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Highlights: 

• Computational model shows task inflation of functional connectivity estimates 

• Hemodynamic response shape causes task activations to further inflate estimates 

• Standard approach to remove task activations leaves many false positives 

• Methods that flexibly fit hemodynamic response shape effectively correct inflation 

• Correction of functional connectivity inflation verified with empirical fMRI data 
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Abstract 
Task-state functional connections – such as those measured using functional MRI 
(fMRI) – are thought to coordinate distributed cognitive processes throughout the brain. 
Utilizing a neural mass computational model we found that the conversion of neural 
signals into fMRI hemodynamic responses substantially and inappropriately inflates 
task-state functional connectivity (FC) estimates (temporal correlations). Such 
activation-induced inflation of task FC estimates was postulated previously, but this 
phenomenon has not been conclusively established either theoretically or empirically, 
leading many task FC studies to simply ignore the issue. We found that activation-
based task FC inflation was primarily driven by task-evoked fMRI activations introducing 
a similar hemodynamic response shape to underlying neural time series. This 
demonstrates that isolating task-state network changes from task-evoked activations is 
essential for ensuring discovery of unique functional network effects, independent of 
mechanistically-distinct activation effects. Standard approaches for fitting and removing 
task-evoked activations were unable to correct these inflated correlations. In contrast, 
methods that flexibly fit hemodynamic response shapes (especially finite impulse 
response-based regression) effectively corrected the inflated correlations. Results with 
empirical fMRI data confirmed the model’s predictions, revealing activation-induced task 
FC inflation for both Pearson correlation and psychophysiological interaction 
approaches. These results demonstrate that removal of task activations using an 
approach that flexibly models hemodynamic response shape is an essential 
preprocessing step for valid estimation of task-state FC with fMRI. 
 
 
INTRODUCTION 
 

Converging evidence across a wide variety of neuroscientific methods applied 
across multiple species suggests cognition emerges from widespread neural 
interactions (Cole et al., 2013b; Gratton, 2013; Likhtik et al., 2005; M. Siegel et al., 
2015). One of the most logically-direct and widely-used ways to characterize these 
cognitive brain network interactions involves estimating task-state functional 
connectivity (FC). Rather than conflate the method (e.g., correlation) with what the 
method seeks to estimate, we define FC as any interaction among neural units (e.g., 
neurons, local neural populations, brain regions). Notably, FC estimates often lack 
details about directionality or whether interactions are indirect (e.g., via a third region). 
Nonetheless, if an FC estimate is valid it should still reflect real (potentially indirect) 
neural interactions. Therefore, we used a neural mass computational model – in which 
we could know the ground-truth neural interactions – to test the efficacy of widely-used 
FC estimation approaches involving functional MRI (fMRI). We further focused on task-
state FC given its close relationship with experimentally-controlled cognitive variables, 
in which, relative to resting-state FC alone or a single task-state FC condition, 
quantifying changes of task-state FC relative to a control condition (e.g., resting state or 
another task condition) provides improved experimental control of FC inferences. We 
also focused on Pearson correlation as an FC-estimation method given that it is among 
the most widely-used fMRI FC measures. Since Pearson correlation does not indicate 
whether an interaction is direct or indirect we focused primarily on testing for false 
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positives (among other potential issues) in cases where even indirect neural interactions 
would be impossible.  

Many advances in characterizing task-state brain network dynamics have relied 
on fMRI (Cole et al., 2013b; 2014; Friston et al., 1997; Krienen et al., 2014; Rissman et 
al., 2004a). This is likely due to a unique combination of benefits when using fMRI to 
estimate task-related changes in the relationship among brain activity time series – i.e., 
task-state FC. For instance, fMRI provides for accurate spatial localization (e.g., relative 
to electroencephalography), which is essential for valid task-state FC inferences. 
Additionally, the non-invasive nature of fMRI facilitates the efficiency of cognitive task 
manipulations (e.g., relative to non-human animal studies), given that humans can be 
rapidly instructed to perform new tasks (Cole et al., 2013a). Finally, the whole-brain 
coverage of fMRI (e.g., relative to multi-unit recording or intracranial 
electroencephalography) allows for calculating comprehensive functional network 
graphs (Cole et al., 2013b; Power et al., 2011). This unique set of beneficial traits belies 
one potentially major issue – fMRI is an indirect measure of neural activity (Logothetis 
and Wandell, 2004). Here we utilize computational modeling of the relationship between 
neural and fMRI time series to test whether fMRI-based inferences of task-state FC are 
likely to be valid. 

Several studies have proposed the possibility that cross-event average changes 
in fMRI activity amplitudes – as measured by standard fMRI general linear model (GLM) 
analyses – could induce false positive task-state FC estimates (Cole et al., 2014; Fair et 
al., 2007; Friston et al., 1997; Gratton et al., 2016; Norman-Haignere et al., 2012). The 
argument is that simultaneous increases in brain activity induced by task events could 
create spurious increases in FC estimates (e.g., correlations) given that this would not 
be induced by neural interactions but rather by the experimenter (the task timing; 
Figure 1). For instance, presenting a visual stimulus simultaneously with an auditory 
stimulus would increase activity simultaneously in primary visual and primary auditory 
cortices. This would increase the task-state FC estimate (e.g., Pearson correlation) 
between visual and auditory cortices, despite there being no true task-state FC – no 
change in neural interaction – between those regions simultaneous with stimulus onset. 
Note, however, that simply calculating a Pearson correlation using the post-stimulus 
time series would likely fix this problem when using direct neural signals (e.g., spike 
rates, local field potentials) since moment-to-moment fluctuations between non-
interacting visual and auditory cortices are unlikely to be correlated after an initial task-
state transient. In contrast, fMRI hemodynamic responses are known to be similar (but 
not identical) between regions (Handwerker et al., 2004; Ogawa et al., 1992), combining 
a delay from task event onset with a common shape that is largely independent from 
moment-to-moment fluctuations. It is this task-state introduction of a common (i.e., 
correlated) response shape that may have the biggest impact on inflating task-state FC 
estimates. 
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Figure 1 – Illustration of the possibility that task event timing acts as a confounder (third variable), 
producing false positives. Task-evoked activity (activity time-locked to task event onsets) has been 
proposed to induce false positives in task-state FC estimates. Despite many studies assuming task timing 
is indeed a confounder (Greenland et al., 1999) (and many other studies that have not), to our knowledge 
this has never been conclusively established. We sought to rigorously test this possibility here. A) A 
scenario with a true neural interaction between neural populations A and B induced by the task context. 
Even with this true positive, the task-evoked activity inflates the FC estimate relative to the ground truth 
interaction. B) A scenario with no true neural interaction between A and B. The task event timing 
nonetheless acts as a confounder to create an artefactual correlation between the neural populations. In 
this case, A and B both increase their activity in response to task events, but they do not interact either 
directly or indirectly. We test for this possibility, along with the possibility that the fMRI hemodynamic 
response function further inflates the effect of task timing as a confounder (due to the similarity of 
hemodynamic response functions associated with distinct neural populations). 

 
Despite this hypothesized confound, to our knowledge such task-state FC false 

positives have not been systematically investigated in either simulations or real fMRI 
data. Adding doubt that this proposed confound exists, some studies do not 
acknowledge this potential confound (Bassett et al., 2011; 2013; Krienen et al., 2014; 
Shirer et al., 2012; Tomasi et al., 2013), suggesting many researchers do not consider it 
to be a problem. Indeed, these studies were justified in not worrying about this putative 
problem, given that it has not been conclusively established in the literature (it has only 
been assumed to be a problem by some researchers). The standard approach to 
correct for this confound is to fit an event-averaged general linear model (GLM) of the 
task events either simultaneously with task-state FC (as with psychophysiological 
interaction; PPI) (McLaren et al., 2012; O'Reilly et al., 2012) or calculate FC estimates 
using the residual time series of such a model (Al-Aidroos et al., 2012; Cole et al., 
2013b; Gratton et al., 2016; Summerfield et al., 2006). Critically, without showing that 
task-state FC estimates are meaningfully altered by these preprocessing steps, it 
remains possible that the proposed confound does not exist or (even if it exists) that the 
proposed correction for the confound is ineffective. 

One potentially confusing aspect of these task-regression correction approaches 
is that – despite removing some task-related variance – these approaches are not 
meant to eliminate all task-related variance from the time series. Rather, these 
approaches are designed to leave moment-to-moment (and event-to-event) task-related 
variance in the time series, but remove cross-event variance correlated with the task's 
timing. This allows for a distinction between two neural populations merely responding 
in a similar way to a task event (task co-activation), versus an ongoing interaction 
between those neural populations as evidenced by covariance among moment-to-
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moment activity fluctuations. In the parlance of electroencephalography, these task-
state FC approaches remove cross-event mean evoked responses (responses time-
locked to task events) to isolate induced responses (responses influenced by task 
events but that vary in timing across multiple instances of those events) (Tallon-Baudry 
and Bertrand, 1999). Note that evoked (event-time-locked) responses that vary in 
amplitude across event instances (e.g., trials) remain in addition to induced responses 
(Truccolo et al., 2002a). Neural time series correlations that remain after removing the 
cross-event mean response are termed "noise correlations" in the non-human animal 
neurophysiology literature (Cafaro and Rieke, 2010; Cohen and Kohn, 2011). One goal 
of the present study is to determine whether only removing cross-event mean (evoked) 
responses is adequate for eliminating task-activation-driven FC inflation. 

Demonstrating that the proposed confound is real and problematic would have a 
meaningful impact on our understanding of task FC, given that many task FC studies 
use fMRI and make no attempt to correct for the proposed confound. The impact of 
demonstrating this potential confound would be larger to the extent that the task-state 
FC estimate inflations are large or numerous. The impact would be even larger if the 
proposed confound were real and standard methods to correct for the confound were 
ineffective, given that this would implicate much of the task-state FC fMRI literature in 
potentially-false conclusions regarding task-state FC. Critically, however, it is difficult to 
conclude the exact impact of a methodological error such as this post-hoc, since it 
involves an inflation in false positives rather than a guarantee that all results are false 
(Eklund et al., 2016). Thus, it would be essential to correct for the confound in ongoing 
and future studies (and in reanalysis of previous studies when possible), with improved 
understanding of task-state FC effects being the best way to estimate the impact of the 
confound on prior studies. 
 We began by testing for the existence of the proposed task-state FC confound 
using a neural mass computational model that balances simplicity with biological 
interpretability. Briefly, the computational model is based on a standard firing rate model 
of neural populations (Hopfield, 1984). Note that unlike some firing rate models we 
analyze the input time series rather than the output (population spike rate) time series. 
This is due to the input into each neural population better reflecting local field potentials, 
which have been shown to better relate to a variety of signals used to investigate task-
state FC such as fMRI (Logothetis et al., 2001). Once the task-state FC confound was 
identified in simulated fMRI data, we tested a variety of methods to correct for the 
confound. Once a confound-corrected method was identified, we tested its efficacy in 
real fMRI data. Critically, demonstrating that this confound-correcting method has a 
strong impact on results with real fMRI data would provide more conclusive evidence 
that the confound exists and that correcting it matters in practice.  
 
 
METHODS 
 
Neural mass model 
 We developed a neural mass model to simulate the large-scale activity and 
interaction patterns of sets of thousands of neurons. We sought to optimize the model 
simultaneously for simplicity and biological interpretability of its internal variables. We 
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expected simplicity to increase understanding/interpretability of results and 
computational tractability, with biological interpretability facilitating the relation of 
simulation results to neuroimaging results. The core of the model is a standard firing 
rate model. This increased the simplicity of the model compared to some alternatives, 
while remaining biologically plausible based on evidence that neural populations exhibit 
a sigmoid-like transfer function reflecting variability in the exact firing threshold across 
individual neurons (Hopfield, 1984).  
 
 We defined each node’s output as: 
 

𝑢𝑖(𝑡) =  𝑓( 𝐼𝑖 +  𝑏𝑖𝑎𝑠 )     𝑖 = [1. . 𝑛]      (1) 
 
where 𝑢𝑖 is the output activity (population spike rate) for unit 𝑖 at time 𝑡, 𝐼𝑖 is the input 

(population field potential) as defined below, and 𝑏𝑖𝑎𝑠 is the bias (population resting 
potential, or excitability). 
 

𝐼𝑖(𝑡) =  ∑ 𝐺 𝑤𝑖𝑗 𝑢𝑗(𝑡 − 1)

𝑛

𝑗=1

+ 𝑑𝑖 +  𝑠𝑡𝑖𝑚𝑖       (2) 

 
where 𝐼𝑖(𝑡) is the input (population field potential) for unit 𝑖 at time 𝑡, 𝐺 is the global 

coupling parameter (a scalar influencing all connection strengths), 𝑤𝑖𝑗  is the synaptic 

weight from unit 𝑗 to 𝑖, 𝑢𝑗(𝑡 − 𝜏𝑖𝑗) is the output activity from unit 𝑗 at the previous time 

step (𝜏𝑖𝑗 was set to 1 for simplicity), 𝑑𝑖 is spontaneous activity (independent Gaussian 

random values across nodes), and 𝑠𝑡𝑖𝑚𝑖  is task stimulation (if any). 

 
Initial condition is set to a Gaussian random value (mean 0, standard deviation 1) 

as input for all units at time point 0 (independent Gaussian random values across 
nodes). 
 
The sigmoid 𝑓(𝑥) (population threshold) in the node output equation above is defined 

as: 

𝑓(𝑥) =  
1

1 + 𝑒−𝑥
       (3) 

 
 

We reduced the arbitrariness of model parameter selection using a principled 
parameter search. Parameters for the model were determined based on optimizing for 
task-state FC change relative to resting-state FC without fMRI simulation. Specifically, 
we optimized for the average correlation-based task-state FC (relative to the average 
resting-state FC) among all pairs of the first 50 nodes in the 300-node network 
described in the next section. Optimizing for only a portion of the entire network reduced 
the chance that the optimization overfit to the particular network structure. Rerunning 
the model with multiple initial random conditions (for the main analyses) also ensured 
overfitting was not an issue. Notably, we did not optimize for task-state FC false 
positives nor for fMRI-based FC, such that we could test for fMRI-based false positives 
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as a hypothesis independent of how the model parameters were chosen. The 
parameter search involved all permutations of the model parameters varied, with the 
following ranges: 𝐺=1 to 10, 𝑏𝑖𝑎𝑠=-15 to 0, 𝑑=1 to 10, 𝑠𝑡𝑖𝑚=0.1 to 1.0 (in 0.1 

increments). 
Settings used for the model: 𝑑𝑖 was a Gaussian random value with mean 0 and 

standard deviation 3, 𝐺 was set to 5, 𝑏𝑖𝑎𝑠 was set to -5, 𝑠𝑡𝑖𝑚 was set to 0.3, and all self-
connections (diagonals in 𝑤) were set to 1. Setting the self-connection above 0 reflects 

the theoretical neurons within the modeled neural population having synaptic 
connections among each other, such that the same outputs sent to other units also 
affect the unit that sent it. The model was implemented in Python (version 2.7). 
 
 
The model's network organization 
 The model's network included 300 nodes, selected to be in the same range as 
some recent estimates of the number of functional regions in human neocortex (Glasser 
et al., 2016; Van Essen et al., 2012). This 300-node network was given a functional 
network community structure, based on empirical evidence of such large-scale network 
structure in the human brain (Ito et al., 2017; Power et al., 2011; Spronk et al., 2017). 
Briefly, the construction and running of each "subject's" network went as follows: 1) 
Build structural and synaptic connectivity network architecture, 2) Apply all model 
parameters, running both a resting-state run and a task-state run, 3) Simulate fMRI data 
collection by converting each node's "input" time series to fMRI via convolving with a 
hemodynamic response function (HRF) and downsampling the resulting time series. 
 Network construction involved a series of steps, with the construction of the 
network model randomly initialized separately for each “subject”. First, there was a 10% 
probability of any node in the network connecting to any other. Next, three structural 
communities were created by increasing the probability of connectivity within each set of 
100 nodes to 50%. This was then converted to a synaptic connectivity matrix by adding 
a Gaussian random value to each structural connection (mean of 1, standard deviation 
of 0.001). The first structural community was then split into two “functional” communities 
by multiplying the synaptic weights among the first 50 nodes (and, separately, the 
second 50 nodes) by 1.2 and multiplying the connections to/from the first and second 50 
nodes by -0.2. Next, all connections to/from the final 100 nodes and all other nodes 
were multiplied by 0, completely isolating the final community from the rest of the 
network. Finally, each node’s synaptic connectivity was normalized such that all inputs 
summed to 1.0. Input weight normalization is thought to be a biologically realistic 
process (e.g., via each neuron regulating the number of channels at each synapse) 
(Barral and D Reyes, 2016). 
 Task stimulation amplitude targeted 25 nodes in the first and last network 
communities. Note that the setting of the bias to -5 was consistent with units starting out 
at a near-0 firing rate (given the sigmoid activation function that was used), modeling 
most neurons within a modeled population being at a sub-threshold resting potential. 
Modeling conversion to fMRI data involved convolution of variable HRFs with the input 
time series from each node. The HRF differed for each simulated subject and each 
region, though it differed more between subjects than between regions, consistent with 
empirical evidence (Handwerker et al., 2004). Specifically, the values for peak time (3 to 
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9 in increments of 0.5 s), undershoot time (3 to 17 in increments of 0.5 s), and 
undershoot ratio (0 to 1 in increments of 0.1) of a double-gamma HRF were varied 
randomly (uniform distribution) by subject. Then, each region had these three 
parameters varied from a given subject's selected values based on a Gaussian random 
distribution centered on 0 with a standard deviation of 1, with that value being the array 
index selecting from the set of allowed values for each parameter (as indicated in the 
previous sentence). Note that results were similar without HRF variability (i.e., with the 
same non-canonical HRF shape used for all subjects and all regions). HRF convolution 
was followed by sampling (selecting a single time point) of the convolved time series at 
a time to repetition (TR) of 0.785 seconds, in the range of multiband fMRI protocols 
(Chen et al., 2015). 
 The model was implemented with 24600 time steps per “run”, with each time step 
conceptualized as 50 ms, such that the total simulated time was conceptualized as 20.5 
minutes in duration. Each run was implemented across 24 “subjects”, with a separate 
random seed used for each subject for the spontaneous activity. The first run consisted 
of a resting-state simulation with no task stimulation. The second run consisted of a 
task-state simulation, with 6 task “blocks” of 2.5 minutes of constant stimulation of the 
two sets of nodes indicated above. There was 30 seconds of non-stimulation before and 
after each task block. All FC analyses used the time points included in the 6 task blocks, 
ignoring the inter-block periods. 
 
 
FC estimation 

 Estimates of time series association were calculated using either MATLAB 

(version R2014b) or R (version 2.15.1). Pearson correlation was calculated as: 

  
Where S is the time series standard deviation, cov is the time series covariance, X and 

Y are brain activity time series, n is the number of time points, and 𝑋̄ and 𝑌̄ are the time 

series means. Most analyses also involved the Fisher’s z-transform of the resulting 

Pearson correlation, which increases the dynamic range of correlation values to go 

beyond ±1.0. This is critical when investigating changes in functional connectivity, as 

forgoing the Fisher’s z-transform would result in artificial restrictions in dynamics. The 

Fisher’s z-transform: 

 
 Psycho-physiological interaction (PPI) was estimated using simple linear 

regression, which is equivalent to: 

  
Where var is the time series variance. The beta for each condition was estimated 

separately for each condition, consistent with generalized PPI (McLaren et al., 2012). 
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Empirical fMRI data collection 

 The empirical fMRI dataset was collected as part of the Washington University-
Minnesota Consortium Human Connectome Project (HCP) (Van Essen et al., 2013). 
These data are publicly available, accessible at https://www.humanconnectome.org. 
Participants were recruited from Washington University (St. Louis, MO) and the 
surrounding area. All participants gave informed consent. The data used were selected 
by the HCP as the "100 unrelated" dataset, consisting of data from 100 participants with 
no family relations. Data from 25 subjects were not used because of excessive in-
scanner movement (defined as over 50% of volumes in any run with mean framewise 
displacement > 0.25 mm) for these subjects, such that data from 75 subjects were 
included in the final analyses. Framewise displacement was calculated as described by 
Power et al. (2012), with a low-pass filter of 0.3 Hz applied as suggested by Siegel et al. 
(2016) for multiband fMRI data.  

Whole-brain echo-planar imaging acquisitions were acquired with a 32 channel 
head coil on a modified 3T Siemens Skyra with TR = 720 ms, TE = 33.1 ms, flip angle = 
52°, BW = 2290 Hz/Px, in-plane FOV = 208 × 180 mm, 72 slices, 2.0 mm isotropic 
voxels, with a multi-band acceleration factor of 8 (Ugurbil et al., 2013). Data were 
collected over two days. On each day 28 minutes of rest (eyes open with fixation) fMRI 
data across two runs were collected (56 minutes total), followed by 30 minutes of task 
fMRI data collection (60 minutes total). Each of the 7 tasks was completed over two 
consecutive fMRI runs. Resting-state data collection details for this dataset can be 
found elsewhere (Smith et al., 2013), as can task data details (Barch et al., 2013). 
 
Empirical fMRI dataset analysis 

The empirical dataset preprocessing consisted of standard functional connectivity 
preprocessing (typically performed with resting-state fMRI data), with several 
modifications given that analyses were also performed on task-state data. Resting-state 
and task-state data were preprocessed identically to facilitate comparisons between 
them. Spatial normalization to a template (MSM-sulc), motion correction, intensity 
normalization (normalized to a 4D whole brain mean of 10,000) were already 
implemented in a minimally-processed version of the empirical fMRI dataset described 
elsewhere (Glasser et al., 2013), so we began preprocessing with this version of the 
data. With the surface (rather than the volume) version of the minimally preprocessed 
data, we used custom scripts in MATLAB to additionally remove nuisance time series 
(motion, ventricle, and white matter signals, along with their derivatives) using linear 
regression, and remove the linear trend for each run. Note that the main results were 
broadly similar with and without whole brain (global) signal regression. Unlike standard 
resting-state functional connectivity preprocessing a low-pass temporal filter was not 
applied. This was due to the possible presence of task signals at higher frequencies 
than the relatively slow resting­state fluctuations. 
 Data were sampled from a set of 360 brain regions (rather than individual 
voxels/vertices) to make inferences at the region and systems levels. We used an 
independently-identified set of putative functional brain regions (Glasser et al., 2016) so 
as to reduce any potential circularity in analyses (Kriegeskorte et al., 2009). The use of 
this parcellation also reduces the chance of combining signals from multiple functional 
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regions as compared to anatomically-defined parcellations (Wig et al., 2011). These 
brain regions were identified using parcellation of a variety of data types, including 
resting-state functional connectivity, task activation, and myelin maps (Glasser et al., 
2016). Data were summarized for each region by averaging signal in all vertices falling 
inside each region. 
 Preprocessing was carried out using Freesurfer (version 5.3.0-HCP), FSL 
(version 5.0.8), and custom code in MATLAB 2014b (Mathworks) for the 7-task dataset 
(using the minimally preprocessed version of the data (Glasser et al., 2013)). Further 
analysis was carried out with MATLAB and R. 

We estimated FC using Pearson correlations and regressions between time 
series from all pairs of brain regions using MATLAB (version R2014b). For Pearson 
correlations, all computations used Fisher’s z-transformed values. FC estimation was 
straightforward for resting-state data, as there were no additional steps after 
preprocessing prior to calculating these values. For task data there were additional 
steps related to task activation regression, as described in the following section. 

FC differences were assessed using two-way t-tests paired by subject. Multiple 
comparisons were corrected for using false discovery rate (FDR) (Genovese et al., 
2002). When comparing task-state FC to resting-state FC estimates the number of time 
points contributing to those estimates were matched. The beginning of the first resting-
state fMRI run was used in all cases, due to the increased likelihood of subjects falling 
asleep later in the rest run (Tagliazucchi and Laufs, 2014). 
 
Task-activation regression for task-state FC 

Cross-event (trial and block) mean activations during task fMRI might unduly 
influence task-related changes in FC. This was rigorously tested using computational 
modeling, which informed our empirical fMRI data analysis. We sought to suppress or 
remove such influences with task regression techniques. This involved running standard 
fMRI general linear model (GLM) analysis, and calculating FC based on the residuals. 
Specifically, each region’s task time series was modeled using a GLM, with a distinct 
model depending on the analysis (as described below). To improve removal of task-
related activation variance, a separate regressor was included for each task condition 
(e.g., face stimuli vs. tool stimuli in the N-back task; 24 task conditions total). Note that 
regressing out task events using GLM primarily removes the cross-event signal means, 
retaining event-to-event and sub-event fluctuations in time series such that these 
sources of variability likely contribute the most to task FC estimates (Rissman et al., 
2004a; Truccolo et al., 2002b). The residuals from this regression model were used for 
FC estimation, restricted to time points corresponding to the current task. A standard 
hemodynamic lag was included when determining task timing, by convolving the timing 
with a canonical HRF and selecting time points with a value above 0. 

FC estimation was conducted along with no task regression, canonical HRF task 
regression, constrained basis set task regression, or finite impulse response (FIR) task 
regression. Other than the task regression step, all steps were identical in the no-task-
regression case as when task regression was used. Canonical HRF task regression 
involved use of the SPM software function spm_hrf.m with the default parameters to 
create the HRF. This HRF was then convolved with each of the 24 task condition time 
series, then fit using ordinary least squares regression in MATLAB (function regress.m). 
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Constrained basis set task regression involved creation of a set number of basis set 
regressors (either 5 or 28) in the FLOBS interface in FSL software (version 5.0.8; 
default parameters) (Woolrich et al., 2004). Note that the first three basis function 
regressors are highly similar to the canonical, time, and dispersion derivatives often 
used together to model task activations in SPM software (Woolrich et al., 2004). These 
basis set functions were then convolved with each of the 24 task condition time series 
before fitting them to the brain region time series (identically to the canonical HRF 
approach). 

The FIR task regression approach involved fitting the cross-trial/cross-block 
mean response for each time point in a set window length that is time-locked to the 
trial/block onset for a given task condition. This allows the fit to be completely flexible 
with regard to the HRF response shape, so long as it is consistent across trials/blocks 
for that condition. Each of the 24 task conditions were fit with a series of regressors, one 
per time point. Each condition's window length matched the duration of the events, with 
an additional 18 s (25 regressors) added to account for the likely duration of the HRF.  

There were some noteworthy issues with the timing of the HCP tasks that were 
especially relevant for FIR modeling. First, in some cases not all task events were the 
same duration for a given condition. For instance, some events were cut off at the end 
of a run. In such cases we cut off (or extended) the FIR window length to match the 
duration of the individual event. Simulations indicated that this properly removed cross-
event variance, though of course fewer events contributed to the estimates of the later 
time points in the FIR window. Notably, this choice to model time points that had a 
smaller number of contributing events might differ from standard FIR approaches, which 
primarily seek to estimate robust activations rather than remove task-evoked activation 
variance. Second, the exact timing of the modeling was extremely important and was 
somewhat difficult given the many timing variants across the HCP tasks. The first 
version of our FIR analysis actually resulted in worse task-state FC inflation than all 
other methods, due to errors in the timing of the FIR regressors. This should be 
considered when using FIR regression, perhaps in terms of double-checking the 
regressor timings and comparing to canonical-HRF regression results (e.g., to make 
sure FIR reduces task-state FC more than canonical-HRF regression). For instance, we 
plotted the canonical-HRF and FIR timings and compared them carefully to make sure 
they lined up, since it was easier to set the timings for the canonical-HRF GLM (given 
that there was only one regressor per task condition). 
 
 
RESULTS 
 
Testing for false positives using a neural mass computational model 
 
 Many studies have reported task-state changes in FC using large-scale 
neuroimaging methods such as fMRI and EEG/MEG (Cole et al., 2014; Friston, 2011; 
1994; Krienen et al., 2014; Mill et al., 2017). We sought to determine the efficacy of 
standard task-state FC estimation methods using a simple neural mass model with 
biologically interpretable parameters. We began with a standard firing rate neural mass 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/292045doi: bioRxiv preprint 

https://doi.org/10.1101/292045
http://creativecommons.org/licenses/by-nd/4.0/


 12 

model, with a standard sigmoid transfer function relating network nodes on each time 
step (see Methods). 

Unlike some firing rate neural mass models we focused on the “input” signal, 
given that it is analogous to a neural population’s local field potential. Variance in this 
input signal is thought to be the mechanistic basis of the blood-oxygen-level dependent 
(BOLD) signal underlying fMRI (Logothetis et al., 2001) as well as the electromagnetic 
fields underlying EEG/MEG signals. Thus, the present neural mass model is likely more 
compatible with simulating these methods than standard firing rate models, similar to 
others that have used input (synaptic activity) estimates for simulating fMRI data in the 
past (AdrianPonceAlvarez:2015fo; Schirner et al., 2016). Note, however, that each node 
is given self-connections to simulate the effect of neurons within each modeled neural 
mass connecting to one another (which, in addition to being nearby spatially, is what 
defines them as part of the same neural mass). This makes each node’s output feed 
back into its own input on the next time step, making the input and output signals similar 
in many circumstances. 

We constructed a series of large-scale network communities, given the presence 
of such communities in many real-world networks (Girvan and Newman, 2002) including 
the human brain (Power et al., 2011; Yeo et al., 2011). We began by making three 
structural communities of 100 nodes each (Figure 2A; see Methods). Importantly, we 
removed all structural connections to/from the last community, allowing us to test for 
false positives in subsequent analyses (see upper-right corner of Figure 2A). 

We took a principled approach to model parameter selection, optimizing all 
model parameters for high task-state FC (relative to resting-state FC) among the first 50 
nodes of the model (see Methods). This was done by performing an exhaustive 
parameter search including a wide range of parameter values. Note that restricting the 
search to the first 50 nodes (and running the search without fMRI simulation) helped 
ensure independence of model parameter selection from the hypothesis that task-
evoked fMRI activity could induce false positives within the "no connectivity" zone. 
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Figure 2 – The 300-node model, with fMRI simulation. The same model used in the 3-node simulation 
was used in a 300-node simulation. A) Three structural communities were constructed (100 nodes each), 
with the first community split into two communities via synaptic connectivity. The first and second 
structural communities had random connectivity (10% density), while the third community had no 
connections with the rest of the network. Connections to/from the third community acted as tests for false 
positives in subsequent simulations. B) We simulated fMRI by convolving the input time series of each 
unit with a hemodynamic response function (HRF) and downsampling (every 785 ms). Spontaneous 
activity without task stimulation was used to produce this FC matrix. T-tests vs. 0 were based on across-
subject variance, with each “subject” being a random initialization of the synaptic connectivity matrix and 
spontaneous activity. Note the low false positive rate (0.81%). C) Two populations of 25 nodes (indicated 
by yellow stars) were stimulated simultaneously across 6 task blocks. Two completely unconnected 
communities were stimulated to test for false positives. Note the increase in false positives (41%). D) T-
tests indicated an inflated false positive rate of 40% when comparing task FC to rest FC. Note that 
without fMRI simulation (i.e., no HRF or downsampling) the false positive rate was 1.4%. 

 
 We next used the neural mass model to simulate collection and analysis of 
resting-state FC with fMRI (Figure 2B). We began by simulating 20.5 minutes of 
resting-state data, driven by spontaneous activity only. This was repeated for a total of 
24 “subjects” (random initializations of the synaptic connectivity matrix and spontaneous 
activity). Simulation of fMRI data collection involved the input (population field potential) 
time series convolved with an HRF and down sampled by a standard multiband fMRI 
TR of 0.785 s. Note that the HRF varied for each region and for each subject, with more 
variation between subjects than between regions, as is the case in empirical fMRI data 
(Handwerker et al., 2004). We used Pearson correlation for estimating FC to make the 
results more directly relevant to typical practice in fMRI FC studies (Zalesky et al., 
2012). We found that the resting-state FC matrix was significantly similar to the large-
scale structure of the synaptic connectivity matrix (mean r=0.47, t(23)=266, p<0.00001). 
Further, there were minimal false positives (0.8%) in the “no connectivity” zone at a t-
test threshold of p<0.01. Note that there is no need to correct for multiple comparisons 
in the computational model analyses, given that we know the ground truth and the p-
value indicates the expected percentage of false positives. Given that we use p<0.01, 
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we interpret false positives greater than 1% of the tested connections to be true false 
positives (with false positives at or below 1% likely being due to multiple comparisons). 
 We then simulated task-state FC by stimulating two sets of units, in the first and 
last functional communities (Figure 2C). Task stimulation consisted of a small constant 
input (0.3) across 50 nodes (25 for each of the two communities) in six task blocks. 
Each block lasted 2.5 minutes with 30 seconds of non-stimulation between each block, 
with a total duration of 20.5 minutes of simulated time. Only the on-stimulation times 
were analyzed for task FC to reduce the influence of on/off task transients. Task-state 
FC over-and-above resting-state FC was widespread (Figure 2D). This is consistent 
with the observation of task-state FC across a wide variety of brain systems and tasks 
in the fMRI literature (Cole et al., 2014; Krienen et al., 2014). However, it was apparent 
that a large number of false positives were present in the “no connectivity” zone: 
42.58% false positives for task vs. rest FC (p<0.01). This appeared to be driven 
primarily by the fMRI simulation, since the false positive rate was only 1.99% (task vs. 
rest, p<0.01) with the same data prior to fMRI simulation. 
 
 
Testing for correction of the false positive rate with fMRI 
 
 Such a high false positive rate is consistent with the possibility – hypothesized as 
part of several fMRI studies in the past – that task co-activation with fMRI could lead to 
false positives in task-state FC estimates (Cole et al., 2014; 2013b; Fair et al., 2007; 
Friston et al., 1997). Notably, however, these studies did not necessarily hypothesize 
that fMRI data were especially problematic in this respect, as we show here. We 
nonetheless treated the approaches those studies used to correct the false-positives 
problem as a guide here. These typically involve regressing out the task timing, which 
involves using the residuals of a GLM as the time series to compute task-state FC. This 
is very similar to simultaneous fitting of task-state FC and task activations when using 
PPI (Friston et al., 1997; McLaren et al., 2012; O'Reilly et al., 2012). Critically, however, 
since our simulations provided “ground truth” knowledge of the false positive rate we 
were able to validate the approaches and verify their efficacy for reducing the false 
positive rate. 

There remains much confusion in the literature about the nature of these task-
regression correction approaches. It is often assumed that these approaches will 
eliminate all (or a substantial portion of) task-related variance from the time series, but 
this is mistaken. Rather, these approaches are designed to leave moment-to-moment 
(and event-to-event) task-related variance in the time series, but remove cross-event 
variance correlated with the task's timing. This allows for task-state FC to remain (due to 
moment-to-moment and event-to-event task-related variance remaining), while 
removing the variance directly correlated with the task timing. 
 We began by using the most common approach for reducing false positives – 
fitting the "canonical" HRF shape to remove cross-event mean variance correlated with 
task timing (Figure 3A). This is the same HRF shape used in PPI (O'Reilly et al., 2012) 
and related approaches (Cole et al., 2014). Note that the variable HRF shapes used 
across regions and subjects were all based on the canonical HRF, such that the 
canonical HRF would be expected to fit the mean responses relatively well. We found 
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that task regression with this canonical HRF shape reduced the false positive rate 
somewhat but failed to bring it below the 1% specified by the p-value threshold 
(p<0.01): 20.34% false positive rate (Figure 3B). 
 

 
Figure 3 – Testing task-timing regression approaches to reduce false positive rate. While some 
researchers investigating task FC fMRI ignore this problem, there are several standard approaches for 
attempting to reduce potential false positives. Critically, the 300-node computational model can provide a 
ground-truth scenario for testing the validity of these approaches. Note that all approaches are designed 
to leave moment-to-moment (and event-to-event) task-related variance in the time series, but to remove 
cross-event variance related to the task's timing. Task vs. rest Pearson correlation differences (t-test 
p<0.01 thresholded) are shown. A) The 4 tested approaches are illustrated. The canonical HRF shape is 
what is typically used to reduce false positives in the literature, as with PPI. To assess whether the HRF 
shape mattered a “wrong” HRF was also used. The finite impulse response (FIR) and constrained basis 
set approaches are flexible, allowing them to fit the actual HRF shape. B) The canonical HRF shape task 
regression. There was a reduction from the no-regression condition (42.58%) but the remaining high false 
positive rate (20.34%) demonstrates that task regression with the canonical HRF is helpful but fails to 
correct the problem. C) Task regression with the "flipped" HRF shape does a worse job at correcting the 
problem (25.43% false positive rate). D) Task regression with the FIR approach eliminates the problem, 
with the false positive rate just below the expected detection rate of 1% (given our p<0.01 threshold). E) 
Task regression with a basis set of 5 regressors (accounting for 99.5% of the variance among 1000 
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plausible HRF shapes) was also successful in reducing the false positive rate (1.05%). F) False positive 
rates across six variants of the analyses. Since results were thresholded at p<0.01, any values above 1% 
can be considered false positives. 

 
 We next used a worst-case scenario “wrong” HRF shape to determine if having 
an approximately-correct HRF shape (as with the canonical HRF) mattered for reducing 
the false positive rate. This “wrong” shape was created by moving the HRF undershoot 
in the canonical HRF to the beginning instead of the end of the HRF shape (Figure 3A). 
We found that using the wrong HRF shape did a worse job of reducing the false positive 
rate than the canonical HRF (Figure 3C): 25.43% false positive rate. This suggests that 
the relative accuracy of the HRF shape matters. 
 A standard approach for empirically determining the correct HRF shape for task 
regression is finite impulse response (FIR) modeling (Cordova et al., 2016; Fair et al., 
2007; Norman-Haignere et al., 2012). This involves including a binary regressor for 
every time point in the task event/block (Figure 3A). This is sometimes referred to as 
"background connectivity" analysis when used with a block experimental design (as 
here) (Cordova et al., 2016; Norman-Haignere et al., 2012). As expected, we found that 
FIR modeling successfully reduced the false positive rate below the 1% specified by the 
p-value threshold (p<0.01): 0.94% false positive rate. 

The success of the FIR approach suggested that flexibly fitting each region's (for 
each subject's) HRF shape was critical for correcting the false positive rate. We next 
tested this hypothesis more fully by using an alternative approach that also flexibly fits 
HRF shapes, but with fewer regressors. This approach – the constrained basis set 
approach (Woolrich et al., 2004) – involves reducing many plausible HRF shapes 
(variants on the canonical HRF) to a select set of basis functions using singular value 
decomposition. We chose this approach for theoretical reasons: It can be 
conceptualized as a regularized approach that reduces variance in model fitting, moving 
away from the FIR model’s high variance in the bias-variance trade-off. Unlike the 
extremely high bias implicit in assuming an exact HRF shape, however, the constrained 
basis set approach involves a restricted search for the HRF to a set of plausible HRF 
shapes. We used a standard approach to producing the basis set implemented in the 
FSL software package (Woolrich et al., 2004). This involved varying the parameters in a 
standard equation for producing HRF shapes to produce 1000 plausible HRF shapes. 
This set of HRF shapes were then reduced to five components that account for 99.5% 
of the variance using singular value decomposition. Note that the first three regressors 
were highly similar to the canonical, temporal derivative, and dispersion derivative 
regressors (respectively) commonly used with SPM software (Woolrich et al., 2004). 
 Consistent with our hypothesis, we found that the constrained basis set approach 
also reduced the false positive rate to the level expected with the p-value threshold 
(p<0.01) (Figure 3E): 1.05% false positive rate. These results suggest that the 
constrained basis set approach was able to fit unknown HRF shapes in a manner 
similar to FIR modeling. 
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Checking for false negatives due to cross-event mean task regression 
 
 Given that the approaches involving more regression parameters did better, it is 
possible that the reduction in false positives was due to removing variance generally 
(rather than just the variance associated with false positives). This possibility predicts 
that the FIR and constrained basis set approaches would inflate false negatives along 
with reducing false positives. We tested this possibility using the pre-fMRI results as 
"ground truth" FC – Pearson correlations among the time series prior to HRF 
convolution and downsampling. We focused on the entire 300 x 300 FC matrix for these 
tests (rather than just the no-connectivity zone), since we needed some true positive 
effects to test for false negatives. We hypothesized that the FIR and basis set 
approaches reduced false positives without inflating false negatives.  

We began by setting a baseline by comparing no-task-regression fMRI FC 
estimates to no-task-regression pre-fMRI FC estimates. This isolated the effect of the 
fMRI simulation on the FC results, given that fMRI simulation was the only difference 
between these two conditions. We found a 15.04% false negative rate (along with a 
18.50% false positive rate) for no-task-regression fMRI FC relative to no-task-regression 
pre-fMRI FC. Note that the false negatives were likely due to both the HRF convolution 
(similar to a low-pass filter on the time series) and time series downsampling reducing 
the number of data points contributing to the analysis. Based on this, a 15.04% or lower 
false negative rate when using the FIR or basis set approach would indicate that these 
approaches did not increase the false negative rate. 

As expected, the false negative rate for the FIR and basis set approaches were 
both below 15.04%: 13.94% for FIR and 13.15% for basis set. These results suggest 
that the FIR and basis set approaches removed variance that was inappropriately 
altering FC estimates, both in terms of false positives and false negatives. Note that, 
when using the entire FC matrix (rather than just the no-connectivity zone), the false 
positive rate dropped from 18.50% for no-task-regression to 0.60% for FIR and 0.71% 
for basis set approaches – smaller false positive rates than observed when focusing 
solely on the no-connectivity zone. Together these results suggest that the extra 
regression parameters included in the FIR and basis set approaches are unlikely to 
reduce false positives by also reducing true effects (and that they can actually increase 
detection of true effects). 
 
 
Factors driving the false positive rate: Task-state FC inflation occurs to the extent 
that HRF shapes are similar across regions/voxels 
 
 We next sought to isolate major factors underlying the observed inflation in task-
state FC estimation following fMRI simulation. To facilitate isolating the primary cause of 
the inflation, we first sought an extremely simple demonstration of the inflation effect. 
This involved creating two Gaussian random time series with very low correlation (r=-
0.01), followed by adding a value of 2 for the second half of both time series (Figure 
4A). This can be thought of as an increase in activity/excitability for both “nodes”. Unlike 
the above simulations this manipulation was extremely simple, allowing isolation of 
causes of any observed inflation. Pre-“task” correlation was r=-0.03 and r=0.01 during 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/292045doi: bioRxiv preprint 

https://doi.org/10.1101/292045
http://creativecommons.org/licenses/by-nd/4.0/


 18 

“task”. We next convolved the exact same time series with a canonical HRF (Figure 
4B). This did not substantially change the pre-“task” correlation (r=-0.08), but the “task” 
correlation was highly inflated (r=0.98). This demonstrates that the correlation inflation is 
mostly driven by an interaction between an increase in time series amplitude and HRF 
convolution. 
 

 
Figure 4 – Highly simplified model (involving even fewer assumptions than the 300-node model): 
Convolution of simple Gaussian random time series demonstrates that fMRI task-state FC 
inflation is primarily driven by HRF convolution. A) Two Gaussian random time series were 
generated. At time point 500 a constant value of 2 was added to all subsequent time points to simulate a 
sustained “task” activity increase in both time series. The Pearson correlation was low both before (r=-
0.03) and during (r=0.01) the “task” time period. Note that the entire time series went from a correlation of 
r=-0.01 prior to the constant value being added to r=0.49 after the constant value was added. This 
suggests initial transients driven by task activity increases can drive FC even in non-fMRI data, if the task 
period isn't fully separated from the pre-task period (e.g., due to autocorrelated time series). B) The exact 
same time series as in panel A were convolved with a standard HRF. The correlation between the time 
series was now much higher (r=0.98) during the “task” time period. C) As expected, GLM-based task 
regression with the known HRF shape reduced the task-evoked correlation increase to a near-original 
level (r=0.07). 

 
We next sought to test if task GLM regression could reduce the correlation 

inflation, as shown in the more complex 300-node model. This involved fitting a GLM 
with the known HRF shape for each time series, then using the residuals to compute the 
correlation (Figure 4C). As expected, the “task” correlation was substantially reduced 
(r=0.07). This further demonstrates the efficacy of task regression for reducing task-
amplitude-induced correlation/FC inflation. 

Note that the pre-HRF-convolved time series (Figure 4A) went from an original  
whole-time-series correlation of r=-0.01 to a whole-time-series correlation (i.e., not 
restricted to just the "task" portion of the time series) of r=0.49 when the constant value 
of 2 was added to the second half of each time series. This demonstrates the 
importance of isolating task from non-task time periods when calculating task-state FC, 
since transient rest-to-task activity transitions can drive correlation increases. Further, 
this suggests the potential utility of regressing out task transitions even from non-fMRI 
time series if one wants to avoid simple co-activations masquerading as FC network 
reconfigurations. Finally, this result suggests much of the HRF-induced correlation 
inflation effect is likely driven by the coincident activity increase being delayed in time by 
HRF convolution (see delay in task-driven activity increases in Figure 4B relative to 
Figure 4A). Consistent with this, if we delayed the task time window (the time points 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/292045doi: bioRxiv preprint 

https://doi.org/10.1101/292045
http://creativecommons.org/licenses/by-nd/4.0/


 19 

used to calculate task FC) by 12.5 s, the correlation dropped from r=0.98 to r=0.87. 
Note that this drop was often higher with different random initial conditions, but still 
typically retaining the inflated correlation (mean across 10 random initial conditions: 
r=0.37, t(9)=1.90, p=0.09 vs. r=0). This suggests that inflation of task FC could be 
reduced by introducing a delay relative to task event onsets, but that mean task 
regression is likely a much more effective approach. 

We next sought to determine the role of other factors that could reduce this 
correlation-inflation effect. In particular, we reasoned that real fMRI involves some 
variability in the HRF shape across regions/voxels (Handwerker et al., 2004), along with 
additional sources of noise (physiological and magnetic resonance noise). We 
simulated the effect of HRF variability by using our previously-chosen “wrong” HRF 
shape (see Figure 3A) for convolving with the second time series in Figure 4A. This 
reduced the post-convolution “task” correlation from r=0.98 to r=0.30. This reduced 
correlation reflects the low similarity between the “correct” HRF and “wrong” HRF 
shapes: r=-0.66. This demonstrates that the task-state FC inflation effect occurs to the 
extent that HRF shapes are similar across regions/voxels. Since HRF shapes are 
relatively similar across regions (varying more across subjects than regions) 
(Handwerker et al., 2004), we expect a positive-correlation inflation in real fMRI data. 
Nonetheless, we expect the inflation effect to be somewhat smaller in real fMRI data 
than the Figure 4 simulation given that HRF shapes were identical across regions in this 
simulation. Note that we included HRF variability in the 300-node simulations. 

We next focused on likely effects of physiological and magnetic resonance noise 
on task-induced correlation inflation. This involved repeating the above analysis of the 
“task” time series correlation (see Figure 4B) with Gaussian random noise added to the 
“correct” HRF shape for one of the time series. The amplitude of the added HRF noise 
varied from 0.5 to 1 to 2. The correlation between the “task” time series decreased as 
HRF noise increased: r=0.93 to r=0.80 to r=0.18. This again demonstrates, this time in a 
more generalized sense, that the task-state FC inflation effect occurs to the extent that 
HRF shapes are similar across regions/voxels, with a variety of noise and HRF 
variability factors potentially reducing the effect. Notably, these sources of HRF 
variability and fMRI noise likely also reduce the ability to detect real task-state FC 
changes. Thus, these factors likely inflate false negatives while reducing the chance of 
false positives. 
 
 
Testing the efficacy of false-positive-reduction approaches in empirical fMRI data 
 

We next sought to test the ability of the FIR and constrained basis set 
approaches to reduce task-state FC false positives relative to other standard false-
positive-reduction approaches. Unlike the computational model, we did not know the 
“ground truth” here, so we had to rely on any reduction in detected task-state FC as a 
proxy for false-positive reduction. Importantly, the FIR and constrained basis set 
approaches are unlikely to create false negatives given that they did not inflate the false 
negative rate in the computational model.  

Using the Washington University-Minnesota Human Connectome Project (HCP) 
dataset (“100 unrelated”), we calculated cortex-wide FC across seven highly distinct 
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tasks in 100 healthy young adults. A set of 360 functionally-defined nodes were used 
(Glasser et al., 2016). Without task regression the percentage of connections that 
increased from resting-state FC to task-evoked FC (false discovery rate corrected for 
multiple comparisons) was 7.22% across the seven tasks (Figure 5). Only slightly 
reduced values were found for task regression with the canonical HRF approach 
(4.89%). Critically, there were substantial reductions in the percentage of task-state FC 
increases when using the FIR (2.48%) and constrained basis set (3.01%) approaches. 
These results suggest that the model likely showed a “worst case” scenario, but that 
false positives can nonetheless almost triple the rate of detected task-state FC changes 
when an effective task regression approach is not used. 
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Figure 5 – Analysis of empirical fMRI data suggests both false positives and false negatives in 
task-state FC estimates. A) The cross-7-task average rate of significant task-state FC increases from 
resting-state FC are shown (using Pearson correlation, FDR corrected for multiple comparisons, p<0.05). 
To the extent that the FIR approach eliminates false positives, the percentages suggest a false positive 
rate of 65.5% without task-regression preprocessing, and 49.2% if canonical HRF or 17.3% if constrained 
basis set model approaches were used. There were 2.9 times more significant FC increases without task 
regression compared to when FIR task regression was used. B) The cross-7-task average rate of 
significant task-state FC decreases from resting-state FC are shown (using Pearson correlation, FDR 
corrected for multiple comparisons, p<0.05). C) Example task vs. rest difference: Statistically significant 
N-back task-state FC vs. resting-state FC differences (p<0.05, FDR corrected for multiple comparisons) 
are shown. No task regression preprocessing was used. Note the increases in task vs. rest FC within the 
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frontoparietal network, which is a network with high activation amplitudes during N-back task 
performance. D) Results when using the canonical HRF for task regression during preprocessing (p<0.05, 
FDR corrected). E) Identical processing as in panel A, except that constrained-basis-set task regression 
was used during preprocessing. F) Results when using FIR modeling for task regression during 
preprocessing (p<0.05, FDR corrected). Note, for example, that the within-frontoparietal-network task-rest 
FC increases are no longer present. This demonstrates that scientific inferences (here, whether FC 
increased or not) can be fundamentally altered by which preprocessing step is used prior to task FC 
analysis. 

 
These effects were relatively consistent across the seven tasks performed by 

each participant, despite differences in timing, duration, and cognitive processes across 
the tasks. The percentage of connections with task-state FC increases from resting-
state FC (false discovery rate corrected for multiple comparisons, p<0.05) for each of 
the seven tasks without task-regression preprocessing was: 2.0% (emotion task), 4.3% 
(gambling task), 8.9% (language task), 4.6% (motor task), 7.9% (reasoning task), 14.7% 
(social task), and 7.7% (working memory task; Figure 5C). In contrast, for the FIR 
approach the rate of task-state FC increases were: 0.8% (emotion task), 2.2% 
(gambling task), 3.0% (language task), 1.9% (motor task), 3.5% (reasoning task), 2.1% 
(social task), and 3.1% (working memory task; Figure 5D). Thus, there were fewer task-
state FC increases for every task when using the FIR approach, demonstrating 
consistency in this result. 

There were also effects of the FIR approach on task-state FC decreases from 
resting-state FC (Figure 5B). Consistent with task-state FC being inflated positively 
without correction, the FIR approach identified a somewhat larger (but overall similar) 
number of task-state FC decreases from resting-state FC. This was apparent from the 
shift from 20.03% of FC decreases without task-regression preprocessing to 21.45% 
with FIR task-regression preprocessing. This was consistent with all but three of the 7 
tasks individually, as most tasks showed more decreases for task-state FC relative to 
resting-state FC. No-task-regression decreases: 20.0% (emotion task), 25.0% 
(gambling task), 22.5% (language task), 7.6% (motor task), 20.1% (reasoning task), 
15.4% (social task), and 28.5% (working memory task; Figure 5C). In contrast, for the 
FIR approach the rates of task-state FC decreases were: 19.7% (emotion task), 33.9% 
(gambling task), 14.3% (language task), 11.1% (motor task), 26.0% (reasoning task), 
11.3% (social task), and 33.6% (working memory task; Figure 5F). Similar results were 
found when using the constrained basis set approach, though with even more task-state 
FC decreases (27.39% on average). It is unclear why there were more FC decreases 
with the basis set approach than the FIR approach (it will be important for future 
research to determine the cause of this difference). Focusing on the FIR approach 
(given its greater flexibility for fitting HRF shape), these results suggest that task timing 
regression results in a similar number of task-state FC decreases from resting-state FC 
compared to when no task regression is used. 

We next assessed the impact of the number of basis functions on the 
constrained basis set approach. For this analysis we increased the number of basis 
functions from 5 to 28 – to a number of regressors in the general range as the FIR 
approach (which included the number of TRs per block type + 25 regressors). 
Consistent with more basis functions accounting for more cross-event mean variance, 
we found that task-state FC increases dropped from 3.01% with 5 basis functions to 
2.67% with 28 basis functions. Similarly, we found that task-state FC decreases 
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dropped from 27.39% with 5 basis functions to 26.66% with 28 basis functions. 
Together these results suggest that including more basis functions could be useful for 
reducing false positives when using the constrained basis set approach. More broadly, 
these results suggest FIR modeling may be more appropriate for reducing false 
positives in general, given that the fewest positive effects were identified using FIR 
modeling (even compared to the 28 basis function approach). This conclusion is further 
supported by the computational model results indicating that the false negative rate was 
not inflated by the additional regressors included with the FIR approach. 
 Having identified FIR as the preferred method, we next quantified the amount of 
likely task FC inflation by comparing the no-task-regression task FC estimates versus 
with FIR-based task-timing regression. Figure 6 plots these statistically significant 
(p<0.05, FDR corrected) differences for all seven tasks individually. The percentage of 
connections with significant (p<0.05, FDR corrected) differences for each task were, 
respectively (increases/decreases): 10.9/7.2, 36.0/8.9, 27.9/25.0, 29.7/3.6, 41.5/13.2, 
49.8/15.9, 28.3/8.8. These results demonstrate that task-timing regression matters in 
practice, as it significantly alters task-state FC estimates across a broad variety of brain 
regions across a broad variety of task manipulations. 
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Figure 6 – Estimated FC inflation for each of the 7 tasks. Task-evoked activation-based FC inflation 
was estimated by contrasting no-regression from FIR-regressed task FC estimates. Only statistically 
significant (p<0.05, FDR corrected) differences are shown for each task. Each FC matrix is shown with 
the name of each task and the percentage of connections (of the entire 360 x 360 FC matrix) that were 
significantly different between the no-regression and the FIR-regressed task FC estimates. Note that all 
tasks involved visual stimuli except for the language task. 
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Visualizing the relationship between task co-activation and task-state FC inflation 
 
 We next sought to visualize the correspondence between mean task-state co-
activation patterns (as estimated using GLM analysis) and task-state FC inflation. This 
relationship was already established in previous sections, based on both a theoretical 
model and empirical results. Here we sought to further quantify and visualize this 
relationship to help further empirically establish its robustness. 
 First, we calculated task-state FC inflation as the difference between no-
regression task FC and FIR-regressed task FC. We then visualized this difference for all 
connections for an example task – the "working memory" HCP task (Figure 7A). The 
working memory task was chosen as the example task due to there being more data 
per subject for that task than the others (increasing statistical power). This revealed that 
much of the task-state FC inflation was related to visual network connections, consistent 
with this being a task involving visual stimuli. Notably, not all connection changes were 
positive, suggesting the possibility that (among other possibilities) co-activations in the 
opposite direction (e.g., a positive activation for one region and a negative activation in 
the other) could lead to artificial FC reductions. We verified that this is a likely 
explanation for FC reductions by visualizing the FC inflation results alongside the actual 
activation pattern (Figure 7A). Specifically, it appeared that negative activation in 
default-mode network regions led to under-estimated FC with the positively-activated 
visual network regions. Note that we did not expect an exact correspondence between 
activations and the task-state FC inflations given that the activations were estimated 
using a standard GLM with a canonical HRF (for ease of interpretation). 
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Figure 7 – Visualizing the relationship between task co-activation and task FC inflation. A) Task-
state FC inflation is shown (left) by subtracting the group-mean FIR-regressed task FC matrix from the 
group-mean non-regressed task FC matrix. An example task – the HCP "Working memory" task (which 
involves visual stimuli and button pressing) – is used for illustration (with no thresholding). The FC 
inflation values were summed (after taking the absolute value) by region to summarize the degree to 
which each region showed FC inflation. This was then compared with the task-evoked activation pattern 
(estimated using a standard GLM with a canonical HRF shape), showing a significant correspondence 
(Spearman rank rho=0.49, p<0.0001). This provides a way to visualize the degree to which co-activation 
patterns are likely influencing task FC patterns. B) The group-mean task activation pattern was used to 
predict likely inflation of task-state FC estimates driven by co-activations. This involved multiplying each 
activation with all others in a pairwise manner, converting the activation vector into a co-activation matrix. 
There was a significant similarity between the co-activation matrix and the task-state FC inflation 
(Spearman rank rho = 0.60, p<0.0001). This shows an alternative way to visualize the degree to which 
co-activation patterns are likely influencing task FC patterns. 

 
We next sought to create a simple summary of the task-state FC inflation by 

region, so it could be compared directly to the task activation pattern. This involved 
summing the task-state inflation values by region (i.e., summing across all the columns 
in the task-state FC inflation matrix for each row), after taking the absolute value for 
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each number. This is visualized for the example task in Figure 7A. We found that this 
simple summary correlated significantly with the actual activation pattern for all seven 
tasks, all p<0.00001 except for Task 3 (the "language" task; p=0.0003). The  Spearman 
rank correlation rho values for each task, respectively: 0.35, 0.31, 0.19, 0.47, 0.56, 0.56, 
0.49. These results demonstrate the robustness of the association between task-evoked 
activations and task-state FC inflation. 

To further illustrate the relationship between activation and task FC inflation, we 
next sought to create a simple prediction of task FC inflation based only on the co-
activation pattern. Task-state co-activation inflation was conceptualized simply as the 
pairwise product of the task GLM estimates. Multiplying the activation values results in 
cases wherein large positive co-activations are expected to create the largest increases 
in task FC estimates. In contrast, co-activations in the opposite direction (e.g., a positive 
activation and a negative activation) are expected to cause task FC estimate decreases. 
This sort of prediction is visualized for the example task in Figure 7B, showing robust 
correspondence with the actual task-state FC inflation pattern (Figure 7A). This 
correspondence between the predicted and actual task-state FC inflation was 
statistically significant across all seven tasks (all p<0.00001). The Spearman rank 
correlation rho values for each task was, respectively: 0.51, 0.74, 0.04, 0.28, 0.67, 0.60, 
0.60. Note that the third ("language") task was still statistically significant despite having 
a small effect size, given the large N when comparing entire FC matrices (64,620). 
These results further demonstrate the robustness of the association between task-
evoked activations and task-state FC inflation, this time by starting from the co-
activation patterns to show how even complex patterns of FC can be driven by 
activation-based inflation. Note that we did not expect exact correspondence between 
the predicted and actual task-state FC inflations, given that (among other factors 
influencing FC inflation) HRF shape is known to vary across regions, which likely adds 
noise and reduces FC inflation (see above analysis with the highly simplified model). 
 
 
Even in the no-task-regression case, task-state FC is primarily driven by moment-
by-moment rather than cross-block mean variance 
 
 One potential concern with the task timing regression approach is that it removes 
the very cause of task-state FC of interest. The computational model already 
demonstrated that this is not the case, since removing cross-event mean activity did not 
induce false negatives. Nonetheless, there might be some concern that the task timing 
regression approach removes the primary source of task-state FC effects in empirical 
fMRI data. We tested this possibility by comparing the amount of task-state-FC-driving 
variance removed by task timing regression. We expected that most of the task-state-
FC-driving variance would remain after this preprocessing step, consistent with the 
primary driver of task-state FC being moment-by-moment (rather than cross-event 
mean) fluctuations. Critically, however, removing this cross-mean variance would still be 
important, since the relatively small amount of cross-event mean variance was shown in 
previous sections to cause (false positive) statistically significant effects. 
 We tested this hypothesis by quantifying the change in between-region shared 
variance before versus after FIR task regression. We found that 89.39% of the shared 
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variance across all pairwise connections (across all 7 tasks) was preserved after FIR 
regression. This was computed after converting the r-values representing task-state FC 
to r-squared values (i.e., percent shared linear variance), then averaging across 
subjects, tasks, and connections. This revealed that mean shared variance during task 
went from r2=0.066 without task regression to r2=0.059 with FIR task regression on 
average. This small change indicated that 89.39% of the shared linear variance was 
preserved after FIR regression on average. This result confirms our hypothesis that, 
while critical for reducing the chance of a false positive for any single result, the FIR 
regression step removed only a small amount (less than 11%) of the variance driving 
task-state FC effects. This, in turn, demonstrates that task-state FC estimates (even 
when not performing task regression) are primarily driven by moment-by-moment 
variance rather than the cross-event mean variance removed by FIR regression. 
 
 
Testing for generalization to task-to-task FC changes 
 
 The prior results demonstrate inflation of task-state FC, suggesting that task-to-
task FC differences would also be altered. This result was not guaranteed, however, 
given the possibility that the task-state FC inflations reported above were subtle and 
therefore only detectable for large cognitive contrasts (such as between task and rest). 
We tested for cross-task alterations in the well-studied N-back task's 2-back vs. 0-back 
contrast (Barch et al., 2013). This is one of the seven tasks included in the prior 
analyses, with the 2-back and 0-back conditions estimated separately.  

As expected, we found that results were similar with the cross-task FC 
comparison as the task-to-rest FC comparison. Specifically, the approaches that flexibly 
modeled the HRF shape (FIR and basis set approaches) produced fewer significant 
results than alternate approaches (Figure 8). Without task regression the percentage of 
connections with task-state FC changes (false discovery rate corrected for multiple 
comparisons, p<0.05) was 28.14% (Figure 8A). Only slightly reduced values were 
found for task regression with the canonical HRF approach (24.97%; Figure 8B). 
Consistent with the task-to-rest FC comparison results, there were substantial 
reductions in the percentage of task-state FC increases when using the constrained 
basis set (12.92%; Figure 8C) and FIR (2.89%; Figure 8D) approaches. In contrast 
with the task-to-rest FC comparison results, however, FIR regression reduced the 
number of significant results relative to the basis set approach (2.89% vs. 12.92%). 
Notably, the significant reduction of visual network FC with the dorsal attention network 
(from 2-back to 0-back) was present for three of the methods but went away with FIR 
regression – the method that most flexibly fits HRF shape and thus likely best reduces 
false positives. This demonstrates a large-scale conclusion that could have been 
reached erroneously if FIR regression was not used to remove task activations. 
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Figure 8 – Task-to-task FC comparison: 2-back vs. 0-back (N-back working memory task). A) 2-
back vs. 0-back FC differences, with no task regression preprocessing (p<0.05, FDR corrected for 
multiple comparisons). B) Identical to panel A, but with constrained basis set task regression 
preprocessing. C) Identical to panel A, but with canonical HRF task regression preprocessing. Note the 
visual similarity to the no-task-regression results. D) Identical to panel A, but with FIR task regression 
preprocessing.  

 
These results suggest that the small FC differences between well-matched task 

conditions can be more sensitive than task-to-rest comparisons to the quality of GLM fit 
for the FC pattern that emerges. Based on the computational model results indicating 
that the fMRI data better reflect pre-fMRI (i.e., input/LFP) data when using the FIR 
approach, and the additional flexibility of the FIR approach (without inflated false 
negatives) relative to the basis set approach, we interpret the FIR results as likely being 
more accurate than the other approaches. Note, however, that (regardless of regression 
method) concluding a true change in FC occurred – rather than a change in unshared 
variance (e.g., noise) – would require additional tests such as unscaled covariance 
(Cole et al., 2016).  
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Testing an alternative FC estimation method: PPI 
 
 We next tested whether an alternate FC estimation method is similarly affected 
by fMRI-induced inflation. As we have shown previously, covariance is the common 
statistical measure underlying a variety of FC measures (Cole et al., 2016): Pearson 
correlation, Spearman rank correlation, multiple regression, and PPI are all forms of 
normalizing/modifying simple covariance. Specifically, Pearson correlation normalizes 
covariance by dividing by (a transform on) the standard deviations of the time series, 
while Spearman rank correlation is equivalent to calculating Pearson correlation on the 
rank orders of the time series values. PPI is the simple pairwise regression between 
time series along with some nuisance regressors (Cole et al., 2013b). Notably, simple 
pairwise regression (as used by PPI) is equivalent to the covariance divided by the 
variance of the source (in a source-target pair) time series. Finally, multiple regression 
is equivalent to the partial covariance (i.e., with variance from the linear best-fits of all 
other time series removed) divided by the variance of the source time series. 
 Given that covariance underlies two common task-state FC methods used with 
fMRI – Pearson correlation and PPI – we expected that PPI would be similarly affected 
by task co-activations as compared to what we found with Pearson correlations. We 
tested this by calculating PPI using either no task regression, canonical-HRF regression 
(as used with standard PPI), or FIR regression. PPI involves a task-regression step that 
assumes the canonical HRF, such that comparison to the canonical-HRF condition will 
be the most relevant to existing PPI approaches. Note that we used a modified version 
of generalized PPI (McLaren et al., 2012), wherein the "psychological" variables are 
block-level boxcar regressors (Cole et al., 2013b). This aids with interpretation (and 
comparison to the Pearson correlation results), since the interaction term in the PPI 
calculation is not influenced by the chosen HRF shape. Also note that, unlike the 
original PPI approach (Friston et al., 1997), generalized PPI is calculated for each task 
condition separately (rather than using condition contrasts only) with contrasts 
calculated as subtraction of PPI estimates (McLaren et al., 2012). Another difference 
from typical PPI approaches was that the task activation regression occurred prior to 
(rather than simultaneous with) FC estimation. We did this primarily to make the PPI 
approach (slightly) more conservative, with as much variance as could be accounted for 
by the task regressors being taken out prior to PPI estimation. Thus, if anything, the 
approach used here should reduce the chance of false positives relative to typical PPI 
approaches. 
 We began by comparing no-regression to FIR-regression with PPI. As with 
Pearson correlation, we found that all seven tasks involved statistically significant 
(p<0.05, FDR corrected) changes in FC estimates. The percentage of connections with 
significant (p<0.05, FDR corrected) differences for each task were, respectively 
(increases/decreases): 8.6/6.3, 28.6/7.8, 25.0/22.9, 24.7/4.1, 35.0/12.1, 43.1/15.3, 
23.4/8.2. These results demonstrate that task-timing regression matters for PPI 
analyses, as it significantly alters PPI estimates across a broad variety of brain regions 
across a broad variety of task manipulations. 
 We next tested the extent to which PPI results – which exclusively assume the 
standard HRF shape – likely include task-evoked activation-based FC inflation. This 
was quantified by comparing PPI calculated using canonical-HRF task regression 
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versus PPI calculated using FIR task regression. Consistent with the Pearson 
correlation results, canonical-HRF regression resulted in significantly distinct PPI 
estimates relative to when FIR regression was used. The percentage of connections 
with significant (p<0.05, FDR corrected) differences for each task were, respectively 
(increases/decreases): 3.3/4.1, 25.7/1.3, 30.8/9.9, 6.4/0.4, 29.8/0.8, 36.8/10.6, 23.2/1.1. 
Notably, the percentage of changed connections tended to be smaller here than the no-
regression vs. FIR regression case. This suggests that the canonical-HRF regression 
typically used with PPI likely helps reduce activation-induced FC inflation. However, 
given that a large number of significant differences remained when comparing 
canonical-HRF with FIR regression, the typical PPI approach appears to not be as 
effective as FIR regression.  
 
 
 
DISCUSSION 
 
 We found strong evidence that task-evoked activations lead to spurious but 
systematic changes in fMRI-based task FC estimates. This was noted as a possibility in 
previous publications (Al-Aidroos et al., 2012; Cole et al., 2013b; Fair et al., 2007; 
Friston et al., 1997; Gratton et al., 2016) but, to our knowledge, has never been 
established either theoretically (using computational modeling) or empirically. Further, 
this hypothesized issue with task FC has typically been described generally, without 
reference to it being particularly problematic for fMRI analyses (though more fMRI 
researchers seem to have worried about it). We began by modeling the hypothesized 
effect using a neural mass computational model. Notably, we did not force the model to 
show activation-induced FC inflation, but discovered that it emerged simply from 
modeling fMRI task activations. Regression methods that flexibly fit hemodynamic 
response shape – FIR and basis set GLM approaches – were found to eliminate 
activation-induced FC inflation (without increasing false negatives), whereas alternative 
methods did not. Consistent with these theoretical results, we found that FIR and basis 
set approaches significantly reduced task FC estimates in empirical fMRI data. We 
found that the FIR approach reduced task FC estimates the most, consistent with its 
unique ability to flexibly fit any possible HRF shape, suggesting this as the preferred 
approach. 
 
Why event-averaged task activation variance should be removed prior to 
estimating task FC 
 
 Our extensive computational and empirical investigation of activation-induced FC 
inflation suggests several reasons why event-averaged task activations should be 
removed prior to estimating task FC. For instance, we found that FC changes and 
activation amplitude changes are statistically and mechanistically distinct, such that they 
have meaningfully distinct implications for neuroscientific theory. Specifically, event-
averaged task-evoked activations involve consistent cross-event activity amplitudes, 
while task-state FC involves synchronous moment-by-moment changes in activity 
(potentially with highly variable activity amplitudes) indicative of direct or indirect neural 
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interactions. This distinction can also be thought about in terms of task-evoked 
activation being enhanced by low variance (amplitude consistency) contrasting with 
task-state FC potentially being enhanced by high variance (moment-to-moment 
covariance). Thus, even if one finds event-averaged task-evoked activation patterns of 
interest, they should be investigated separately from task-state FC due to the  
mechanistic distinction between them. Indeed, there are already sub-fields to 
investigate task-evoked activation patterns separately from task-state FC – multivariate 
pattern analysis (Norman et al., 2006) and standard GLM analysis (Poline and Brett, 
2012) – again supporting the conclusion that such effects should be isolated from task-
state FC estimates. 
 Another reason to remove task activations prior to estimating task FC is that 
allowing task-evoked activations to inflate task-state FC estimates leaves open the 
possibility that new task-state FC effects are simply relabeling previously-discovered 
task-evoked activation effects as “connectivity”. This suggests that some previously-
discovered effects that either did not remove any task activation variance (for example: 
Bassett et al., 2013; 2011; Krienen et al., 2014; Shirer et al., 2012; Tomasi et al., 2013), 
or that used a suboptimal approach for removing task activation variance (for example 
(including our own work): Banks et al., 2007; Cole et al., 2014; Iidaka et al., 2001; 
Lanius et al., 2004; Schultz and Cole, 2016), could have been driven to some extent by 
task activation changes. Notably, a handful of studies have already used FIR GLM to 
remove task activation variance prior to estimating task FC (Al-Aidroos et al., 2012; 
Cordova et al., 2016; Fair et al., 2007; Gratton et al., 2016; Norman-Haignere et al., 
2012; Sadaghiani et al., 2015; Summerfield et al., 2006), suggesting these studies did 
not suffer from the task FC inflation effect identified here. Some have labeled this FIR-
based removal of task activation variance followed by task FC estimation "background 
connectivity" (Al-Aidroos et al., 2012; Cordova et al., 2016; Griffis et al., 2015; Norman-
Haignere et al., 2012). The present results suggest "background connectivity" and 
related approaches are effective in reducing (and likely even eliminating) task FC false 
positives driven by fMRI task activations. 

A skeptic might argue that one could reverse this argument, with task FC being 
the real effect and task activations being secondary. The computational model analyses 
here demonstrate this is incorrect, since there are cases in which no true task FC is 
possible yet task FC is spuriously detected due to task co-activation (see the "no 
connectivity zone" in Figure 2). Further, it is clear that task activation is the first-order 
effect (simple change in cross-event mean amplitude), whereas task FC is a second-
order effect building on covariance in moment-to-moment activation amplitudes. It is 
customary in science and statistics to account for simpler, first-order effects prior to 
interpreting second-order effects, such as interpreting ANOVA interactions only after 
accounting for main effects. Thus, an effect that can be explained as either a task 
activation or a task FC change would be preferentially interpreted as the simpler of the 
two – a task activation. 

Another concern of a skeptic might be that removing task activation variance 
would remove the very task FC effects s/he is interested in. Both the model and the 
empirical results demonstrate that this is highly unlikely. First, we found that FIR task 
regression did not increase the rate of false negatives (for fMRI vs. pre-fMRI FC) in the 
computational model. Indeed, FIR task regression reduced the rate of false negatives, 
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suggesting FIR task regression might even increase the number of detected true task 
FC effects (rather than simply reducing false positives). Second, we found that the 
event-averaged task activation variance removed was only a small percentage (~10%) 
of the shared variance in the empirical fMRI data, suggesting that the bulk of the effects 
without activation regression was already driven by moment-by-moment variance 
independent from event-averaged activations. This suggests that even those who 
interpreted task FC in terms of event-averaged co-activation were actually observing 
primarily correlations of moment-by-moment fluctuations. Notably, despite most of the 
variance being driven by moment-by-moment fluctuations, we found that event-
averaged activations alter task FC estimates substantially enough that many false 
conclusions are obtained without first removing event-averaged task activation variance. 
These two findings – that task activations were both a small portion of the overall 
variance and made a meaningful difference to results – can be reconciled by 
considering that a relatively small percentage of false positives among thousands of 
functional connections would nonetheless produce a large number of false inferences. 
 
Limitations and opportunities for further research 
 
 As with most studies, many possible analyses related to the core research 
question were not included here, providing opportunities for future research. For 
instance, it could be informative to use a neuron-level computational model to further 
verify the results obtained using the neural mass model (Brette et al., 2007; Goodman, 
2008). However, our neural mass model was intentionally kept simple and abstract, with 
the expectation that this abstraction will increase the probability that results will 
generalize to many different possible computational models (including highly realistic 
neuron-level models). The key idea is that abstraction to neuron-like units reduces the 
number of assumptions by identifying effects that are general enough to emerge from 
properties present in a variety of neuron-like interactions. Despite the plausibility of this 
expectation it is of course important to test this prediction using more detailed neuron-
level modeling. 
 There were several aspects of the computational model results that did not 
completely agree with the empirical fMRI results. First, we empirically observed more 
task-state FC decreases from resting state, whereas the computational model results 
showed more task-state FC increases from resting state. This likely reflects our use of 
task-state FC increases from resting state (among the first 50 nodes) to select the 
model parameters. Notably, in the model we saw task-state FC decreases between the 
first 50 and second 50 nodes, due to there being inhibitory connections between those 
two network communities. This could suggest that more inhibitory connectivity should 
have been included in the model in order to match the empirical results. Alternatively, 
we could have selected model parameters based on maximal decreases in task-state 
FC relative to resting state. This may have resulted, for instance, in a higher bias 
parameter, equivalent to a larger amount of spontaneous activity leading to larger 
resting-state correlations. This issue is related to improving understanding of why the 
empirical results showed that most functional connections are lower during task relative 
to rest. 
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 Another aspect of the computational model results that was not in complete 
agreement with the empirical fMRI results was the observation that FIR task regression 
reduced task-state FC estimates substantially more than basis set task regression. In 
the model the basis set approach involved only 1.05% false positives, very similar to the 
0.94% false positives with the FIR approach. While the results were similar for task-
state FC vs. resting-state FC (2.49% detected effects with FIR vs. 3.01% with basis 
set), our task-to-task FC comparison indicated substantially fewer detected FC 
differences when using FIR (FIR: 2.89%, basis set: 12.92%). Given the much more 
flexible fitting of HRF shape with FIR, it is likely that FIR task regression better fit and 
removed the task-evoked activations than the basis set approach. It is likely that the 
extra flexibility of FIR over fit the task-evoked time series, likely removing additional 
noise but also some covariance of interest. However, the computational model results 
suggest that, if anything, this extra flexibility likely reduced (rather than increased) false 
negatives, potentially by removing more noise than covariance signals. It will 
nonetheless be important for future research to quantify the degree to which FIR model 
overfitting results in inflation of false negatives in empirical results. 
 We were able to use the computational model to conclusively show that co-
activations can induce spurious fMRI task FC by creating a "no connectivity zone" 
wherein no true task FC can be possible. Ideally, however, we would have had this sort 
of scenario in the empirical fMRI dataset. Instead, the empirical fMRI analyses 
supported the plausibility of task FC being inflated, with detected increases and 
decreases in task FC once event-averaged task activation variance was removed. This 
leaves open the possibility (however small) that removing task activation variance 
removed some true task FC effects. It will be important for future studies to investigate 
this possibility. Notably, however, the computational modeling results demonstrated that 
false negatives were not increased (and were in fact decreased) when task activation 
variance was removed. This suggests that, if anything, removing event-averaged task 
activation variance in turn increases the number of true task FC effects detected (rather 
than decreasing them). 
 We focused primarily on Pearson correlation-based task FC. It will be important 
for future research to test the generality of our conclusions to all task FC approaches. 
We showed that the results at least generalize to PPI analyses, suggesting the findings 
will likely generalize further. Indeed, the generalization to PPI suggests the task FC 
inflation effect is driven primarily by a change in covariance – the quantity underlying a 
variety of association measures used for task FC analysis (such as Pearson correlation 
and PPI) (Cole et al., 2016). This is consistent with the "highly simplified" model results 
(Figure 4), which shows that the underlying task FC inflation is driven by similarity in the 
hemodynamic response function. Such clear similarity – which was induced by 
convolution with a similar-shaped HRF – suggests a variety of association measures will 
be inflated by fMRI task co-activation, consistent with this effect generalizing to many 
task FC measures. 
 It will be important for future research to investigate alternative approaches to 
correcting the task FC inflation seen here. For instance, one promising approach is blind 
deconvolution (Havlicek et al., 2011), which flexibly removes HRF shape from entire 
time series. This could, in theory, correct the inflation by estimating the true neural time 
series separated from the HRF. Such a result would be consistent with our finding that 
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task FC was only minimally inflated in the pre-fMRI (i.e., truly neural) time series in the 
computational model results. Another method that we expect to be effective in reducing 
or eliminating task activation-based inflation of fMRI task FC is the "beta series" task FC 
approach (Rissman et al., 2004a). In this approach, a separate GLM parameter 
estimate is fit to each task event (with an assumed HRF shape), with Pearson 
correlation of the parameter estimates (across voxels or regions) estimating task FC. In 
theory, this approach estimates task FC based on event-by-event (e.g., trial-by-trial or 
block-by-block) covariance, rather than the moment-by-moment covariance that is 
typically used. This approach's use of an assumed HRF shape may result in false 
negatives (due to poor fit to activations in some cases), but appears unlikely to suffer 
from the same task FC false positives characterized here, given that beta series 
correlations do not include the moment-by-moment variance that is altered by HRF 
shape similarity between time series. This suggests that studies that used beta series 
correlations are unlikely to have been influenced by the false positives characterized 
here (Cisler et al., 2014; Gazzaley et al., 2004; for example: Nee and Brown, 2012; 
Rissman et al., 2004b; Zanto et al., 2011), though future research will be important for 
verifying this. 

It will also be important for future research to investigate why the pre-fMRI 
simulation had some inflated task-state FC estimates. The inflation was quite small (a 
1.99% false positive rate with a p<0.01 threshold), especially relative to the no-
regression fMRI results (42.58% false positive rate), but it was nonetheless higher than 
expected by chance (1%, given the p<0.01 threshold). This likely reflects the small 
amount of coincident timing induced by the simultaneous stimulation across neural 
units, suggesting regression-based removal of non-fMRI data (Headley and 
Weinberger, 2013; Karamzadeh et al., 2010; Mill et al., 2017) could also be useful for 
reducing false positives (though the model results suggest this problem will likely be 
substantially smaller for non-fMRI relative to fMRI or other BOLD-based (Ferrari and 
Quaresima, 2012) data). Supporting this possibility, investigations of task-state FC with 
multi-unit recording in animal models (i.e., not involving the BOLD signal) have tended 
to remove cross-event average evoked responses prior to estimating correlations 
among neural time series (termed "noise correlations") in the interest of reducing false 
positives (Cafaro:2010im; Cohen and Kohn, 2011). It will be important for future 
research to investigate use of non-parametric approaches popular with spike timing 
cross-correlations – such as shuffling trial-by-trial events to estimate the contribution of 
confounding stimulus-evoked covariance (Brody, 1999; Grün, 2009) – with fMRI task-
state FC estimation. 

One remaining issue for the FIR GLM regression approach is that it relies on the 
particular set of regressors specified, when there might be additional task events 
unaccounted for. For instance, block onset and offset events with prominent fMRI 
activation responses have been identified (Dosenbach et al., 2006; Griffis et al., 2015; 
Visscher et al., 2003), such that a standard FIR model of an event-related task design 
would fail to remove fMRI activation variance from these prominent events. The 
variance from these events would likely inflate task FC estimates. One solution would 
be to model these block onset and offset events separately so as to remove this 
variance prior to task FC estimation, as has been done recently (Griffis et al., 2015). 
Another solution that was successfully applied here is to design task blocks of a given 
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condition to have identical trial timings, then model all blocks with a single long set of 
regressors (such that all consistent within-block events would be modeled, including 
block onset and offsets) (Al-Aidroos et al., 2012). 

Similar issues arise from rare events with large fMRI activation responses such 
as error trials (Menon et al., 2001; Neta et al., 2015) or learning-induced changes in 
activations, which are typically not accounted for separately in GLM models. Such 
events might also inflate task FC estimates, though they could also be included in an 
FIR GLM to reduce this effect. It will be important for future studies to consider these 
various scenarios and determine whether they can meaningfully alter task FC 
estimates. Given that most of the task FC inflation effect is caused by the HRF shape, 
another possibility would be to utilize blind deconvolution (Havlicek et al., 2011) to 
reduce this effect no matter its source (even those unknown to the experimenter). 
Another possibility is that the task-activation false positives arise solely from the 
experimental manipulation (task timing) acting as a confounding third variable, implying 
that internally-generated activation events (such as error trials or learning-related 
activation changes) reflect the brain dynamics of interest and therefore do not need to 
be removed. It will be important for future studies to investigate this issue, however, 
given the ambiguity (regarding false positives) of situations like error trials and task 
learning being an interaction between experimenter-induced task timing and internal 
processes. 
  
Conclusion 
 
 We identified strong evidence that fMRI-based task FC estimates are 
consistently and spuriously altered by task activations. This was shown across a neural 
mass computational model, a highly simplified model, and empirical fMRI data involving 
seven highly distinct tasks. The models and empirical fMRI data analyses converged in 
suggesting that methods that remove event-averaged task activation variance – when 
flexibly taking HRF shape into account (especially FIR GLM) – are able to correct for 
activation-induced task FC inflation. These results suggest prior task FC fMRI studies 
that did not use FIR GLM as a preprocessing step likely contain false positives. It will 
therefore be important to reanalyze data when possible, and begin using FIR GLM as a 
preprocessing step for task FC analyses moving forward. It might be tempting to retain 
event-averaged task activation variance in future task FC analyses given that the issue 
is not as problematic for non-fMRI data. However, the observation of inflated false 
positives in the "no connectivity zone" (1.99% with p<0.01) for the pre-fMRI simulation 
data suggests this is a fundamental problem for task FC analysis, such that task 
activation regression should be used with non-fMRI data as well. Moving forward, it will 
be important to develop a deeper understanding of why event-averaged task activation 
causes false positives even for non-fMRI data, as well as identifying alternative 
approaches to removing event-averaged task activations in both fMRI and non-fMRI 
data. 
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