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Abstract5

Individuals with different phenotypes can have widely-varying responses to natu-

ral selection, yet many classical approaches to evolutionary dynamics emphasize how

a population’s average phenotype increases in fitness over time. However, recent ex-

perimental results have produced examples of populations that have multiple fitness

peaks, or that experience frequency-dependence that affects the direction and strength10

of selection on certain individuals. Here, we extend classical fitness gradient formula-

tions of natural selection in order to describe the dynamics of a phenotype distribution

in terms of its moments—such as the mean, variance, skewness, etc. The number

of governing equations in our model can be adjusted in order to capture different

degrees of detail about the population. We compare our simplified model to direct15

Wright-Fisher simulations of evolution in several canonical fitness landscapes, we find
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that our model provides a low-dimensional description of complex dynamics not typi-

cally explained by classical theory, such as cryptic selection forces due to selection on

trait ranges, time-variation of the heritability, and nonlinear responses to stabilizing or

disruptive selection due to asymmetric trait distributions. In addition to providing a20

framework for extending general understanding of common qualitative concepts in phe-

notypic evolution—such as fitness gradients, selection pressures, and heritability—our

approach has practical importance for studying evolution in contexts in which genetic

analysis is infeasible.

1 Introduction25

The effects of evolutionary forces may be apparent in natural populations even when their

underlying genetic consequences are not known. The size of river guppies increases when their

natural predators are depleted;1 the beaks of Darwin’s finches grow larger after droughts;2

and mammals grow smaller in response to climate change.3 These and other natural and

experimental studies demonstrate that rapid selection can produce noticeable changes in30

specific traits, underscoring the importance of considering phenotypic models of natural

selection. These models are particularly relevant to studies in the field or of the fossil record

where genetic analysis is unavailable or infeasible.4

A widely-used framework for such theories is the fitness landscape,5 an abstract function

that describes the collective survival or reproductive benefits conferred by a given pheno-35

type: an evolving population typically approaches a locally or globally maximum value in this

space, subject to constraints on its rate of adaptation. But the underlying dynamics of this

process may depend strongly on the context,6 and molecular techniques have only recently

begun to shed light on the individual steps of adaptation and the intermediate phenotypes

they produce.7, 8 Moreover, macroscale analyses have produced examples of non-monotone40

fitness functions with elaborate, multipeaked topographies subject to strong frequency de-

pendence,9 selection that acts on trait ranges in addition to average values,10 and selection
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forces with nonlinear effects on metric traits.11 These studies indicate the need for simple,

analytical models that can provide heuristic insight into the complex dynamics of phenotypic

adaptation. Of particular importance are cases in which traditional experimental metrics,45

such as the realized heritability or selection response, have complex time-dependence over

long timescales,12, 13 rendering derived experimental quantities such as selection coefficients

insufficient as large-scale descriptors of population dynamics.

Many classical approaches to phenotypic evolutionary theory readily describes the evo-

lution of a bell-shaped and fixed-width trait distribution within a given fitness landscape,50

resulting in the widely-known result that the rate of adaptation of the mean trait is di-

rectly proportional to the gradient of the mean fitness.14–17 This depiction of evolution as

a fitness gradient-climbing problem is particularly intuitive, and it mirrors earlier work on

the adaptive landscape of individual genes.5 However, many phenotypes fail to satisfy these

conditions,10, 18, 19 as a result of which many experimental and theoretical studies have noted55

strong limitations on the applicability of fitness gradient dynamics.20–23 Efforts to establish

more general rules for the evolution of an arbitrary trait distribution typically reformu-

late the underlying mathematics in terms of agent-based rules or a stochastic transmission

kernel;24–26 however, these alternative formulations are difficult to compare directly with

classical fitness gradient dynamics, and they typically introduce new assumptions regarding60

the underlying genetic processes or functional forms of the trait distribution or fitness.

Here, we develop a general model of phenotypic evolution that seeks to avoid imposing

functional constraints on the fitness or trait by using a moment series expansion of the

fitness landscape. Our approach has its origin in classical approaches that describe evolution

of the mean trait as a fitness gradient-climbing problem, but we add additional dynamical65

equations for the variance, skewness, kurtosis, and finer-scale statistical features of the trait

distribution. By adding or removing dynamical equations that describe various moments of

the trait distribution, the level of detail our model captures about the evolutionary dynamics

may be tuned. Importantly, our model reduces to a classical fitness gradient model when
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only the mean trait is allowed to vary. Our model explicitly relates the topology of the fitness70

landscape to the timescales (and thus dynamical relevance) of various phenomena through

a series of coupling constants, which we compute analytically for several canonical fitness

landscapes in a series of demonstrative examples. Using these examples, we show how even a

simple generalization of classical fitness gradient dynamics can lead to a series of surprising

effects in the evolutionary dynamics, including cryptic forces of selection that cause changes75

in the trait distribution even when the local fitness gradient is zero, as well as suppression of

disruptive selection due to asymmetry and skewness in the trait distribution. We also show

that our model can be re-formulated in terms of the coupled dynamics of the narrow-sense

heritability and the mean fitness, and we show how these two quantities may jointly evolve

under various conditions.80

2 Model

Our model is based on a series expansion of the trait distribution in terms of its moments

(such as the mean trait, trait variance, trait skewness, etc). Each moment has a separate

dynamical equation, which couples its dynamics to those of the remaining moments. The

strength and magnitude of the coupling of each moment’s dynamics to other moments de-85

pends on the specific fitness landscape, and can be summarized in terms of a finite set of

“coupling coefficients” intrinsic to the landscape. Our basic approach is shown schematically

in Figure S1, and below we describe how we derive dynamical equations for the mean trait

˙̄z, trait range σ̇, and mean fitness ˙̄w. We also describe below the assumptions of our ap-

proach, as well as the relationship between our approach and similar series-based approaches90

developed by others.
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2.1 Trait mean dynamics in an arbitrary phenotype distribution

We follow the classical approach to deriving phenotypic evolution originally developed by

Lande.15 We start with the breeder’s equation, which relates the dynamics of the trait mean

z̄ to its change after a period of selection95

˙̄z =
V

σ2
(z̄w − z̄), (1)

where the mean trait value z̄, mean fitness W , and mean trait after selection z̄w are defined

in terms of statistical averages over the entire population,

z̄ =

∫
zp(z)dz, z̄w =

∫
zp(z)

W (z)

W
dz, W =

∫
W (z)p(z)dz. (2)

Here p(z) is the frequency of the trait z in the population, W (z) is an individual’s fitness as a

function of its trait. The prefactor V/σ2 in Eq. 1 is equivalent to the narrow-sense heritability

h2 of the trait , with V representing the additive genetic variance. Eq. 1 incorporates the100

primary assumptions regarding the underlying genetics; namely, that there is no direct gene-

environment interaction, and that there is a linear regression between the selection differential

and the mean trait value over short timescales27, 28 (although the slope of this regression,

h2, need not be constant). In many previous studies in which Eq. 1 appears, the phenotypic

variance σ2 is also assumed to be fixed, either due to logarithmic ranges in the values of105

metric traits that suppress the magnitude of fluctuations in trait variance, or due to the

assumption of a fixed trait distribution shape that becomes a Gaussian distribution after an

appropriate nonlinear transformation.15, 27 We will relax this requirement here.

Constancy of genetic variance V must be decided empirically for a given system under

study; in general, V may change due to drift or direct gene-environment interactions.13, 28, 29110

However, in the model of phenotypic evolution presented here, as in similar approaches based

on the dynamics of single continuous traits,30–32 V may be assumed to vary much more slowly
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than the phenotypic variance σ2 provided there is linkage equilibrium, weak selection, or a

near-equilibrium trait distribution. Additionally, for cases in which V changes quickly, such

as during periods of strong directional selection or from transient effects such as the accu-115

mulation of linkage disequilibrium, rapid compensatory effects (for example, recombination)

can allow V to stabilize at a well-defined average value over long timescales.1, 12 Accordingly,

low or stationary genetic variance has been reported in certain experimental systems that

may satisfy these conditions.33

Here, we use a standardized trait distribution p(z) = p((z − z̄)/σ) and also parametrize120

the fitness as W (z) = W (z − cz̄), where c is an arbitrary positive constant. The case c = 0

corresponds to a trait that directly affects survival independently of other individuals in

the population (examples include metabolic efficiency, camouflage coloration, or immune

system competency), while the case c = 1 corresponds to a trait that affects fitness of a

given individual only relative to others in the population (examples include secondary sex125

characteristics or running speed relative to a herd). Under this assumption, taking the

derivative of both sides of Eq. 2 with respect to z̄ yields a simple relationship between an

individual’s fitness landscape and the population mean fitness,

dW

dz̄
= (1− c)

∫
dp(z)

dz̄
W (z)dz. (3)

See Appendix C for full derivation. We note that if c = 1, then dW
dz̄

= 0; thus when the

fitness landscape depends only on the difference between each individual trait and the trait130

mean, the mean fitness itself cannot depend on the mean trait.

Next, we assume that the trait distribution before selection p(z) is separable into a

Gaussian partN [z̄, σ](z) and a dimensionless non-Gaussian component f , which without loss

of generality we express in terms of the dimensionless standardized coordinate z̃ = (z− z̄)/σ,

p(z) =

(
1√
2πσ2

e−
(z−z̄)2

2σ2

)
f(z) = N [z̄, σ](z) f

(
z − z̄

σ

)
. (4)
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We emphasize that f = 1 corresponds to a purely Gaussian trait distribution, in which case135

our theory recreates standard evolutionary dynamics.15–17

Inserting Eq. 4 and Eq. 3 into Eq. 1, we arrive at a dynamical equation for the mean trait

of a non-Gaussian trait distribution,

˙̄z =
V

W

(
1

1− c

dW

dz̄

)
+

V

σW

∫
N [z̄, σ](z)f ′(z̃)W (z)dz. (5)

Asymptotic analysis confirms that the first term vanishes when c = 1 due to a first-order zero

in dW
dz̄

at c = 1 (see Appendix D). The first term in Eq. 5 corresponds to a classical fitness140

gradient dynamics model, and represents the complete dynamics if the trait distribution

is Gaussian (f ′ = 0).17, 34 The second term determines how the higher-order moments of

the trait distribution affect the evolutionary dynamics. Importantly, this new term depends

explicitly on the values of higher-order moments at each timestep. Therefore, Eq. 5 can only

be used to determine the dynamics if additional differential equations are specified for the145

trait variance, skewness, etc, which makes full determination of the dynamics a “moment

closure” problem because the dynamics of the nth moment will, in general, depend on the

(n + 1)th moment.35, 36 However, Eq. 5 can still be used to find the mean trait equilibrium

and its stability as functions of the other moments.

We next expand the trait distribution in Eq. 4 as a Gram-Charlier A series,150

p(z) = N [z̄, σ](z)

(
1 +

∞∑
n=3

cnHen

(
z − z̄

σ

))
, (6)

where the expansion coefficients cn are uniquely determined by the moments of the trait

distribution (see Appendix B). Inserting the rightmost parenthetical term into Eq. 5 as f ,

we use the property of Hermite polynomials He ′n = nHen−1 and the change of variables

z̃ = (z̄ − z)/σ to find,

˙̄z =
V

W

(
1

1− c

dW

dz̄

)
+

V

σW

∞∑
n=3

cn nWn−1, (7)
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where the first-order term corresponds to classical phenotypic evolutionary theory. In the155

higher-order terms, the singly-indexed family of integrals Wn is given by

Wn ≡
∫

N [0, 1](z̃)Hen(z̃)W (σz̃ + z̄) dz̃. (8)

This equation represents a projection of the fitness landscape onto a basis of Hermite poly-

nomials, with finer-scale features in the fitness landscape being represented by larger values

of n in the series. However, if the fitness landscape is sufficiently smooth, there always exists

some n above which the sequence Wn continuously decreases, suggesting that a finite set of160

Wn would be sufficient to describe many simple fitness landscapes.

We refer to the series Wn as the “coupling coefficients” because the form of Eq. 7 suggests

that the values of Wn represent the degree of coupling between the fitness landscape and

progressively larger cumulants of the trait distribution. Larger-scale features of the fitness

landscape affect the dynamics over longer timescales, and thus appear in lower-order Wn;165

conversely, higher-order coupling coefficients provide increasingly precise information about

the fitness landscape, and small-scale dynamical changes within it. Thus Wn serve a similar

function to the individual selection differentials described in previously-developed models of

non-Gaussian breeding value distributions using multilocus genetic theory.23, 37

Importantly, the coupling coefficients Wn are parameters that only need to be com-170

puted once as long as the fitness landscape itself remains constant. This allows the integro-

differential dynamics of an arbitrary trait distribution and fitness landscape to be expressed

as a series of coupled ordinary differential equations for the time-varying moments (appear-

ing in the individual cn of the Gram-Charlier series), with the fitness landscape appearing

only as a set of known coupling terms Wn. For most fitness landscapes the individual Wn175

are straightforward to compute analytically (using generating functions) or numerically, due

to the orthogonality properties of Hermite integrals.38 This allows the set of Wn to be

“pre-computed” for a given fitness landscape and then inserted as explicit terms into the

8
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dynamical equation Eq. 7. The dynamics of the trait distribution subject to this fitness land-

scape can then be determined without the need to perform any additional time-dependent180

integrals over the fitness landscape. If the fitness landscape were to change in time, any

change arising from a process independent of the trait distribution (e.g. rainfall variation

due to large scale weather patterns, or depletion of predators due to overfishing) would allow

the time variation of each Wn to be solved separately from the trait distribution dynamics.

The resulting set of Wn(t) may then be inserted into Eq. 7 to yield the trait dynamics.185

2.2 Trait variance dynamics

The method used above to derive the dynamics of the trait mean may be employed to derive

corresponding dynamical equations for any moment or cumulant of the trait distribution.

Here, we determine the dynamical equation for the trait standard deviation (and thus vari-

ance) using a similar method to that above.190

As with the mean trait, we assume that the trait variance M ≡ σ2 has linear heritability

with dynamics specified by

d

dt
(σ2) = h2

σ(σ
2
w − σ2), (9)

where h2
σ is the variance heritability, or the degree to which the phenotypic variance in

one generation influences the phenotypic variance of the next generation. σ2
w is the trait

variance after selection, which is defined in a manner analogous to z̄w. If the (unmodeled)195

recombination and mutation processes are sufficiently smooth, such a linear relationship and

the value of h2
σ represents the lowest-order term in a suitable series expansion due to the

summation properties of cumulants of random variables.39, 40 This relation based on early

work on the infinitesimal model,28 in which a given trait is continuous due to an effectively

infinite number of individual loci contributing to it. We further discuss below the limitations200

of using a linear heritability equation.

If the trait distribution has the separable form Eq. 4, then it can be shown (see Appendix
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E) that Eq. 9 simplifies to a dynamical equation of the form,

σ̇ =
U

W

(
dW

dσ
+

1

σ

∫
z̃N [0, 1](z̃)W (σz̃ + z̄)f ′ dz̃

)
,

where U ≡ (σ hσ)
2/2. Inserting the Gram-Charlier series (Eq. 6) for p(z) and exploiting the

properties of the Hermite polynomials results in a final expression,205

σ̇ =
U

W

dW

dσ
+

U

σW

∞∑
n=3

cn n

(
(n− 1)Wn−2 +Wn

)
. (10)

As with the mean trait dynamics Eq. 7, the variance dynamics (and thus the width of the

trait distribution) simplifies to a gradient of the mean fitness, plus an infinite summation

over Wn that takes into account increasingly fine-scale moments of the trait distribution.

Using this construction technique, the dynamics of any arbitrary moment or cumulant of

the trait distribution may be expressed as a dynamical equation with a similar form. The210

properties of Hermite polynomials guarantee that the fitness landscape is coupled to the

dynamics of each moment solely through a fixed set of Wn, further emphasizing how the

moment-based formulation abets analytical work (through truncation of the infinite series)

or numerical study (through pre-computation of an arbitrary number of terms in the series

of Wn).215

2.3 Mean fitness dynamics

Based on the forms of Eq. 7 and Eq. 10, the dynamics of the mean fitness are given by

Ẇ =
dW

dz̄
˙̄z +

dW

dσ
σ̇ +

∞∑
i=3

dW

dκi

κi, (11)

where κi are the cumulants of p(z). Because all derivatives ofW may themselves be expressed

in terms of the cumulants of the trait distribution p(z), the dynamics of W do not involve

an additional dependent variable in the dynamical system. The form of Ẇ suggests that,220
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even in the absence of additive genetic variance (V = 0) or in the case of a fixed mean

trait ˙̄z = 0, the mean fitness may continue to change due to the contribution of higher-order

cumulants of the trait distribution to the dynamics. These higher-order effects are absent in

the standard breeder’s equation and will discussed further below.

2.4 Gradient dynamics with leading-order corrections225

Here, we simplify equations Eq. 7 and Eq. 10 to account for only the leading-order effects of

non-Gaussian moments in the trait distribution, resulting in a closed form for the dynamical

equations.

The general framework used above for deriving ˙̄z and σ̇ may, in principle, be used to

derive dynamical equations for an arbitrary number of moments of the trait distribution. In230

these cases, a Gram-Charlier series with a non-Gaussian leading-kernel may be preferable.41

However, in the following sections we focus primarily on the dynamics of the first and second

moments of the trait distribution ( ˙̄z and σ̇ derived above) because in many standard fitness

models, selection acts directly on the mean and width of the trait distribution, but not

necessarily the skewness and higher moments. As a result, the terms in the series Wn235

decrease quickly in magnitude, causing the dynamics of z̄ and σ to be nearly uncoupled

from the dynamics of higher moments. This is equivalent to assuming that higher-order

cumulants of the trait distribution affect the dynamics solely as fixed parameter values

in the series terms in Eq. 7 and Eq. 10. This restriction implies that higher moments of

the trait distribution have zero effective heritability, and that natural selection, together240

with reproduction, mutation, and recombination, causes these moments to vary much more

slowly than the mean and variance.36, 42 However, even if higher moments are allowed to

vary continuously due to the action of natural selection, the equilibria found under our

assumptions would remain the same—although their stability may be subject to additional

constraints.245

In order to illustrate potential applications of this formulation and to produce closed-form
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results, in what follows we truncate at fourth order the infinite series cn appearing in Eq. 7

and Eq. 10. This fourth-order closure is used in order to isolate the effects of asymmetry

(c3) and heavy-tailedness (c4) on the dynamics of the trait distribution: neither effect can be

described by the original breeder’s equation due to its implicit assumption of a Gaussian trait250

distribution. Because of the ease with which individual Wn may be computed, additional

terms could easily be added to account for other effects; however, the contribution of these

higher-order terms to the dynamics of lower-order moments is bounded due to the scaling

properties of the Gram-Charlier series (cn ∼ 1/σn). Similar cumulant closure relations

appear in moment-based models of ecological dynamics.35, 43, 44 In previous work by other255

authors,23, 37 the series terms in a discrete-time cumulant dynamical model were computed

explicitly for the case of truncation selection, for which the short-time dynamics primarily

depend on the leading moments. Additionally, in some discrete-time models of multilocus

selection, the cumulant dynamical equations intrinsically contain a finite number of terms

and cross terms.45, 46260

Together, these assumptions result in a simplified set of dynamical equations,

˙̄z =
V

W

(
1

1− c

dW

dz̄
+

1

2σ

(
γW2 +

1

3
(k − 3)W3

))
(12)

σ̇ =
U

W

(
dW

dσ
+

1

2σ

(
γ(W2 +W0) +

1

3
(k − 3)(W3 + 2W1)

))
, (13)

where γ and k are, respectively, the skewness and kurtosis of the trait distribution. While

γ may take any value, the kurtosis is mathematically bounded from below by k ≥ γ2 + 1.

Together, Eq. 12 and Eq. 13 may be considered a first-order “correction” to the classical

fitness gradient dynamics equation, and they account for the leading-order effects of non-

Gaussian features of the trait distribution. When the fitness landscape is centered (c = 1),265

the first terms vanish from both of these equations. In this case, if the trait distribution itself

is purely Gaussian (γ = 0, k = 3), then the remaining terms vanish from the right hand sides

of both equations and the trait distribution evolves under classical phenotypic evolutionary
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theory. However, if the trait distribution is non-Gaussian but c = 1, then z̄ and σ will vary

due entirely to the non-Gaussian components of the trait distribution.270

3 Assumptions and related models

Our model is comparable to moment-series approaches previously used to study natural

selection in phenotypic and genotypic systems under various assumptions;23, 36, 37, 46–48 we

review these approaches and in greater detail in Appendix L. As in previous models, we

assume that the full dynamics of the trait distribution may be approximated by a finite275

series of ordinary differential equations, thus reducing a complex partial differential equation

problem to a lower-dimensional moment evolution problem. Mathematically, the set of tech-

niques upon which we base our analysis parallels those found in models of genetic processes

under the infinitesimal model, in which a given continuous trait is assumed to depend on

an arbitrary number of alleles—in particular, the use of a Gram-Charlier series as a start-280

ing point for cumulant iteration equations was pioneered in genetics by Zeng,48 as well as

Turelli and Barton.23 Additionally, we note that several related works have focused on the

distribution of fitness values,46, 49 including recent work producing the intriguing result that

many fitness distributions asymptotically approach a fixed class of distributions.36

Our assumption of a linear heritability for higher cumulants, Eq. 9, represents the primary285

assumption of our model regarding the underlying mechanisms of genetic inheritance in our

system; it thus introduces the primary limitations of this purely phenotypic approach because

it does not include an explicit mating mechanism. For extremely strong selection (leading

to large changes in the trait distribution within one generation), our model may fail due

to both the continuous time assumption and the presence of higher-order, terms in Eq. 9.290

The form of these terms depends on the underlying genetic process, and their general form

has previously been found using multilocus theory.23, 45 These subleading terms affect the

dynamics over long timescales, and may alter the stability criteria of equilibria.

13
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Our continuous time phenotypic equations may be compared to previous work on cumu-

lant dynamics that treat selection as a discrete-time repeated sampling process weighted by295

the fitness.50 Thus we test our findings below against a simulated Wright-Fisher process,

and we find general agreement (see Appendix N for details of this numerical work). We thus

emphasize that our model is best applied to the study of short-term phenotypic evolutionary

trends when genetic assays are unavailable or infeasible; however, over longer timescales in

which the additive genetic variance parameter V varies, we expect high-order effects in her-300

itability to manifest. These limitations are consistent with the classical usages of “gradient

dynamics” models (which our model essentially generalizes), which have found particular

utility for the study of coupled ecological and evolutionary processes.15–17, 34

4 Results

4.1 Cryptic forces of selection arise from non-Gaussian trait dis-305

tributions

In classical phenotypic evolution, the first term in Eq. 12 is associated with the “force of

selection” on the mean trait.51 However, the remaining terms in Eq. 12 and Eq. 13 show that

the trait distribution can change even when this term is zero, allowing the trait distribution

to evolve in the absence of any apparent force of selection. These cryptic selection forces can310

have significant effects on the overall dynamics of natural selection.

As a demonstration of this effect, Figure 1 shows the behavior of the system Eq. 12,

Eq. 13 relative to a null model in which the trait distribution is always Gaussian (in which

case all terms containing Wn vanish in the dynamical equations). The figure illustrates two

separate cryptic forces of selection: the excess selection force on the mean trait (left plots)315

and the excess selection force on the trait variance (right plots). For the Figure, we use a
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simple fitness landscape consisting of exponential directional selection,40, 52, 53

W = W0e
s z. (14)

Such a landscape represents limiting case in several common contexts, including selection on

metric traits (which frequently have logarithmic ranges),18, 21 evolution of biochemical reac-

tions subject to microscale energetic constraints,54, 55 and cases in which fitness scales with320

mutation count.56, 57The parameter s in Eq. 14 describes the relative strength of selection

on the trait z. For this fitness landscape, the individual coupling coefficients are observed

to obey the general relationship Wn ∼ sn (Appendix H); thus the broadest features of the

fitness landscape (lowest order Wn) contribute the most to directional selection.

The upper portion of the figure describes the relative magnitude of the excess force of325

selection as a function of the trait skewness γ and the selection strength s; for simplicity,

the kurtosis k is held fixed at its theoretical minimum k = γ2 + 1. At the origin, the

trait distribution is Gaussian and so the cryptic selection force is zero; however, as either

the skewness γ or the selection strength s increase, the relative contributions of the non-

Gaussian terms in Eq. 12, Eq. 13 increases. Red regions correspond to cases in which the330

cryptic selection force is positive (and thus assists directional selection), whereas blue regions

correspond to cases in which the non-Gaussian contributions retard directional selection. The

plot suggests that positive skewness (corresponding to a trait distribution with a long tail

of large trait values) generally speeds the evolutionary dynamics of both the trait mean

and trait variance, primarily due to the added contributions of extremal individuals. The335

opposite is true for negatively skewed populations in which most individual traits exceed the

trait mean, due to outlier individuals producing offspring with lower fitness.

In the lower portions of the figure, trajectories of z̄(t) and σ(t) are shown for a numerically-

constructed non-Gaussian trait distribution (Appendix M) using (γ, s) values marked by open

circles in the blue and red regions of the upper plots; for comparison, a trajectory consisting340
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of the “null” case of a Gaussian trait distribution is shown in gray. The dynamics of each

distribution relative to the Gaussian case proceed as predicted by the magnitude of the cryp-

tic force, with the primary advantage/detriment due to skewness occurring initially before

the rate of evolution eventually stabilizes. Notably, directional selection causes a continued

increase in the mean trait (z̄ → ∞ as t → ∞), but the trait distribution width σ stabilizes345

to a constant value that is proportional to the skewness. Thus the effect of non-Gaussian

features in the trait distribution may manifest experimentally as a constant variance that is

larger or smaller than that predicted under classical evolutionary theory.

In the Appendix, we compare these results to Wright-Fisher simulations of phenotypic

evolution in a population initialized to the same starting values of the mean, variance,350

skewness, and kurtosis as was used in these equations, and we find general agreement. In

the simulations, as in real populations, the values of the skewness and kurtosis drift over time

due to accumulated sampling errors (this corresponds to a timescale over which the “fixed

cumulant” assumption above is no longer valid). However we observe that trait means and

variances tend to drift monotonically under exponential directional selection, and so even355

over long timescales the calculated direction of the cryptic force of selection correctly predicts

the dynamics relative to the Gaussian distribution.

4.2 Transient evolutionary responses to stabilizing and disruptive

selection

In addition to generating qualitatively different dynamics, non-Gaussian features of the trait360

distribution may affect the long-term duration and direction of natural selection. In order

to illustrate this effect in a fitness landscape with a variable number of local maxima, we

next consider a general fitness landscape described by an arbitrary polynomial,

W (z) = W0 +
∞∑

m=1

αm(z − cz̄)m, (15)
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Figure 1 Cryptic forces of selection under directional selection. Top: The excess force
of selection due to the non-Gaussian form of the trait distribution, for the mean trait dynamics (left)
and trait standard deviation dynamics (right). Colored shading indicates the relative direction and
magnitude of the cryptic terms in Eq. 12 and Eq. 13, with red (blue) indicating cryptic forces that
accelerate (retard) the growth of each moment. Lower plots represent example dynamics of the mean
and standard deviation for representative points on each color plot. White circles on upper plots indicate
parameter values (γ, s) used for the trajectories in the lower plots: the grey trace indicates classical
fitness gradient dynamics with an unperturbed Gaussian trait distribution, while red and blue traces
indicate cases in which higher trait moments speed or hinder the evolutionary dynamics, respectively.
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where the relative magnitudes of the various coefficients αm determine the number of local

maxima and minima of the landscape. In general, if the largest non-zero αm is positive,365

then for large values the fitness landscape looks like a “U” (limz→∞ W (|z|) = ∞), and so the

value of the mean trait z̄ eventually diverges: natural selection proceeds indefinitely in the

system as the mean trait continuously increases. Sub-leading terms in the polynomial Eq. 15

induce short term transients that may affect the dynamics only temporarily depending on

the initial conditions. Globally, however, natural selection will proceed continuously in a U-370

shaped landscape, as has been reported experimentally.58 Conversely, if the largest non-zero

αm is negative, then the fitness landscape looks like a hill at large z and so the the mean trait

and trait variance will always eventually equilibrate at an intermediate stable solution—in

which case natural selection proceeds transiently until this solution is reached.59

We can investigate the manner in which skewness and kurtosis affect the timescale of375

natural selection by studying the specific case of a quartic fitness landscape under transient

natural selection (αm = 0 for m > 4; α4 < 0). This landscape can have either one or two

local maxima depending on the relative magnitudes of α2 and α4 in Eq. 15. Thus for a

continuous, unbounded trait, a quartic fitness landscape represents the simplest landscape

that can model both stabilizing (one maxima) or disruptive (two maxima) selection.34380

For each value of the skewness γ and kurtosis k, the equilibrium solutions of Eq. 12 and

Eq. 13 are independent of the initial conditions and can be found analytically along with

the Jacobian matrix describing their local stability. Figure 2 shows plots of the maximum

eigenvalue of this Jacobian matrix associated with the intermediate phenotype, parametrized

by the skewness γ and kurtosis k (the kurtosis lower bound k > γ2 + 1 is indicated by a385

solid gray line). For cases in which the dynamical equations yield multiple solutions, the

intermediate equilibrium phenotype is defined as the solution of Eq. 12 and Eq. 13 with z̄

closest to 0. In the blue regions on the plots, this intermediate phenotype is stable and so the

mean trait approaches this point. In the red regions of the plots, the intermediate phenotype

is unstable and so the mean trait instead approaches another, extremal equilibrium point.390
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The relative darkness of the plot colors represents the relative speed of the evolutionary dy-

namics: darker blue indicates that the intermediate phenotype is achieved relatively quickly,

while darker red indicates that extremal phenotypes are reached quickly.

The points γ = 0, k = 3 on each plot correspond to the default case of a purely Gaus-

sian trait distribution with a time-varying mean and standard deviation. For stabilizing395

selection this point resides within a blue region, consistent which the intuitive result that

a Gaussian trait distribution evolves towards the location of the global maximum of the

fitness landscape, and that the range of trait values decreases over time as more and more

individuals in the population approach this optimum (σ(t) → 0).54 Indeed, for stabilizing

selection, non-Gaussian features in the trait distribution only barely affect the rate of the400

dynamics, consistent with experimental results suggesting that traits under stabilizing se-

lection universally attain intermediate optima.60 Additionally, this suggests that if γ and k

were themselves dynamical variables that changed either due to selection or mating effects,

the mean fitness would nonetheless always reach a finite value dictated by the maximum of

the fitness distribution.405

In a disruptive landscape, the intermediate phenotype is disfavored for almost all trait

distributions near the classical case of a Gaussian distribution at γ = 0, k = 3 (red regions in

Figure 2). This is expected because the maxima of the disruptive landscape occur away from

the intermediate phenotype at z = 0, and so the trait moves towards these dispersed values

in the absence of additional destabilizing dynamics. However, when the trait distribution is410

strongly non-Gaussian, the intermediate phenotype near z = 0 regains stability, an effect that

is particularly pronounced when the trait distribution is strongly asymmetric and flat (large

γ, k ≈ γ2 + 1). High skewness and kurtosis correspond to the trait distribution containing

a relatively large fraction of individuals with extremal phenotypes, which represent a large

enough trait range that the distance between the two symmetric equilibria in the disrupting415

fitness landscape becomes relatively insignificant (the locations of these off-center equilibria

depend on α2/α4 in Eq. 15). As a result, the overall average phenotype returns to the center
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due to the leading-order effect of the negative α4 term in Eq. 15.

In the Appendix, we compare the dynamics predicted by local stability analysis of Eq. 12

and Eq. 13 with the dynamics of a population subject to Wright-Fisher dynamics with match-420

ing starting cumulants as used here. We find that the short-time dynamics of the Wright-

Fisher process are directly analogous to those predicted by the local analysis, particularly

because additional effects (such as variation in the genetic variance V , and fluctuations in the

values of higher cumulants due to sampling drift) do not manifest over the infinitesimally-

short timescales which local stability analysis applies.425

Significant skewness and flatness in the trait distribution can obscure the effects of dis-

ruptive selection and potentially serve as a mechanism to preserve or enhance phenotypic

variance, even when selection itself acts on the trait variance—potentially implicating higher

trait moments in speciation and ecological phenomena that depend on the phenotypic vari-

ance.19 Although the dynamical equations would become substantially more complex if the430

skewness and kurtosis also responded to selection, results from other cumulant dynamical

systems39, 40 suggest that genetic or mating processes that preserve an arbitrarily high or-

der moment would result in similar “freezing” of the dynamics of lower-order cumulants.

Thus, even if natural selection alters arbitrarily high moments of the trait distribution, if

mutation or mating serve as a “source” that constrains an arbitrary moment of the trait435

distribution, then lower-order moments such as the phenotypic variance would also be pre-

vented from reaching zero in certain regions of parameter space. This process represents a

generalization of the concept of a “mutation-selection balance,” a concept typically invoked

in order to justify holding the phenotypic variance fixed during selection.15, 36, 46 However,

as with the traditional breeder’s equation, an additional equation specifically incorporating440

the underlying genetics would be required in order to justify this process biologically.47
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Figure 2 Evolutionary dynamics under stabilizing or disruptive selection. Colored shad-
ing represents the maximum eigenvalue associated with the Jacobian matrix of ˙̄z, σ̇ on a logarithmic
scale, evaluated at the equilibrium nearest to z̄ = 0 (the intermediate phenotype) and parametrized by
the skewness and kurtosis of the trait distribution (all other parameters are held constant). Negative
maximum eigenvalues (blue regions) represent dynamics that eventually converge to the intermediate
phenotype, positive maximum eigenvalues (red regions) represent dynamics that approach an extremal
phenotype, and the intensity of shading indicates the instantaneous rate of the dynamics. The solid gray
line indicates the lowest mathematically-valid value for the kurtosis, k > γ2 + 1. Beneath each figure
is a diagram of the fitness landscape W (z) that produced it. For this figure, c = 1, V = 1, U = 10 in
Eq. 12 and Eq. 13. Shading ranges from eigenvalue values of −2 (dark blue) to 2 (dark red).
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4.3 Time-variation of the heritability

Experimental studies of phenotypic evolution in artificial selection regimes generally quantify

genetic effects using the narrow sense heritability, h(t)2 ≡ V/σ(t)2, defined as the ratio of

additive genetic variance V to overall phenotypic variance σ2. In large populations, h2
445

changes slowly enough that it can be estimated without the need for explicit identification

of a trait’s genetic origin. However, recent experimental results have suggested that h2 may

change appreciably during short periods of strong selection, especially when the underlying

genetics (and thus V ) exhibit complex dynamics.21 In particular, rapid changes in the

phenotypic variance σ2 may underly this phenomenon over short timescales,19, 60 even when450

an insufficient number of generations have elapsed for V to change appreciably.

We note that by including changes in higher moments than the mean, our framework

naturally describes changes in the observed heritability arising from the dynamics of trait

variation. In order to study this effect, we re-parametrize our model in terms of quantities

more readily measured experimentally: our two dynamical variables z̄(t) and σ(t) may be455

replaced by the equivalent conjugate variables of heritability h2(t) and mean fitness W (t)

(see Appendix G). Because the exact underlying trait values or distributions may not be

accessible in certain experimental contexts, these variables are more descriptive of macro-

scopic population trends in population-level assays, such as long-term bacterial evolution

experiments.61460

In Figure 3, we show the short-time evolutionary dynamics of the heritability under a

linear directional fitness landscape,

W (z) = α1(z − cz̄), (16)

for which the coupling coefficients are computed in Appendix K. Because any arbitrary,

smooth fitness landscape may be approximated as linear in the neighborhood of the mean

trait, this parametrization illustrates a general relationship between the heritability and mean465
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fitness dynamics over short timescales. Setting α1 > 0 results in positive directional selection

(Ẇ > 0, ˙̄z > 0) because regions of a fitness landscape with positive slope tend to drive a

population towards a higher mean fitness. The solutions to Eq. 12, Eq. 13 corresponding

to each timepoint are shown in Figure 3A, where they are parametrized in terms of the

heritability as a function of mean fitness (which itself increases in time). In the figure,470

different traces correspond to various values of the skewness γ and kurtosis k.

In general, a Gaussian trait distribution (γ = 0, k = 3 in Eq. 12 and Eq. 13) always

produces the default case of constant heritability (ḣ2 = 0, gray dashed line in Figure 3A). An

evolving population with positive skewness (blue traces) exhibits heritability that eventually

decreases in time, primarily due to a high fraction of outlier individuals in the high-fitness tail475

of the trait distribution. These individuals produce higher-fitness offspring quickly enough

that the overall trait range increases in time, leading to a corresponding decrease in the

overall heritability—which is consistent with several field studies showing that increasing

mean fitness also increases trait variation and lowers the observed heritability.60, 62 This

growth of the variance due to tail effects is consistent with prior analytic solutions for the480

case of directional selection;37, 63 however we note that we hold the skewness and higher

moments fixed in these calculations. Intriguingly, we find that high values of kurtosis retard

this process at short timescales, producing some scenarios where the heritability appears

to increase transiently, before eventually relaxing non-monotonically to zero over longer

timescales (topmost blue trace). Such non-monotonicity in the heritability under directional485

selection would be an observable experimental signature of non-Gaussian dynamics.

Conversely, a population with negative skewness (red traces in Figure 3A) has a long

tail of individuals with comparatively low fitness; these individuals serve to counteract the

tendency of directional selection to increase trait ranges, and thus cause the trait variation to

decrease in time—leading to an accompanying increase in the trait heritability. Because this490

effect is driven by the lower-fitness tail of the distribution, it may partly explain experimental

results that have reported a disproportionately large contribution of rare phenotypes to
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the heritability of certain deleterious traits.64, 65 The differential effect of left and right

skewness is further apparent in the trait distributions at three representative timepoints in

the dynamics shown in Figure 3B, where the apparent width of the trait distribution varies495

non-monotonically and causes continuous changes in the heritability observed in the upper

portion of the figure. This substantial variation in the distribution’s width at various points in

the dynamics may confound efforts to study experimentally the evolution of ecological niche

width,66 as non-Gaussian features in the trait distribution may cause transient contraction

and expansion of the observed trait range, even in the absence of competition.500

In the Appendix, we perform a comparable set of simulations using Wright-Fisher dy-

namics, and we find general agreement in the dynamics, including non-monotonicity in the

dynamics at large values of k, as well as a qualitative shift from h2 → 1 to h2 → 0 when γ

changes sign from negative to positive.

5 Discussion505

We have presented a formulation of phenotypic evolution that seeks to iteratively relate the

dynamics of an arbitrary trait distribution to an arbitrary fitness landscape. This simplified

model explains several phenomena observed in numerical simulations of non-Gaussian trait

distributions evolving in simple fitness landscapes. We have shown that skewness or asym-

metry in the trait distribution can delay directional selection or prevent disruptive selection,510

and that the heritability—typically assumed to be constant over short timescales—can vary

in time with complex, non-monotonic dynamics as the mean fitness changes.

Our results are consistent with empirical and theoretical analyses that formulate pheno-

typic evolution in terms of the probability distribution of fitness values p(W ) rather than in

terms of an explicit trait distribution p(z) and auxiliary fitness function W (z).49 However,515

the trait-based model here is more readily applied to arbitrarily complex fitness functions

(particularly non-invertible and multimodal fitness landscapes),46 and thus may assist the
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Figure 3 Time-dependent heritability under directional selection. (A) The heritability
h2 as a function of the mean fitness, which increases continuously over time in a directional fitness
landscape. Colors represent cases in which the trait distribution skewness is γ = −0.05 (red) or γ = 0.05
(blue). Different traces of the same color correspond to increasing values of the kurtosis k in the range
k = γ2 + 1 to k = γ2 + 6, with slower timescales (lower traces) corresponding to larger values of the
kurtosis. The gray dashed line corresponds to evolutionary dynamics with constant heritability, which
the dynamical equations recreate when γ = 0, k = 3. (B) The trait distributions for three representative
timepoints (and thus values of W ) marked by open circles in (A). For this figure, α = V = 1, U = 0.01,
c = 0.5.
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study of explicitly experimental quantities such as selection coefficients and realized heri-

tability. For fitness distribution models, similar cumulant dynamical equations have been

derived under distinct constraints and approximations, and for certain types of experiments520

(e.g., microbiological lineage assays) these formalisms may be preferable.36, 40, 46, 61

Our explicitly phenotypic approach does not involve an explicit underlying genetic model;

we assume a linear heritability relation and note that this approximation holds over the

relatively short timescales and slow selection regimes observed in our simulations.28 A more

detailed model would include explicit information about the mechanics of inheritance, and525

how these parameters contribute to the breeder’s equation and determine the parameters

it contains. An important starting point for such work would be models of non-Gaussian

evolution based on a multilocus genetic models,37, 47 which have shown that the dynamics

of the phenotypic moments may vary appreciably depending on mating effects, transmission

effects, and whether selection occurs before or after transmission23
530

Other potential improvements include alternative series closure schemes to raw truncation

that depend on the type of fitness landscape being evaluated, as well as additional cross terms

in the dynamical equations that account for assortative mating effects. Additionally, we have

assumed that the additive genetic variance remains fixed during the phenotypic dynamics;

however over long timescales natural selection and mating may affect this value considerably.535

Coupling genotypes and phenotypes may also require the phenotypic portion of the model to

be generalized for multivariate traits by defining a fully time-dependent phenotypic variance-

covariance matrix, which may be particularly important for selection experiments in which

the traits with the strongest selection responses are unknown a priori.13, 27

Another limitation of our approach comes from the truncation approximations necessary540

to make the dynamical equations closed-form. Here, we have chosen canonical directional

and minimal stabilizing/disruptive fitness landscapes, in order to illustrate the simplest non-

trivial dynamics arising from our model and to justify our inclusion of only the skewness and

kurtosis (which represent the leading-order departures from Gaussian trait distributions).

26

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/291963doi: bioRxiv preprint 

https://doi.org/10.1101/291963


Additionally, we have retained only two of the dynamical equations in our model: one545

for the mean trait and one for the trait variance. But for certain types of initial trait

distribution or fitness landscape, the leading order equations Eq. 12 and Eq. 13 may not

be sufficiently accurate, and instead the full dynamical equations Eq. 7, Eq. 10, and their

equivalents for higher cumulants may be necessary. The number of necessary dynamical

equations, and the number of terms to include in them, depends primarily on the form of550

the coupling coefficients Wn, which may be found as long as the fitness landscape is known.

A more detailed fitness landscape, such as one derived empirically, may require retention

of more terms in the series Wn, because higher-order terms correspond to finer-scale fitness

landscape variations which affect dynamics over smaller length and timescales. However,

we note that because computing Wn simply requires projecting a known fitness landscape555

onto a polynomial basis, these coupling coefficients may easily be found numerically if the

parameter values for the initial trait distribution and fitness landscape are known.
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which, collectively, describe the full state of the population at the initial time t0. (Middle) Using the
breeder’s equation, a known fitness landscape, and a series expansion of the trait distribution, a set of
ordinary differential equations is derived that describes the time-evolution of each moment of the trait
distribution, with the moment values in the initial trait distribution acting as initial conditions. (Right)
The solutions of these differential equations at some later time may then be used to reconstruct the full
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8 Appendix

A Supplementary Figures

B Dynamical equations for cumulants and moments

Standard derivations based on non-overlapping generations (discrete time) start with the750

breeder’s equation, which supposes that the mean trait distribution in the next generation
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depends linearly on the effect of selection on the current generation,

z̄(t+ 1) = h2z̄w(t) + (1− h2)z̄(t), (A1)

where the linear parameter h2 represents the narrow-sense heritability of the trait z. Rear-

ranging the terms in this equation and taking the limit of vanishingly small generation time

leads to the dynamical equation,755

˙̄z = h2 (z̄w(t)− z̄(t))

where the mean reproductive rate has been used to make time dimensionless.

One way of deriving Eq. A1 involves expressing the full distribution p(z, t + 1) as an

integral over the distribution at the previous timestep, p(z, t). Various “survival kernels”

and “mating kernels” are included within this integral, and they determine the contribution

of mating preference, fitness, and even migration to the form of the trait distribution.67, 68 In760

these models, the linear form of Eq. A1 originates from the convolution of multiple probability

distributions, which in general will result in a new distribution with a mean given by a linear

combination of the means of the original distributions.

In general, the convolution of two arbitrary distributions has a distribution with cumu-

lants given by the sum of the cumulants of the original variables’ distributions. This property765

is responsible for the linearity of Eq. A1, and its importance for the generation of cumulant

dynamical equations for evolution has been noted by Bürger.37 For this reason, the analogy

to Eq. A1 for higher-order cumulants is given by,

κ̇i = h2
i (κiw − κi) (A2)

where h2
i represents a generalization of the heritability for higher-order cumulants (h2

1 = h2

is the standard narrow-sense heritability). This equation represents an extension of the770
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implicit assumption in the breeder’s equation that the trait response depends linearly on the

strength of selection: if the means respond linearly, then other cumulants must as well as

long as the trait has a well-defined probability distribution in the current generation. Linear

heritability equations for the variance in the form of Eq. A2 have previously been derived

explicitly for the “infinitesimal” genetic model (in which a given continuous trait arises775

from the independent contributions of infinitely many distinct loci) by Bulmer.28 Similar

relations of this form are found by Turelli and Barton in both few-locus and infinitesimal

genetic models (See Eq. 45 of Turelli and Barton 1994,23 and Eq. 3.2a,b of Turelli and

Barton 199040).

While the cumulants of a random variable have the advantage of being additive, the

moments of a probability distribution often provide a more familiar description of the vari-

able. Fortunately, the dynamical equations Eq. A2 may readily be converted into dynamical

equations for the central moments (µi) using standard reference formulas; we note however

that the first three cumulants are directly proportional to the first three central moments:

κ1 = z̄

κ2 = σ2

κ3 = µ3

The fourth and higher cumulants have more complicated expressions given by Bell polyno-

mials, Bn,k, of the various lower-order central moments,

µn =
n∑

k=1

Bn,k(0, κ2, . . . , κn−k+1)

κn =
n∑

k=1

(−1)k−1(k − 1)!Bn,k(0, µ2, . . . , µn−k+1) (A3)

These equations may be inserted directly into Eq. A2 to obtain dynamical equations in terms780

of central moments. Dynamical closure in this context thus represents an assumption that
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cumulants above a certain order are not heritable: h2
i = 0 for some i > 1. This results in

the infinite tower of coupled moment equations given by Eq. A2 becoming finite, because

the explicit form of the nth cumulant only depends on the nth and smaller central moments.

The heritability requirements above suggest how each cumulant of an arbitrary trait785

distribution may have its own dynamical equation. Importantly, each of these dynamical

equations may itself depend on an arbitrary number of cumulants of the trait distribution,

depending on the current form of the distribution. This is because an arbitrary trait distri-

bution may be expressed in terms of a Gram-Charlier A series,

p(z) = N [z̄, σ](z)

(
1 +

∞∑
n=3

cnHen

(
z − z̄

σ

))
(A4)

where each cn is defined explicitly in terms of the moments or cumulants of p(z),790

cn ≡ (1− δn,2)

⌊n
2
⌋∑

j=0

(
−1

2

)j
(j!(n− 2j)!)

√
κ2

n−2j µn−2j.

Here δn,m is the Kronecker delta function (δn,m = 1 when n = m; δn,m = 0 otherwise) and

the central moments µj are given in terms of the cumulants by Eq. A3.

C Simplification of trait dynamics when W (z) = W (z − cz̄), p(z) =

p(z − z̄)

The mean fitness is given by795

W =

∫
W (z)p(z) dz, (A5)

Taking the derivative of both sides of this equation,

dW

dz̄
=

∫
dp(z)

dz̄
W (z)dz +

∫
dW (z)

dz̄
p(z)dz.
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We assume that W (z) = W (z − cz̄),

∫
p(z)

dW (z)

dz̄
dz = −c

∫
p(z)

dW (z)

dz
dz.

Performing integration by parts,

∫
p(z)

dW (z)

dz̄
dz = −c

(
(W (z)p(z))

∣∣∣∣∞
−∞

−
∫

dp(z)

dz
W (z) dz

)
.

The first term on the left hand side vanishes due the compactness of p(z),

∫
p(z)

dW (z)

dz̄
dz = c

∫
dp(z)

dz
W (z) dz.

If p(z) = p(z − z̄), then,800

∫
p(z)

dW (z)

dz̄
dz = −c

∫
dp(z)

dz̄
W (z) dz.

Inserting this expression into Eq. A5 results in a final equation,

dW

dz̄
= (1− c)

∫
dp(z)

dz̄
W (z)dz.

This result is intuitive for c = 1: if the fitness landscape depends only on the difference

between each individual trait the mean trait, then the mean fitness itself cannot depend on

the mean trait.

D Behavior of ˙̄z as c → 1805

We start with the definition of the mean fitness,

W (z̄) =

∫
p(z − z̄)W (z − cz̄) dz.
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Taking a series expansion of this equation around c = 1,

W (z̄) =

∫
p(z − z̄)W (z − z̄) dz − (1− c)

∫
p(z − z̄)

d

dc

(
W (z − cz̄)

)∣∣∣∣
c=1

dz +O
(
(1− c)2

)
.

W (z̄) =

∫
p(z)W (z) dz + (1− c)z̄

∫
p(z)

dW (z)

dz
dz +O

(
(1− c)2

)
.

We take the derivative of both sides with respect to z̄,

dW (z̄)

dz̄
= 0 + (1− c)

∫
p(z)

dW (z)

dz
dz +O

(
(1− c)2

)
.

Next we multiply both sides by 1/(1− c) and take the limit c → 1. We note that all terms810

O ((1− c)2) vanish in this limit,

lim
c→1

1

1− c

dW (z̄)

dz̄
=

∫
p(z)

dW (z)

dz
dz =

∫
W (z)

dp(z)

dz̄
dz.

Importantly, this suggests that the dynamics of ˙̄z do not diverge as 1/(1− c), because dW (z̄)
dz̄

has a leading-order zero, namely (1− c).

Rearranging the asymptotic equation results in the dynamics when c = 1,

˙̄z =
V

σW

∫
N [z̄, σ](z)f ′(z̃)W (z)dz.

The behavior of the series in the vicinity of c = 1 can be found by including a higher-order815

term in the Taylor series found above,

˙̄z = (1− c)
V

W
z̄

∫
W (z)

d2p(z)

dz̄2
+

V

W

1

σ

∫
N [z̄, σ](z)f ′(z̃)W (z)dz.
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E Derivation of trait variance dynamics σ̇

As with the trait mean, we assume that the trait variance M ≡ σ2 has linear heritability

with a dynamical equation given by

Ṁ = h2
σ(Mw −M),

where h2
σ is the variance heritability; it determines the degree to which the phenotypic820

variance in one generation influences the phenotypic variance of the next generation. We

expand this equation as

Ṁ = h2
σ

(∫
(z − z̄)2p(z)

W (z)

W
dz −

∫
(z − z̄)2p(z) dz

)
(A6)

We use the substitution,

p(z) = N [z̄, σ](z)f

(
z − z̄

σ

)
Taking the derivative of both sides of this expression results in the relationship

dp(z)

dM
=

(
(z − z̄)2

2M2
− 1

2M

)
p(z)− 1

2M3/2
(z − z̄)f ′(z̃)N [z̄, σ](z)

Rearranging this equation results in the expression825

p(z)(z − z̄)2
W (z)

W
=

W (z)

W

(
2M2dp(z)

dM
+Mp(z) +

√
M(z − z̄)f ′(z̃)N [z̄, σ](z)

)

Substituting the right hand side of this expression into the integral in Eq. A6 results in the

equation,

Ṁ =
h2
σ

W

(
2M2

∫
W (z)

dp(z)

dM
dz +

√
M

∫
W (z)N [z̄, σ](z)f ′(z̃)(z − z̄) dz

)
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Using the substitutionM = σ2, dM = 2σ dσ results in a dynamical equation for the standard

deviation of the trait distribution,

σ̇ =
U

W

(∫
W (z)

dp(z)

dσ
dz +

1

σ

∫
z̃N [0, 1](z̃)W (σz̃ + z̄)f ′ dz̃

)
,

where U ≡ (σ hσ)
2/2. We note that in many standard real-world contexts and theoretical830

frameworks, the fitness W does not explicitly depend on σ, and so dW/dσ = 0, resulting in

a simpler form for this dynamical equation,

σ̇ =
U

W

(
dW

dσ
+

1

σ

∫
z̃N [0, 1](z̃)W (σz̃ + z̄)f ′ dz̃

)
.

Inserting the Gram-Charlier series (Eq. 6) for p(z) results in an infinite series of the form

σ̇ =
U

W

(
dW

dσ
+

1

σ

∞∑
n=3

cn n

∫
z̃N [0, 1](z̃)Hen−1(z̃)W (σz̃ + z̄) dz

)
.

Using the properties of Hermite polynomials, this equation simplifies to

σ̇ =
U

W

dW

dσ
+

U

σW

∞∑
n=3

cn n

(
(n− 1)

∫
N [0, 1](z̃)Hen−2(z̃)W (σz̃ + z̄) dz

+

∫
N [0, 1](z̃)Hen(z̃)W (σz̃ + z̄) dz

)
.

(A7)

F Dynamics of mean fitness

As the trait distribution p(z) changes in time, the mean fitness W also changes. These835

dynamics may be expressed in terms of the trait distribution cumulants or moments by

noting that the fitness landscape W (z) may be expanded in terms of an infinite series around

z = 0,

W (z) = W0 +W1z +W2z
2 +W3z

3 + · · ·
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Thus the mean fitness has the form

W = W0 +W1z̄ +W2(σ
2 + z̄2) +W3⟨z3⟩+ · · · (A8)

where the relationship σ2 = ⟨z2⟩− z̄2 has been used. The remaining individual raw moments840

⟨zn⟩ may be expressed in terms of the variance σ2 and remaining cumulants κn using the

relation Eq. A3.

For a given fitness landscape, the individual cumulants (which may vary in time) may be

substituted into the expression for W given by Eq. A8. The resulting explicit expression for

W may then by substituted into the cumulant dynamical equations in order to express the845

dynamics in a form where the cumulants are the only dynamical variables. Depending the

fitness landscape being used, the resulting equations may have a particularly simple form.

While the number of time-dependent dynamical variables required to study the trait

distribution is simply the number of moments or cumulants that vary in time, for some

fitness landscapes the dynamics become more tractable if W is instead treated as its own850

dynamical variable, with dynamics given its total derivative with respect to the remaining

dynamical variables,

Ẇ =
dW

dz̄
˙̄z +

dW

dσ
σ̇ +

∞∑
i=3

dW

dκi

κi, (A9)

where κi are the cumulants of p(z). Because all derivatives ofW may themselves be expressed

in terms of the cumulants of the trait distribution p(z), the dynamics of W do not represent

an additional dependent variable in the dynamical system. This form of Ẇ suggests that,855

even in the absence of additive genetic variance (V = 0) or in case of a fixed mean trait

˙̄z = 0, the mean fitness may continue to change due to higher-order cumulants of the trait

distribution contributing to the dynamics. These higher-order effects are absent in the

standard breeder’s equation and will discussed further below.

Finally, we note that under the specific closure assumptions described above and in the860

main text, the cumulants series κn and thus the Gram-Charlier coefficients of the trait
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distribution cn are assumed to truncate at finite order, and the only dynamical moments

of the trait distribution are assumed to be the mean z̄ and width/deviation σ. The latter

assumption either entails that higher moments of the trait distribution are not heritable due

to specific features of recombination or mating dynamics (which are not explicitly modelled865

here), or—less restrictively—that the fitness landscape does not affect these higher moments.

This allows Eq. A9 to have a closed form due to truncation of the infinite series,

Ẇ =
dW

dz̄
˙̄z +

dW

dσ
σ̇

For fitness landscapes in which the dynamics of W cannot be solved explicitly, this expres-

sion may be used as an additional dynamical equation without greatly affecting numerical

performance, due to its simple dependence on the other dynamical equations.870

G Formulation of dynamics in terms of heritability h2(t) and mean

fitness W (t)

We work under the “closure” assumption of truncated Gram-Charlier moments and dynam-

ical equations, as described above. The resulting two-variable dynamical system z̄(t), σ(t)

may instead be expressed in terms of h2(t) and W (t), where

h2(t) ≡ V

σ(t)2

W (t) ≡
∫

p(z, t)W (z)dz (A10)

which have the dynamical equations

˙(h(t)2) = − 2V

σ(t)3
σ̇(t)

Ẇ (t) =
dW

dz̄
˙̄z +

dW

dσ
σ̇ (A11)
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The exact form of the equivalence z̄(t), σ(t) ↔ h2(t),W (t) depends on the exact func-

tional form of the fitness landscape W (z), but the general approach consists of the following

steps:875

1. Derive an expression for the fitness in terms of the trait moments. The

fitness landscape W (z) is written as an infinite series in z,

W (z) = W0 +W1z +W2z
2 +W3z

3 + · · ·

This series is substituted into Eq. A10, and then individual terms are averaged in order

to generate a series representation of W in terms of its raw moments ⟨z⟩, ⟨z2⟩, ⟨z3⟩, · · · (as

is also described in Appendix F). This series representation may then be converted into a880

sum over cumulants or moments using Eq. A3, and then the resulting series may be directly

substituted into the dynamical equations for (z̄(t), σ(t)). The resulting cumulant series may

then be truncated in order to yield a closed form expression for W . For clarity refer to this

finite series expression as W̃ .

2. Solve for the mean trait. The closed-form expression W = W̃ may then be885

algebraically inverted in order to generate a solution for the mean trait z̄ in terms of σ and

W . Importantly, because the mean appears in the explicit definitions of each of the raw

moments given by Eq. A3, this step requires inverting a high-degree polynomial. Practically,

symbolic solutions for z̄ may be kept as placeholders until numerical values for individual

parameters are chosen. We use the notation ˜̄z to refer to the values of the mean trait obtained890

by inversion of W̃

3. Substitute into the dynamical equations. We perform the following substitutions

(in order) into the right hand side of the dynamical equations Eq. A11.

1. ˙̄z and σ̇ are replaced by their explicit expressions in terms of Wn (as given in the main

text)895

2. Wherever it appears, z̄ is replaced by ˜̄z, effectively replacing z̄ withW in the dynamical
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system.

3. Wherever it appears, σ is replaced by
√

V/h2, removing σ from the dynamical system.

For a specific functional form of W (z) (and thus Wn), these steps may yield simple

analytical results (as occurs for low-order polynomial or Gaussian fitness landscapes) or900

complex but complete analytic results, which require a symbolic algebra computer program

to compute accurately.

H Wn for exponential directional selection

A fitness landscape for exponential directional selection is given by

W (z) = W0e
s (z−cz̄).

We insert this equation into the definition of Wn,905

Wn ≡
∫

N [0, 1](z̃)Hen(z̃)W (σz̃ + z̄) dz̃,

which results in a simple expression for Wn associated with exponential directional selection

Wn =
√
2πW0e

−scz̄es
2/2sn

Inserting these terms into the truncated four-moment differential equations for ˙̄z, σ̇,

˙̄z =
V

W

(
1

1− c

dW

dz̄
+

W0

3σ

√
π

2
e−scz̄es

2/2s2 (3γ + (k − 3)s)

)
(A12)

σ̇ =
U

W

(
dW

dσ
+

W0

3σ

√
π

2
e−scz̄es

2/2
(
s(2− s2)(k − 3) + 3γ(1 + s2)

))
, (A13)

We note that similar equations are obtained by Bürger for a discrete-time model of cumulant

dynamics under directional selection.69
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Under the truncated model, we define the cryptic force of selection simply as the ad-

ditional terms in each of Eq. A12 and Eq. A13, which would not be present if the trait

distribution were purely Gaussian:

F c
z̄ ≡ W0

3σ

√
π

2
e−scz̄es

2/2s2 (3γ + (k − 3)s)

F c
σ ≡ W0

3σ

√
π

2
e−scz̄es

2/2
(
s(2− s2)(k − 3) + 3γ(1 + s2)

)
Depending on the overall strength of selection, these terms may be comparable in mag-

nitude to the leading order gradient terms in the dynamical equations Eq. A12,Eq. A13.910

I Orthogonality of Hermite polynomials and shifted Hermite poly-

nomials

We wish to solve the following integral

Im,n =

∫
e−z2/2Hen(z)Hem(az + b) dz.

We define a generating function,

ϕ(s, t) =
∞∑

m=0

∞∑
n=0

Im,n
sm

m!

tn

n!

such that915

Im,n =
dm

dsm
dn

dtn
ϕ(s, t)

∣∣∣∣
s→0,t→0

.
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The generating function may thus be expressed as,

ϕ(s, t) =

∫
e−

z2

2

(
∞∑

m=0

Hen(az + b)
sm

m!

)(
∞∑
n=0

Hen(z)
tn

n!

)
dz

ϕ(s, t) =

∫
e−

z2

2

(
exp(2(az + b)s− s2)

)(
exp(2zt− t2)

)
dz

ϕ(s, t) = exp

(
2bs+ (2a2 − 1)s2 + 4ast+ t2

)
.

The derivatives of this generating function have a regular pattern due to the polynomial

argument of the exponential, resulting in an analytic solution for the integral

Im,n =


m!

(m− n)!
an(1− a2)(m−n)/2Hem−n

(
b√

1− a2

)
n ≤ m

0 n > m

J Orthogonality of Hermite polynomials and regular polynomials

Using the same method of characteristic functions used in Appendix I, it can be shown that

the solution to the integral920

Im,n =

∫
e−z2/2Hen(z)(az + b)m dz.

is

Im,n =


m!

(m− n)!
(−1)(m−n)/2amHem−n

(
b√
−a2

)
n ≤ m

0 n > m

As an example application of this integral, we consider a fitness landscape given by a

sum over Hermite polynomials

W (z) =
∞∑

m=0

αmHem(z − cz̄).
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Inserting this expression into the definition of Wn results in a series with fewer terms,

Wn = σn

∞∑
m=n

αm
m!

(m− n)!
(1− σ2)(m−n)/2Hem−n

(
(1− c)z̄√
1− σ2

)

K Wn for polynomial fitness landscapes925

We consider a fitness landscapes of the form

W (z) = W0 +
∞∑

m=1

αm(z − cz̄)m (A14)

In general, analytic solutions are known for integrals of the form38

∫
N [µ, σ](z)Hen(z)z

mdz,

as given in Appendix J. Using these results, we find that the coupling coefficients Wm

themselves have the form of an infinite series,

Wn =
√
2πW0δn,0 +

∞∑
m=0

αmWm
n ,

where930

Wm
n = Im,n =



√
2π n = 0

√
2π

m!

(m− n)!
σm(−1)(m−n)/2Hem−n

(
z̄(1− c)√

−σ2

)
0 < n ≤ m

0 n > m

L Comparison with other models of cumulant dynamics

Here, we describe the relationship between our approach and those taken in previous studies

that have formulated natural selection in terms of moment or cumulant dynamics equations.

We note that, to our knowledge, our specific model and derivation—inserting a Gram-
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Charlier series into the breeder’s equation, and then iteratively finding terms—is distinct935

from other approaches previously taken in existing literature. Our work is primarily relevant

for describing phenotypic evolution over intervals in which the additive genetic variance V

remains constant, such as during the phenotypic Wright-Fisher simulations we describe in

the main text. The more detailed models described below include specific underlying genetic

models; extending our results to work within these frameworks may require adding additional940

terms to the cumulant-wise generalized breeder’s equation Eq. A2, such as those found by

Turelli and Barton 1994 for a broader study of non-Gaussian evolutionary processes.23, 28

However, the techniques that we use (the Gram Charlier series and cumulant-wise expan-

sions of the fitness landscape) have also appeared in other contexts in evolutionary theory,36

such as the infinitesimal model in which a continuous genotype is associated with a contin-945

uous fitness landscape.30, 67 However, due to its origin in phenotypic theory, our approach

entails certain distinct assumptions and regimes of applicability which we aim to outline

below.

Zeng 1987 reports, to our knowledge, the earliest application of the Gram-Charlier series

to a problem in population genetics.48 Zeng expands the joint distribution of genotypes950

and phenotypes in terms of a multivariate Gram-Charlier series (Eq. 3 of the referenced

paper), and then studies the discrete-time consequences of truncation selection on an initially

bivariate Gaussian distribution. Similar results are presented using different techniques

in Bulmer 1980.30 Section 3.2.1 of Zeng provides the general form of cumulant iteration

equations for the infinitesimal model under random mating, and Section 3.2.2 describes955

iteration equations under an explicit multilocus theory. For the multilocus case, his Eq.

46, 47 represent explicit dynamical equations for the mean and variance under truncation

selection. The other results in the paper require explicit cross terms that depend on the

fitness landscape to be calculated, a landscape-dependent calculation similar in principal to

the Wn coefficients we describe above.960

Related to the notion of dynamical equations arising from a cumulant-based approxima-
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tion of the fitness distribution, Barton and Turelli 1987 presents a continuous-time matrix

equation for the temporal dynamics of individual moments.47 The individual terms in the

symmetric transfer matrix have a form in which the ith term in a given row or column de-

pends on the mean allelic effect of the i + 1th and lower moments. They then show show965

for certain assumptions (such as diallelic inheritance) this matrix equation becomes finite,

allowing the dynamics to be analyzed in closed form. The authors successfully use this model

to describe the well-known mutation-selection balance effect.

Turelli and Barton 1990 extend this model in order to include recombination and linkage

effects.40 The theoretical framework of their model focuses on the distribution of genotypes,970

each of which is assumed to be associated with a single phenotype—making this work com-

parable to the continuous trait approach we present in our work above. Within a multilocus

framework that includes linkage, Turelli and Barton present discrete time iteration equa-

tions in terms of infinite summations over gradients of the mean fitness W̄ with respect to

various phenotypic moments, each multiplied by its respective phenotypic moment. These975

recursions simplify under the assumption of many loci (the infinitesimal model), resulting

in a linear “variance heritability” equation (Eq. 3.2b of the referenced paper) similar to the

one found by Bulmer 1971.28 While our model above encodes information about the fitness

landscape in terms of a set of “coupling coefficients” Wn, under the framework of Turelli

and Barton 1990 information about the fitness landscape is encoded by computing the mean980

fitness gradients with respect to the moments—making these gradients the primary determi-

nants of the tractability of a given landscape. We compare the mean trait evolution equation

found by Turelli and Barton 1990 in the many-loci limit (Eq. 3.15 of the referenced paper)

to the dynamical equations we derive for ˙̄z above. For a directional landscape, our results

have slightly different coefficients (arising primarily from the continuous-time derivation and985

the form of our generalized breeder’s equation Eq. A2). However, the form of our solutions

for ˙̄z, σ̇ qualitatively match Eq. 3. 23 of Turelli and Barton (when higher order selection

gradients are added back into their expression); in particular, the lowest order term is pro-
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portional to the additive genetic variance. The qualitative stability properties of Turelli and

Barton’s results for a Gaussian fitness landscape entails global convergence for a stabilizing990

landscape, similar to our results for a polynomial stabilizing landscape.

Bürger 1991 notes the relative tractability of using cumulants, as opposed to moments,

in the dynamical equations, and introduces the notion of taking a series expansion in the

fitness landscape (Eq. 3.3 of the referenced work) in order to provide iterative terms in the

dynamical equations (Eq. 4.8a,b).37 These equations have a similar form to Eq. 3.13 of995

Turelli and Barton 1990,40 although the latter is expressed in terms of moments. Bürger

notes that linear selection advantages in a standard discrete time fitness model correspond

to a Malthusian fitness landscape; we emphasize that due to the continuous time dynamics

we study in the model we present above, the equivalent to this landscape in our formalism is

simply a linear (and not exponential) function. Otherwise, the general dependence of terms1000

in Bürger’s directional selection equation on the strength of directional selection has a power

series form similar to the one we derive above.

Bürger 1993 studies cumulant dynamics under both directional and stabilizing (Gaussian)

fitness landscapes.69 For the directional terms, the drift of an initially Gaussian distribution

away from Gaussianity due to selection and mutation has the form of a power series in the1005

selection strength multiplied by a Gaussian (Eq. 16 of the referenced paper); we note that

these results are similar to those obtained for the directional linear and exponential land-

scapes above, with the linear directional landscape in continuous time being most analogous

to linear directional selection in discrete time. Bürger also notes the timescale isolation

associated with the dynamics of different cumulants. In the model we present above, this1010

timescale isolation is used as an ad hoc heuristic to justify truncating the series of differential

equations, since a finite number of differential equations may describe the dynamics for short

timescales. Bürger also presents numerical results via Monte Carlo simulations illustrating

the dynamics of cumulants in different fitness landscapes, and finds that the skewness and

kurtosis generally remain bounded over a range of selection strengths. The coupling between1015
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selection strength, skewness, and the time evolution of the variance in these results is con-

sistent with Barton and Turelli 1987,47 as well as the calculations we present above for a

directional fitness landscape, which suggest a strong role of tail effects in determining the

dynamical regime.

Barton and Turelli 1994 start from the breeder’s equation and develop a general non-1020

Gaussian infinitesimal model.23 Their formalism takes root in the concept of using convolu-

tional integrals to construct discrete-time integral iteration equations, a method originally

developed by Slatkin 1970.67 Assuming a Gaussian transmission kernel centered on the

midparent breeding value, Turelli and Barton note that cumulant iterations are a natural

simplification for such integrals due to the linearity of cumulants under convolution—an ap-1025

proach that motivates our use of them as well above, and which is also discussed by Bulmer

1980.30 However, as with the method that we present above, Turelli and Barton note that

cumulants present issues when recombination is included, due to a multiplicative increase in

the number of cross-cumulant terms in the dynamical equations (Eq. 13 of the referenced

work). As in Turelli and Barton 1990, they note that the primary challenge in construct-1030

ing cumulant iteration equations for a given fitness landscape consists of computing closed

form expressions for the gradients of the mean fitness with respect to individual cumulants.

Analogously to the “coupling constants” Wn that we describe above, Turelli and Barton

present an integral equation (Eq. 26 of the referenced paper) that allows individual terms

of the fitness landscape to be included iteratively in the dynamics. They calculate these1035

gradients analytically for the case of truncation selection, in which case the cumulant series

readily truncates due to the leading order effects of truncation acting primarily on lower

moments—resulting in dynamical equations complementary to those found by Zeng 1987.48

Turelli and Barton also provide general cumulant iteration equations in terms of selection

gradients for both an explicit multilocus model (Eq. 35-40 of the referenced paper) and1040

for the limit of an infinitesimal model, in which an arbitrarily large number of alleles may

contribute to the fitness (Eq. 42, 43). Because the formulation of our phenotypic evolution
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model is mathematically similar to an infinitesimal genetic model, the dynamical equations

Eq. 42, 43 of Turelli and Barton have a comparable form to the general dynamical equations

for ˙̄z and σ̇ we calculate. However we truncate our series based explicitly on the order of the1045

cumulant, whereas the selection gradient approach may allow higher cumulants to appear

due to residual terms in a given derivative of the mean fitness W̄ . Turelli and Barton find

that their iteration equations reduce to a higher-order variant of the breeder’s equation under

the assumption of Gaussian breeding value distributions (Eq. 45). We note that we have

assumed breeder’s equation type construction for the underlying genetics of our phenotypic1050

model; an extension of our approach with a specific underlying genetic process may require

additional terms to be added to the breeder’s equation.

Distinct from the approaches used above, Prügel-Bennet studies explicitly the natural

selection process as an iterated random sampling process biased by the fitness, an approach

similar in motivation to the phenotypic evolutionary model we derive above.42, 50, 70 Prügel-1055

Bennet’s formulation of the selection process is parametrized by a selection rate parameter,

β, analogous to the inverse temperature of a thermodynamic ensemble. Analytic forms of the

cumulant dynamical equations require taking the equivalent of a “high temperature limit,”

wherein the sampling exponential is linearized and thus extremal phenotypes are sampled

less frequently. Our model presented above is similar to a continuous time, continuous1060

trait formulation of this approach, with individual coupling coefficients Wn analogous to the

individual series terms computed by Prügel-Bennet for the case where some phenotypes have

a linear fitness advantage.

Another cumulant-based approach for a discrete allele sampling process is provided by

Rattray and Shapiro, who study a case of multiplicative selection in which the number1065

of beneficial alleles accrued by an individual confers that individual with a linear fitness

advantage relative to the rest of the population.39 This multiplicative fitness landscape in

discrete time is equivalent to the linear directional fitness landscape we study above for

continuous time. Rattray and Shapiro exploit a useful property of multinomial sampling
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processes: in general, the nth cumulant of the distribution may be written as a summation1070

over terms of order pni associated with the set of alleles indexed by i (Eq. 7 of the referenced

paper). By assuming that each allele follows an independent diffusion process within the

population, and that the growth rate of an allele in the diffusion equation is associated with

its mean (the lowest cumulant), Rattray and Shapiro derive a series of dynamical equations

describing the evolution of moments within the population (Eq. 12), which are linear (and1075

thus may be solved via matrix inversion) for the multiplicative fitness landscape case. We

note that our approach presented above differs in construction from Rattray and Shapiro,

with the most substantive differences being (1) the explicit multilocus evolutionary model,

which allows the cumulant equations to have forms as summations, and (2) the use of a

diffusion process for individual alleles. In the many-allele limit implicit to the infinitesimal1080

model, these conditions would describe circumstances with weak selection or extremely high

mutation rates.

M Numerical solution of cumulant dynamical equations

Efficient simulation of the dynamics of cumulants requires that moments and cumulants are

not re-calculated at each time step, as integrals over the entire trait domain are generally1085

computationally expensive to perform numerically. However, if high order cumulants are not

heritable (and thus do not change in time), these values can be calculated in advance, thus

truncating the number of quantities that must be calculate. Any distribution may be used

to determine realistic constant values of these higher-order cumulants; in general, however,

distributions are chosen that have cumulants that grow slowly in n—this is a requirement to1090

safely truncate the Gram-Charlier series. Distributions used for the numerical work include

the skew normal distribution, the exponentially-modified Gaussian distribution, and the

uniform distribution.
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The characteristic function for a given probability distribution is given by

ϕZ(s) =

∫ ∞

−∞
eiszp(z)dz (A15)

The cumulants are given by the derivatives of the logarithm of this distribution,1095

κn =
1

in

(
dn

dsn
log(ϕZ(s))

)∣∣∣∣
s→0

,

and they can generally be calculated to arbitrary order for a given distribution, abetting their

use in numerical work. However, for certain distributions the series κn has a closed form.

For example, for many of the examples simulated in this paper, the uniform distribution

is used because it has the property κn = Bn/n, where Bn is the nth Bernoulli number.

As a result, simulations of z̄(t), σ(t) can be interpreted as the dynamics of a smoothed1100

boxcar distribution with time-varying center and width. However, if other distributions with

necessarily different cumulant series are used, the general dynamics will remain the same so

long as the distributions and their associated cumulants result in a strictly decreasing series

of magnitudes of Gram-Charlier coefficients |cn|. For numerical simulations shown in the

paper, equivalent simulations were performed with a uniform distribution, a skew normal1105

distribution, and an exponentially-modified Gaussian distribution, in order to ensure that

qualitative results regarding the dynamics of the mean and variance remained the same.

For cases in which the underlying trait distribution as a function of time is needed,

the time-dependent series of cumulant values, κi(t), is first computed using the dynamical

equations presented in the main text. These are then used to compute a time-dependent1110

characteristic function,

ϕZ(s, t) = exp

( ∞∑
r=1

κr(t)
(i s)r

r!

)
This expression derived by inserting a general Gram-Charlier series (Eq. A4) into Eq. A15.

From ϕZ(s, t), the trait distribution may then be computed by numerically performing the
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inverse integral of Eq. A15,

p(z, t) =
1

2π

∫ ∞

−∞
e−iszϕZ(s, t)ds

Using this equation, the dynamics of a sufficiently large number of cumulants may be con-1115

verted to those of the full trait distribution. This underscores how moment transform meth-

ods are reminiscent of traditional spectral methods for dealing with partial differential equa-

tions, which provide insight into the properties of time evolution operators by recasting them

within the frequency domain: similarly to Fourier modes, the moments of a distribution con-

stitute parametrized integral transforms across real space. This analogy that can be made1120

more direct when the distribution has a well-defined characteristic function, as it does here.

N Numerical simulations of selection on individuals

Numerical simulations were performed using a variation of a standard Wright-Fisher process

that accounts for selection on a continuous phenotype. For a given initial set of moments

µ, σ2, γ, k, a set of Ni phenotypes was initialized using Johnson’s SU -distribution (numerical1125

optimization was used to select distribution parameters that produced desired moments).

From these values, an initial mean trait value z̄ was calculated, allowing the full set of z

values to be assigned relative fitnesses w = W (z, z̄)/W . At the next timestep, Ni new

values were drawn (with replacement) from the initial set of z values, and these values were

taken as the “offspring” generation of phenotypes. This process was repeated for subsequent1130

timesteps, with each offspring generation serving as the parent phenotype distribution for

the next generation.

Because here we are primarily interested in the behavior of average moments of distri-

butions in large populations, a relatively large value of Ni = 106 was used in all simulations

(effectively suppressing drift effects). However, smaller effective population sizes may be1135

used in cases in which drift is important. In the simulations, the first four moments of the
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trait distribution vary gradually over time (primarily due to drift, here represented by the

accumulation of sampling errors). However, as expected for large sample sizes, for simple fit-

ness landscapes at large Ni the higher moments varied less than the lower moments over the

simulation timescales, leading to a natural hierarchy in the timescales of dynamical variation1140

in moments.

Figures S2-S4 show the results of Wright-Fisher simulations for the various fitness land-

scapes and conditions explored in the main text:

Figure S2 shows the dynamics of the mean trait z̄(t) and trait range σ(t) under an

exponential fitness landscape. The dynamics match those found for the simplified model1145

in Figure 1; positive skewness produces gradual widening of the trait distribution, which in

turn allows natural selection to proceed more rapidly when compared to the null case of a

purely Gaussian distribution. Conversely, the case with negative skewness lags behind the

default rate of natural selection, as predicted, resulting in a gradual narrowing of the trait

range. For the timescales explored in these simulations, both the skewness γ and the kurtosis1150

k are observed to fluctuate by less than 1%, despite there being no a priori constraints on

their dynamics in the simulations. At smaller population sizes these quantities vary more

due to drift, leading to more pronounced short-timescale departure from the the theoretical

predictions.

Figure S3 shows the results of Wright-Fisher simulations in a quartic fitness landscape1155

with all parameters equal to those in the disruptive selection panel shown in Figure 2. Due to

constraints on the properties of Johnson’s SU -distribution, arbitrary values of γ, k cannot be

probed over the full range of values shown in the Figure. Instead, we choose a line of values

of γ and k that crosses through regions in which the intermediate phenotype equilibrium is

active and inactive.We initialize each Wright-Fisher simulation at the each value of γ, k along1160

this line, and set the initial mean and standard deviation to match the equilibrium solution

of the cumulant model at that particular value of γ and k. We then simulate the Wright-

Fisher dynamics for a short time interval, in order to yield an estimate for the velocity of the

59

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/291963doi: bioRxiv preprint 

https://doi.org/10.1101/291963


mean and trait range ( ˙̄z, σ̇) in the vicinity of the equilibrium point. These velocity values

are difficult to directly compare to the eigenvalues yielded by the local stability analysis in1165

Figure 2; instead, we convert these velocity values into an “angle of motion” towards or

away from the equilibrium using the transformation θsim = arctan(vy/vx). We then compare

this angle to the direction of the eigenvector associated with the largest eigenvalue of the

local stability matrix for the cumulant dynamics model, in order to assess whether the local

dynamics of the Wright-Fisher system match those predicted by the local stability of the1170

simpler cumulant dynamical model. Figure S3 shows the resulting comparison; at large

values of γ, the two cases nearly exactly coincide. This strong coincidence is expected due

to the extremely short timescales over which local stability analysis predicts the dynamics,

because drift in the values of the individual cumulants does not have time to substantially

affect the relative dynamics.1175

Figure S4 shows the result of numerical simulations of for identical parameter values to

those used in Figure 3. To facilitate easier comparison, a panel from that Figure is reprinted

adjacent to the numerical results. It is apparent that the numerical work shows the same

general trends as the theoretical model, including differences in the growth of the heritability

depending on the sign of the skewness, and non-monotonicity in the dynamics that depends1180

on the relative value of the kurtosis. For these simulations, the values of the skewness and

kurtosis were observed to vary by less than 5% over the duration of the dynamics. Many

of the qualitative differences in the dynamics (particularly at large values of the kurtosis k)

occur due to the the accumulated effects of these moments gradually varying.
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Figure S2 Wright-Fisher dynamics in exponential fitness landscape. The mean trait
value and trait range for Wright-Fisher simulations in an exponential fitness landscape. Parameters are
chosen to match those of Figure 1: gray curves correspond to an initially Gaussian population, blue
curves correspond to initial distribution with negative skewness, and red curves correspond to initial
distribution with positive skewness.
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Figure S3 Wright-Fisher dynamics in quartic fitness landscape. A variety of γ values was
first chosen, followed by a range of corresponding k values along the line k = γ2 + 2. At each point,
the cumulant dynamical equations under the four-moment model were solved and the direction of the
principal eigenvector associated with the dynamics was computed (black traces). For each value of γ, k,
corresponding values of z̄, σ corresponding to the equilibrium point associated with the four-moment
model were then used as starting distributions for Wright-Fisher dynamics simulations. From the short-
time dynamics of the simulations, the direction of travel relative to the equilibrium point is calculated
and shown in red on the plot.
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Figure S4 Comparison of analytic work with individual simulations. (A) Analytic results
for heritability vs mean fitness under the four-moment model, with a linear fitness landscape. This panel
is identical to Figure 3A of the main text. (B) Results of a numerical simulation of the Wright-Fisher
model with 106 individuals in the same linear fitness landscape of (A); blue traces correspond to initial
conditions with γ = 0.05 (blue), red traces correspond to initial conditions with γ = −0.05, and lower
traces within each colored group correspond to linearly increasing initial values of the kurtosis k between
γ2 + 1 and γ2 + 6. All parameter values are constant, with values as given in Figure 3

63

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/291963doi: bioRxiv preprint 

https://doi.org/10.1101/291963

	Introduction
	Model
	Trait mean dynamics in an arbitrary phenotype distribution
	Trait variance dynamics
	Mean fitness dynamics
	Gradient dynamics with leading-order corrections

	Assumptions and related models
	Results
	Cryptic forces of selection arise from non-Gaussian trait distributions
	Transient evolutionary responses to stabilizing and disruptive selection
	Time-variation of the heritability

	Discussion
	Acknowledgements
	Competing interests
	Appendix
	Supplementary Figures
	Dynamical equations for cumulants and moments
	Simplification of trait dynamics when W(z)=W(z-c), p(z) = p(z-)
	Behavior of  as c 1
	Derivation of trait variance dynamics 
	Dynamics of mean fitness
	Formulation of dynamics in terms of heritability h2(t) and mean fitness W(t)
	Wn for exponential directional selection
	Orthogonality of Hermite polynomials and shifted Hermite polynomials
	Orthogonality of Hermite polynomials and regular polynomials
	Wn for polynomial fitness landscapes
	Comparison with other models of cumulant dynamics
	Numerical solution of cumulant dynamical equations
	Numerical simulations of selection on individuals


