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Abstract

Motivation: Non-parametric and semi-parametric resampling procedures are widely used to perform
support estimation in computational biology and bioinformatics. Among the most widely used methods in
this class is the standard bootstrap method, which consists of random sampling with replacement. While
not requiring assumptions about any particular parametric model for resampling purposes, the bootstrap
and related techniques assume that sites are independent and identically distributed (i.i.d.). The i.i.d.
assumption can be an over-simplification for many problems in computational biology and bioinformatics.
In particular, sequential dependence within biomolecular sequences is often an essential biological feature
due to biochemical function, evolutionary processes such as recombination, and other factors.
Results: To relax the simplifying i.i.d. assumption, we propose a new non-parametric/semi-parametric
sequential resampling technique that generalizes “Heads-or-Tails” mirrored inputs, a simple but clever
technique due to Landan and Graur. The generalized procedure takes the form of random walks along
aligned or unaligned biomolecular sequences. We refer to our new method as the SERES (or “SEquential
RESampling”) method.
To demonstrate the flexibility of the new technique, we apply SERES to two different applications – one
involving aligned inputs and the other involving unaligned inputs. Using simulated and empirical data, we
show that SERES-based support estimation yields comparable or typically better performance compared
to state-of-the-art methods for both applications. We conclude with thoughts on future applications and
research directions.
Availability: Open-source software and open data can be found at https://gitlab.msu.edu/
liulab/SERES-Scripts-Data.
Contact: kjl@msu.edu

1 Introduction
Resampling methods are widely used throughout computational biology
and bioinformatics as a means for assessing statistical support. At
a high level, resampling-based support estimation procedures consist
of a methodological pipeline: resampled replicates are generated,
inference/analysis is performed on each replicate, and results are then

compared across replicates. Among the most widely used resampling
methods are non-parametric approaches including the standard bootstrap
method (Efron, 1979), which consists of random sampling with
replacement. We will refer to the standard bootstrap method as the
bootstrap method for brevity. Unlike parametric methods, non-parametric
approaches need not assume that a particular parametric model is
applicable to a problem at hand. However, the bootstrap and other widely
used non-parametric approaches assume that observations are independent
and identically distributed (i.i.d.).
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2 Wang et al.

In the context of biomolecular sequence analysis, there are a
variety of biological factors that conflict with this assumption. These
include evolutionary processes that cause intra-sequence dependence (e.g.,
recombination) and functional dependence among biomolecular sequence
elements and motifs. Felsenstein presciently noted these limitations when
he proposed the application of the bootstrap to phylogenetic inference:
“A more serious difficulty is lack of independence of the evolutionary
processes in different characters. . . . For the purposes of this paper, we
will ignore these correlations and assume that they cause no problems;
in practice, they pose the most serious challenge to the use of bootstrap
methods.” (reproduced from p. 785 of (Felsenstein, 1985)).

To relax the simplifying assumption of i.i.d. observations, Landan
and Graur (2007) introduced the Heads-or-Tails (HoT) technique for
the specific problem of multiple sequence alignment (MSA) support
estimation. The idea behind HoT is simple but quite powerful:
inference/analysis should be repeatable whether an MSA is read either
from left-to-right or from right-to-left – i.e., in either heads or tails
direction, respectively. While HoT resampling preserves intra-sequence
dependence, it is limited to two replicates, which is far fewer than typically
needed for reasonable support estimation; often, hundreds of resampled
replicates or more are used in practice. Subsequently developed support
estimation procedures increased the number of possible replicates by
augmenting HoT with bootstrapping, parametric resampling, and domain-
specific techniques (e.g., progressive MSA estimation) (Landan and Graur,
2008; Penn et al., 2010; Sela et al., 2015). The combined procedures
were shown to yield comparable or improved support estimates relative
to the original HoT procedure (Sela et al., 2015) as well as other state-
of-the-art parametric and domain-specific methods (Kim and Ma, 2011;
Notredame et al., 2000), at the cost of some of the generalizability inherent
to non-parametric approaches. In this study, we revisit the central question
that HoT partially addressed: how can we resample many non-parametric
replicates that account for dependence within a sequence of observations,
and how can such techniques be used to derive improved support estimates
for biomolecular sequence analysis?

2 Approach
In our view, a more general statement of HoT’s main insight is the
following, which we refer to as the “neighbor preservation property”: a
neighboring observation is still a neighbor, whether reading an observation
sequence from the left or the right. In other words, the key property needed
for non-parametric resampling is preservation of neighboring bases within
the original sequences, where any pair of bases that appear as neighbors in a
resampled sequence must also be neighbors in the corresponding original
sequence. To obtain many resampled replicates that account for intra-
sequence dependence while retaining the neighbor preservation property,
we propose a random walk procedure which generalizes a combination of
the bootstrap method and the HoT method. We refer to the new resampling
procedure as SERES (“SEquential RESampling”). Note that the neighbor
preservation property is necessary but not sufficient for statistical support
estimation. Other important properties include computational efficiency of
the resampling procedure and unbiased sampling of observations within
the original observation sequence.

SERES walks can be performed on both aligned and unaligned
sequence inputs. We discuss the case of aligned inputs first, since it is
simpler than the case of unaligned inputs.

3 Methods

3.1 SERES walks on aligned sequences

The pseudocode for a non-parametric SERES walk on a fixed MSA is
shown in Algorithm 1. The random walk is performed on the sequence

of aligned characters (i.e., MSA sites). The starting point for the walk is
chosen uniformly at random from the alignment sites, and the starting
direction is also chosen uniformly at random. The random walk then
proceeds in the chosen direction with non-deterministic reversals, or
direction changes, that occur with probability γ; furthermore, reversals
occur with certainty at the start and end of the fixed MSA. Aligned
characters are sampled during each step of the walk. The random walk
ends once the number of sampled characters is equal to the fixed MSA
length.

The long-term behavior of an infinitely long SERES random walk can
be described by a second-order Markov chain. Certain special cases (e.g.,
γ = 0.5) can be described using a first-order Markov chain.

In theory, a finite-length SERES random walk can exhibit biased
sampling of sites since reversal occurs with certainty at the start and end
of the observation sequence, whereas reversal occurs with probability γ
elsewhere. However, for practical choices of walk length and reversal
probability γ, sampling bias is expected to be minimal.

3.2 SERES walks on unaligned sequences

The pseudocode for SERES resampling of unaligned sequences is shown
in Algorithm 2.

The procedure begins with estimating a set of anchors – sequence
regions that exhibit high sequence similarity – which enable resampling
synchronization across unaligned sequences. A conservative approach for
identifying anchors would be to use highly similar regions that appear in
the strict consensus of multiple MSA estimation methods. In practice, we
found that highly similar regions within a single guide MSA produced
reasonable anchors. We used the average normalized Hamming distance
(ANHD) as our similarity measure, where indels are treated as mismatches.

Unaligned sequence indices corresponding to the start and end of each
anchor serve as “barriers” in much the same sense as in parallel computing:
asynchronous sequence reads occur between barrier pairs along a current
direction (left or right), and a random walk is conducted on barrier space
in a manner similar to a SERES walk on a sequence of aligned characters.
The set of barriers also includes trivial barriers at the start and end of
the unaligned sequences. The random walk concludes once the unaligned
sequences in the resampled replicate have sufficient length; our criterion
requires that the longest resampled sequence has minimum length that is a
multiple maxReplicateLengthFactor of the longest input sequence length.

Technically, the anchors used in our study make use of parametric
MSA estimation and the rest of the SERES walk is non-parametric. The
overall procedure is therefore semi-parametric (although see Conclusions
for an alternative).

3.3 Performance study overview

Our study evaluated the performance of SERES-based support estimation
in the context of two applications – one utilizing fixed alignments as input
and the other utilizing unaligned sequences as input. The aligned input
application is posterior decoding of phylo-HMMs for the task of analyzing
local genealogical variation due to recombination. The unaligned input
application is MSA support estimation. Of course, there are many
other applications for non-parametric support estimation – too many to
investigate in one study. We focus on the above two applications since
they cover the two different classes of SERES inputs. Furthermore, the
two applications are considered to be classical problems in computational
biology and bioinformatics and their outputs are useful for studying
a range of topics (e.g., phylogenetics and phylogenomics, proteomics,
comparative genomics, etc.).
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Algorithm 1 SERES walk on aligned sequences
1: procedure SERESWalkOnAlignedSequences(A, γ, numReplicates)

. Input: MSA A, walk reversal probability γ, number of SERES replicates numReplicates
. Output: list of SERES replicates

2: replicates = <>
3: for i = 1 to numReplicates do
4: direction = (rand() > 0.5) ? +1 : −1 . Uniformly at random (UAR) choose direction (right vs. left)
5: i = b length(A) * rand() c + 1 . UAR draw from [1, length(A)]

. rand() returns floating point number sampled UAR from [0, 1)

6: replicate = <>
7: while length(replicate) < length(A) do
8: replicate .= Ai . read Ai, which is the ith character in alignment A

. Alignment characters Ai are one-indexed
9: i+= direction
10: if (i ≤ 0) || (i > length(A)) || (rand() < γ) then

. Reflection of random walk
11: direction *= -1
12: if (i ≤ 0) || (i > length(A)) then
13: i+= direction * 2 . Always reflect at start/end of alignment A

14: replicates .= replicate

15: return(replicates)

3.4 Aligned input application: posterior decoding of
phylo-HMMs

Computational methods. The coalescent-with-recombination (CwR)
model (Hudson, 1983) is a classical evolutionary model involving
recombination. However, phylogenetic inference under the CwR model
is computationally prohibitive, and alternatives such as the sequentially
Markovian coalescent (SMC) model (McVean and Cardin, 2005) are
used as an approximation to the full CwR model. First-order hidden
Markov models (HMMs) are a widely used choice for tractable SMC-
based inference. Phylo-HMMs are the class of HMMs with hidden states
corresponding to phylogenies. Markovian dependence between phylo-
HMM states are meant to capture intra-sequence dependence among
local phylogenies, which can be caused by recombination and other
evolutionary processes. There are a variety of HMM-based methods
for local genealogical inference, depending on modeling assumptions
(Husmeier and Wright, 2001; Westesson and Holmes, 2009; Mailund et al.,
2011; Liu et al., 2014). We focus on recHMM (Westesson and Holmes,
2009) as an exemplar method in this class. We ran recHMM with default
settings. Consistent with the study of Westesson and Holmes (2009),
we used the posterior decoding algorithm to perform statistical inference
of local phylogenies (Rabiner, 1989). The posterior decoding algorithm
addresses the following problem. LetG be the set of all possible unrooted
tree topologies on n taxa. The input consists of a multiple sequence
alignmentA onn sequences – one for each ofn taxa – with length k (i.e., k
sites inA).A is assumed to contain recombinant sequences, and historical
recombination can cause local genealogies to vary across the sites in A
(Hein et al., 2004). The output consists of the following: for each aligned
site ai where 1 ≤ i ≤ k, we seek the conditional probability that the
HMM is in a hidden state corresponding to a particular gene tree g ∈ G
conditional on all sites in A and the fitted HMM model. For a particular
HMM instance, the posterior decoding effectively estimates which gene
tree is the most likely evolutionary history that explains the observed
character at a given site conditional on the sequence of all observed sites
in A. Analogous to the distinction between filtering and smoothing, the
posterior decoding weighs any particular inference at a given site against
the total evidence across all sites.

We used SERES resampling and recHMM as part of a support
estimation pipeline. First, we ran SERES resampling on the input

alignment A (Algorithm 1). The SERES resampling procedure used
reversal probability γ = 0.005. Thirty SERES replicates were generated
per simulated dataset. Next, we ran recHMM using default settings
on each SERES replicate, and the posterior decoding algorithm was
used to infer posterior decoding probabilities for each site. For each
site, inferred posterior decoding probability distributions were aggregated
across all SERES replicates in which the site appeared (with per-replicate
multiplicity based on the number of times that the site was sampled within
the replicate). The aggregated distribution was then normalized to obtain a
valid probability distribution. Finally, we used the peak of the distribution
and its corresponding HMM state and local topology as our inference.
To facilitate comparison, the same inference procedure was used with
recHMM-based posterior decoding.

Simulated datasets. Gene trees were simulated under the CwR
model using ms (Hudson, 2002). Each CwR simulation sampled either
4 or 6 alleles with scaled recombination rate ρ ∈ {0.5, 1.0, 2.0} and
total sequence length per replicate of 1 kb. For each gene tree, finite-
length sequence evolution was simulated under the Jukes-Cantor model of
nucleotide substitution (Jukes and Cantor, 1969) using Seq-Gen (Rambaut
and Grassly, 1997). We used a mutation rate θ ∈ {0.5, 1.0, 2.0}. A
model condition consisted of fixed values for all model parameters, and
simulation procedures were repeated so that 30 replicate datasets were
generated per model condition. We assessed topological accuracy using
the Robinson-Foulds measure (Robinson and Foulds, 1981), which is the
proportion of bipartitions that occur in an inferred gene tree but not the
true gene tree or vice versa.

3.5 Unaligned input application: MSA support estimation

Computational methods. We examined the problem of evaluating support
in the context of MSA estimation. The problem input consists of an
estimated MSA A which has a corresponding set of unaligned sequences
S. The problem output consists of support estimates for each nucleotide-
nucleotide homology in A, where each support estimate is on the unit
interval. Note that this computational problem is distinct from the full
MSA estimation problem.

There are a variety of existing methods for MSA support estimation.
The creators of HoT and their collaborators subsequently developed
alignment-specific parametric resampling techniques (Landan and Graur,
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Algorithm 2 SERES resampling of unaligned sequences
1: procedure SERESWalkOnUnalignedSequences(S, γ, numReplicates)

. Input: set of unaligned sequences S, walk reversal probability γ, number of SERES replicates numReplicates
. Output: list of SERES replicates

2: replicates = <>
3: barriers = <>
4: Ainit = ObtainGuideAlignments(S)
5: Ψ = GetAnchorsFromGuideAlignments(S, Ainit)
6: AddTrivialBarriers(barriers)
7: for each (~a,~b) Ψ do
8: barriers .= ~a .~b
9: for i = 1 to numReplicates do
10: replicates .= SERESWalkOnUnalignedSequences(S, γ, i, barriers)

11: return(replicates)

12: static variable maxReplicateLengthFactor . Maximum replicate length is factor of longest unaligned sequence length
13: procedure SERESWalkOnUnalignedSequences(S, γ, replicateNum, barriers)
14: direction = (rand() > 0.5) ? +1 : −1 . UAR choose direction (left vs. right)
15: i = b length(barriers) * rand() c + 1
16: replicate = <>
17: while maxLength(replicate) < maxLength(S) * maxReplicateLengthFactor do . maxLength(S) is length of longest unaligned sequence in S
18: if ((i == 1) and (direction == −1)) or ((i == length(barriers)) and (direction == +1)) then . reflect at first or last barrier
19: direction *= −1

20: AsynchronousReadBetweenAdjacentBarriers(S, barriers, i, direction, replicate) . read result passed by reference to mutable object replicate
21: i += direction
22: if rand() < γ then . change walk direction with probability γ
23: direction *= −1

24: return(replicate)

25: procedure AsynchronousReadBetweenAdjacentBarriers(S, barriers, i, direction, replicate)
26: j = i + direction
27: for z = i to n do
28: replicate[z] .= (direction > 0) ? substr(S[z], barriers[i], barriers[j]) : reverse(substr(S[z], barriers[j] + 1, barriers[i] + 1)

. substr(x, i, j) returns substring in index interval [i, j) if i < j or empty string if i ≥ j
29: return . read result passed by reference to mutable object replicate

30: static variable M . MSA methods M = <M1, M2, . . .>
31: procedure ObtainGuideAlignments(S)
32: alignments = <>
33: for each (m) M do
34: alignments .= m(S)

35: return(alignments)

36: procedure GetAnchorsFromGuideAlignments(S, Ainit)
37: α = <>
38: β = <>
39: canonicalAlignment = Ainit[1] . anchors are indexed based on a fixed alignment in Ainit (WLOG chosen to be the first alignment in Ainit)
40: Cstrict = GetStrictConsensusColumns(Ainit) . GetStrictConsensusColumns() returns column indices into first alignment in canonicalAlignment
41: ~αstrict = MergeAdjacentColumns(Ainit, Cstrict) . merges adjacent columns

. returns array of ordered pairs (~x, ~y) where start indices ~x and end indices ~y are indexed based on canonicalAlignment
42: SortAnchors(~αstrict, canonicalAlignment)
43: for z = 1 to length(~αstrict) do
44: for i = 1 to n do
45: (~x, ~y) = ~αstrict[z]

46: if substr(canonicalAlignment[i], ~x[i], ~y[i]) contains only indels then
47: α[i][z] = LookupUnalignedSequenceIndex(GetLastNonIndelIndexInPrefix(canonicalAlignment[i], x[i]))
48: β[i][z] = α[i][z]

49: else
50: α[i][z] = LookupUnalignedSequenceIndex(GetFirstNonIndelIndexInRange(canonicalAlignment[i], x[i], y[i] + 1))
51: β[i][z] = LookupUnalignedSequenceIndex(GetLastNonIndelIndexInRange(canonicalAlignment[i], x[i], y[i] + 1))

52: return(α, β)

53: procedure SortAnchors(~α, canonicalAlignment)
. ~α is an array of ordered pairs (~x, ~y) where start indices ~x and end indices ~y are indexed based on canonicalAlignment

54: sort (ComputeModifiedHammingDistance(u, canonicalAlignment) <=> ComputeModifiedHammingDistance(v, canonicalAlignment)) ~α
. perl sort syntax
. See Algorithm 3
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Algorithm 3 Modified Hamming distance calculation
1: procedure ComputeModifiedHammingDistance(u, A)
2: dist = 0

3: (~x, ~y) = u
4: for i = 1 to n do
5: for j = i+ 1 to n do
6: dist += ComputeModifiedHammingDistancePair(substr(A[i],~x[i],~y[i]),substr(A[j],~x[j],~y[j]))

7: return(dist /
(n
2

)
)

8: procedure ComputeModifiedHammingDistancePair(x, y)
9: alignedLength = length(x) . aligned sequences x and y have same length
10: matches = 0
11: for i = 1 to alignedLength do
12: if (x[i] != INDEL) and (y[i] != INDEL) and (x[i] == y[i]) then . homologies involving indels are penalized as mismatch
13: matches++
14: return(matches / alignedLength)

2008) and then combined the two to obtain two new semi-parametric
approaches: GUIDANCE (Penn et al., 2010) (which we will refer to as
GUIDANCE1) and GUIDANCE2 (Sela et al., 2015). Other parametric
MSA support estimation methods include PSAR (Kim and Ma, 2011) and
T-Coffee (Notredame et al., 2000).

We focus on GUIDANCE1 and GUIDANCE2, which have been
demonstrated to have comparable or better performance relative to other
state-of-the-art methods (Sela et al., 2015). We used MAFFT for re-
estimation on resampled replicates, since it has been shown to be among
the most accurate progressive MSA methods to date (Katoh and Standley,
2013; Liu et al., 2012).

We then used SERES to perform resampling in place of the standard
bootstrap that is used in the first step of GUIDANCE2. Re-estimation was
performed on 100 SERES replicates – each consisting of a set of unaligned
sequences – using MAFFT with default settings, which corresponds to the
FFT-NS-2 algorithm for progressive alignment. The SERES resampling
procedure used a reversal probability γ = 0.5, which is equivalent to
selecting a direction uniformly at random (UAR) at each step of the random
walk; each SERES replicate utilized a total of b k

20
c anchors with anchor

size of 5 bp and a minimum distance between neighboring anchors of 25

bp, where k is the length of the input alignment A. All downstream steps
of GUIDANCE2 were then performed using the re-estimated alignments
as input.

Simulated datasets. Model trees and sequences were simulated using
INDELible (Fletcher and Yang, 2009). First, non-ultrametric model trees
with either 10 or 50 taxa were sampled using the following procedure:
model trees were generated under a birth-death process (Yang and Rannala,
1997), branch lengths were chosen UAR from the interval (0, 1), and the
model tree height was re-scaled from its original height h0 to a desired
height h by multiplying all branch lengths by the factor h/h0. Next,
sequences were evolved down each model tree under the General Time-
Reversible (GTR) model of substitution (Rodriguez et al., 1990) and the
indel model of Fletcher and Yang (2009), where the root sequence had
length of 1 kb. We used the substitution rates and base frequencies from
the study of Liu et al. (2012), which were based upon empirical analysis
of the nematode Tree of Life. Sequence insertions/deletions occurred at
rate ri, and we used the medium gap length distribution from the study
of Liu et al. (2012). The model parameter values used for simulation
are shown in Table 1, and each combination of model parameter values
constitutes a model condition. Model conditions are enumerated in order of
generally increasing sequence divergence, as reflected by average pairwise
ANHD. For each model condition, the simulation procedure was repeated

to generate twenty replicate datasets. Summary statistics for simulated
datasets are also shown in Table 1.

We evaluated performance based upon receiver operating character
(ROC) curves, precision-recall curves (PR), and area under ROC and
PR curves (ROC-AUC and PR-AUC, respectively). Consistent with
other studies of MSA support estimation techniques (Penn et al., 2010;
Sela et al., 2015), the MSA support estimation problem in our study
entails annotation of nucleotide-nucleotide homologies in the estimated
alignment; thus, homologies that appear in the true alignment but not
the estimated alignment are not considered. For this reason, the confusion
matrix quantities used for ROC and PR calculations are defined as follows.
True positives (TP) are the set of nucleotide-nucleotide homologies that
appear in the true alignment and the estimated alignment with support
value greater than or equal to a given threshold, false positives (FP) are
the set of nucleotide-nucleotide homologies that appear in the estimated
alignment with support value greater than or equal to a given threshold
but do not appear in the true alignment, false negatives (FN) are the
set of nucleotide-nucleotide homologies that appear in the true alignment
but appear in the estimated alignment with support value below a given
threshold, and true negatives (TN) are the set of nucleotide-nucleotide
homologies that do not appear in the true alignment and appear in the
estimated alignment with support value below a given threshold. The
ROC curve plots the true positive rate (|TP|/(|TP| + |FN|)) versus the
false positive rate (|FP|/(|FP| + |TN|)). The PR curve plots the true
positive rate versus precision (|TP|/(|TP| + |FP|)). Varying the support
threshold yields different points along these curves. Custom scripts were
used to perform confusion matrix calculations. ROC curve, PR curve, and
AUROC calculations were performed using the scikit-learn Python library
(Pedregosa et al., 2011).

Empirical datasets. We downloaded empirical benchmarks from the
Comparative RNA Web (CRW) Site database, which can be found at
www.rna.icmb.utexas.edu (Cannone et al., 2002). In brief, the
CRW database includes ribosomal RNA sequence datasets than span a
range of dataset sizes and evolutionary divergence. We focused on datasets
where high-quality reference alignments are available; the reference
alignments were produced using intensive manual curation and analysis
of heterogeneous data, including secondary structure information. We
selected primary 16S rRNA, primary 23S rRNA, primary intron, and seed
alignments with at most 250 sequences. Aligned sequences with 99% or
more missing data and/or indels were omitted from analysis. Summary
statistics for the empirical benchmarks are shown in Table 2.
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Table 1. Unaligned input application: model condition parameter values and summary statistics. The simulation study parameters consist of the number of
taxa, model tree height, and insertion/deletion probability. Each model condition corresponds to a distinct set of model parameter values. The 10-taxon model
conditions are named 10.A through 10.E in order of generally increasing sequence divergence; the 50-taxon model conditions are named 50.A through 50.E similarly.
The following table columns list average summary statistics for each model condition (n = 20). “NHD” is the average normalized Hamming distance of a pair of
aligned sequences in the true alignment. “Gappiness” is the percentage of true alignment cells which consists of indels. “True align length” is the length of the true
alignment. “Est align length” is the length of the MAFFT-estimated alignment (Katoh and Standley, 2013) which was provided as input to the support estimation
methods. “SP-FN” and “SP-FP” are the proportion of homologies that appear in the true alignment but not in the estimated alignment and vice versa, respectively.

Model Number Tree Insertion/deletion True align Est align
condition of taxa height probability NHD Gappiness length length SP-FN SP-FP

10.A 10 0.4 0.13 0.297 0.474 1965.3 1552.3 0.294 0.341
10.B 10 0.7 0.1 0.394 0.512 2165.1 1563.5 0.483 0.533
10.C 10 1 0.06 0.514 0.526 2162.8 1554.0 0.657 0.684
10.D 10 1.6 0.031 0.599 0.485 1874.4 1507.5 0.747 0.752
10.E 10 4.3 0.013 0.693 0.465 1849.3 1612.8 0.945 0.943
50.A 50 0.45 0.06 0.281 0.516 2043.5 1785.7 0.086 0.088
50.B 50 0.7 0.03 0.398 0.475 1935.5 1714.2 0.105 0.102
50.C 50 1 0.02 0.514 0.498 2047.6 1703.1 0.245 0.230
50.D 50 1.8 0.012 0.594 0.471 1945.0 1712.2 0.455 0.419
50.E 50 4.3 0.004 0.688 0.459 1890.2 2319.2 0.963 0.948

Table 2. Unaligned input application: empirical dataset summary statistics.
The empirical study made use of reference alignments (“Ref align”) from
the CRW database (Cannone et al., 2002). The reference alignments were
curated using heterogeneous data including secondary structure information.
The column description is identical to Table 1, where the empirical study made
use of reference alignments in lieu of the simulation study’s true alignments.

Number Ref align Est align
Dataset of taxa NHD Gappiness length length SP-FN SP-FP
IGIA 110 0.606 0.915 10368 6675 0.734 0.784
IGIB 202 0.579 0.910 10633 7379 0.825 0.864
IGIC2 32 0.533 0.700 4243 3514 0.689 0.715
IGID 21 0.719 0.782 5061 3023 0.874 0.904
IGIE 249 0.451 0.838 2751 2775 0.393 0.376
IGIIA 174 0.668 0.814 6406 7005 0.816 0.800
PA23 142 0.293 0.267 3991 3552 0.078 0.077
PE23 117 0.300 0.612 9436 10083 0.202 0.213
PM23 102 0.361 0.797 10999 8803 0.262 0.288
SA16 132 0.212 0.205 1866 1673 0.031 0.028
SA23 144 0.304 0.460 4048 3678 0.077 0.081

4 Results

4.1 Aligned input application: posterior decoding of
phylo-HMMs

Simulation study. Relative to standalone posterior decoding, the SERES-
based method yielded statistically significant improvements in topological
accuracy on all model conditions with one exception (Figure 1). The
single exception occurred on the smallest model condition with the lowest
recombination rate and mutation rate in our study (both 0.5), where a small
but statistically insignificant improvement was seen.

On the four-taxon model conditions with the lowest recombination
rate (ρ = 0.5), the SERES-based method’s advantage in topological
accuracy grew as the mutation rate increased from 0.5 to 2. On all
other four-taxon model conditions, the SERES-based method’s average
improvement in topological accuracy over standalone posterior decoding
was mostly unchanged as the recombination rate and mutation rate varied.
A similar outcome was observed on the six-taxon model conditions, where
the difference in average topological error between the two methods was
generally similar across a range of recombination rates and mutation rates.
Overall, topological error was generally greater on the six-taxon model
conditions compared to otherwise equivalent four-taxon model conditions.
The quantitative improvement seen on the six-taxon model conditions

was generally less than on the four-taxon model conditions as well. The
largest improvements were seen on the four-taxon model conditions with
recombination rate ρ = 2, which were as large as 18.7%.

4.2 Unaligned input application: MSA support estimation

Simulation study. For all model conditions, SERES-based resampling
and re-estimation yielded improved MSA support estimates compared to
GUIDANCE1 and GUIDANCE2, two state-of-the-art methods, where
performance was measured by PR-AUC or ROC-AUC (Table 3). In all
cases, PR-AUC or ROC-AUC improvements were statistically significant
(corrected pairwise t-test or DeLong et al. (1988) test, respectively;
n = 20 and α = 0.5). The observed performance improvement
was robust to several experimental factors: dataset size, increasing
sequence divergence due to increasing numbers of substitutions, insertions,
and deletions, and the choice of alignment-specific parametric support
estimation techniques (i.e., the parametric approaches used by either
GUIDANCE1 or GUIDANCE2) that were used in combination with
SERES-based support estimation.

Compared to dataset size, sequence divergence had a relatively greater
quantitative impact on each method’s performance. For each dataset
size (10 or 50 taxa), PR-AUC differed by at most 3% on the least
divergent model condition. The SERES-based method’s performance
advantage grew as sequence divergence increased – to as much as
28% – and the largest performance advantages were seen on the most
divergent datasets in our study. The most divergent datasets were also
the most challenging. For each method, PR-AUC generally degraded as
sequence divergence increased; however, the SERES-based method’s PR-
AUC degraded more slowly compared to the non-SERES-based method.
Consistent with the studies of Penn et al. (2010) and Sela et al. (2015),
GUIDANCE2 consistently outperformed GUIDANCE1 on each model
conditions and using either AUC measure. The performance improvement
of SERES+GUIDANCE1 over GUIDANCE1 was generally greater than
that seen when comparing SERES+GUIDANCE2 and GUIDANCE2;
furthermore, the PR-AUC-based corrected q-values were more significant
for the former compared to the latter in all cases except for the 10.D model
condition, where the corrected q-values were comparable. Finally, while
the SERES-based method consistently yielded performance improvements
over the corresponding non-SERES-based method regardless of the choice
of performance measure (either PR-AUC or ROC-AUC), the PR-AUC
difference was generally larger than the ROC-AUC difference, especially
on more divergent model conditions.
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Fig. 1. Aligned input application: simulation study results. Results are shown for model conditions with either 4 or 6 taxa, recombination rate between 0.5 and 2.0, and mutation
rate between 0.5 and 2.0. The topological error of local gene trees inferred using SERES-based posterior decoding (light blue) is compared to standalone posterior decoding (dark blue).
Topological error is measured using Robinson-Foulds distance (Robinson and Foulds, 1981) between the inferred and true gene trees, where we report each method’s average topological
error across all sites and replicates in a model condition. Average and standard error bars are shown (n = 30). To test whether SERES-based inference yielded a significant improvement in
topological error over standalone posterior decoding, we performed a one-tailed pairwise t-test with multiple test correction using the Benjamini-Hochberg method (Benjamini and Hochberg,
1995) (α = 0.05 and n = 30); asterisks denote statistical significance based upon the corrected test.

Table 3. Unaligned input application: simulation study results. Results are shown for five 10-taxon model conditions (named 10.A through 10.E in order
of generally increasing sequence divergence) and five 50-taxon model conditions (similarly named 50.A through 50.E). We evaluated the performance of two
state-of-the-art methods for MSA support estimation – GUIDANCE1 (Penn et al., 2010) and GUIDANCE2 (Sela et al., 2015) – versus re-estimation on SERES and
parametrically resampled replicates (using parametric techniques from either GUIDANCE1 or GUIDANCE2). (See Methods section for details.) We calculated
each method’s precision-recall (PR) and receiver operating characteristic (ROC) curves. Performance is evaluated based upon aggregate area under curve (AUC)
across all replicates for a model condition (n = 20). The top rows show AUC comparisons of GUIDANCE1 vs. SERES combined with parametric techniques from
GUIDANCE1 (“SERES+GUIDANCE1”), and the bottom rows show AUC comparisons of GUIDANCE2 vs. SERES combined with parametric techniques from
GUIDANCE2 (“SERES+GUIDANCE2”); for each model condition and pairwise comparison, the best AUC is shown in bold. Statistical significance of PR-AUC
or AUC-ROC differences was assessed using a one-tailed pairwise t-test or DeLong et al. (1988) test, respectively, and multiple test correction using Benjamini and
Hochberg (1995)’s method. Corrected q-values are reported (n = 20) and all were significant (α = 0.05).

PR-AUC (%) Pairwise t-test ROC-AUC (%) DeLong et al. test
Model condition GUIDANCE1 SERES+GUIDANCE1 corrected q-value GUIDANCE1 SERES+GUIDANCE1 corrected q-value

10.A 88.74 91.17 5.4 ∗ 10−7 80.22 85.57 < 10−10

10.B 82.21 86.26 1.5 ∗ 10−6 84.83 88.66 < 10−10

10.C 76.23 83.49 1.9 ∗ 10−4 86.98 91.23 < 10−10

10.D 74.65 85.81 1.9 ∗ 10−4 88.55 93.72 < 10−10

10.E 42.61 59.20 3.1 ∗ 10−4 82.24 87.40 < 10−10

50.A 98.22 98.92 5.3 ∗ 10−10 83.09 90.64 < 10−10

50.B 97.84 98.69 2.8 ∗ 10−9 82.85 90.39 < 10−10

50.C 95.08 96.80 5.6 ∗ 10−8 85.54 90.64 < 10−10

50.D 90.79 95.75 5.3 ∗ 10−6 88.89 94.56 < 10−10

50.E 62.47 79.14 8.0 ∗ 10−10 91.02 93.23 < 10−10

PR-AUC (%) Pairwise t-test ROC-AOC (%) DeLong et al. test
Model condition GUIDANCE2 SERES+GUIDANCE2 corrected q-value GUIDANCE2 SERES+GUIDANCE2 corrected q-value

10.A 92.55 93.33 7.4 ∗ 10−6 87.17 88.34 < 10−10

10.B 88.08 89.31 8.4 ∗ 10−4 89.45 90.56 < 10−10

10.C 84.28 86.86 3.1 ∗ 10−4 91.36 92.88 < 10−10

10.D 86.03 88.75 1.9 ∗ 10−4 93.34 94.69 < 10−10

10.E 51.17 62.30 1.3 ∗ 10−3 86.00 88.28 < 10−10

50.A 98.98 99.14 5.3 ∗ 10−6 91.17 92.50 < 10−10

50.B 98.79 98.96 1.5 ∗ 10−6 91.24 92.44 < 10−10

50.C 96.86 97.45 3.2 ∗ 10−7 90.81 92.31 < 10−10

50.D 94.04 96.23 1.5 ∗ 10−5 92.67 95.09 < 10−10

50.E 72.61 81.47 1.5 ∗ 10−8 92.94 94.22 < 10−10
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Table 4. Unaligned input application: empirical study results. The empirical
study made use of benchmark RNA datasets and curated reference alignments
from the CRW database (Cannone et al., 2002). Results are shown for intronic
(“IG” prefix) and non-intronic datasets (“P” prefix and “S” prefix, following
“primary” and “seed” nomenclature from the CRW database). For each dataset,
we report each method’s PR-AUC and ROC-AUC. For each dataset and pairwise
method comparison, the best AUC is shown in bold. Methods, performance
measures, table layout, and table description are otherwise identical to Table 3.

PR-AUC (%) ROC-AUC (%)
SERES+ SERES+

Dataset GUIDANCE1 GUIDANCE1 GUIDANCE1 GUIDANCE1
IGIA 62.67 69.28 89.50 91.62
IGIB 73.60 87.47 94.49 97.39

IGIC2 72.67 75.36 82.25 83.87
IGID 63.74 76.30 95.10 96.73
IGIE 93.56 95.42 90.08 93.30
IGIIA 73.03 83.06 86.49 96.45
PA23 98.54 99.41 82.59 93.63
PE23 98.44 99.27 94.75 97.41
PM23 97.53 98.48 94.20 96.44
SA16 99.72 99.86 91.07 95.57
SA23 98.35 99.24 81.76 92.18

PR-AUC (%) ROC-AUC (%)
SERES+ SERES+

Dataset GUIDANCE2 GUIDANCE2 GUIDANCE2 GUIDANCE2
IGIA 67.4 68.49 91.38 91.94
IGIB 80.66 86.72 96.47 97.38

IGIC2 74.44 73.27 84.63 82.51
IGID 75.15 78.38 96.44 97.09
IGIE 94.6 95.44 91.84 93.49
IGIIA 78.16 85.09 94.50 96.82
PA23 99.24 99.53 91.48 94.88
PE23 99.07 99.34 96.72 97.63
PM23 98.68 98.85 96.93 97.28
SA16 99.88 99.91 96.22 97.22
SA23 99.04 99.33 89.93 93.18

Empirical study. Relative to GUIDANCE1 or GUIDANCE2, SERES-
based support estimates consistently returned higher AUC on all datasets
– primary, seed, and intronic – with a single exception: the comparison
of SERES+GUIDANCE2 and GUIDANCE2 on the intronic IGIC2
dataset, where the PR-AUC and ROC-AUC differences were 1.17% and
2.12%, respectively. For each pairwise comparison of methods (i.e.,
SERES+GUIDANCE1 vs. GUIDANCE1 or SERES+GUIDANCE2 vs.
GUIDANCE2), the SERES-based method returned relatively larger PR-
AUC improvements on datasets with greater sequence divergence, as
measured by ANHD and gappiness. In particular, PR-AUC improvements
were less than 1% on seed and primary non-intronic datasets. Intronic
datasets yielded PR-AUC improvements of as much as 13.87%. Observed
AUC improvements of SERES+GUIDANCE1 over GUIDANCE1 were
relatively greater than those seen for SERES+GUIDANCE2 in comparison
to GUIDANCE2. Finally, GUIDANCE2 consistently returned higher AUC
relative to GUIDANCE1, regardless of whether PR or ROC curves were
the basis for AUC comparison.

5 Discussion
Re-estimation using SERES resampling resulted in comparable or
typically improved support estimates for the applications in our study.
We believe that this performance advantage is due to the ability to
generate many distinct replicates while enforcing the neighbor preservation

principle. The latter is critical for retaining sequence dependence which is
inherent to both applications in our study.

Aligned input application: posterior decoding of phylo-HMMs. For
all model conditions, recHMM re-estimation using SERES resampling
returned improved average topological error compared to standalone
recHMM analysis. The improvement was statistically significant for
all model conditions except the model condition with the smallest
number of taxa and lowest mutation rate and recombination rate in our
study. Standalone recHMM analysis was most accurate on the latter
model condition relative to more divergent and larger model conditions.
Furthermore, we found that the methods in our study had comparably low
inference error on this model condition. These findings suggest that the
reduced input size and sequence divergence of this model condition may
have posed less of a challenge for the purposes of inference.

Unaligned input application: MSA support estimation. On all
model conditions, SERES+GUIDANCE1 support estimation resulted
in significant improvements in AUC-PR and AUC-ROC compared
to GUIDANCE1. A similar outcome was observed when comparing
SERES+GUIDANCE2 and GUIDANCE2. The main difference in each
comparison is the resampling technique – either SERES or standard
bootstrap. Our findings clearly demonstrate the performance advantage
of the former over the latter. SERES accounts for intra-sequence
dependence due to insertion and deletion processes, while the bootstrap
method assumes that sites are independent and identically distributed.
Regarding comparisons involving GUIDANCE2 versus GUIDANCE1,
a contributing factor may have been the greater AUC of GUIDANCE2
over GUIDANCE1. We used SERES to perform semi-parametric support
estimation in conjunction with the parametric support techniques of
GUIDANCE1 or GUIDANCE2. The latter method’s relatively greater
AUC may be more challenging to improve upon.

The performance comparisons on empirical benchmarks were
consistent with the simulation study. In terms of ANHD and gappiness,
the non-intronic datasets in our empirical study were more like the low
divergence model conditions in our simulation study, and the intronic
datasets were more like the higher divergence model conditions. Across
all empirical datasets, SERES-based support estimation consistently
yielded comparable or better AUC versus GUIDANCE1 or GUIDANCE2
alone. The SERES-based method’s AUC advantage generally increased
as datasets became more divergent and challenging to align – particularly
when comparing performance on non-intronic versus intronic datasets.
We found that the support estimation methods returned comparable AUC
(within a few percentage points) on datasets with 1-2 dozen sequences and
low sequence divergence relative to other datasets. In particular, IGIC2 was
the only dataset where SERES+GUIDANCE2 did not return an improved
AUC relative to GUIDANCE2. IGIC2 was the second-smallest dataset
– about an order of magnitude smaller than all other datasets except the
IGID dataset – and IGIC2 also had the second-lowest ANHD and lowest
gappiness among intronic datasets. IGID was the smallest dataset, but had
higher ANHD and gappiness compared to the IGIC2 dataset. Compared to
the other empirical datasets, SERES+GUIDANCE2 returned a small AUC
improvement over GUIDANCE2 on the IGID dataset – at most 3.2%.

On simulated and empirical datasets, greater sequence divergence
generally resulted in increased inference error for all methods. However,
the SERES-based method’s performance tended to degrade more slowly
than the corresponding non-SERES-based method as sequence divergence
increased, and the greatest performance advantage was seen on the most
divergent model conditions and empirical datasets.

Finally, we note that non-parametric/semi-parametric resampling
techniques are orthogonal to parametric alternatives. Consistent with
previous studies (Penn et al., 2010; Sela et al., 2015), we found that
combining two different classes of methods yielded better performance
than either by itself.
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6 Conclusion
This study introduced SERES, which consists of new non-parametric
and semi-parametric techniques for resampling biomolecular sequence
data. Using simulated and empirical data, we explored the use of
SERES resampling for support estimation in two classical problems
in computational biology and bioinformatics – one involving aligned
sequences and the other involving unaligned sequences. We found that
SERES-based support estimation yields comparable or typically better
performance compared to state-of-the-art approaches.

We conclude with possible directions for future work. The SERES
algorithm in our study made use of a semi-parametric resampling
procedure on unaligned inputs, since anchors were constructed using
progressive multiple sequence alignment. While this approach worked well
in our experiments, non-parametric alternatives could be substituted (e.g.,
unsupervised k-mer clustering using alignment-free distances (Daskalakis
and Roch, 2010)) to obtain a purely non-parametric resampling procedure.
Finally, we envision many other SERES applications. Examples in
computational biology and bioinformatics include protein structure
prediction, detecting genomic patterns of natural selection, and read
mapping and assembly. Non-parametric resampling for support estimation
is widely used throughout science and engineering, and SERES resampling
may similarly prove useful in research areas outside of computational
biology and bioinformatics.
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