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2	
	

Abstract 	18	

Metabolic networks comprise thousands of enzymatic reactions functioning in a controlled 19	
manner and have been shaped by natural selection. Thanks to the genome data, the footprints of 20	

adaptive (positive) selection are detectable, and the strength of purifying selection can be measured. 21	

This has made possible to know where, in the metabolic network, adaptive selection has acted and 22	

where purifying selection is more or less strong and efficient. We have carried out a comprehensive 23	

molecular evolutionary study of all the genes involved in the human metabolism. We investigated 24	

the type and strength of the selective pressures that acted on the enzyme-coding genes belonging to 25	

metabolic pathways during the divergence of primates and rodents. Then, we related those selective 26	

pressures to the functional and topological characteristics of the pathways. We have used DNA 27	

sequences of all enzymes (956) of the metabolic pathways comprised in the HumanCyc database, 28	

using genome data for humans and five other mammalian species.	29	

We have found that the evolution of metabolic genes is primarily constrained by the layer of 30	

the metabolism in which the genes participate: while genes encoding enzymes of the inner core of 31	
metabolism are much conserved, those encoding enzymes participating in the outer layer, mediating 32	

the interaction with the environment, are evolutionarily less constrained and more plastic, having 33	
experienced faster functional evolution. Genes that have been targeted by adaptive selection are 34	

endowed by higher out-degree centralities than non-adaptive genes, while genes with high in-degree 35	

centralities are under stronger purifying selection. When the position along the pathway is 36	
considered, a funnel-like distribution of the strength of the purifying selection is found. Genes at 37	

bottom positions are highly preserved by purifying selection, whereas genes at top positions, 38	

catalyzing the first steps, are open to evolutionary changes.	39	

These results show how functional and topological characteristics of metabolic pathways 40	
contribute to shape the patterns of evolutionary pressures driven by natural selection and how 41	

pathway network structure matters in the evolutionary process that shapes the evolution of the 42	

system.	43	

	 	44	
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3	
	

INTRODUCTION	45	

Metabolism is the set of enzymatic reactions that allows the synthesis, degradation and 46	
transformation of the biochemical components necessary for the maintenance and reproduction of a 47	

cell. Understanding the evolution of a system whose functioning arises from the interplay of many 48	

cellular components, is important both, for understanding the biology of the cell and for unraveling 49	

general principles of evolution of complex biological systems.	50	

The origin and evolution of metabolic pathways is a difficult problem and several ideas have 51	

been proposed (reviewed in Peretó 2011). Among them, the patchwork model has gained a general 52	

acceptance. It proposes the evolution of enzymes from broader to narrower substrate specificities 53	

through gene duplication and the cooption of metabolic functions by the diverse pathways (Yčas 54	
1974, Jensen 1976). Nevertheless, the ability to contrast different models has been limited by the 55	

fact that all of them predate the current availability of complete genome sequences from the three 56	

domains of life (Lazcano et al. 1995). Nowadays, complete genome sequences and subsequent 57	

reconstructions of genome-scale metabolic networks for many organisms have been used to test 58	
some of the predictions of evolutionary models. In the context of those systemic studies, the 59	

patchwork model exhibits a higher explicative power (Alves et al 2002; Light and Kraulis 2003; 60	
Diaz-Mejia et al 2007; Fani and Fondi 2009; Grassi and Tramontano 2011; Peretó 2012).	61	

A full understanding of the evolution of metabolism also requires the understanding of the 62	

functional evolution of the enzymes. This can be achieved by investigating the selective pressures 63	

that have been acting on the genes that code for the enzymes (metabolic genes), and trying to 64	
understand their evolutionary dynamics in relation to the molecular systems they participate. An 65	

interesting approximation is the study of the selective pressures over the network structure of 66	

molecular systems; this can be achieved through the study of the relationship between parameters of 67	
the evolutionary histories of the enzyme-coding genes and the topological properties of their gene 68	

products within a network. Connectivity, which is the number of links of a node in a network, in a 69	

metabolic network represents the number of metabolic interactions and it is an initial measure for 70	

the topological description of each node.	71	

Selective pressures are at the base of understanding adaptation and two main types have to be 72	

distinguished. By one hand purifying selection, which is the force that eliminates genetic variants 73	

that impair the function and, by the other, positive selection, in which one (or several) variants show 74	

a better adaptation and the frequency in the population will increase, reaching eventually fixation. 75	

These evolutionary pressures may be detected and measured through dN/dS when comparing 76	

the genomes from different species. A negative correlation between connectivity and the 77	
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evolutionary rates have been reported in the Drosophila and yeast genome-scale metabolic 78	

networks. In these networks, highly connected genes have been shown to evolve at slower rates, 79	

indicating selective constraints acting on them (Vitkup et al. 2006; Greenberg et al. 2008). Hence 80	

connectivity has an effect on evolutionary rates, with higher connected genes under stronger 81	
purifying selection.	In mammal genomes, the negative correlation between dN/dS and degree 82	

centrality is only found in four sub-cellular compartments while in other three a negative correlation 83	

is found between dN/dS  and betweenness centrality (Hudson and Conanat 2011).	84	

This same approach, which couples the molecular evolution of genes with the knowledge of 85	

the interaction networks of their gene-products, has been also applied to study specific metabolic 86	

pathways, and the influence of the local network structure (that is the structure of only the 87	

metabolic pathway) is studied. This may reveal local strategies of adaptation that may be found 88	

different from the constraints imposed by the whole metabolic network, as well as it may shed light 89	
on network constraints specific to only specific pathways.. In these works, the analysis at the 90	

network level initially seeks differences in the strength of the selection on genes located upstream 91	

versus those located downstream in the pathway, in order to detect whether the position of a gene 92	

along the pathway may constrain gene evolution. In plant biosynthetic pathways, it has been found 93	
that upstream genes tend to evolve slower than those downstream due to a stronger selective 94	

constraint (Rausher et al. 1999; Lu and Rausher 2003; Rausher et al. 2008; Livingstone and 95	
Anderson 2009; Ramsay et al. 2009). The analyzed pathways are secondary metabolite 96	

biosyntheses, with an inherent directionality given by the consecutive steps of the biosynthetic 97	

process. Further, many of the analyzed pathways are organized into branched structures: one or few 98	

initial substrates are processed into many final outputs. In such branched pathways with no loops, 99	

upstream genes are more likely to be above branch points and hence to be involved in the synthesis 100	
of more products than downstream genes (Rausher et al.1999). These branched structures are 101	

common to many biosynthetic metabolic pathways. A proposed explanation for the observed 102	

gradient in selective pressures is that upstream genes are under stronger purifying selection because 103	
they are more pleiotropic than those downstream, affecting a greater number of end products. When 104	

the evolution of the genes of the N-glycosylation pathway during the divergence of primates was 105	

analyzed, an opposite trend emerged, with genes at the downstream position of this metabolic 106	

pathway being more constrained than upstream ones (Montanucci et al 2011). In a non-metabolic 107	

pathway, phototransduction, proteins which are topologically central in the signaling pathway, were 108	

found to be more constrained in their evolution; proteins peripheral to the pathway have 109	

experienced a relaxation of selective pressures (Invergo et al 2013).	110	

All these studies suggest the idea that a part of the variation of evolutionary rates in metabolic 111	
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pathways can be accounted for by the structure of their functional network, both the local metabolic 112	

pathway and the global whole-cell metabolic network. However, in the case of single metabolic 113	

pathways, different patterns have been found for different pathways and different species sets and 114	

no general pattern has emerged from these few cases. A large number of pathways and an overall 115	
vision of the metabolic network should be analyzed to reveal whether there exist general patterns in 116	

their evolutionary history and to better understand the distribution of selective pressures in the 117	

network, both in terms of constraints or adaptations. Here, we address the relationship between the 118	

topology of the whole set of human metabolic pathways during the time of divergence of primate 119	

and rodents and relate it to the evolutionary behavior of each gene in terms of natural selection 120	
(purifying and adaptive). Its relationship may help understand the distribution of evolutionary 121	

forces within complex biomolecular networks. 122	

 123	

METHODS	124	

Data Set	125	

Pathways The data set is composed of the metabolic pathways comprised in the HumanCyc 126	

database, release 18.1. The number of human pathways present in HumanCyc 18.1 is 325. Of these, 127	
13 pathways were not considered in the present study because they are signaling or protein 128	

modification pathways. Two pathways (morphine biosynthesis and melatonin degradation III) could 129	
not be used because their reactions are not associated to any annotated human gene. The final total 130	

number of considered metabolic pathways for the analysis is then 310. Of these, 275 are base 131	

pathways (comprised of reactions only) while 35 are super-pathways, which are comprised of one 132	

or more pathways, plus possible additional reactions. These super-pathways were treated separately 133	

in the analysis because they add redundant information. A full list of the pathways can be found in 134	
Supplementary Table S1.  135	

The	election	of	HumanCyc	may	requires	justification.	Even	if	there	are	other	sources	of	136	

reconstruction	of	human	metabolism	(Duarte	et	al.	2007;	Ma	et	al.	2007;	Thiele	et	al.	2013),	in	137	

our	case		the	choice	of	the	HumanCyc	database	was	precisely	driven	by	the	fact	that	it	138	

annotates	pathways,	and	the	study	of	the	influence	of	the	local	topology	(pathway	topology)	139	

on	the	evolution	of	metabolic	genes	was	precisely	the	question	motivating	this	work.	Our	140	

main	objective	was	to	gather	the	best	possible	functional,	expert-curated	annotations	within	a	141	

pathway	classification	to	be	further	manually	curated	and	our	examination	indicated	that	142	

HumanCyc	had	the	best	quality	collection	of	pathways.	143	
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Reactions The total number of enzymatic reactions comprised in the 310 pathways that are 144	

associated to at least one annotated gene is 879. 	145	

Genes The total number of genes that encodes enzymes that take part in the annotated 146	

pathways is 956. Genes were functionally classified by assigning them to the functional class of the 147	

pathway in which they participate. Two different classification schemes were considered since there 148	

are different criteria according to which pathways can be assigned to distinct functional groups. The 149	

first classification scheme used, the ontology-based scheme, relies on the HumanCyc Pathway-150	

ontology that aims at classifying pathways into a tree-based structure (as a gene ontology). We used 151	

the top level of the tree (the classes immediately below the root of the tree, which is “Pathway”) as 152	

classes to assign pathways. We used 7 of the 9 parent classes just after the root of the HumanCyc 153	

pathways ontology, excluding the two classes for non-metabolic pathways, “Macromolecule 154	

Modifications” and “Signal transduction pathways”. The basic criteria of this ontology rely on the 155	
metabolic mode of the pathway, for example biosynthesis versus degradation. The second 156	

classification schema, compound-based, is based on the kind of compounds that are primarily 157	

transformed in the pathway, for example nucleotide versus fatty acids (see classification in 158	

supplementary Table S1). 	159	

Computation of Evolutionary Rates	160	

Evolutionary rates were estimated during the divergence of mammals and rodents. For each 161	

human gene, its orthologous sequences were derived from the following species: chimpanzee, 162	

orangutan, gorilla, mouse and rat. Multiple sequence alignments of the coding regions were 163	
downloaded from Ensembl (release 75). When absent, orthologous sequences were predicted, if 164	

possible, through a similarity search of the human gene sequence against the genome assembly, 165	

followed by subsequent gene prediction by GeneWise (Birney et al 2004), in a procedure described 166	
in Montanucci et al (2011). In case of predicted orthologues, multiple sequence alignments were 167	

obtained through T-coffee with default options by aligning protein sequences and then back-168	

translating to genomic sequence. The same procedure was adopted for incomplete or bad quality 169	

sequences.	170	

Evolutionary rates were computed using the codeml program of the PAML package (Yang 171	

2007). Two likelihood ratio tests between pairs of nested model (M1a versus M2a and M7 versus 172	

M8) were carried out to detect positive selection events. The overall strength of purifying selection 173	

on each gene was estimated though a unique dN/dS over the entire tree and sequence length (model 174	

M0). Each maximum-likelihood estimation, including likelihood ratio tests, was carried out 5 times, 175	

each with 3 different initial dN/dS values: 0.1, 1 and 2 to check for stability of the results to 176	
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repeated runs and different initial conditions. Final results of the likelihood ratio tests were 177	

corrected through a False Discovery Rate (FDR) method (Storey 2002). Positive selection was 178	

inferred when either one or both of the two likelihood ratio tests was significant after correcting for 179	

multiple testing.	Given	the	shallow	divergence	considered,	non-branch-specific	models	(M0	180	

averaged	dN/dS	and	site-specific	positive	selection	tests)	provide	the	best	estimation	of	the	181	

overall	selective	pressure	acting	on	each	gene,	given	that	for	low	number	of	closely	related	182	

species	branch-specific	estimations	that	lack	the	power	to	provide	stable	estimations.	183	

Given the strong impact of alignment errors in generating spurious signals of positive 184	

selection, the alignments corresponding to genes with P < 0.05 in the likelihood ratio test for 185	

positive selection were inspected visually. Alignment regions containing evident errors (usually	186	

contiguous	positions	in	a	sequence	of	the	alignment	with	a	suspiciously	high	number	of	187	

differences	often	resulting	from	sequencing	or	assembly	errors)	were manually masked and 188	

then evolutionary rates and positive selection tests were then recomputed. 189	

Computation of Topological Parameters	190	

Building the reaction graph. Metabolic pathways were derived from HumanCyc. The 191	

classical representation of metabolic pathways, also used in HumanCyc, is through the substrate 192	

graph, in which nodes represent metabolites and edges represent reactions that transform 193	
metabolites. Here we represent pathways as reaction graphs (Montañez et al 2010), in which nodes 194	

represent reactions and edges link consecutive reactions. Consecutive reactions within a pathway 195	

were derived from the PREDECESSORS field of the pathways.dat flat-file of the HumanCyc 196	
database. The direction provided in this field was used to build directed graphs, in which edges are 197	

arrows having a direction that goes from the preceding to the following reaction. The graphs have 198	
been constructed through Python scripts from the flat-files downloaded from HumanCyc 18.1.	199	

Centrality measures. Topological measures within the directed graphs built for each pathway 200	

independently were computed through build-in functions of the NetworkX Python package. Four 201	

centrality measures were computed: closeness, betweenness, and in-degree and out-degree 202	
centrality. Centrality measures for the corresponding undirected graphs were also computed.	203	

Loops. A Boolean variable was derived for each pathway to detect whether the pathway 204	

contains loops. This computation has been achieved through the simple_cycles() function of the 205	
NetworkX package applied to the directed graph. This variable was only computed for pathways of 206	

more than one reaction.	207	

Top/Bottom Position. For each pathway, nodes were assigned to three different classes 208	
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depending whether they are at the beginning of the pathway (in-degree=0, “upstream”), at the end 209	

(out-degree=0, “downstream”) or in any other position in between (“intermediate”). The uppermost 210	

positions (top positions), are the first reaction steps of the pathway, corresponding to initial 211	

reactions. At bottom positions there are the reactions that produce the final products of the pathway. 212	
Reactions in any other position in between of these two are assigned to the same class 213	

(intermediate). Beside these three classes, a fourth class has been added for nodes (reactions) that 214	

become isolated when the substrate graph is transformed into the corresponding reaction graph. 215	

This is the case for pathways for which the reaction graph comprises more than one connected 216	

component. These reactions have the feature of directly catalyzing the end products of the pathway 217	
starting from the initial substrates, thus being at the beginning (first step) and at the end (last step) at 218	

the same time.	219	

Statistical Analyses	220	

To evaluate the importance of relationship between evolutionary estimates and the different 221	

descriptive network properties, we performed a multivariate analysis, through an automated linear 222	
modeling routine implemented in SPSS software. The automated linear modeling created a single 223	

standard model to explain the relationship between fields. The adopted linear modeling also 224	
included codon bias, protein length and CG content as explanatory variables. Before the linear 225	

modeling missing values were replaced.  No variable selection method was used and all variables 226	

entered into the model were assessed. The automated linear modeling allows also for detecting 227	
outliers; however outliers were not excluded of the analysis. To compare groups, non-parametric 228	

methods were used. To correct for multiple testing, False Discovery Rate (FDR) methods were 229	

applied (Storey 2002).	230	

Genes considered under positive selection were compared to the whole set of metabolic genes 231	
for several centrality measures using a permutation test. For every centrality measure, the mean 232	

score of the genes under positive selection was compared to the distribution of the mean scores of a 233	

set of randomly selected genes from the whole set of metabolic genes with the same sample size, 234	

using a permutation test (10.000 permutations). 235	

	236	

RESULTS	237	

Data Set Description	238	

The total number of pathways used for the analysis is 310, with 275 base pathways and 35 239	

super pathways (see methods). A full list of the pathways can be found in supplementary Table S1. 240	
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Of the 275 base pathways, 30 comprise only one reaction, while the remaining 245 pathways 241	

comprise a number of reactions that ranges from 2 to 30. The majority of the pathways (208 out of 242	

275 base pathways and 28 out of 35 super pathways) show no loop structures. They are 243	

characterized by a non-feedback topology, with either linear or branched structures. For 27 of the 244	
35 super-pathways, their reaction set is fully comprised in base pathways, so excluding them from 245	

the analysis would not result in loss of reactions and genes.	246	

The total number of genes associated to the reactions in the pathways is 956. 943 out of the 247	

956 gens participate in base pathways, while 13 genes (NAGK, GGCT, SRR, TYW4, GGT1, EBP, 248	

SC5DL, DHCR7, DHCR24, CCBL1, OPLAH, CNDP2, CCBL2) are associated to reactions that are 249	

uniquely present in super pathways. Of the 956 genes, 335 encode proteins that carry out their 250	

enzymatic activity within protein complexes while 621 genes encode proteins that are themselves 251	

the functional enzymes. 252	

The relationship between enzymatic activities and enzymes is not one-to-one: on the one 253	

hand, each gene encodes an enzyme (or an enzymatic subunit) that may carry out more than one 254	
catalytic activity and, on the other hand, the same catalytic activity can be served by more than one 255	

enzyme (isoenzymes) that are encoded by different genes. Within this scenario, 71% of the genes 256	
(677 out of 956) code for enzymes (or enzymatic subunits) that carry out only one metabolic 257	

function, 26% of the genes (247 out of 956) are associate to a number of reactions between 2 and 5, 258	

and the remaining 3% of the genes (32 out of 956) are associated to more than 5 reactions. The 259	
genes whose encoded enzymes are associated to the biggest number of reactions are: FASN (fatty 260	

acid synthase), CYP2A6 (a type of cytochrome P450), UGT2B11 (a type of UDP-261	

glucuronosyltransferase), SCMOL (a methylsterol monooxygenase) DIO3 (deiodinase, 262	

iodothyronine, type III), ALOX5 (arachidonate 5-lipoxygenase) and ALDH3A2 (fatty aldehyde 263	

dehydrogenase).	264	

Purifying and Positive Selection in Metabolic Genes 265	

The evolutionary rates have been computed for 927 genes (for 29 it was not possible due to 266	
lack of or poor quality of one or more of the orthologous sequences) considering the full set of six 267	

species (human, chimpanzee, orangutan, gorilla, mouse and rat): the synonymous evolutionary rate 268	

(dS), the non-synonymous evolutionary rate (dN) and their ratio (dN/dS), which provides the 269	

direction of the action of the selection and an overall estimation of the strength of the purifying 270	

selection that have acted on each gene. The distribution of the evolutionary rates can be seen in Fig 271	

1, which shows that the main force that has shaped the evolution of metabolic genes during the 272	

mammal evolution has been purifying selection, with all dN/dS values lower than 0.5. 273	
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Beside an estimation of purifying selection, for each one of the 927 genes we performed two 274	

likelihood ratio tests to look for sequence signature of positive selection. After multiple test 275	

correction, using false discovery rate, we found that only six genes show a significant P-value for 276	

the likelihood ratio test. The genes and their p values for the M7 versus M8 test are:  CYP2E1 (P = 277	
0.0000005, corrected = 0.00043), HDC (P = 0.0000217, corrected = 0.01006), CES1 (P = 278	

0.0000471, corrected = 0.01455), DPM2 (P = 0.0001017, corrected = 0.02356), SPAM1 (P = 279	

0.0001575, corrected =0.02919) and AKR1C1 (P = 0.0002451, corrected =0.03787). 	280	

CYP2E1 is a member of the cytochrome 450 family of enzymes involved in the inactivation 281	

of drugs and xenobiotics. The HDC gene codes for histidine decarboxylase, which converts L-282	

histidine into histamine, a biogenic amine involved in different physiological processes such as 283	

neurotransmission, gastric acid secretion, inflammation and regulation of circadian rhythm. CES1 284	

codes for a carboxylesterase involved in the hydrolysis of various xenobiotics and drug clearance in 285	
liver. DPM2 encodes for the regulatory subunit of the dolichol-phosphate mannose (DPM) synthase 286	

complex whose main function is recognition on the cellular surface. SPAM1encodes for a 287	

hyaluronidase located on the human sperm surface that enables sperm to penetrate through the 288	

hyaluronic acid-rich envelope of the oocyte. AKR1C1 belongs to a superfamily of aldo-keto 289	
reductases and catalyzes the reaction of progesterone to the inactive form 20-alpha-hydroxy-290	

progesterone. 291	

The quality control of the alignments which involve the removal of bad quality regions from 292	
the computation of the evolutionary rates might have led to an underestimation of the positive 293	

selection events, however it guarantees the reliability of the events found. 294	

Functional classes 295	

Beside the evolution of specific genes under positive selection, we investigated different 296	
levels of selective constraint between functional classes by comparing evolutionary rates of genes 297	

participating in pathways performing different functions. A Kruskal-Wallis (KW) test was used to 298	

test differences in evolutionary rates between genes belonging to different functional classes of 299	
pathways. For both ontology-based and compound-based classification, we find significant 300	

differences among different functional classes in the evolutionary rates dN, and dN/dS (with dS 301	

close to significance). 	302	

When we consider the ontology-based classification (supplementary Fig S1), differences in 303	
dN/dS reveals relaxed constraints (high dN/dS values) for external routes (“Detoxification”), and 304	

strong constraints (low dN/dS), for routes of the core metabolism (“Generation of precursor 305	

metabolites”). We also find that biosynthesis routes are more constrained than degradation ones. 306	
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These differences in the strength of purifying selection can reflect the need of making the 307	

biosynthesis of very specific metabolites, but degradation of a broad range of external compounds, 308	

most likely unknown and toxic.	309	

When we consider the compound-based classification (supplementary Fig S2), values of 310	

dN/dS separate those with highest values, Steroid, Secondary metabolism and Detoxification, and 311	

those with the lowest, mainly Glycolysis/TCA/PentoseP, which corresponds to the inner core of the 312	

metabolic network. In particular, the detoxification class, the one with the highest dN/dS, contains 313	

pathways with enzymes able to recognize a broad range of metabolites. Thus, both classification 314	

schemes show that genes participating in peripheral routes have evolved under relaxed constraint, 315	

while stronger selective constraint has acted on the genes whose encoded enzymes have roles within 316	

the central metabolism.	317	

From a conceptual point of view, traditionally metabolism has been regarded as a series of 318	

layers of complexity, from central pathways involved in basic energy transactions and the 319	

generation of intermediate precursors, followed by a tier of almost universal biosynthetic pathways 320	
that use a few of those precursors to generate biomass components, and, finally, some processes 321	

connected to central intermediates that generate a diversity of metabolites usually related to 322	
behavioral or environmental cues, and showing a more restricted phylogenetic distribution, also 323	

known as secondary metabolism. Theoretical approaches based on graph theory support this 324	

classical image of metabolic organization (Guimerà and Amaral 2005; Noor et al 2010). Thus, we 325	
grouped the functional classes into three main groups according to the layer of the global 326	

metabolism in which they operate: the inner core of intermediary metabolism comprises classes of 327	

Glycolysis/TCA/PentoseP and Polysaccharides; the second layer of intermediary metabolism with 328	

Membrane Lipids, Nucleotide, Fatty acid/TAG, Cofactor, Fatty Acid/hormone, and Amino acid; 329	

and the outer layer of metabolism comprises the classes of Steroid, Secondary Metabolism and 330	

Detoxification. When we compare the evolutionary rates of these classes through a KW test we find 331	

highly significant differences with a clear gradient of selective constraints in which central routes of 332	
the core metabolism are more constrained (lower dN and dN/dS) than the ones in the second layer 333	

which, in turn, are more constrained than those of the more peripheral layer (Fig 2 and 334	

supplementary Fig 3). Pairwise comparisons hold significant after correcting for multiple testing (P 335	

< 0.001). Figure 2 clearly shows the steep gradient of selective pressures with genes of the central 336	
metabolism under the stronger selective constraint and genes of the peripheral routes under relaxed 337	

selective constraint. 338	

Presence/Absence of Isoenzymes 339	
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Given that roughly 36% of the reactions are catalyzed by more than one enzyme (different 340	

enzymes, encoded by different genes, able to catalyze the same reaction or isoenzymes) we 341	

compared the selective pressures that have acted on genes that encode for unique enzymes, to that 342	

of genes that encode for enzymes for which isoenzymes exist. The existence of isoenzymes 343	
indicates that alternative proteins could be recruited to perform the same metabolic function, 344	

whereas the presence of a unique enzyme is critical for their specific metabolic function to be 345	

served. Interestingly, we find no difference in selective constraint between these two classes of 346	

genes. A Mann-Whitney U test shows no significant differences: P=0.066 for dN/dS, P= 0.109 for 347	

dN and P= 0.668 for dS. This result shows that sequence properties of isoenzymes do not differ 348	
from those of the rest of the enzymes; they cannot be considered simply as redundant.	349	

Evolutionary Rates and Topological Properties 350	

In order to investigate whether and how the organization into metabolic networks imposes 351	

constraints on the evolution of the enzyme-coding genes, we carried out automated linear modeling 352	

to reveal possible linear relationships between evolutionary rates and topological features of 353	
reactions (Table 1). Among the topological features that can be associated to each node and that 354	

summarize aspects of the node's position within the network, we first considered four centrality 355	
measures: (i) in-degree centrality, which is indicative of the number of incoming links pointing to a 356	

node; (ii) out-degree centrality, which is indicative of the number of outgoing links stemming from 357	

a node; (iii) betweenness centrality, which is indicative of the importance of a node in linking parts 358	
of the networks; and (iv) closeness centrality, which is indicative of whether a node lies in the 359	

central or peripheral part of the network. In this analysis, pathways with the category “one-reaction” 360	

are excluded, given that topological measures by definition cannot be computed. In the multivariate 361	

statistical analysis we included three sequence features of the genes that are known to influence 362	

evolutionary rates and thus have to be taken into account when analyzing variations in evolutionary 363	

rates. These three sequence features are: (i) ENC, the effective number of codons, which quantifies 364	

codon bias and is correlated with expression levels; (ii) length of the coding sequence (CDS) of the 365	
gene; and (iii) CG content of the CDS.  366	

As seen in Table 1, synonymous substitution rates show significant linear relationships only 367	

with sequence features (codon bias, sequence length and CG content), while no significant 368	
correlation is found with any of the topological parameters. This implies that, as expected, neutral 369	

evolution (evolution at synonymous sites) is only affected by the nucleotide composition of the 370	

sequence itself and not by the position of the gene in the network. On the contrary, in the case of 371	

functional evolution (evolution at non-synonymous sites and dN/dS) a significant linear relationship 372	
is found with topological parameters, showing that the evolutionary rates suffer the influence of the 373	
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position and the role of gene products within the pathways. In particular a highly significant 374	

negative correlation is found between both dN and dN/dS and in-degree centrality, meaning that 375	

genes that have high in-degree centralities are highly constrained in their evolution with a strong 376	

purifying selection, while genes that have low in-degree centralities are free to evolve under relaxed 377	
constraints and accumulate non-synonymous substitutions at a faster rate. This result holds for 378	

pathways of different topologies regardless of whether the structure presents loops or not. 379	

Position along the Pathway: Top/Intermediate/Bottom Classification 380	

In order to analyze the possible relationship of topological centrality measures and the 381	

position within the specific metabolic pathways, we took advantage of the physiological 382	

directionality of metabolic pathways and we generated a new categorical variable to account for 383	
position. Three different classes of reactions have been defined according to their position within 384	

the pathway: reactions that catalyze the first enzymatic step in the pathway (top position); reactions 385	

that catalyze the last step in the pathway (bottom position); all the in-between steps are assigned to 386	

same class (intermediate). A fourth class has been introduced for reactions that catalyze the first and 387	
last step at the same time, being, for example the only reaction of one branch of a branched pathway 388	

that directly converts the initial substrates into the final products. Genes are assigned to the class of 389	
the reaction catalyzed by the enzyme they encode. It should be noted that this classification on 390	

position is correlated with in-degree centrality: nodes at top positions are those with no incoming 391	

links (in-degree equal to 0) and those at bottom positions are defined solely on the basis of out-392	
degree (out-degree equal to 0). This new variable, even if correlated with in-degree, encodes 393	

different positional information that is not fully captured by the in-degree centrality. 	394	

We analyzed whether genes whose encoded enzymes catalyze reactions belonging to these 395	

four classes have evolved under different selective pressures. Evolutionary rates for these four 396	
classes are shown in Fig 3a and supplementary Fig 4a. The statistical significances of their 397	

differences have been assessed through Kruskal-Wallis, which show that there are significant 398	

differences between the four considered classes in dN/dS (P=0.001) and dN (P=0.001) while no 399	

significant differences are found in dS (P=0.151). Both cases of dN/dS and dN pairwise 400	

comparisons show that the intermediate class has a lower dN and dN/dS than the top (0.022 for 401	

dN/dS and 0.010 for dN) and one-step (0.010 for dN/dS and 0.005 for dN) classes. This means that 402	
genes whose encoded enzymes catalyze reactions at top positions have undergone more relaxed 403	

evolution and faster non-synonymous substitution rates than genes at intermediate position. Genes 404	

belonging to the one-step class have the highest evolutionary rates. 405	

Given that the last three classes (top, intermediate, and bottom) constitute an ordered variable 406	
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of the position along the pathway, we carried out a trend test to test whether a linear relationship 407	

exists of the evolutionary rates and these positional classes. A significant linear relationship is 408	

found for dN for the three classes of top-intermediate-bottom with P-value of 0.008. Non-significant 409	

P-values for the linear relationship are instead found for dN/dS (0.072) and for dS (0.481). This 410	
means that a statistically significant gradient in the rate of non-synonymous substitution is found 411	

along metabolic pathways with genes in top positions having experienced faster non-synonymous 412	

substitution rates.	413	

Given that the top/bottom position implies directionality for the pathway, we repeated the 414	

analysis in the subset of 208 pathways that have no loops thus have a marked directional structure 415	

(Fig 3b and supplementary fig 4b). As before, KW tests show that there are significant differences 416	

between dN/dS (P=0.023) and dN (P=0.005) between the four classes considered, while no 417	

significant differences are found in dS (P=0.300). When looking at pairwise comparisons we find 418	
that dN/dS of genes of the one-step class have a significantly higher dN/dS than those belonging to 419	

the intermediate (P=0.035) and to the bottom (P=0.019) class, and the dN of genes belonging to the 420	

one-step class are significantly different from dN of the remaining three classes: top (P=0.034), 421	

intermediate (P=0.006), bottom (P=0.004). 	422	

In summary, the stringent KW test clearly highlighted differences between the rates of 423	

functional evolution of the genes belonging to the one-step class and those belonging to the other 424	

classes, pointing to their relaxed evolutionary constraint. This implies a gradient of non-425	
synonymous substitution rates along metabolic pathways with genes at top-positions allowed to 426	

evolve at a faster rate than genes at intermediate and bottom positions, and with genes at 427	

intermediate and bottom positions being more tightly constrained to fix non-synonymous 428	

substitutions at a slower rate. 429	

Topological Measures of Positive Selected Genes 430	

We measured the differences in the mean of the four centrality measures (in-degree, out-431	

degree, closeness and betweenness) between genes with signatures of positive selection and the 432	
whole set of metabolic genes. We tested two sets: genes under positive selection with and without 433	

multiple testing correction. When only the six genes under positive selection after multiple testing 434	

correction were considered, no statistical significance is observed, even though genes under positive 435	

selection show higher out-degree and higher closeness than the average (0.33 vs. 0.22 for the out-436	

degree and 0.38 vs. 0.28 for the closeness). Given the small number of positively selected genes (six 437	

genes), this same analysis was also repeated with all genes (49 genes) that have a p-value smaller 438	

than 0.05 in the positive selection test before the multiple test correction. The aim of this analysis is 439	
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to test if there is any difference in the centrality measures values for the genes that belong to the tail 440	

of the positive selection test distribution. When these two groups are compared, higher out-degree 441	

(one tail permutation test, P = 0.0084) and higher closeness (one tail permutation test, P = 0.0116,) 442	

values are found for positively selected genes with an increase of 32% in the average value of out-443	
degree and of 21% in closeness in genes under positive selection compared to the whole set of 444	

metabolic genes. This result shows that the tail of positive selection distribution is enriched by 445	

genes with higher out degree and higher closeness. 446	

These results indicate that genes encoding enzymes with a greater number of reactions that 447	

make use of their products in the human metabolic pathways are more likely to present signals of 448	

positive selection than those with fewer enzymes using their products. Genes under positive 449	

selection have also higher closeness than the average and hence shorter path lengths to other nodes 450	

in the pathway. 	  451	
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DISCUSSION 452	

Linking the action of natural selection in the evolution of genes to the network structure and 453	
topology is an interesting approach to understand the constraints that the network structure may 454	

have on the evolution of complex molecular systems such as metabolism. Here, we have carried out 455	

a comprehensive molecular evolutionary study of human metabolism by investigating the selective 456	

pressures that acted on the enzyme-coding genes during the divergence of primates and rodents, and 457	

their relationships with functional and topological features of the pathways that constitute the 458	

system. Extensive studies have made possible the reconstruction of the biochemical pathways that 459	

constitute the metabolism; here we use this information to investigate the influence of the local 460	

network topology of the metabolic pathways in its evolutionary behavior by analyzing the 461	

distribution on the network of selective forces, be they in form of innovations (positive or adaptive 462	

selection) or in the strength of conservation (purifying selection). 	463	

The analysis of individual metabolic pathways instead of the whole metabolic network has 464	

several advantages: i) it allows the study of the influence onto the evolution of metabolic genes of 465	
their local relevant environment, that is, the context of the gene products in which the metabolic 466	

task is achieved; ii) it allows to separately study the functional units responsible for the different 467	
metabolic tasks, classify and compare them, and study the distribution of selective pressures within 468	

each functional unit; these functional units are particularly relevant because are likely to 469	

approximate the “molecular phenotypes” targeted by selection; and iii) it allows an intermediate 470	
analysis between the single enzyme and the whole metabolic network in the line of considering the 471	

hierarchical and topological structure of the pathways. However, the partitioning of the metabolic 472	

network into pathways is a somehow arbitrary process, the most arbitrary decision being the 473	

definition of pathway boundaries. Criteria for the definition of a pathway have been analyzed and 474	

compared (Caspi et al 2013; Green and Karp 2006) and the best collection of pathways available for 475	

human metabolism is comprised in the HumanCyc database (Romero et al. 2004; Caspi et al 2014). 476	

In HumanCyc, the criteria used for pathway definition are clearly stated and uniformly applied to 477	
the whole database (Caspi et al 2013). Importantly, the HumanCyc/MetaCyc approach of defining 478	

pathway boundaries through a multi-organism meta-metabolism implicitly introduces phylogenetic 479	

information and thus, pathways defined therein represent the best approximation of the functional 480	

units targeted by selection.	481	

The final dataset under study was composed of 927 genes, whose products are integrated in 482	

310 pathways. The species that have been considered are human, chimpanzee, gorilla, orangutan, 483	

mouse and rat, and thus the analysis embraces the divergence time of both primates and rodents. 484	
The tools for detecting positive selection and for measuring the strength of purifying selection (see 485	
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methods) are based on the amino acid impact of nucleotide changes.  486	

The detection of genes that underwent positive selection, and that are thus at the base of 487	
innovative changes, have resulted in a very small number of genes, six out of the 927 genes. These 488	

genes are: CYP2E1, a member of the cytochrome 450 family; HDC, a histidine decarboxylase; 489	

CES1, a carboxylesterase; DPM2, a subunit of the dolichol-phosphate mannose synthase complex; 490	

SPAM1, a hyaluronidase; and AKR1C1 an aldo-keto reductase. Two of the six genes that show 491	

sequence signature of positive selection, CYP2E1 and CES1, encode for detoxification enzymes 492	

and contribute to the solubility of molecules that must be expelled from the cell as fast as possible. 493	

Therefore, response to xenobiotic molecules has likely been a target of adaptive selection during 494	

primate and rodent divergence. 495	

The main selective force in metabolism is the maintenance of the system through purifying 496	

selection; we have calculated this strength for each gene and analyzed the context according to 497	

biochemical and network properties. We observed a steep gradient of selective constraints that goes 498	

from genes serving functions within the inner core of intermediary metabolism (the most 499	
constrained), through those of a second layer of intermediary metabolism, to the outer peripheral 500	

layer of metabolism (i.e. secondary metabolism), which shows the most relaxed selective constraint. 501	
We have shown that the stronger selective constraint has acted on the genes whose encoded 502	

enzymes have roles within the inner core of metabolism; pathways comprised in this inner layer are 503	

involved in the transformations of small precursor metabolites for cell maintenance. These 504	
pathways are the oldest, the more phylogenetically conserved (Peregrin-Alvarez et al. 2003) and are 505	

enriched in enzymes exhibiting more substrate specificity (Nam et al. 2012). Accordingly, we have 506	

found that enzymes participating in more peripheral routes are evolutionarily less constrained and 507	

more plastic, having experienced faster functional evolution. Generalist enzymes, able to cope with 508	

a vast diversity of possible small molecular structures, populate pathways of this outer layer. The 509	

strategy of adopting generalist enzymes at the outer interface of metabolism may be a more efficient 510	

strategy than to develop a specific enzyme for each type of possible metabolite that may be present 511	
in the environment. Indeed, a global analysis of kinetic parameters of several thousands of known 512	

enzymes showed that central metabolism enzymes perform better in terms of catalytic constants 513	

(i.e. higher kcat and kcat/KM) than secondary metabolism enzymes (Bar-Even et al 2011). In line with 514	

the authors’ suggestion, we have been able to prove that there is a stronger selective pressure on 515	
central metabolic enzymes, probably due to the need of maintaining the catalytic parameters that 516	

allow higher fluxes in central pathways, in comparison to those operating at lower fluxes and less 517	

specificity in secondary metabolism (Bar-Even et al 2011). 518	

Isoenzymes are of special interest because they provide material for metabolic evolutionary 519	
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innovation through sub- or neo-functionalization (Innan and Kondrashov 2010). Here we have 520	

found no differences in evolutionary rates between isoenzymes and the rest of the enzymes; no 521	

differences in their connectivities were found in the global metabolic network of E.coli (Light et al. 522	

2005). Thus, both the sequence and the topological properties of isoenzymes do not differ from 523	
those of the rest of the enzymes.  Selective constraint acting with the same strength onto these two 524	

classes of genes suggests that what may seem like alternative enzymes for the same metabolic 525	

function, are, indeed, equally “essential”, and the functional degeneracy is only apparent. 526	

Isoenzymes are likely to be essential to their function either through regulation, differential 527	

expression in time (different developmental stages), or in space, displaying their function in 528	
different cellular compartments or tissues. The study of evolutionary pressures over gene sequences 529	

has clearly pointed to lack of functional degeneracy for isoenzymes, given that redundancy leaves 530	

clear detectable footprints in terms of acceleration of substitution rates, as for example in the case of 531	

paralogous gene copies just after the duplication event	(Innan and Kondrashov 2010).	532	

To assess the influence of system properties on gene evolution we have used the local 533	

topology of the metabolic network. Among the many possible ways of representing metabolic 534	
pathways through graph structures, we have encoded pathways as reaction graphs, a type of 535	

representation in which nodes represent reactions; hence they can be directly associated to the genes 536	

that catalyze the reactions. In this representation edges represent metabolites (reaction substrate and 537	

products) and here we have considered their direction. So in our representation edges are indeed 538	
arrows and the resulting graph is a directed graph. By encoding metabolic pathways through 539	

directed graphs, we are able to take into account the physiological direction of the reactions in the 540	

cell.	541	

Even in absence of specific information about the metabolic pathways for all the considered 542	

species, the relatively shallow phylogenetic divergence considered and the well-known 543	

conservation of metabolism among mammals ensures the use of a unique structure of pathways and 544	

function of all enzymes. The influence of the local network topology over gene's evolution was 545	

investigated for both positive and purifying selection.  546	

The influence of the local network topology over gene's evolution had been previously 547	

investigated in few cases of specific metabolic pathways. The comprehensive analysis carried out 548	

here allowed revealing that this influence is pervasive and general patterns can be found. When 549	
positive selection has been considered we have found that positively selected genes have higher out-550	

degree centralities than non-adaptive genes. Genes with high out-degree are not involved in the 551	

production of the final products of the metabolic task and, at the same time, are those whose 552	

products are subsequently transformed by a high fraction of different reactions in the pathway. Here 553	
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we see that genes in these positions are preferentially targeted by adaptive evolution.	554	

When purifying selection has been considered, in-degree centrality has been identified as the 555	
strongest topological factor constraining metabolic gene's sequence evolution. Genes characterized 556	

by higher in-degree connectivities have evolved under stronger purifying selection.  Within the 557	

context of biochemical reaction graphs in which each node represents a biochemical reaction, in-558	

degree reflects the number of reactions that directly precede the given one, that is, the number of 559	

reactions that produce metabolites that are then taken as substrates by the given reaction. This 560	

means that in-degree centrality is higher for reaction with many incoming links and lower for 561	

reactions with few incoming links. 	562	

Besides the encoding of topological information through centrality measures we also used 563	
topological features that encode the position along the pathway (top, intermediate and bottom) of 564	

each enzyme. When this topological information was considered for plant biosynthetic pathways 565	

(Rausher et al. 1999; Lu and Rausher 2003; Rausher et al. 2008; Livingstone and Anderson 2009; 566	

Ramsay et al. 2009), a progressive relaxation of selective constraint along metabolic pathways was 567	
found. Here we found an opposite gradient when the whole set of human metabolic pathways were 568	

analyzed during the divergence of primates and rodents, with genes at top positions being under 569	
more relaxed constraint and genes at bottom position being under stronger selective constraint. Thus 570	

relaxed evolutionary forces at top positions allow broader evolutionary changes while, at the 571	

bottom, strong selective constraint narrows the allowed changes in functional variation, according 572	
to a funnel like model. This funnel like distribution of selective pressures along positions in the 573	

pathway is a general pattern found throughout the considered metabolic pathways. This result is 574	

consistent with the results obtained in the N-glycosylation pathway (Montanucci et al 2011) where 575	

genes at downstream positions of the pathways were found to be under stronger selective constraint 576	

than genes located at upstream (top) positions in the pathway which in turn had undergone more 577	

relaxed evolution.  For metabolic routes that are directly connected with external environment, 578	

enzymes at top positions are usually more generalists in response to the need of using a broad 579	
diversity of possible metabolic material, while those at the bottom positions are more specialized, in 580	

response to the need of producing very specific products. It can be speculated that the results 581	

obtained here may reflect the relevance of accuracy in the synthesis of final metabolic products.	582	

The comprehensive analysis of the whole set of human metabolic pathways revealed that both 583	

adaptive and purifying selection are not evenly distributed among the genes encoding the enzymes 584	

involved in metabolic pathways. Adaptive selection has targeted a small number of genes during the 585	

divergence of primates and rodents and adaptive genes are mainly involved in detoxification 586	
functions. Purifying selection has been a pervasive selective force dominating the evolution of 587	
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metabolic genes during the divergence of primates and rodents. It has acted with different strengths 588	

according to the layer of metabolism over which it acts, with the inner core of metabolism being 589	

strongly conserved and with little or no room left for evolutionary innovation. From these results, it 590	

is tempting to conclude that it is less likely to innovate on pathways that were established in the 591	
early (i.e. prokaryotic) stages of evolution and that are involved in the synthesis of a small set of 592	

metabolic precursors linking the synthesis and degradation of essential biomolecules, namely 593	

sugars, lipids, amino acids and nucleotides.  A more relaxed selection has been found for enzymes 594	

that manage higher levels of chemodiversity. This is the case of detoxification of xenobiotics or the 595	

biosynthesis of a wide spectrum of secondary metabolites that, by definition, are not directly 596	
involved in the survival of the organism, but rather in its ecological and behavioral traits.	  597	
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TABLES 608	

Table 1. Results for the three independent runs of automated linear modeling with evolutionary measures as dependent 609	
variable for the 275 base pathways. The following variables have been considered by the model: 3 gene sequence 610	
properties, effective number of codons (ENC), gene length (Length) and CG content (CG); and 4 topological 611	
centralities: closeness, betweenness and in-degree and out-degree centralities. Beta coefficients and P-values (between 612	
brackets) are reported; significant values according to a threshold of 0.05 are presented in bold. 613	

	 ENC Length CG Closeness Betweenness In-degree Out-degree 

dN/dS 0.003 

(<0.0001) 

-0.000 

(<0.0001) 

0.002 

(0.958) 

-0.056 

(0.071) 

-0.017 

(0.225) 

-0.035 

(<0.0001) 

0.038 

(0.246) 

dN 0.000 

(0.901) 

-0.000 

(<0.0001) 

0.022 

(0.529) 

-0.019 

(0.502) 

-0.021 

(0.111) 

-0.030 

(<0.0001) 

0.011 

(0.703) 

dS -0.025 

(<0.0001) 

-0.000 

(<0.0001) 

0.549 

(<0.0001) 

0.021 

(0.866) 

0.054 

(0.339) 

-0.019 

(0.573) 

-0.037 

(0.779) 

	614	

	615	

	616	
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FIGURES 618	

 619	

 620	

Figure 1 Distribution of the evolutionary rates (dN/dS, dN and dS) for the 927 metabolic genes.  621	

	622	

	623	

	624	

	 	 	
 625	

Figure 2 Graph representing dN/dS, dN and dS among genes belonging to different functional classes. Class 626	
1 comprises the inner metabolism (Glycosis/TCA/PentoseP, Polysaccharides), class 2 comprises the second 627	
layer (Membrane Lipids metabolism, nucleotide metabolism, Fatty acid/TAG, Cofactor, Fatty 628	
Acid/hormone, and Aminoacid) while class 3 comprises the outer layer of cell metabolism (Steroid, 629	
Secondary Metabolism and Detoxification). 630	

  631	
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24	
	

	632	

	633	

	634	

a)	

	

b)	

	
Figure 3 a) Graph representing dN/dS, dN and dS among genes whose position within the pathway belongs 635	
to four classes (one-step, top, intermediate, bottom positions) for the 275 base pathways.  b) The same for 636	
the 208 base pathways with no loops. Dots show the mean ± 2 standard error (SE). 637	

  638	
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Supplementary Figures	

 
	

 
	

 
	

	

	

Supplementary Figure S1 Graph representing dN/dS, dN and dS among genes belonging to different functional classes according to ontology-based 

classification. 
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Supplementary Figure S2 Graph representing dN/dS, dN and dS among genes belonging to different functional classes according to compound-based classification. 
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Supplementary Figure S3 Boxplots representing ω (dN/dS), dN and dS among genes belonging to different functional classes. Class 1 comprises the inner 
metabolism (Glycosis/TCA/PentoseP, Polysaccharides), class 2 comprises the second layer (Membrane Lipids metabolism, nucleotide metabolism, Fatty acid/TAG, 
Cofactor, Fatty Acid/hormone, and Aminoacid) while class 3 comprises the outer layer of cell metabolism (Steroid, Secondary Metabolism and Detoxification).. 
Boxes are 25th and 75th quartiles, black bar within the box represents the median, whiskers indicate minimum and maximum and dots and stars represent most 
extreme data point higher than 1.5 interquartile range from box.   
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a) 

	 	 	
b)	

	 	 	
Supplementary Figure 4 a) Boxplots representing dN/dS, dN and dS among genes whose position within the pathway belongs to four classes (one-step, top, 
intermediate, bottom positions) for the 275 base pathways. b) The same for the 208 base pathways with no loops. Dots show the mean ± 2 standard error (SE). Boxes 
are 25th and 75th quartiles, black bar within the box represents the median, whiskers indicate minimum and maximum and dots and stars represent most extreme 
data point higher than 1.5 interquartile range from the box. 
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PATHWAY CODE PATHWAY COMMON NAME

2PHENDEG-PWY Degradation/Utilization/Assimilation

ADENOSYLHOMOCYSCAT-PWY methionine salvage

ALANINE-DEG3-PWY Degradation/Utilization/Assimilation

ARGININE-SYN4-PWY

ARGSPECAT-PWY

ASPARAGINE-BIOSYNTHESIS

ASPARAGINE-DEG1-PWY Degradation/Utilization/Assimilation

ASPARTATESYN-PWY

BETA-ALA-DEGRADATION-I-PWY &beta;-alanine degradation Degradation/Utilization/Assimilation

BSUBPOLYAMSYN-PWY

CYSTEINE-DEG-PWY Degradation/Utilization/Assimilation

GLNSYN-PWY

GLUDEG-I-PWY GABA shunt Degradation/Utilization/Assimilation

GLUTAMATE-SYN2-PWY

GLUTAMINDEG-PWY Degradation/Utilization/Assimilation

GLUTATHIONESYN-PWY

GLYCLEAV-PWY glycine cleavage Degradation/Utilization/Assimilation

GLYSYN-ALA-PWY

GLYSYN-PWY

HOMOCYSDEGR-PWY Degradation/Utilization/Assimilation

HYDROXYPRODEG-PWY Degradation/Utilization/Assimilation

ILEUDEG-PWY Degradation/Utilization/Assimilation

LEU-DEG2-PWY Degradation/Utilization/Assimilation

LYSINE-DEG1-PWY Degradation/Utilization/Assimilation

METHIONINE-DEG1-PWY methionine degradation Degradation/Utilization/Assimilation

PHENYLALANINE-DEG1-PWY Degradation/Utilization/Assimilation

PROSYN-PWY

PROUT-PWY Degradation/Utilization/Assimilation

PWY-0 Degradation/Utilization/Assimilation

PWY0-1305 glutamate dependent acid resistance Detoxification

PWY-3661-1 Degradation/Utilization/Assimilation

PWY-40

PWY-4041

PWY-4061 Detoxification

Supplementary Table S1: List of the 310 pathways, their codes, common names and their classifications.

ONTOLOGY-BASED 
CLASSIFICATION

COMPOUND-BASED 
CLASSIFICATION

phenylethylamine degradation I AminoAcid

Biosynthesis AminoAcid

alanine biosynthesis/degradation AminoAcid

ornithine <i>de novo </i> biosynthesis Biosynthesis AminoAcid

spermine biosynthesis Biosynthesis AminoAcid

asparagine biosynthesis Biosynthesis AminoAcid

asparagine degradation AminoAcid

aspartate biosynthesis Biosynthesis AminoAcid

AminoAcid

spermidine biosynthesis Biosynthesis AminoAcid

L-cysteine degradation I AminoAcid

glutamine biosynthesis Biosynthesis AminoAcid

AminoAcid

glutamate biosynthesis/degradation Biosynthesis AminoAcid

glutamine degradation/glutamate biosynthesis AminoAcid

glutathione biosynthesis Biosynthesis AminoAcid

AminoAcid

glycine biosynthesis Biosynthesis AminoAcid

glycine/serine biosynthesis Biosynthesis AminoAcid

cysteine biosynthesis/homocysteine degradation 
(trans-sulfuration)

AminoAcid

4-hydroxyproline degradation AminoAcid

isoleucine degradation AminoAcid

leucine degradation AminoAcid

lysine degradation I (saccharopine pathway) AminoAcid

AminoAcid

phenylalanine degradation/tyrosine biosynthesis AminoAcid

proline biosynthesis Biosynthesis AminoAcid

proline degradation AminoAcid

putrescine degradation III AminoAcid

AminoAcid

glycine betaine degradation AminoAcid

putrescine biosynthesis II Biosynthesis AminoAcid

&gamma;-glutamyl cycle Superpathways AminoAcid

glutathione-mediated detoxification AminoAcid
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PWY-4081

PWY-46

PWY-4921

PWY-4983 Degradation/Utilization/Assimilation

PWY-4984 urea cycle Degradation/Utilization/Assimilation

PWY-5030 histidine degradation Degradation/Utilization/Assimilation

PWY-5046

PWY-5177 Degradation/Utilization/Assimilation

PWY-5326 sulfite oxidation Degradation/Utilization/Assimilation

PWY-5328 Degradation/Utilization/Assimilation

PWY-5329 Degradation/Utilization/Assimilation

PWY-5331

PWY-5340 Degradation/Utilization/Assimilation

PWY-5350 Degradation/Utilization/Assimilation

PWY-5651 Degradation/Utilization/Assimilation

PWY-5652 Degradation/Utilization/Assimilation

PWY-5905

PWY-5921

PWY-6030

PWY-6100

PWY-6117 Degradation/Utilization/Assimilation

PWY-6133

PWY-6158

PWY-6173

PWY-6181 histamine degradation Degradation/Utilization/Assimilation

PWY-6241

PWY-6260 Degradation/Utilization/Assimilation

PWY-6261 Degradation/Utilization/Assimilation

PWY-6281

PWY-6307 Degradation/Utilization/Assimilation

PWY-6313 Degradation/Utilization/Assimilation

PWY-6334 L-dopa degradation Degradation/Utilization/Assimilation

PWY-6342 noradrenaline and adrenaline degradation Degradation/Utilization/Assimilation

glutathione redox reactions I Biosynthesis AminoAcid

putrescine biosynthesis I Biosynthesis AminoAcid

protein citrullination Biosynthesis AminoAcid

citrulline-nitric oxide cycle AminoAcid

AminoAcid

AminoAcid

2-oxoisovalerate decarboxylation to isobutanoyl-
CoA

Generation of Precursor Metabolites 
and Energy

AminoAcid

glutaryl-CoA degradation AminoAcid

AminoAcid

superpathway of methionine degradation AminoAcid

L-cysteine degradation II AminoAcid

taurine biosynthesis Biosynthesis AminoAcid

sulfate activation for sulfonation AminoAcid

thiosulfate disproportionation III (rhodanese) AminoAcid

tryptophan degradation to 2-amino-3-
carboxymuconate semialdehyde

AminoAcid

2-amino-3-carboxymuconate semialdehyde 
degradation to glutaryl-CoA

AminoAcid

hypusine biosynthesis Biosynthesis AminoAcid

L-glutamine tRNA biosynthesis Biosynthesis AminoAcid

serotonin and melatonin biosynthesis Biosynthesis AminoAcid

L-carnitine biosynthesis Biosynthesis AminoAcid

spermine and spermidine degradation I AminoAcid

(S)-reticuline biosynthesis Biosynthesis AminoAcid

creatine-phosphate biosynthesis Biosynthesis AminoAcid

histamine biosynthesis Biosynthesis AminoAcid

AminoAcid

thyroid hormone biosynthesis Biosynthesis AminoAcid

thyroid hormone metabolism I (via deiodination) AminoAcid

thyroid hormone metabolism II (via conjugation 
and/or degradation)

AminoAcid

selenocysteine biosynthesis Biosynthesis AminoAcid

tryptophan degradation X (mammalian, via 
tryptamine)

AminoAcid

serotonin degradation AminoAcid

AminoAcid

AminoAcid
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PWY-6481

PWY-6482

PWY-6498

PWY66-301

PWY66-425 Degradation/Utilization/Assimilation

PWY66-426 Metabolic Clusters

PWY66-428 Degradation/Utilization/Assimilation

PWY6666-2 dopamine degradation Degradation/Utilization/Assimilation

PWY-6688 Degradation/Utilization/Assimilation

PWY-6755 Degradation/Utilization/Assimilation

PWY-6756 Degradation/Utilization/Assimilation

SAM-PWY

SERDEG-PWY Degradation/Utilization/Assimilation

SER-GLYSYN-PWY-1

SERSYN-PWY

TRYPTOPHAN-DEGRADATION-1 Degradation/Utilization/Assimilation

TYRFUMCAT-PWY tyrosine degradation Degradation/Utilization/Assimilation

VALDEG-PWY Degradation/Utilization/Assimilation

PWY66-414

PWY-6292

PWY66-401

COA-PWY-1 Cofactor

GLYCGREAT-PWY Degradation/Utilization/Assimilation Cofactor

HEME-BIOSYNTHESIS-II Cofactor

NAD-BIOSYNTHESIS-III NAD salvage Cofactor

NADPHOS-DEPHOS-PWY-1 Cofactor

NADSYN-PWY Cofactor

PLPSAL-PWY Cofactor

PWY0-1264 Cofactor

PWY0-1275 Cofactor

PWY0-522 Cofactor

PWY-2161 Cofactor

PWY-2161B Cofactor

PWY-2201 Cofactor

PWY-5189 Cofactor

PWY-5653 Cofactor

L-dopachrome biosynthesis Biosynthesis AminoAcid

diphthamide biosynthesis Biosynthesis AminoAcid

eumelanin biosynthesis Biosynthesis AminoAcid

catecholamine biosynthesis Biosynthesis AminoAcid

lysine degradation II (pipecolate pathway) AminoAcid

hydrogen sulfide biosynthesis (trans-sulfuration) AminoAcid

threonine degradation AminoAcid

AminoAcid

thyronamine and iodothyronamine metabolism AminoAcid

<i>S</i>-methyl-5-thio-&alpha;-D-ribose 1-
phosphate degradation

AminoAcid

<i>S</i>-methyl-5'-thioadenosine degradation AminoAcid

S-adenosyl-L-methionine biosynthesis Biosynthesis AminoAcid

L-serine degradation AminoAcid

serine and glycine biosynthesis Superpathways AminoAcid

serine biosynthesis (phosphorylated route) Biosynthesis AminoAcid

tryptophan degradation AminoAcid

AminoAcid

valine degradation AminoAcid

superpathway of choline degradation to L-serine Superpathways AminoAcid

cysteine biosynthesis Superpathways AminoAcid

superpathway of tryptophan utilization Superpathways AminoAcid

coenzyme A biosynthesis Biosynthesis

creatine biosynthesis

heme biosynthesis from uroporphyrinogen-III I Biosynthesis

Biosynthesis

NAD phosphorylation and dephosphorylation Biosynthesis

NAD <i>de novo</i> biosynthesis Biosynthesis

pyridoxal 5'-phosphate salvage Biosynthesis

biotin-carboxyl carrier protein assembly Biosynthesis

lipoate biosynthesis and incorporation Biosynthesis

lipoate salvage Biosynthesis

folate polyglutamylation Biosynthesis

glutamate removal from folates Biosynthesis

folate transformations Biosynthesis

tetrapyrrole biosynthesis Biosynthesis

NAD biosynthesis from 2-amino-3-
carboxymuconate semialdehyde

Biosynthesis
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PWY-5663 Cofactor

PWY-5754 Cofactor

PWY-5872 Cofactor

PWY-5874 heme degradation Degradation/Utilization/Assimilation Cofactor

PWY-5963 Cofactor

PWY-6076 Cofactor

PWY-6309 Cofactor

PWY-6430 thymine degradation Degradation/Utilization/Assimilation Cofactor

PWY-6613 Cofactor

PWY66-201 nicotine degradation IV Degradation/Utilization/Assimilation Cofactor

PWY66-221 nicotine degradation III Degradation/Utilization/Assimilation Cofactor

PWY66-366 Cofactor

PWY-6823 Cofactor

PWY-6857 Cofactor

PWY-6872 Cofactor

PWY-6875 Cofactor

PWY-6898 Cofactor

PWY-6938 NADH repair Cofactor

PWY-7250 Cofactor

PWY-7283 Cofactor

PWY-7286 Cofactor

THIOREDOX-PWY Cofactor

PWY-5920 Cofactor

DETOX1-PWY Detoxification Detoxification

GLUT-REDOX-PWY Detoxification

MGLDLCTANA-PWY Detoxification Detoxification

PWY-1801 formaldehyde oxidation Degradation/Utilization/Assimilation Detoxification

PWY-4202 Detoxification Detoxification

PWY-5386 Detoxification Detoxification

PWY-5453 Detoxification Detoxification

PWY-6502 Metabolic Clusters Detoxification

PWY66-241 Degradation/Utilization/Assimilation Detoxification

PWY-7112 Detoxification Detoxification

PWY66-392

PWY66-393

tetrahydrobiopterin <i>de novo</i> biosynthesis Biosynthesis

4-hydroxybenzoate biosynthesis Biosynthesis

ubiquinol-10 biosynthesis Biosynthesis

thio-molybdenum cofactor biosynthesis Biosynthesis

1,25-dihydroxyvitamin D<sub>3</sub> 
biosynthesis

Biosynthesis

L-kynurenine degradation Superpathways

tetrahydrofolate salvage from 5,10-
methenyltetrahydrofolate

Biosynthesis

flavin biosynthesis Biosynthesis

molybdenum cofactor biosynthesis Biosynthesis

retinol biosynthesis Biosynthesis

retinoate biosynthesis I Biosynthesis

retinoate biosynthesis II Biosynthesis

thiamin salvage III Biosynthesis

Generation of Precursor Metabolites 
and Energy

iron-sulfur cluster biosynthesis Biosynthesis

wybutosine biosynthesis Superpathways

7-(3-amino-3-carboxypropyl)-wyosine biosynthesis Biosynthesis

thioredoxin pathway Biosynthesis

heme biosynthesis Superpathways

superoxide radicals degradation

glutathione redox reactions II Biosynthesis

methylglyoxal degradation VI

arsenate detoxification I (glutaredoxin)

methylglyoxal degradation I

methylglyoxal degradation III

oxidized GTP and dGTP detoxification

bupropion degradation

4-hydroxy-2-nonenal detoxification

lipoxin biosynthesis Biosynthesis FattyAcid/hormone

aspirin-triggered lipoxin biosynthesis Biosynthesis FattyAcid/hormone

.
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PWY66-394

PWY66-395

PWY66-397

FAO-PWY fatty acid &beta;-oxidation Degradation/Utilization/Assimilation

FASYN-ELONG-PWY fatty acid elongation -- saturated

LIPAS-PWY Degradation/Utilization/Assimilation

LIPASYN-PWY Metabolic Clusters

PROPIONMET-PWY Degradation/Utilization/Assimilation

PWY-5130

PWY-5137 Degradation/Utilization/Assimilation

PWY-5143 fatty acid activation Activation/Inactivation/Interconversion

PWY-5148

PWY-5451 Degradation/Utilization/Assimilation

PWY-5966-1

PWY-5972

PWY-5994

PWY-5996

PWY-6000

PWY-6012-1

PWY-6111 Degradation/Utilization/Assimilation

PWY-6535 Degradation/Utilization/Assimilation

PWY66-161 oxidative ethanol degradation III Degradation/Utilization/Assimilation

PWY66-162 ethanol degradation IV Degradation/Utilization/Assimilation

PWY66-21 ethanol degradation II Degradation/Utilization/Assimilation

PWY66-374

PWY66-375

PWY66-387 fatty acid &alpha;-oxidation Degradation/Utilization/Assimilation

PWY66-388 fatty acid &alpha;-oxidation III Degradation/Utilization/Assimilation

PWY66-389 Degradation/Utilization/Assimilation

PWY66-391 Degradation/Utilization/Assimilation

PWY6666-1 Degradation/Utilization/Assimilation

PWY-7049

TRIGLSYN-PWY

MALATE-ASPARTATE-SHUTTLE-PWY Degradation/Utilization/Assimilation

NONOXIPENT-PWY

aspirin triggered resolvin E biosynthesis Biosynthesis FattyAcid/hormone

aspirin triggered resolvin D biosynthesis Biosynthesis FattyAcid/hormone

resolvin D biosynthesis Biosynthesis FattyAcid/hormone

FattyAcid/TAG

Biosynthesis FattyAcid/TAG

triacylglycerol degradation FattyAcid/TAG

phospholipases FattyAcid/TAG

propionyl-CoA degradation FattyAcid/TAG

2-oxobutanoate degradation Superpathways FattyAcid/TAG

fatty acid &beta;-oxidation (unsaturated, odd 
number)

FattyAcid/TAG

FattyAcid/TAG

acyl-CoA hydrolysis Biosynthesis FattyAcid/TAG

acetone degradation I (to methylglyoxal) FattyAcid/TAG

fatty acid biosynthesis initiation Biosynthesis FattyAcid/TAG

stearate biosynthesis Biosynthesis FattyAcid/TAG

palmitate biosynthesis Biosynthesis FattyAcid/TAG

oleate biosynthesis Biosynthesis FattyAcid/TAG

&gamma;-linolenate biosynthesis Biosynthesis FattyAcid/TAG

acyl carrier protein metabolism Biosynthesis FattyAcid/TAG

mitochondrial L-carnitine shuttle FattyAcid/TAG

4-aminobutyrate degradation FattyAcid/TAG

FattyAcid/TAG

FattyAcid/TAG

FattyAcid/TAG

C20 prostanoid biosynthesis Biosynthesis FattyAcid/TAG

leukotriene biosynthesis Biosynthesis FattyAcid/TAG

FattyAcid/TAG

FattyAcid/TAG

phytol degradation FattyAcid/TAG

fatty acid &beta;-oxidation (peroxisome) FattyAcid/TAG

anandamide degradation FattyAcid/TAG

eicosapentaenoate biosynthesis Biosynthesis FattyAcid/TAG

triacylglycerol biosynthesis Biosynthesis FattyAcid/TAG

malate-aspartate shuttle Glycolysis/TCA/PentoseP

pentose phosphate pathway (non-oxidative 
branch)

Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP
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OXIDATIVEPENT-PWY-1

PWY0-1313 Degradation/Utilization/Assimilation

PWY0-662

PWY-4261 glycerol degradation Degradation/Utilization/Assimilation

PWY-5084 Degradation/Utilization/Assimilation

PWY-5172

PWY-5481

PWY-6118 glycerol-3-phosphate shuttle

PWY-6405

PWY66-367

PWY66-368

PWY66-398 TCA cycle

PWY66-399

PWY66-400

PWY66-423

PYRUVDEHYD-PWY

PENTOSE-P-PWY

PWY66-407

CHOLINE-BETAINE-ANA-PWY choline degradation Degradation/Utilization/Assimilation

PWY-2301

PWY3DJ-11281

PWY3DJ-11470 Degradation/Utilization/Assimilation

PWY3DJ-12

PWY3O-450

PWY4FS-6

pentose phosphate pathway (oxidative branch) Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP

acetate conversion to acetyl-CoA Glycolysis/TCA/PentoseP

PRPP biosynthesis Biosynthesis Glycolysis/TCA/PentoseP

Glycolysis/TCA/PentoseP

2-oxoglutarate decarboxylation to succinyl-CoA Glycolysis/TCA/PentoseP

acetyl-CoA biosynthesis from citrate Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP

lactate fermentation (reoxidation of cytosolic 
NADH)

Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP

Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP

Rapoport-Luebering glycolytic shunt Biosynthesis Glycolysis/TCA/PentoseP

ketogenesis Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP

ketolysis Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP

Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP

gluconeogenesis Biosynthesis Glycolysis/TCA/PentoseP

glycolysis Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP

fructose 2,6-bisphosphate 
synthesis/dephosphorylation

Biosynthesis Glycolysis/TCA/PentoseP

pyruvate decarboxylation to acetyl CoA Generation of Precursor Metabolites 
and Energy

Glycolysis/TCA/PentoseP

pentose phosphate pathway Superpathways Glycolysis/TCA/PentoseP

superpathway of conversion of glucose to acetyl 
CoA and entry into the TCA cycle

Superpathways Glycolysis/TCA/PentoseP

MembraneLipids

MANNOSYL-CHITO-DOLICHOL-
BIOSYNTHESIS

dolichyl-diphosphooligosaccharide biosynthesis Biosynthesis MembraneLipids

<i>myo</i>-inositol <i>de novo</i> biosynthesis Biosynthesis MembraneLipids

sphingomyelin metabolism/ceramide salvage Biosynthesis MembraneLipids

sphingosine and sphingosine-1-phosphate 
metabolism

MembraneLipids

ceramide <i>de novo</i> biosynthesis Biosynthesis MembraneLipids

phosphatidylcholine biosynthesis Biosynthesis MembraneLipids

phosphatidylethanolamine biosynthesis II Biosynthesis MembraneLipids
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PWY-5269

PWY-5667

PWY-6129

PWY-6351

PWY-6352

PWY-6362

PWY-6363

PWY-6364

PWY-6365

PWY-6366

PWY-6367

PWY-6368 Degradation/Utilization/Assimilation

PWY-6369

PWY-6554

PWY-7501

PWY-6358

PWY-6371

P121-PWY Nucleotide

PWY0-1295 Degradation/Utilization/Assimilation Nucleotide

PWY0-1296 Degradation/Utilization/Assimilation Nucleotide

PWY-3982 uracil degradation Nucleotide

PWY-5686 Nucleotide

PWY-5695 Degradation/Utilization/Assimilation Nucleotide

PWY-6121 Nucleotide

PWY-6124 Nucleotide

PWY-6608 Degradation/Utilization/Assimilation Nucleotide

PWY-6609 Nucleotide

PWY-6619 Nucleotide

PWY-6620 Nucleotide

cardiolipin biosynthesis Biosynthesis MembraneLipids

CDP-diacylglycerol biosynthesis Biosynthesis MembraneLipids

dolichol and dolichyl phosphate biosynthesis Biosynthesis MembraneLipids

D-<i>myo</i>-inositol (1,4,5)-trisphosphate 
biosynthesis

Biosynthesis MembraneLipids

3-phosphoinositide biosynthesis Biosynthesis MembraneLipids

1D-<i>myo</i>-inositol hexakisphosphate 
biosynthesis II (mammalian)

Biosynthesis MembraneLipids

D-<i>myo</i>-inositol (1,4,5)-trisphosphate 
degradation

Biosynthesis MembraneLipids

D-<i>myo</i>-inositol (1,3,4)-trisphosphate 
biosynthesis

Biosynthesis MembraneLipids

D-<i>myo</i>-inositol (3,4,5,6)-tetrakisphosphate 
biosynthesis

Biosynthesis MembraneLipids

D-<i>myo</i>-inositol (1,4,5,6)-tetrakisphosphate 
biosynthesis

Biosynthesis MembraneLipids

D-<i>myo</i>-inositol-5-phosphate metabolism Biosynthesis MembraneLipids

3-phosphoinositide degradation MembraneLipids

inositol pyrophosphates biosynthesis Biosynthesis MembraneLipids

1D-<i>myo</i>-inositol hexakisphosphate 
biosynthesis V (from Ins(1,3,4)P3)

Biosynthesis MembraneLipids

phosphatidylserine biosynthesis I Biosynthesis MembraneLipids

superpathway of D-<i>myo</i>-inositol (1,4,5)-
trisphosphate metabolism

Superpathways MembraneLipids

superpathway of inositol phosphate compounds Superpathways MembraneLipids

adenine and adenosine salvage I Biosynthesis

pyrimidine ribonucleosides degradation

purine ribonucleosides degradation to ribose-1-
phosphate

Biosynthesis

UMP biosynthesis Biosynthesis

urate biosynthesis/inosine 5'-phosphate 
degradation

5-aminoimidazole ribonucleotide biosynthesis Biosynthesis

inosine-5'-phosphate biosynthesis Biosynthesis

guanosine nucleotides degradation

adenine and adenosine salvage III Biosynthesis

adenine and adenosine salvage II Biosynthesis

guanine and guanosine salvage Biosynthesis
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PWY66-385 Nucleotide

PWY66-420 Nucleotide

PWY66-421 Nucleotide

PWY-7176 Nucleotide

PWY-7177 Degradation/Utilization/Assimilation Nucleotide

PWY-7179-1 Degradation/Utilization/Assimilation Nucleotide

PWY-7180 Degradation/Utilization/Assimilation Nucleotide

PWY-7181 Degradation/Utilization/Assimilation Nucleotide

PWY-7184 Metabolic Clusters Nucleotide

PWY-7185 Degradation/Utilization/Assimilation Nucleotide

PWY-7193 Nucleotide

PWY-7197 Metabolic Clusters Nucleotide

PWY-7199 Nucleotide

PWY-7205 Nucleotide

PWY-7210 Metabolic Clusters Nucleotide

PWY-7219 Nucleotide

PWY-7221 Nucleotide

PWY-7224 Metabolic Clusters Nucleotide

PWY-7226 Nucleotide

PWY-7227 Nucleotide

SALVADEHYPOX-PWY Degradation/Utilization/Assimilation Nucleotide

PWY0-162 Nucleotide

PWY-841 Nucleotide

PWY-6353 purine nucleotides degradation Nucleotide

PWY-7209 Nucleotide

PWY-7200 Nucleotide

PWY-7228 Nucleotide

dTMP <i>de novo</i> biosynthesis (mitochondrial) Biosynthesis

carnosine biosynthesis Biosynthesis

homocarnosine biosynthesis Biosynthesis

UTP and CTP <i>de novo</i> biosynthesis Biosynthesis

UTP and CTP dephosphorylation II

purine deoxyribonucleosides degradation

2'-deoxy-&alpha;-D-ribose 1-phosphate 
degradation

pyrimidine deoxyribonucleosides degradation

pyrimidine deoxyribonucleotides <i>de novo</i> 
biosynthesis

UTP and CTP dephosphorylation I

pyrimidine ribonucleosides salvage I Biosynthesis

pyrimidine deoxyribonucleotide phosphorylation

pyrimidine deoxyribonucleosides salvage Biosynthesis

CMP phosphorylation Biosynthesis

pyrimidine deoxyribonucleotides biosynthesis from 
CTP

adenosine ribonucleotides <i>de novo</i> 
biosynthesis

Biosynthesis

guanosine ribonucleotides <i>de novo</i> 
biosynthesis

Biosynthesis

purine deoxyribonucleosides salvage

guanosine deoxyribonucleotides <i>de novo</i> 
biosynthesis

Biosynthesis

adenosine deoxyribonucleotides <i>de novo</i> 
biosynthesis

Biosynthesis

adenosine nucleotides degradation

superpathway of pyrimidine ribonucleotides <i>de 
novo</i> biosynthesis

Superpathways

purine nucleotides <i>de novo</i> biosynthesis Superpathways

Superpathways

pyrimidine ribonucleosides degradation Superpathways

superpathway of pyrimidine deoxyribonucleoside 
salvage

Superpathways

guanosine nucleotides <i>de novo</i> 
biosynthesis

Superpathways

.
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PWY-7211 Nucleotide

PWY66-409 Nucleotide

BGALACT-PWY lactose degradation III Degradation/Utilization/Assimilation

GLUAMCAT-PWY Degradation/Utilization/Assimilation

MANNCAT-PWY Degradation/Utilization/Assimilation

PWY0-1182 Degradation/Utilization/Assimilation

PWY-4101 Degradation/Utilization/Assimilation

PWY-4821

PWY-5067

PWY-5512

PWY-5514

PWY-55y5 Degradation/Utilization/Assimilation

PWY-5659

PWY-5661-1

PWY-5941-1 Degradation/Utilization/Assimilation

PWY-6

PWY-6138

PWY-6517

PWY-6558

PWY-6566

PWY-6567

PWY-6568

PWY-6573 Degradation/Utilization/Assimilation

PWY-6576 Degradation/Utilization/Assimilation

PWY-66

PWY66-373 sucrose degradation Degradation/Utilization/Assimilation

PWY66-422 Degradation/Utilization/Assimilation

UDPNACETYLGALSYN-PWY

PWY-6569

PWY-6571

PWY-5525 Degradation/Utilization/Assimilation

superpathway of pyrimidine deoxyribonucleotides 
<i>de novo</i> biosynthesis

Superpathways

superpathway of purine nucleotide salvage Superpathways

Polysaccharides

<i>N</i>-acetylglucosamine degradation I Polysaccharides

D-mannose degradation Polysaccharides

trehalose degradation Polysaccharides

sorbitol degradation I Polysaccharides

UDP-D-xylose and UDP-D-glucuronate 
biosynthesis

Biosynthesis Polysaccharides

glycogen biosynthesis Biosynthesis Polysaccharides

UDP-<i>N</i>-acetyl-D-galactosamine 
biosynthesis I

Biosynthesis Polysaccharides

UDP-<i>N</i>-acetyl-D-galactosamine 
biosynthesis II

Biosynthesis Polysaccharides

D-glucuronate degradation Polysaccharides

GDP-mannose biosynthesis Biosynthesis Polysaccharides

GDP-glucose biosynthesis II Biosynthesis Polysaccharides

glycogenolysis Polysaccharides

GDP-L-fucose biosynthesis II (from L-fucose) Biosynthesis Polysaccharides

CMP-<i>N</i>-acetylneuraminate biosynthesis I 
(eukaryotes)

Biosynthesis Polysaccharides

<i>N</i>-acetylglucosamine degradation II Superpathways Polysaccharides

heparan sulfate biosynthesis (late stages) Biosynthesis Polysaccharides

chondroitin and dermatan biosynthesis Biosynthesis Polysaccharides

chondroitin sulfate biosynthesis (late stages) Biosynthesis Polysaccharides

dermatan sulfate biosynthesis (late stages) Biosynthesis Polysaccharides

chondroitin sulfate degradation (metazoa) Polysaccharides

dermatan sulfate degradation (metazoa) Polysaccharides

GDP-L-fucose biosynthesis I (from GDP-D-
mannose)

Biosynthesis Polysaccharides

Polysaccharides

D-galactose degradation V (Leloir pathway) Polysaccharides

UDP-<i>N</i>-acetyl-D-glucosamine biosynthesis 
II

Biosynthesis Polysaccharides

chondroitin sulfate biosynthesis Superpathways Polysaccharides

dermatan sulfate biosynthesis Superpathways Polysaccharides

D-Glucuronate-Degradation Polysaccharides
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PWY-6398 Degradation/Utilization/Assimilation

PWY-6399 Degradation/Utilization/Assimilation

PWY-6402

PWY-5120 Steroid

PWY-5123 Steroid

PWY-5670 Steroid

PWY-6061 Steroid

PWY-6074 Steroid

PWY-6132 Steroid

PWY-6377 Degradation/Utilization/Assimilation Steroid

PWY66-3 Steroid

PWY66-341 Steroid

PWY66-377 Steroid

PWY66-378 Steroid

PWY66-380 Steroid

PWY66-381 Steroid

PWY66-382 Steroid

PWY66-4 Steroid

PWY-7299 Steroid

PWY-7306 Steroid

PWY-7455 Steroid

PWY-922 Steroid

PWY-7305 Steroid

PWY66-5 Steroid

melatonin degradation I SecondaryMetabolism

melatonin degradation II SecondaryMetabolism

superpathway of geranylgeranyldiphosphate 
biosynthesis I (via mevalonate)

Superpathways SecondaryMetabolism

superpathway of melatonin degradation Superpathways SecondaryMetabolism

geranylgeranyldiphosphate biosynthesis Biosynthesis

<i>trans, trans</i>-farnesyl diphosphate 
biosynthesis

Biosynthesis

epoxysqualene biosynthesis Biosynthesis

bile acid biosynthesis, neutral pathway Biosynthesis

zymosterol biosynthesis Biosynthesis

lanosterol biosynthesis Biosynthesis

&alpha;-tocopherol degradation

cholesterol biosynthesis II (via 24,25-
dihydrolanosterol)

Superpathways

cholesterol biosynthesis I Superpathways

pregnenolone biosynthesis Biosynthesis

androgen biosynthesis Biosynthesis

estradiol biosynthesis I Biosynthesis

glucocorticoid biosynthesis Biosynthesis

mineralocorticoid biosynthesis Biosynthesis

cholesterol biosynthesis III (via desmosterol) Superpathways

progesterone biosynthesis Biosynthesis

estradiol biosynthesis II Biosynthesis

allopregnanolone biosynthesis Biosynthesis

mevalonate pathway Biosynthesis

superpathway of steroid hormone biosynthesis Superpathways

superpathway of cholesterol biosynthesis Superpathways
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