CA1/2/3/4), and the dentrate gyrus (DG). The CA1 subfield represents the biggest area in the hippocampus.
It is composed by different layers called the stratum radiatum (SR), the stratum lacunosum (SL), the stratum molecular (SM),
and the stratum pyramidale (SP). Furthermore, hippocampal subfields are not equally impacted by AD36–42. Indeed, several
MRI studies demonstrated that subfields are impacted differently according to AD stages. Postmortem, and in vivo imaging
studies showed that CA1SR-L-M are the subfields impacted with the greatest atrophy in advanced AD38, 39, 41. Recently, it has
been shown that subiculum is the earliest affected hippocampal region42, 43. These studies indicate that a subfield analysis of
HIPP alterations at finer scale could provide better tool for AD detection and prediction.

Although structural MRI is a valuable imaging technique to measure global structural modifications, such modality is not
able to capture microstructural degradation. However, the microstructural modifications caused by AD are considered to occur
before the atrophy measured by structural MRI. Therefore, diffusion MRI (d-MRI) appears as a potential candidate to detect
the earliest sign of AD. Several diffusion tensor imaging (DTI) studies proposed automatic methods to detect modifications of
diffusion parameters into the whole white matter using machine learning44–46. Others studies showed modifications of diffusion
parameters for AD patients into specific white matter structures such as corpus callosum47, 48, fornix49, cingulum47 and also
in gray matter tissue such as hippocampus50. More advanced d-MRI studies using brain connectivity and fiber tracking have
been proposed to extract features describing axonal fibers alterations49, 51, 52. Finally, it has been shown that hippocampal mean
diffusivity (MD) is correlated to pathology progression and thus could be used as an efficient biomarker of AD53. Moreover, it
was demonstrated that MD increases with the development of AD in the gray matter54–56. In a previous work, we showed that
patch-based features applied on DTI demonstrated competitive performances to classify the early stages of AD57. Methods
proposing to fuse d-MRI and s-MRI biomarkers was developed using the complementarity of these two MRI modalities58, 59.
Recently, a study combining volumetric measurements and mean diffusivity of HIPP subfields demonstrated that CA1 and
subiculum are the most impacted in late AD stage43. These studies showed the complementarity of s-MRI and d-MRI to capture
early alteration led by AD.

All these elements indicate that multimodal analysis of hippocampal subfields using an advanced image analysis framework
could provide valuable tool to improve AD detection and prediction. Consequently, in this paper, we propose to study
hippocampal subfields efficiencies using s-MRI and d-MRI modalities. We have developed a novel multimodal patch-based
grading fusion scheme to better capture such structural and microstructural alterations. First, we compare the performance of
our novel method with volume and MD within the whole hippocampus. Second, we demonstrate state-of-the-art performances
compared to more advanced d-MRI based methods. Finally, we study the efficiency of hippocampal subfields to improve AD
detection and prediction with volume, MD and our multimodal patch-based grading method. Our results demonstrate that the
study of hippocampus at finner scale improves AD prediction. Indeed, the experiments show that biomarkers based on whole
hippocampus obtain best results for AD detection but biomarkers based on subiculum obtain best results for AD prediction.

Materials
Dataset
Data used in this work were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (http://
adni.loni.ucla.edu). ADNI is a North American campaign launched in 2003 with aims to provide MRI, positron
emission tomography scans, clinical neurological measures and other biomarkers. This dataset includes AD patients, MCI
and control normal (CN) subjects. The group of MCI is composed of subjects who have abnormal memory dysfunctions. In
this work we used data from the ADNI-2 campaign that proposes eMCI and lMCI stages. The eMCI and lMCI subgroups
were obtained with the Wechsler Scale-Revised Logistical Memory I and II tests in accordance with the education levels of
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Figure 1. Segmentation of the hippocampal subfields. From left to right, segmentation maps of right hippocampal subfields
displayed on the axial, sagittal and coronal plane.

each subject. ADNI-2 provides T1-weighted (T1w) MRI and DTI scans for 54 CN, 79 eMCI, 39 lMCI and 47 AD subjects.
Only patients whose have T1w and DTI were selected in our work. Hence, in this work we used 52 CN, 99 MCI composed
of 65 eMCI, 34 lMCI and 38 AD instead of the whole initial ADNI-2 dataset. Table 1 shows the distribution of the data
for each group. The s-MRI and d-MRI scans used for all considered subjects in this study were acquired with the same
protocol (https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf).
T1w MRI acquisition protocol had been done with the 3D accelerated sagittal IR-SPGR, according to the ADNI protocol60.
The d-MRI were composed of 46 separate angles, 5 T2-weighted images with no diffusion sensitization (b0 images) and 41
directions (b=1000s/mm2). The d-MRI protocol was chosen to optimize the signal-to-noise ratio in a fixed scan time61. The
native resolution of s-MRI and d-MRI was set to 1mm3 and 2mm3, respectively.

Table 1. Description of the dataset used in this work. Data are provided by ADNI.

CN eMCI lMCI AD
Number of subjects 52 65 34 38
Age (years) 72.6 ± 5.9 73.0 ± 7.7 73.5 ± 6.6 73.84 ± 8.7
Gender (female/male) 29/23 39/26 21/13 20/18
MMSE 28.9 ± 1.2 28.2 ± 1.5 27.3 ± 1.8 23.4 ± 1.7
CDR-SB 0.0 ± 0.1 1.2 ± 0.6 1.7 ± 0.8 4.6 ± 1.4
RAVLT 45.4 ± 9.7 36.5 ± 10.2 30.7 ± 8.9 22.6 ± 7.0
FAQ 0.2 ± 0.9 2.3 ± 3.7 4.3 ± 4.8 14.6 ± 6.6
ADAS11 5.2 ± 3.0 8.1 ± 3.6 12.5 ± 4.9 20.2 ± 7.6
ADAS13 8.4 ± 4.4 13.3 ± 5.4 20.2 ± 6.7 30.0 ± 9.0

MRI processing
T1w images were processed using the volBrain system62 (http://volbrain.upv.es). This system is based on an
advanced pipeline providing automatic segmentation of different brain structures from T1w MRI. The preprocessing is based
on: (a) a denoising step with an adaptive non-local mean filter63, (b) an affine registration in the MNI space64, (c) a correction
of the image inhomogeneities65 and (d) an intensity normalization.

Afterwards, segmentation of hippocampal subfields was performed with HIPS66 based on a combination of non-linear
registration and patch-based label fusion67. This method uses a training library based on a dataset composed of high resolution
T1w images manually labeled according to the protocol proposed by Winterburn et al. (2013)35. To perform the segmentation,
the ADNI images are up-sampled with a local adaptive super resolution method to fit in the training image resolution68. The
method provides automatic segmentation of hippocampal subfields gathered into 5 labels: Subiculum, CA1SP, CA1SR-L-M,
CA2-3 and CA4/DG (see Figure 1). Finally, an estimation of the total intra-cranial volume is performed69.
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DTI processing
The preprocessing of the diffusion weighted images is based on: (a) a denoising with a LPCA filter70, (b) a correction of the
head motion using an affine registration and (c) an affine and a non-rigid registration to the T1w MRI in the MNI space64.
Afterwards, a diffusion tensor model71 is fitted at each voxel using Dipy library72. To analyze microstructural modifications,
the MD is estimated within each hippocampal subfield and the whole HIPP structure with the segmentation described in the
previous section. MD is defined as λ1+λ2+λ3

3 where λ1, λ2, λ3 are the three eigenvalues of the fitted tensor.
Finally, a quality control was proceeded to exclude data presenting miss-segmentation or miss-registration after image

preprocessing step.

Methods
Patch-based grading
Patch-based grading was firstly proposed for s-MRI9. The main idea of this exemplar-based method is to use the capability of
patch-based techniques to capture subtle signal modifications related to anatomical degradations caused by AD. To date, PBG
methods demonstrate state-of-the-art performances to detect the earliest stage of AD73. To determine the pathological status of
the subject under study, PBG method estimates at each voxel the state of cerebral tissues by a similarity measurement. This
measurement is performed between the anatomical pattern of the subject under study and those extracted from two training
populations, one healthy and another one unhealthy.

First, a training library T composed of two datasets of images is built: one with images from CN subjects and the other one
from AD patients. Next, for each voxel xi of the region of interest in the considered subject x, PBG method produces a weak
classifier denoted gxi . This weak classifier provides a surrogate of the pathological grading at the considered position. The
weak classifier is computed using a measurement of the similarity between the patch Pxi surrounding the voxel xi belonging to
the image under study and a set Kxi of the closest patches extracted from the library T . The most similar patches are found
using an approximative nearest neighbor method74. The grading value gxi at xi is defined as:

gxi =
∑t j∈Kxi

w(Pxi ,Pt j)pt

∑t j∈Kxi
w(Pxi ,Pt j)

(1)

where Pt j is the patch surrounding the voxel j belonging to the training template t ∈ T . w(xi, t j) is the weight assigned to the
pathological status pt of the training image t. We estimate w such as:

w(Pxi ,Pt j) = exp
(
−
||Pxi−Pt j ||

2
2

h2

)
(2)

where h = min ||Pxi −Pt j ||22 + ε and ε → 0. The pathological status pt is set to −1 for patches extracted from AD patient and to
1 for patches extracted from CN subject. Therefore, PBG method provides at each voxel a score representing an estimation of
the alterations caused by AD. Consequently, cerebral tissues strongly altered by AD have grading values close to −1 contrary
to healthy one with scores close to 1.

Multimodal patch-based grading fusion
Patch-based method presented in the previous section was firstly designed to capture structural alterations in T1w MRI. Recently,
we proposed to extent this method to DTI modality in order to detect microstructural modifications57. We showed the efficiency
of MD grading to improve the classification of the early stages of AD.

In this study, we propose a new framework to perform multimodal patch-based grading (MPBG). To this end, we developed
adaptive fusion of grading maps derived from different modalities (see example of grading maps on Fig. 2). As shown in the
following, this fusion provides more robust and accurate biomarkers compared to monomodal PBG biomarkers.

First, as in previous section, for each modality a training library of CN and AD subjects is built. Next, at each voxel within
the ROI of the considered subject and for each modality, a set K of most similar patches is extracted. This step provides one
set K of patches per modality m ∈M, where M corresponds to the set of the different modalities provided. Nevertheless, at
each voxel the quality of the grading estimation is not the same for all the modalities. Therefore, the degree of confidence is
estimated with the function α defined as:

αxi,m = ∑
t j∈Kxi,m

w(Pxi,m ,Pt j,m) (3)

that reflects the confidence of the grading value gxi for the modality m at the voxel xi. This confidence measure is derived
from multi-feature fusion75. Thus, each modality provides a weak classifier at each voxel that is weighted with its degree of
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confidence α(xi,m). The multimodal grading, denoted gxi , is given by:

gxi =
∑m∈M αxi,mgxi,m

∑m∈M αxi,m

. (4)

In other words, the weight w and Kxi,m are estimated independently for each modality and combined afterwards. Therefore,
the proposed combination framework is spatially adaptive and takes advantage of having access to a local degree of confidence
αxi,m for each modality m. Basically, when the set of patches found for a modality in the training library is composed of good
candidates (i.e., patches very similar to the patch from the subject under study), our confidence αxi,m in the grading estimation
for this modality is high. At the end, this modality will have a high weight in the mixing procedure described in (4).

Figure 2. Results obtained for different severities of cognitive impairments. From top to bottom slices on the coronal plane of
the segmentation maps and the fusion of T1w and MD patch-based grading with the proposed multimodal patch-based grading
method. The blue and the red colors represent the healthy and altered tissues, respectively.

Features estimation
Features were estimated in each hippocampal subfield and over the whole hippocampus as the union of all hippocampal
subfields masks. To reduce the inter-individual variability, all volumes are normalized by the total intra-cranial volume76.
Afterwards, we aggregate local weak classifiers of the grading map into a single feature for each considered structure (i.e.,
hippocampal subfields and whole HIPP) by averaging them. Therefore, patch-based grading features are computed by an
unweighted vote of the weak classifiers using the segmentation masks (see Fig. 3). Finally, to prevent the bias introduced as
the structure alterations due to aging, all the features (i.e., volume, mean of MD and MPBG) are age corrected with a linear
regression based on the CN group77.

Implementation
To find the most similar patches in the training library, we use the OPAL method78. OPAL is a fast approximate nearest neighbor
patch search technique. This method enables to process each modality in about 4 seconds on a standard computer. The training
library is equally composed of 37 images for both CN and AD subjects, leading to |T |= 76. The number of patches extracted
from each the training library is K = 160 (i.e., 80 from CN subjects and 80 from AD patients) and the patch size is 5×5×5
voxels. Furthermore, as done in our PBG DTI study57, we used zero normalized sum of squared differences for T1w to compute
the L2 norm (see Equation (2)). On the other hand, d-MRI is a quantitative imaging technique. Therefore, to preserve the
quantitative information, a straight sum of squared differences is used for MD in Equation (2),

Validation
To evaluate the efficiency of each considered biomarker to detect AD alterations, CN group is compared to AD patients
group. In addition, to discriminate the impairment severity of MCI group, eMCI versus lMCI classification is conducted. The
classification step is performed with a linear discriminant analysis (LDA) within a repeated stratified 5-fold cross-validation
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iterated 200 times. Mean area under the curve (AUC) and mean accuracy (ACC) are computed to compare performance for
each biomarker over the 200 iterations.

Figure 3. Proposed multimodal patch-based grading framework. At left, the input data: T1w images registered into the MNI
space and MD maps registered on the T1w images. At the middle: a coronal view of hippocampal subfields segmentation on
T1w, and the corresponding coronal view of a MPBG map estimated on T1w and MD. At right, the considered subfield
biomarkers for all subjects under study. From top to bottom, the features are the volumes, the MPBG values, and the average of
MD.

Results
In this section, the results are presented in three parts. In the first part, we compare the different approach applied within the
entire HIPP structure to evaluate the performance of our new MPBG compared to usual biomarkers such as volume and average
MD. Afterwards, in the second part, we compare the accuracy of each considered biomarkers within hippocampal subfields to
investigate the potential of hippocampal subfields analysis to improve result of AD detection and prediction. Finally, in a last
part, we compare the results of our proposed multimodal biomarker with state-of-the-art methods based on d-MRI to show the
competitive performance of our approach.

Table 2. Mean AUC of the different features estimated over the whole hippocampal structure. In bold font the best result for
each specific comparison. All results are expressed in percent.

Method CN vs. AD eMCI vs. lMCI
Volume 86.6 59.4
MD 80.6 55.6
T1w PBG 92.6 67.5
MD PBG 89.2 69.5
MPBG 92.1 69.5

Whole hippocampus
Results of the comparisons over the whole HIPP are represented in Table 2. In this experiment, we compared the results of
volume, mean of MD and PBG applied with both modality and MPBG over the whole hippocampus.

First, the hippocampus volume and its average of MD were compared. For CN versus AD classification the volume obtains
86.6% of AUC and the average of MD obtains 80.6%. For eMCI versus lMCI classification the volume and the average of
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MD obtain 59.4% and 55.6% of AUC, respectively. Experiments demonstrate that the hippocampus the volume obtains better
classification results than the average of MD for all comparison, especially for CN versus AD. Second, PBG biomarkers applied
with T1w and MD were compared. The results showed that T1w PBG provides better results than MD PBG with 92.6% of
AUC for CN versus AD classification. However, for eMCI versus lMCI classification MD grading provides the best results
with 69.5% of AUC. MPBG methods combining both modalities reaches the best results for CN versus AD and eMCI versus
lMCI with 92.1% and 69.5% of AUC, respectively. Finally, the proposed MPBG biomarker provides results similar to the best
modalities for all considered comparisons. Compared to volume, MPBG improves CN versus AD comparison result by 5.5%
of AUC and by over 10% of AUC for eMCI versus lMCI comparison. Thus, MBPG biomarker has a good capability to capture
modifications caused by AD at different severity stages (see Figure 2).

Hippocampal subfields
Figure 4 shows the distribution of volumes (A), average of MD (B) and MPBG (C) for each hippocampal subfield at each
different AD stages. For each comparison a p-value was estimated with a multi-comparison test79. We can note that for all
hippocampal subfields, alterations caused by the disease are related to a volume and MPBG decrease with a MD increase.
Subiculum subfield presents the most significant differences for several comparisons. More importantly, it is the only subfield
providing a p-value inferior than 0.05 for the comparison CN versus eMCI with volume, a p-value inferior than 0.01 to
lMCI versus AD with MD and a p-value inferior to 0.001 to eMCI versus lMCI with MPBG, which are the most challenging
comparisons. The distribution of MPBG shows a better discrimination between each group for all hippocampal subfields.
Indeed, MPBG applied within CA1SP, and CA1SR-L-M provides p-values inferior than 0.01 for eMCI versus lMCI. Moreover,
MPBG applied within the subiculum provides p-value inferior than 0.001 for the same comparison. Thus, MPBG enables to
perform a detection of AD with each subfield with an advantage for subiculum for the comparison of eMCI versus lMCI .

To estimate the efficiency of the considered biomarkers for AD detection, we also performed a classification experiment.
Figures 5 shows the results of two comparisons, CN versus AD (part noted A in the figure) and eMCI versus lMCI (part noted
B). First, for AD diagnosis (i.e., CN versus AD classification), the subfield providing the most discriminant volume is the
CA1S-R-L-M with an AUC of 86.0%. Moreover, the most discriminant MD biomarker is given by the subiculum with an AUC
of 88.1%. For this comparison, MD of subiculum is the only biomarker performing better results than whole hippocampus.
The best results obtained by MPBG feature is provided by the CA1SP with an AUC of 92.1% followed by CA1S-R-L-M
and subiculum. Second, for eMCI versus lMCI classification, the subiculum provides the best results for each considered
feature. Indeed, subiculum obtained an AUC of 66.1% for the volume, 62.4% for the average of MD, and 71.8% for MPBG.
Moreover, subiculum provided better results than whole hippocampus for each feature. Thus, the experiments conducted with
three different biomarkers showed that the use of hippocampal subfields, especially the subiculum, enables to obtain better
results for AD prediction than the whole hippocampal analysis.

Table 3. Comparison of our proposed MPBG biomarkers with state-of-the-arts methods based on d-MRI using a similar
ADNI2 dataset. All results are expressed in percentage of accuracy.

Method Feature Classifier CN eMCI lMCI AD CN vs. AD eMCI vs. lMCI
Nir et al. (2015)80 Tractography SVM 44 74 39 23 84.9% n/a
Prasad et al. (2015)52 Connectivity network SVM 50 74 38 38 78.2% 63.4%
Maggipinto et al. (2017)81 Voxel-based RF 50 22 18 50 87.0% n/a
MPBG HIPP Patch-based LDA 62 65 34 38 88.1% 68.8%
MPBG Subiculum Patch-based LDA 62 65 34 38 86.5% 70.8%

Comparison with state-of-the-art methods
To evaluate the performance of the proposed MPBG, we compared it with state-of-the-art multimodal methods using d-MRI. To
this end, we used the ACC values published by the authors. Table 3 shows the comparison of our proposed biomarkers within
the hippocampal area providing the best results (i.e. the whole HIPP and the subiculum) with the state-of-the-arts methods
using similar dataset based on ADNI-2. We compared these biomarkers with a method using features based on tractography80,
a method based on a connectivity network of the different brain structures52, and a voxel-based method that analyzes alterations
of white matter81. The results of comparison show that MPBG over whole HIPP obtains the best score for AD versus CN with
88.1% of accuracy while the best result is achieved by a voxel-based method with a feature selection81 that obtained 87.0% on
similar ADNI2 dataset. For the best of our knowledge, the only work providing eMCI and lMCI comparison52 using d-MRI
from similar ADNI2 dataset is based on a connectivity network and obtained 63.4%. These comparisons demonstrate the
relevance of MPBG biomarkers for AD detection and prediction. Indeed, our method provides similar results than the best
methods with similar dataset for CN versus AD classification and provides the best results for eMCI versus lMCI classification.
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Figure 4. Distribution of the volume (A), MD (B) and MPBG (C) for the different considered groups. The normalized
volumes are provided in mm3 in the MNI space for each subfield, MD is the mean of MD values into each subfield in mm2.s−1 ,
and MPBG is the mean patch-based grading values into each subfield. Blue, cyan, orange and red colors represent CN, eMCI,
lMCI and AD subjects, respectively. Statistical tests have been performed with ANOVA procedure and corrected for multiple
comparisons with the Bonferroni’s method. The p-values inferior to 0.05, inferior to 0.01, and inferior to 0.001 are represented
with *, **, and ***, respectively.
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Figure 5. AUC computed for CN versus AD (A), eMCI versus lMCI (B) comparisons with the different considered
biomarkers in each hippocampal area. Results of subfields are grouped by features (i.e., the volume, the average of MD and the
MPBG). Upper bounds of confidence interval are represented with vertical bars. Whole HIPP volume biomarker provides the
best results with a mean AUC of 86.6% for CN versus AD comparison, followed by the CA1S-R-L-M volume that obtains a
mean AUC of 86%. Subiculum volume provides the best results for eMCI versus lMCI with a mean AUC of 66.1%. The
average of MD for subiculum obtains the best results for CN versus AD and eMCI versus lMCI with a mean AUC of 88.0%
and 62.4%, respectively. Whole HIPP MPBG obtains the best results for CN versus AD with a mean AUC of 92.1%.
Subiculum MPBG obtains the best results for eMCI versus lMCI comparison with a mean AUC of 71.8%. This comparison
shows that subiculum is the only biomarker providing better results than whole HIPP.

Moreover, the proposed MPBG method based on subiculum improves the performance for eMCI versus lMCI classification
with an accuracy of 70.8%, that increases by 2% the accuracy based the whole HIPP and over 6% compared to a connectivity
network based method.

Discussion

In this work, a multimodal analysis of the hippocampal subfields alterations caused by AD is proposed. First, the structural and
micro-structural alterations were captured from two MRI modalities with different methods. Thus, the use of volume, MD,
and the proposed MPBG methods were investigated to achieve this analysis. In this section, the efficiency of these different
methods applied into the whole hippocampus and each hippocampal subfield are discussed.
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Whole hippocampus biomarkers
We first compared the performance of different methods applied to the whole hippocampus (see Table 2). The experiments
showed that volume and mean of MD within a structure as the hippocampus does not provides discriminant biomarkers to
detect early stages of AD. The MPBG method based on s-MRI and d-MRI obtains best results compared to the volume and
the average of MD. Moreover, compared to recent methods proposed for AD detection82 (see Table 3), proposed MPBG
demonstrates state-of-the-art performances for AD detection and prediction. These results emphasize the relevance of using
more accurate biomarker, such MPBG to study the effectiveness of hippocampal subfields for AD detection and prediction.

Hippocampal subfield biomarkers
The main contribution of this study is the multimodal analysis of hippocampal subfields. Indeed, most of the proposed
biomarkers based on hippocampus focused only on the whole structure or study alterations of hippocampal subfields with
methods that do not provide sensitive biomarkers to detect early modification caused by AD. The lack of work studying
alterations of hippocampal subfields with advanced biomarkers could be explained by the fact that automatic segmentation of
the hippocampal subfields is a complex task due to subtle borders dividing each area.

In this work, we compared the efficiency of diffusion MRI and multimodal patch-based biomarkers for AD detection and
prediction over the hippocampal subfields. Comparisons based on MD, volume and multimodal patch-based biomarkers showed
that the subiculum is the most discriminant structure in the earliest stage of AD providing the best results for AD prediction
(see Figure 4 and 5). However, whole hippocampus structure, followed by CA1SR-L-M, obtains best results for AD detection.

These results are in accordance with literature studies based on animal model and in vivo imaging combining volume
and MD demonstrating that subiculum is the earliest hippocampal region affected by AD42, 43. Moreover, postmortem studies
showed that the hippocampal degeneration in early stages of AD is not uniform. After the apparition of alterations in the
EC, the pathology spreads to the subiculum, CA1, CA2-3 and finally the CA4 and DG subfields36, 37, 42, 83. It is interesting to
note that the results of our experiments using volume-based biomarkers are also coherent with the previous in-vivo imaging
studies that analyzed the atrophy of each hippocampal subfield at advanced stage of AD. These studies showed that CA1 is the
subfield impacted by the strongest atrophy38, 39, 84, 85. Furthermore, studies using ultra-high field at 7T enabling CA1 layers
discrimination showed that CA1SR-L-M is the subfields showing the greater atrophy at advanced stages of AD40, 41.

Conclusion
In this paper, we analyzed hippocampal subfield alterations with a multimodal framework based on structural and diffusion
MRI. In addition, to study tenuous modifications occurring into each hippocampal subfield, we developed a new multimodal
patch-based framework using T1w and DTI. Our novel MPBG method were compared to the volume and the average of MD
over the whole hippocampus. This comparison demonstrated that MPBG method improves performances for AD detection and
prediction. In addition, a comparison with state-of-the-art diffusion-based methods showed the competitive performance of
MPBG biomarkers. Finally, an analysis of the hippocampal subfields with the volume, the average of MD and MBPG methods
was conducted. Although CA1 is the subfields having the greater atrophy in the late stage of AD, the experiments demonstrated
that whole hippocampus provides best biomarker for AD detection while subiculum provides best biomarker for AD prediction.
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