Maturing Mycobacterial Peptidoglycan Required Non-canonical Crosslinks to Maintain Shape

Authors: Catherine Baranowski ${ }^{1}$, Lok-To Sham ${ }^{2,3}$, Haig A. Eskandarian ${ }^{4,5}$, Michael A. Welsh ${ }^{2}$, Hoong C. Lim ${ }^{2}$, Karen J. Kieser ${ }^{1}$, Jeffrey C. Wagner ${ }^{1}$, Suzanne Walker ${ }^{2}$, John D. McKinney ${ }^{4}$, Georg E. Fantner ${ }^{5}$, Thomas R. Ioerger ${ }^{6}$, Thomas G. Bernhardt ${ }^{2}$, Eric J. Rubin ${ }^{1,2 *}$, E. Hesper Rego ${ }^{7 *}$

Affiliations:

${ }^{1}$ Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.
${ }^{2}$ Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
${ }^{3}$ Department of Microbiology and Immunology, National University of Singapore, 117545 Singapore.
${ }^{4}$ School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
${ }^{5}$ School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
${ }^{6}$ Department of Computer Science and Engineering, Texas A\&M University, College Station, Texas, USA.
${ }^{7}$ Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, 06510, USA.

* to whom correspondence should be addressed: erubin@hsph.harvard.edu; hesper.rego@yale.edu

Abstract

:

In most well-studied rod-shaped bacteria, peptidoglycan is primarily crosslinked by penicillin binding proteins (PBPs). However, in mycobacteria L,D-transpeptidase (LDT)mediated crosslinks are highly abundant. To elucidate the role of these unusual crosslinks, we characterized mycobacterial cells lacking all LDTs. We find that LDT-mediated crosslinks are required for rod shape maintenance specifically at sites of aging cell wall, a byproduct of polar elongation. Asymmetric polar growth leads to a non-uniform distribution of these two types of crosslinks in a single cell. Consequently, in the absence of LDT-mediated crosslinks, PBPcatalyzed crosslinks become more important. Because of this, Mycobacterium tuberculosis is more rapidly killed using a combination of drugs capable of PBP and LDT inhibition. Thus, knowledge about the single-cell distribution of drug targets can be exploited to more effectively treat this pathogen.

One Sentence Summary: Polar elongating mycobacteria utilize specific cell wall chemistry to maintain rod shape at sites of aging cell wall.

Main Text:

Peptidoglycan (PG) is an essential component of all bacterial cells (1), and the target of many antibiotics. PG consists of linear glycan strands crosslinked by short peptides to form a continuous molecular cage surrounding the plasma membrane. This structure maintains cell shape and protects the plasma membrane from rupture. Our understanding of PG is largely
derived from studies on laterally-growing model rod-shaped bacteria like Escherichia coli and Bacillus subtilis (Fig. S1A). However, there are important differences between these bacteria and the mycobacteria, a genus that includes the major human pathogen Mycobacterium tuberculosis (Mtb). In mycobacteria, new PG is inserted at the cell poles (at unequal amounts based on pole age), rather than along the lateral side walls (Fig. 1A). In addition, in model rod-shaped bacteria like E. coli, PBP-mediated crosslinks make up a vast majority of the PG linkages (2). PBPs, the targets of most β-lactams, catalyze peptide links between PG strands, forming 4-3 crosslinks (Fig. S1B). However, in mycobacteria, 3-3 crosslinks, formed by L,D-transpeptidases (LDTs), are abundant ($\sim 60 \%$ of linkages (3)) (Fig. S1B). Because PG has been most well studied in bacteria where 3-3 crosslinks are rare, the role of this linkage - and the enzymes that catalyze it is poorly understood. Importantly, carbapenems, β-lactam antibiotics that potently inhibit LDTs in vitro, are effective against Mtb in vitro and in patients (4,5). Thus, we sought to understand the role of 3-3 crosslinks in mycobacterial physiology.

PG uniquely contains D-amino acids which can be labeled with fluorescent probes (fluorescent D-amino acids, FDAAs) to visualize PG synthesis in live bacterial cells (6). When we incubated Msm with FDAAs for a short 2-minute pulse ($<2 \%$ of Msm's generation time) we observed incorporation at both poles, the sites of new PG insertion in mycobacteria (Fig. 1A) (7). However, we also saw a gradient extending from the old pole (the previously established growth pole) that fades to a minimum at roughly mid-cell as it reaches the new pole (the pole formed at the last cell division) (Fig. 1B).

To identify the enzymes responsible for this unexpected pattern of lateral cell wall FDAA incorporation, we performed a fluorescence-activated cell sorting (FACS)-based transposon screen (Fig. S1C). Briefly, we stained an Msm transposon library with FDAA and repeatedly sorted the
least fluorescent 12.5% of the population by FACS. After each sort we regrew cells, extracted gDNA and used deep sequencing to map the location of the transposons found in the low staining population.

From this screen, we identified three LDTs (ldtA-MSMEG_3528, ldtB-MSMEG_4745, $l d t E-M S M E G_{-} 0233$) (Fig. S1D) that were primarily responsible for FDAA incorporation. Deleting these three LDTs significantly reduced FDAA incorporation (Fig. S2A,B). To further investigate the physiological role of LDTs, we constructed a strain lacking all 6 LDTs ($\triangle l d t A E B C G F$, hereafter $\triangle \mathrm{LDT}$). FDAA incorporation and 3-3 crosslinking is nearly abolished in $\triangle \mathrm{LDT}$ cells and can be partially restored by complementation with a single LDT (ldtE-mRFP; $\Delta \mathrm{LDT}_{\text {comp }}$) (Fig. 1C, S2C,D, S3). Thus, like Bdellovibrio (6, 8), FDAA incorporation in Msm is primarily LDTdependent. LDTs can also exchange non-canonical D-amino acids onto PG tetrapeptides in Vibrio cholera (9).

As partial knock-outs of LDTs in Msm have morphologic changes (10), we visualized Δ LDT cells by time-lapse microscopy. We observed that a subpopulation of cells loses rod shape progressively over time, resulting in localized spherical blebs (Fig. 2A-top, S4A). Complemented cells are able to maintain rod shape (Fig. S4B). We reasoned that localized loss of rod shape may occur for two reasons: 1) spatially-specific loss of cell wall integrity and/or 2) cell wall deformation due to uncontrolled, local PG synthesis. If the first hypothesis, were true, high osmolarity should protect cells against forming blebs. Indeed, switching cells from iso- to highosmolarity prevented bleb formation over time (Fig. 2A, bottom). These results indicate that 3-3 crosslinks are required to counteract turgor pressure and maintain the rod shape of mycobacteria. To test the second hypothesis, we stained Δ LDT cells with an amine-reactive dye, and observed outgrowth of new, unstained material (Fig. 2B). Blebs retained stain, indicating a lack of new PG
synthesis in the region. We, therefore, hypothesized that 3-3 crosslinks are required to maintain the structural stability necessary for the rod shape of mycobacteria.

To directly test cell wall rigidity, we used atomic force microscopy (AFM) on live $\triangle \mathrm{LDT}$ and WT cells. We measured the rigidity of cells in relation to their height. Generally, WT cells are stiffer than Δ LDT cells (Fig. 2C). Blebs in Δ LDT cells can be identified by a sharp increase in height found toward the new pole (Fig. 2C). Since circumferential stress of the rod measured by AFM is proportional to the radius of the cell, and inversely proportional to the thickness of the cell wall (an unmeasurable quantity by AFM), we used cell height, a proxy for radius, to normalize the stiffness measurement. We found that stiffness drops in the area of blebs (Fig. 2D, pink shaded). Together, these data suggest that LDTs act locally to reinforce PG and maintain rod shape in a subpopulation of Msm cells (Fig. S4C).

Why does loss of rod shape occur only in a subpopulation of cells? Mycobacterial polar growth and division results in daughter cells with phenotypic differences (7). For example, the oldest cell wall is specifically inherited by the new pole daughter (Fig. S5A,(7)). We hypothesized that the loss of rod shape might occur in specific progeny generated by cell division. Indeed, the daughter which inherited the new pole from the previous round of division, and the oldest cell wall, consistently lost rod shape over time, while the old pole daughter maintained rod shape (Fig. S5B). In addition, blebs localized to the oldest cell wall (Fig. 2B). Thus, 3-3 crosslinking is likely occurring in the oldest cell wall, which is non-uniformly distributed in the population via asymmetric polar growth and division.

Our observations lead to the following model (Fig. 4C): PBP-catalyzed 4-3 crosslinks are formed at the poles where new PG is inserted. These newly synthesized 4-3 crosslinks are then gradually cleaved (by D-D endopeptidases) as PG ages and moves toward the middle of the cell,
leaving tetrapeptide substrates for LDTs to create 3-3 crosslinks. We can visualize this with FDAA staining which shows the distribution of tetrapeptide substrates that are progressively consumed as the cell wall ages (Fig. 1C). In the absence of LDTs, old cell wall loses integrity and turgor pressure causes bleb formation.

This model predicts that: 1) Δ LDT cells should be even more dependent on 4-3 crosslinking than wild type cells; 2) enzymes that make different types of crosslinks (PBPs vs LDTs) should be differentially localized along the length of the cell; and 3) D,D-endopeptidases, which can create LDT substrates by cleaving 4-3 crosslinks, should be localized at sites of aging PG.

To test the first prediction, we used $\mathrm{TnSeq}(11)$ to identify genes required for growth in cells lacking LDTs (Fig. 3A). We found that mutants of two PBPs, pbpA (MSMEG_0031c) and ponA2 (MSMEG_6201), were recovered at significantly lower frequencies in \triangle LDT cells (Fig. 3B). Likewise, using allele swapping (12) (Fig. S6A), we found that the transpeptidase activity of PonA1, which is non-essential in WT cells (12), becomes essential in Δ LDT cells (Fig. S6B). Thus, cells that lack 3-3 crosslinks are more dependent on 4-3 crosslinking enzymes.

To test whether 3-3 and 4-3 crosslinking enzymes localize differently, we visualized fluorescent fusions of a PBP (PonA1), and an LDT (LdtE), (Fig. 4A). We found that PonA1-RFP largely localized to the old pole, where new PG is inserted (Fig. 4A, B). LdtE-mRFP localized farther from the poles, the sites of older PG (Fig. 4A, B). Thus, enzymes responsible for 4-3 and 3-3 crosslinks exhibit distinctive subcellular localizations, consistent with the model that they act on differentially-aged PG

To test our third hypothesis, we sought to identify a D,D-endopeptidase in Msm and determine its subcellular localization. Using HHPRED (13), we identified DacB2 (MSMEG_2433), a protein shown to harbor D,D-carboxypeptidase activity in Msm (14), as a
candidate D,D-endopeptidase by homology to the E. coli protein AmpH, an enzyme with both D,D- carboxy- and endopeptidase activity (15). We expressed and purified DacB2 and found that it, too, had both D,D-carboxy- and D,D- endopeptidase activity on peptidoglycan substrates generated in vitro (Fig. S7). DacB2-mRFP localizes closer to LDT-mRFP, further from the poles, at sites of older PG (Fig. 4A, B). Thus, bleb formation may result from unchecked D,Dendopeptidase activity in \triangle LDT cells.

The importance of 3-3 crosslinks in mycobacteria suggests a unique vulnerability. While mycobacteria can be killed by most non-carbapenem (N-C) β-lactams, which largely target the PBPs, carbapenems, which target both PBPs and LDTs (16, 17) are also effective against Mycobacterium tuberculosis (4, 5). As has been previously postulated (16, 18, 19), our data suggest that faster Mtb killing could be achieved with drug combinations that target both PBPs and LDTs. In fact, we find that amoxicillin (a N-C β-lactam) and meropenem (a carbapenem), in combination, exhibit synergism in minimal inhibitory concentration (Σ Fractional Inhibitory Concentration < 0.5 (20), Fig. S8) and lead to more rapid killing of Mtb (Fig. 3C, D, Fig. S9) (21).

In well-studied rod-shaped bacteria like E.coli and B. subtilis, shape is maintained by MreB-directed PG synthesis (22-24). Mycobacteria must maintain structural stability in the absence of an obvious MreB homolog. Further, in contrast to lateral-elongating bacteria, in which new and old cell wall are constantly intermingled during growth (Fig. S4A), polar growth segregates new and old cell wall (Fig. S10). Mycobacteria appear to utilize 3-3 crosslinks at asymmetrically-distributed aging cell wall to provide stability along the lateral body, something that may not be required in the presence of MreB-directed PG synthesis. Thus, drug combinations that target both 4-3 and 3-3 crosslinking enzymes could lead to better treatment of tuberculosis.

Interestingly, meropenem combined with amoxicillin/clavulanate resulted in early clearance of Mtb from sputum(5). In fact, the combination might be key to accelerated killing of Mtb.

References and Notes:

1. W. Vollmer, D. Blanot, M. A. de Pedro, Peptidoglycan structure and architecture. FEMS Microbiol Rev. 32, 149-167 (2008).
2. A. G. Pisabarro, M. A. de Pedro, D. Vázquez, Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. Journal of Bacteriology. 161, 238-242 (1985).
3. P. Kumar et al., Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Molecular Microbiology. 86, 367-381 (2012).
4. J.-E. Hugonnet, L. W. Tremblay, H. I. Boshoff, C. E. Barry, J. S. Blanchard, Meropenemclavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science. 323, 1215-1218 (2009).
5. A. H. Diacon et al., β-Lactams against Tuberculosis--New Trick for an Old Dog? N. Engl. J. Med. 375, 393-394 (2016).
6. E. Kuru et al., In Situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent D-Amino Acids. Angew. Chem. Int. Ed. 51, 12519-12523 (2012).
7. B. B. Aldridge et al., Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science. 335, 100-104 (2012).
8. E. Kuru et al., Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nat Microbiol. 2, 1648-1657 (2017).
9. F. Cava, M. A. de Pedro, H. Lam, B. M. Davis, M. K. Waldor, Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. The EMBO Journal. 30, 3442-3453 (2011).
10. A. N. Sanders, L. F. Wright, M. S. Pavelka, Genetic characterization of mycobacterial L,D-transpeptidases. Microbiology (Reading, Engl.). 160, 1795-1806 (2014).
11. J. E. Long et al., in Gene Essentiality (Humana Press, New York, NY, New York, NY, 2015), vol. 1279 of Gene Essentiality: Methods and Protocols, pp. 79-95.
12. K. J. Kieser et al., Phosphorylation of the Peptidoglycan Synthase PonA1 Governs the Rate of Polar Elongation in Mycobacteria. PLoS Pathog. 11, e1005010 (2015).
13. L. Zimmermann et al., A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J. Mol. Biol. (2017), doi:10.1016/j.jmb.2017.12.007.
14. A. Bansal et al., A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DDcarboxypeptidase and beta-lactamase. Microbiology (Reading, Engl.). 161, 1081-1091 (2015).
15. S. M. González-Leiza, M. A. de Pedro, J. A. Ayala, AmpH, a bifunctional DDendopeptidase and DD-carboxypeptidase of Escherichia coli. Journal of Bacteriology. 193, 6887-6894 (2011).
16. J.-L. Mainardi et al., Unexpected inhibition of peptidoglycan LD-transpeptidase from Enterococcus faecium by the beta-lactam imipenem. Journal of Biological Chemistry. 282, 30414-30422 (2007).
17. K. M. Papp-Wallace, A. Endimiani, M. A. Taracila, R. A. Bonomo, Carbapenems: past, present, and future. Antimicrobial Agents and Chemotherapy. 55, 4943-4960 (2011).
18. R. Gupta et al., The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nature Medicine. 16, 466-469 (2010).
19. X. Gonzalo, F. Drobniewski, Is there a place for β-lactams in the treatment of multidrugresistant/extensively drug-resistant tuberculosis? Synergy between meropenem and amoxicillin/clavulanate. J. Antimicrob. Chemother. 68, 366-369 (2013).
20. in Clinical Microbiology Procedures Handbook, Fourth Edition (American Society of Microbiology, 2016), pp. 5.16.1-5.16.23.
21. N. Andreu, T. Fletcher, N. Krishnan, S. Wiles, B. D. Robertson, Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. J. Antimicrob. Chemother. 67, 404-414 (2012).
22. T. S. Ursell et al., Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc. Natl. Acad. Sci. U.S.A. 111, E1025-34 (2014).
23. E. C. Garner et al., Coupled, Circumferential Motions of the Cell Wall Synthesis Machinery and MreB Filaments in B. subtilis. Science. 333, 222-225 (2011).
24. S. Hussain et al., MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife. 7, e32471 (2018).
25. M. A. DeJesus, C. Ambadipudi, R. Baker, C. Sassetti, T. R. Ioerger, TRANSIT - A Software Tool for Himar1 TnSeq Analysis. PLoS Comput Biol. 11, e1004401-17 (2015).
26. N. Andreu et al., Optimisation of bioluminescent reporters for use with mycobacteria. PLoS ONE. 5, e10777 (2010).
27. C. C. Boutte et al., A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis. eLife. 5, a021113 (2016).
28. D. G. Gibson et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods. 6, 343-345 (2009).
29. K. C. Murphy, K. Papavinasasundaram, C. M. Sassetti, Mycobacterial recombineering. Methods Mol. Biol. 1285, 177-199 (2015).
30. K. J. Kieser et al., Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility. Proc. Natl. Acad. Sci. U.S.A. 112, 1308713092 (2015).
31. E. Kuru, S. Tekkam, E. Hall, Y. V. Brun, M. S. Van Nieuwenhze, Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat Protoc. 10, 33-52 (2014).
32. E. H. Rego, R. E. Audette, E. J. Rubin, Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature. 546, 153-157 (2017).
33. H. A. Eskandarian et al., Division site selection linked to inherited cell surface wave troughs in mycobacteria. Nat Microbiol. 2, 17094 (2017).
34. J. H. Koschwanez, R. H. Carlson, D. R. Meldrum, Thin PDMS films using long spin times or tert-butyl alcohol as a solvent. PLoS ONE. 4, e4572 (2009).
35. A. L. Thangawng, R. S. Ruoff, M. A. Swartz, M. R. Glucksberg, An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization. Biomed Microdevices. 9, 587-595 (2007).
36. N. Dhar, D. Bousbaine, Y. Wakamoto, J. D. McKinney, I. Santi, Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nature Communications. 4, 1-10 (2013).
37. J. Schindelin et al., Fiji: an open-source platform for biological-image analysis. Nature Methods. 9, 676-682 (2012).
38. A. Paintdakhi et al., Oufti: an integrated software package for high-accuracy, highthroughput quantitative microscopy analysis. Molecular Microbiology. 99, 767-777 (2016).
39. Y. Qiao et al., Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J. Am. Chem. Soc. 136, 14678-14681 (2014).
40. Y. Qiao et al., Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nature Chemical Biology. 13, 793-798 (2017).
41. Y. Rebets et al., Moenomycin resistance mutations in Staphylococcus aureus reduce peptidoglycan chain length and cause aberrant cell division. ACS Chem. Biol. 9, 459-467 (2014).
42. M. D. Lebar et al., Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. J. Am. Chem. Soc. 136, 10874-10877 (2014).
43. M. A. Welsh et al., Identification of a Functionally Unique Family of Penicillin-Binding Proteins. J. Am. Chem. Soc. 139, 17727-17730 (2017).

Acknowledgments:

We thank Cara Boutte for discussion and thorough manuscript review. We are grateful to the Rubin and Fortune laboratory for discussion and input. We also thank the Microbiology and Immunobiology department at Harvard Medical School for sharing equipment and reagents, as well as the BSL3 staff at the Harvard School of Public health for tremendous support. This work was supported by the National Institutes of Health U19 AI107774 to E.J.R and T.R.I., F32AI104287 to E.H.R (who is also supported by a Career Award at the Scientific Interface from BWF), R01 GM76710 to S.W., R01AI083365 and U19AI109764 to T.G.B.. M.A.W. is supported by an F32 GM123579. LT.S. was supported by an American Heart Association Postdoctoral fellowship (14POST18480014). H.C.L is funded by a Simons Foundation Fellow of the Life Sciences Research Foundation award. This work was also supported in part by the Swiss National Science Foundation (310030_156945) and the Innovative Medicines Initiative (115337) to J.D.M., and from the Swiss National Science Foundation (205321_134786 and 205320_152675), the European Union FP7/2007-2013/ERC Grant Agreement No. 307338
(NaMic), and EU-FP7/Eurostars E!8213 to G.E.F. Support for H.A.E. comes from a European Molecular Biology Organization Long Term Fellowships (191-2014 and 750-2016). K.J.K. was
supported by the National Science Foundation Graduate Research Fellowship (DGE1144152,
DGE0946799).

Figure 1: FDAAs are incorporated asymmetrically by LD-transpeptidases. (A) Schematic of mycobacterial asymmetric polar growth. Green, old cell wall; grey, new material; dotted line, septum; large arrows, old pole growth; small arrows, new pole growth. (B) FDAA incorporation in log-phase WT Msm cell after 2-minute incubation. Scale bar=5 m . Old pole marked with (*). (C) Profiles of FDAA incorporation in log-phase WT ($\mathrm{N}=98$), Δ LDT ($\mathrm{N}=40$), and Δ LDTcomp $(\mathrm{N}=77)$ cells. Thick lines represent mean incorporation profile, thin lines are FDAA incorporation in single cells.

Figure 2: LDT catalyzed 3-3 crosslinks are required for rod shape maintenance at aging cell wall. (A) Msm Δ LDT time-lapse microscopy of cells switched from high- to iso- (top) osmolar media, or iso- to high osmolar media (bottom). (high $=7 \mathrm{H} 9+150 \mathrm{mM}$ sorbitol; iso $=7 \mathrm{H} 9$). $\mathrm{t}=\mathrm{time}$ in minutes post osmolarity switch. (B) Δ LDT cells were stained with Alexa 488 NHS-ester (green), washed, and visualized after outgrowth. A,B scale bar= $2 \mu \mathrm{~m}$. (C) Mean stiffness of WT (N=73) and $\Delta \mathrm{LDT}(\mathrm{N}=47)$ Msm cells as measured by atomic force microscopy. Mann-Whitney U P-Value **** < 0.0001. (D) Representative profile of cell height and height-normalized stiffness (modulus/height) in a single Δ LDT cell. Pink shaded portion highlights location of a bleb.

C

Antibiotic	MIC ($\mu \mathrm{g} / \mathrm{mL}$)	FIC
Amoxicillin (AM)	1.25	0.1248
Meropenem (MR)	2.5	0.124
AM+MR	$(\mathrm{AM}) 0.156$ $(\mathrm{MR}) 0.31$	$\sum(\mathrm{FICs})=$ 0.2488

D $\quad \begin{array}{llll}-O & \text { no drug } & -O & A M \\ -O & M R & -O & A M+M R\end{array}$

Figure 3: Mycobacteria are hypersensitive to PBP inactivation in the absence of LDTs. (A) Fold change in the number of reads for transposon insertion counts in \triangle LDT cells compared to WT Msm. P-value is derived from a rank sum test (25). (B) Transposon insertions per TA site in $p b p A$ and ponA2 in WT and $\Delta \mathrm{LDT}$ cells. (C) Minimum inhibitory concentration (MIC) of amoxicillin, meropenem, or the combination, in M. tuberculosis. FIC (fractional inhibitory concentration) $=$ MIC of drug in combination/MIC of drug alone. Synergy is defined as $\sum \mathrm{FIC}<=0.5$. (D) Killing dynamics of M. tuberculosis (expressing the luxABCDE operon from Photorhabdus luminescens(26)) measured via luciferase production (RLU=relative light units). 5X MIC Amoxicillin (AM) (3.125 $\mu \mathrm{g} / \mathrm{mL}$); 5X MIC Meropenem (MR) ($6.25 \mu \mathrm{~g} / \mathrm{mL}$); Amoxicillin+Meropenem $3.125 \mu \mathrm{~g} / \mathrm{mL}$ AM; $6.25 \mu \mathrm{~g} / \mathrm{mL}$ MR). Biological triplicate are plotted. All drugs were used in combination with $5 \mu \mathrm{~g} / \mathrm{mL}$ clavulanate.

Figure 4: Peptidoglycan synthesizing enzymes localize to differentially aged cell wall. (A) Representative fluorescence images of PonA1-RFP (magenta), LdtE-mRFP (cyan), and DacB2mRFP (green). Scale bars $=5 \mu \mathrm{~m}$. (B) Average PonA1-RFP (N=24), LdtE-mRFP (N=23) or DacB2mRFP ($\mathrm{N}=23$) distribution in cells before division. (C) A model for PG age and crosslink segregation via polar growth in mycobacteria

Supplementary Materials for

Maturing Mycobacterial Peptidoglycan Required Non-canonical Crosslinks to Maintain Shape
Catherine Baranowski ${ }^{1}$, Lok-To Sham ${ }^{2,3}$, Haig A. Eskandarian ${ }^{4,5}$, Michael A. Welsh ${ }^{2}$, Hoong C. Lim 2, Karen J. Kieser ${ }^{1}$, Jeffrey C. Wagner ${ }^{1}$, Suzanne Walker ${ }^{2}$, John D. McKinney ${ }^{4}$, Georg E. Fantner ${ }^{5}$, Thomas R. Ioerger ${ }^{6}$, Thomas G. Bernhardt ${ }^{2}$, Eric J. Rubin ${ }^{1,2 *}$, E. Hesper Rego ${ }^{7 *}$

Materials and Methods

Bacterial strains and culture conditions

Unless otherwise stated, all Mycobacterium smegmatis ($\mathrm{mc}^{2} 155$) was grown shaking at $37^{\circ} \mathrm{C}$ in liquid 7H9 media consisting of Middlebrook 7H9 salts with 0.2% glycerol, $0.85 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}, \mathrm{ADC}$ ($5 \mathrm{~g} / \mathrm{L}$ albumin, $2 \mathrm{~g} / \mathrm{L}$ dextrose, $0.003 \mathrm{~g} / \mathrm{L}$ catalase), and 0.05% Tween 80 and plated on LB agar. Mycobacterium tuberculosis (H37Rv) was grown in liquid 7H9 with OADC (oleic acid, albumin, dextrose, catalase) with 0.2% glycerol and 0.05% Tween 80 . Antibiotic selection for M. smegmatis and M. tuberculosis were done at the following concentrations in broth and on agar: $25 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin, $50 \mu \mathrm{~g} / \mathrm{mL}$ hygromycin, $20 \mu \mathrm{~g} / \mathrm{mL}$ zeocin and $20 \mu \mathrm{~g} / \mathrm{mL}$ nourseothricin and, twice those concentrations for cloning in Escherichia coli (TOP10, XL1-Blue and DH5 α).

Strain construction

M. smegmatis $\mathrm{mc}^{2} 155$ mutants lacking ldtABECFG ($\triangle \mathrm{LDT}$) was constructed using recombineering to replace endogenous copies with zeocin or hygromycin resistance cassettes flanked by lox sites as previously described (27). Briefly, 500 base pairs of upstream and downstream sequence surrounding the gene of interest were amplified via PCR (KOD Xtreme ${ }^{\text {TM }}$ Hot Start DNA polymerase (EMD Millipore, Billerica, MA)). These flanking regions were amplified with overlaps to either a zeocin or hygromycin resistance cassette flanked by loxP sites and these pieces were assembled into a knock-out construct via isothermal assembly (28). Each knock-out cassette was transformed into Msm expressing inducible copies of RecET for recombination (29). Once knock-outs were verified by PCR using and sequencing, the antibiotic resistance cassettes were removed by the expression of Cre recombinase. The order of knock-out construction in the Δ LDT strain was as follows (where arrows represent
transformation of a Cre-recombinase plasmid, followed by curing of the Cre-recombinase plasmid as it contains the sacB gene for sucrose counter selection on LB supplemented with 10% sucrose, and strain names are listed in parenthesis). This resulted in the removal of antibiotic cassettes flanked by loxP sites:

1) $\mathrm{mc}^{2} 155 \Delta l d t A:: \mathrm{zeo}^{\mathrm{R}}(\mathrm{KB} 103) \rightarrow \mathrm{mc}^{2} 155 \Delta l d t A:: \operatorname{loxP}(\mathrm{KB} 134)$
2) $\mathrm{mc}^{2} 155 \Delta l d t A:: l o x P+\Delta l d t E::$ zeo $^{\mathrm{R}}(\mathrm{KB} 156)$
3) $\mathrm{mc}^{2} 155 \Delta l d t A:: l o x P \Delta l d t E::$ zeo $^{\mathrm{R}}+\Delta l d t B::$ hyg $^{\mathrm{R}}(\mathrm{KB} 200) \rightarrow \mathrm{mc}^{2} 155 \Delta l d t A:: \operatorname{lox} P \Delta l d t E:: \operatorname{loxP}$
$\Delta l d t B:: l o x P(K B 207)$
4) $\mathrm{mc}^{2} 155 \Delta l d t A:: l o x P \quad \Delta l d t E:: \operatorname{loxP} \Delta l d t B:: \operatorname{loxP}+\Delta l d t C::$ hyg $^{\mathrm{R}}$ (KB209)
5) $\mathrm{mc}^{2} 155 \Delta l d t A:: l o x P \Delta l d t E:: \operatorname{loxP} \Delta l d t B:: \operatorname{loxP} \Delta l d t C::$ hyg $^{\mathrm{R}} \Delta l d t G::$ zeo $^{\mathrm{R}}(\mathrm{KB} 222) \rightarrow$
$\mathrm{mc}^{2} 155 \Delta l d t A:: \operatorname{loxP} \Delta l d t E:: \operatorname{loxP} \Delta l d t B:: \operatorname{loxP} \Delta l d t C::$ loxP $\Delta l d t G:: \operatorname{loxP}(\mathrm{KB} 241)$
6) $\mathrm{mc}^{2} 155 \Delta l d t A:: \operatorname{loxP} \Delta l d t E:: \operatorname{loxP} \Delta l d t B:: \operatorname{loxP} \Delta l d t C::$ loxP $\Delta l d t G::$ loxP $\Delta l d t F::$ hyg $^{\mathrm{R}}(\mathrm{KB} 303$ referred to as $\Delta \mathrm{LDT})$.
M. tuberculosis H 37 Rv was transformed with a vector expressing the codon optimized Photorhabdus luminescens luxABCDE operon (pMV306hsp+LuxG13 -Addgene \#26161)(26).

This strain is referred to as Mtb Lux.

Refer to Supplemental Table 1 for oligonucleotides, and Supplemental Table 2 for a complete strain list.

Δ LDT complementation plasmid construction

To complement Δ LDT we placed a copy of $l d t E$ ($M S M E G _0233$) under the constitutive TetO promoter (a UV15 derivative within a pMC1s plasmid that is inducible with anhydrous tetracycline in the presence of a tet-repressor TetR , which the $\Delta \mathrm{LDT}_{\text {comp }}$ strain lacks (12)) on vector that integrates at the L5 phage integration site of the chromosome of the Δ LDT strain (the vector is marked with kanamycin resistance). A glycine, glycine, serine linker was cloned between $l d t E$ and mRFP in this complementation construct.

PonA1 transpeptidase essentiality L5 allele swapping

To test essentiality of transpeptidation by PonA1 in the $\Delta \mathrm{LDT}$ cells, L5 allele swapping as described in (12) and figure S 9 was performed. The plasmids used in this experiment were previously published in (12). Briefly, a wild-type copy of PonA1 (TetO driven expression, L5 integrating and kanamycin marked) was transformed into Δ LDT. Then, the endogenous copy of ponAl was replaced with zeocin using the above mentioned recombineering technique (amplifying the construct from a previously published knockout of ponAl(12)). Swapping efficiency of either wildtype or transpeptidase mutant PonA1 marked with nourseothricin was tested with a transformation into $4 \mathrm{LDT} / / \mathrm{L} 5-\mathrm{TetO}-\mathrm{ponA1}(\mathrm{WT})$-kanamycin.

M. tuberculosis minimum inhibitory concentration (MIC) determination

Mtb Lux was grown to \log phase and diluted to an $\mathrm{OD}_{600}=0.006$ in each well of non-treated 96 well plates (Genessee Scientific) containing $100 \mu \mathrm{~L}$ of meropenem (Sigma Aldrich) and/or amoxicillin (Sigma Aldrich) diluted in $7 \mathrm{H} 9+\mathrm{OADC}+5 \mu \mathrm{~g} / \mathrm{mL}$ clavulanate (Sigma Aldrich). Cells were incubated in drug at $37^{\circ} \mathrm{C}$ shaking for 7 days, 0.002% resazurin (Sigma Aldrich) was added to each well, and the plates were incubated for 24 hours before MICs were determined. Pink
wells signify metabolic activity and blue signify no metabolic activity. (30) Checkerboard MIC plates and fractional inhibitory concentrations were calculated as described in (20).

M. tuberculosis drug killing assays

Mtb Lux was grown to \log phase (kanamycin $25 \mu \mathrm{~g} / \mathrm{mL}$) and diluted in 30 mL inkwells (Corning Lifesciences) to an $\mathrm{OD}_{600}=0.05$ in $7 \mathrm{H} 9+\mathrm{OADC}+5 \mu \mathrm{~g} / \mathrm{mL}$ clavulanate with varying concentrations of amoxicillin, meropenem, or both. $100 \mu \mathrm{~L}$ of these cultures were pipetted in duplicate into a white 96-well polystyrene plate (Greiner Bio-One) and luminescence was read in a Synergy H1 microplate reader from BioTek Instrumenmts, Inc. using the Gen5 Software (2.02.11 Installation version). The correlation between relative light units (RLU) and colony forming units (CFU) is shown in Msm in supplemental figure S 9 .

Fluorescent D-amino acid labeling
NADA (3-[7-nitrobenzofurazan]-carboxamide-D-alanine), HADA (3-[7-hydroxycoumarin]-carboxamide-D-alanine) and TADA (3-[5-carboxytetramethylrhodamine]-carboxamide-Dalanine) were synthesized by Tocris following the published procotol (31). To 1 mL of exponentially growing cells 0.1 mM of FDAA final was added and incubated for 2 minutes before washing in 7H9 twice. For still imaging, after the second wash, cells were fixed in 7H9 + 1% paraformaldehyde before imaging. For pulse chase experiments, cells were stained, washed with 7H9 and allowed to grow out for 40 minutes before being stained with a second dye and imaged.

Flow cytometry

An M. smegmatis transposon library was grown to mid-log phase, and stained with $2 \mu \mathrm{~g} / \mathrm{mL}$ NADA for 2 minutes. Cells were centrifuged and half of the supernatant was discarded. The pellet was resuspended in the remaining supernatant, passed through a $10 \mu \mathrm{~m}$ filter and taken to be sorted (FACSAria; Excitation: 488nm; Emission filter: 530/30). Two bins were drawn at the lowest and highest staining end of the population, representing 12.5% of the population. 600,000 cells from these bins were sorted into 7H9 medium. Half of this was directly plated onto LB agar supplemented with kanamycin to select for cells harboring the transposon. The remaining 300,000 cells were grown out in 7 H 9 to \log phase, stained with FDAA and sorted again to enrich the populations.

Transposon sequencing, mapping and FDAA flow cytometry enrichment analysis.
Genomic DNA (gDNA) was harvested from the sorted transposon library colonies and transposon-gDNA junction libraries were constructed and sequenced using the Illumina $\mathrm{Hi}-\mathrm{Seq}$ platform (11). Reads were mapped on the M. smegmatis genome, tallied and reads at each TA site for the bins (low/high incorporating sort 1 and 2) were imported into MATLAB and processed by a custom scripts as described in(32).

Microscopy

Both still imaging and time lapse microscopy were performed on an inverted Nikon TI-E microscope at 60x magnification. Time lapse was done using a CellASIC (B04A plate) with constant liquid 7 H 9 flow in a $37^{\circ} \mathrm{C}$ chamber. For turgor experiment (Figure 3.4A), cells were grown in either 7 H 9 or 7 H 9500 mM sorbitol overnight, and then switched to either 7 H 9 with 150 mM sorbitol (high osmolar) or to 7 H 9 alone (iso-osmolar).

Atomic force microscopy

AFM experimentation was conducted as previously(33). In short, polydimethylsiloxane (PDMS)

- coated coverslips were prepared by spin-coating a mixture of PDMS at a ratio of 15:1
(elastomer:curing agent) with hexane (Sigma 296090) at a ratio of 1:10 (PDMS:hexane) (34, 35).
A $50 \mu \mathrm{l}$ filtered ($0.5 \mu \mathrm{~m}$ pore size PVDF filter - Millipore) aliquot of bacteria grown to midexponential phase and concentrated from $2-5 \mathrm{ml}$ of culture was deposited onto the hydrophobic surface of a PDMS-coated coverslip and incubated for ~ 20 min to increase surface interactions between bacteria and the coverslip. 7H9 medium ($\sim 3 \mathrm{ml}$) was supplied to the sample so as to immerse the bacterial sample and the AFM cantilever in fluid. The AFM imaging mode, Peak Force QNM, was used to image bacteria with a Nanoscope 5 controller (Veeco Metrology) at a scan rate of 0.5 Hz and a maximum Z-range of $12 \mu \mathrm{~m}$. A ScanAsyst fluid cantilever (Bruker) was used. Height, peak force error, DMT modulus, and \log DMT modulus were recorded for all scanned images in the trace and retrace directions. Images were processed using Gwyddion (Department of Nanometrology, Czech Metrology Institute). ImageJ was used for extracting bacterial cell profiles in a tabular form.

Correlated optical fluorescence and AFM

Correlated optical fluorescence and AFM images were acquired as described(33). Briefly, optical fluorescence images were acquired with an electron-multiplying charge-coupled device (EMCCD) iXon Ultra 897 camera (Andor) mounted on an IX81 inverted optical microscope (Olympus) equipped with an UPLFLN100XO2PH x100 oil immersion objective (Olympus). Transmitted light illumination was provided by a $12 \mathrm{~V} / 100 \mathrm{~W}$ AHS-LAMP halogen lamp. An U-

MGFPHQ fluorescence filter cube for GFP with HQ-Ion-coated filters was used to detect GFP fluorescence. The AFM was mounted on top of the inverted microscope, and images were acquired with a Dimension Icon scan head (Bruker) using ScanAsyst fluid cantilevers (Bruker) with a nominal spring constant of $0.7 \mathrm{~N} \mathrm{~m}^{-1}$ in Peak Force QNM mode at a force setpoint $\sim 1 \mathrm{nN}$ and typical scan rates of 0.5 Hz . Indentation on the cell surface was estimated to be $\sim 10 \mathrm{~nm}$ in the Z-axis. Optical fluorescence microscopy was used to identify Wag31-GFP puncta expressed in a wild-type background(36) in order to distinguish them from cells of the Δ LDT mutant strains.

Calculating cell surface rigidity

A cell profile was extracted from AFM Height and DMT Modulus image channels as sequentially connected linear segments following the midline of an individual cell. A background correction was conducted to by dividing the DMT modulus values of the cell surface by the mean value of the PDMS surface and rescaled to compare the cell surface rigidity between individual cells from different experiments. The DMT modulus reflects the elastic modulus (stress-strain relationship) for each cross-sectional increment along the cell length.

Analysis of fluorescent protein distribution

Using a segmented line, profiles of cells from new to old pole were created at the frame "predivision" based on physical cell separation of the phase image. A custom FIJI (37) script was run to extract fluorescence line profiles of each cell and save them as .csv files. These .csv files were imported to Matlab where a custom script was applied to normalize the
fluorescence line profile to fractional cell length and to interpolate the fluorescence values to allow for averaging.

Analysis of cell wall distribution

Cells were stained with Alexa488 NHS ester as described previously (7) and followed via timelapse microscopy in the CellASIC device. Briefly, 1 mL of \log phase cells was pelleted at 8,000 rpm for 1 minute and washed with 1 mL PBST. The pellet was resuspended in 100 uL of PBST and 10uL Alexa Fluor 488 carboxylic acid succinimidyl ester was added for a final concentration of $0.05 \mathrm{mg} / \mathrm{mL}$. This was incubated for 3 minutes at room temperature. Stained cells were pelleted for 1 minute at $13,000 \mathrm{rpm}$ and washed with $500 \mu \mathrm{~L}$ PBST. They were spun again and resuspended in 7H9 for outgrowth observation over time in the CellASIC device.

Analysis of FDAAs

Images were analyzed using a combination of Oufti(38) for cell selection followed by custom coded Matlab scripts to plot FDAA fluorescence over normalized cell length, calculate cell length and bin cells by existence of an FDAA labeled septum.

Generation of transposon libraries

M.smegmatis cells were transduced at $\left(\mathrm{OD}_{600}\right.$ 1.1-1.7) with φ MycoMarT7 phage (temperature sensitive) that has a Kanamycin marked Mariner transposon as previously described (11). Briefly, mutagenized cells were plated at $37^{\circ} \mathrm{C}$ on LB plates supplemented with Kanamycin to select for phage transduced cells. Roughly 100,000 colonies per library were scraped, and genomic DNA was extracted. Sequencing libraries were generated specifically containing
transposon disrupted DNA. Libraries were sequenced on the Illumina platform. Data were analyzed using the TRANSIT pipeline (25).

Peptidoglycan isolation and analysis

600 mLs of wildtype and $\Delta \mathrm{LDT}$ cells were grown to \log phase and collected via centrifugation at 5000 x g for 10 minutes at $4^{\circ} \mathrm{C}$. The resulting pellet was resuspsended in PBS and cells were lysed using a cell disruptor at 35,000 psi twice. Lysed cells were boiled in 10% SDS (sodium dodecyl sulfate) for 30 minutes and peptidoglycan was collected via centrifugation at $17,000 \mathrm{xg}$. Pellets were washed with 0.01% DDM(n-Dodecyl β-D-maltoside) to remove SDS and resuspended in 1XPBS $+0.01 \%$ DDM. PG was digested with alpha amylase (Sigma A-6380) and alpha chymotrypsin (Amersco 0164) overnight. The samples were again boiled in 10% SDS and washed in 0.01% DDM. The resulting pellet was resuspended in $400 \mu \mathrm{~L} 25 \mathrm{mM}$ sodium phosphate $\mathrm{pH} 6,0.5 \mathrm{mM} \mathrm{MgCl} 2,0.01 \%$ DDM. $20 \mu \mathrm{~L}$ of lysozyme $(10 \mathrm{mg} / \mathrm{mL})$ and $20 \mu \mathrm{~L} 5 \mathrm{U} / \mu \mathrm{L}$ mutanolysoin (Sigma M9901) were added and incubated overnight at $37^{\circ} \mathrm{C}$. Samples were heated at $100^{\circ} \mathrm{C}$ and centrifuged at $100,000 \mathrm{xg} .128 \mu \mathrm{~L}$ of ammonium hydroxide was added and incubated for 5 hours at $37^{\circ} \mathrm{C}$. This reaction was neutralized with $122 \mu \mathrm{~L}$ of glacial acetic acid. Samples were lyophilized, resuspended in $300 \mu \mathrm{~L} 0.1 \%$ formic acid and subjected to analysis by LC-MS/MS. Peptide fragments were separated with an Agilent Technologies 1200 series HPLC on a Nucleosil C18 column ($5 \mu \mathrm{~m}$ 100A $4.6 \times 250 \mathrm{~mm}$) at $0.5 \mathrm{~mL} / \mathrm{min}$ flow rate with the following method: Buffer A= 0.1\% Formic Acid; Buffer B=0.1\% Formic Acid in acetonitrile; 0\% B from $0-10$ minutes, $0-20 \%$ B from 10-100 minutes, 20% B from 100-120 minutes, 20-80\% B from 120-130 minutes, 80% B from 130-140 minutes, $80 \%-0 \%$ B from 140-150minutes, 0% B from

150-170 minutes. MS/MS was conducted in positive ion mode using electrospray ionization on an Agilent Q-TOF (6520).

Expression and purification of MSMEG_2433 (DacB2)

MSMEG_2433 was expressed and purified using a modified method for purification of low molecular weight PBPs that was previously published (39). An N-terminally truncated MSMEG_2433 ${ }_{(29-296)}$ was cloned into the pET 28 b vector for isopropyl β-D-1thiogalactopyranoside (IPTG) inducible expression in E. coli BL21 (DE3). 10mLs of overnight culture grown in LB with Kanamycin $(50 \mu \mathrm{~g} / \mathrm{mL})$ were diluted $1: 100$ into 1 L of LB with Kanamycin $(50 \mu \mathrm{~g} / \mathrm{mL})$ and grown at $37^{\circ} \mathrm{C}$ until an OD_{600} of 0.5 . The culture was cooled to room temperature, induced with 0.5 mM IPTG, and shaken at $16^{\circ} \mathrm{C}$ overnight. Cells were pelleted via centrifugation at $4,000 \mathrm{rpm}$ for 20 min at $4^{\circ} \mathrm{C}$. The pellet was suspended in 20 mL binding buffer (20mM Tris $\mathrm{pH} 8,10 \mathrm{mM} \mathrm{MgCl}_{2}, 160 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole) with 1 mM phenylmethylsulfonylfluoride (PMSF) and $500 \mu \mathrm{~g} / \mathrm{mL}$ DNase. Cells were lysed via three passage through a cell disrupter at $\geq 10,000$ psi. Lysate was pelleted by ultracentrifugation $(90,000 \times \mathrm{g}, 30$ $\min , 4^{\circ} \mathrm{C}$). To the supernatant, 1.0 mL washed Ni-NTA resin (Qiagen) was added and the mixture rocked at $4^{\circ} \mathrm{C}$ for 40 min . After loading onto a gravity column, the resin was washed twice with 10 mL wash buffer (20 mM Tris $\mathrm{pH} 8,500 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, 0.1% Triton X-100). The protein was eluted in 10 mL of elution buffer (20 mM Tris $\mathrm{pH} 8,150 \mathrm{mM} \mathrm{NaCl}, 300 \mathrm{mM}$ imidazole, 0.1% reduced Triton X-100) and was concentrated to 1 mL with a 10 kD MWCO Amicon Ultra Centrifuge Filter. The final protein concentration was measured by reading absorbance at 280 nm and using the estimated extinction coefficient $\left(29459 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ calculate concentration. The protein was diluted to $200 \mu \mathrm{M}$ in elution buffer with 10% glycerol, aliquoted, and stored at $-80^{\circ} \mathrm{C}$.

Proper folding of purified MSMEG_2433(29-296) was tested via Bocillin-FL binding. Briefly, $20 \mu \mathrm{M}$ of purified protein was added to penicillin $\mathrm{G}\left(100,1000 \mathrm{U} / \mathrm{mL}\right.$ in $20 \mathrm{mM} \mathrm{K}_{2} \mathrm{HPO}_{4}, 140 \mathrm{mM} \mathrm{NaCl}$, pH 7.5) in a $9 \mu \mathrm{~L}$ reaction. The reaction was incubated at $37^{\circ} \mathrm{C}$ for 1 hour. $10 \mu \mathrm{M}$ Bocillin-FL was added and incubated at $37^{\circ} \mathrm{C}$ for 30 minutes. SDS loading dye was added the quench the reaction and samples were loaded onto a $4-20 \%$ gel. MSMEG_2433(29-296) bound by Bocillin-FL was $^{\text {a }}$ imaged using a Typhoon 9400 Variable Mode Imager (GE Healthcare) (Alexa Excitation-488nm Emission-526nm).

Lipid II extraction.

B. subtilis Lipid II was extracted as previously published (40).

SgtB purification.

S. aureus SgtB was purified as previously published (41).

Purification of B. subtilis PBP1.

Purification of B. subtilis PBP1 was carried out as previously described (42).

In vitro Lipid II polymerization and crosslinking.

$20 \mu \mathrm{M}$ purified BS Lipid II was incubated in reaction buffer (50 mM HEPES $\mathrm{pH} 7.5,10 \mathrm{mM}$ CaCl_{2}) with either $5 \mu \mathrm{M} \mathrm{PBP} 1$ or $0.33 \mu \mathrm{M} \mathrm{SgtB}$ for 1 hour at room temperature. The enzymes were heat denatured at $95^{\circ} \mathrm{C}$ for 5 minutes. Purified MSMEG_2433(29-296) was added (20 uM, final) and the reaction was incubated at room temperature for 1 hour. Mutanolysin ($1 \mu \mathrm{~L}$ of a $4000 \mathrm{U} / \mathrm{mL}$ stock) was added and incubated for 1.5 hours at $37^{\circ} \mathrm{C}$ (twice). The resulting
muropeptides were reduced with $30 \mu \mathrm{~L}$ of $\mathrm{NaBH}_{4}(10 \mathrm{mg} / \mathrm{mL})$ for 20 minutes at room temperature with tube flicking every 5 minutes to mix. The pH was adjusted to ~ 4 using with $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and the resulting product was lyophilized to dryness. The residue was resuspended in $18 \mu \mathrm{~L}$ of water and analyzed via LC-MS as previously reported (43).

Fig. S1

E.coli / B. subtilis

S1C

S1B
 S1D

Figure S1: Peptidoglycan synthesis and FDAA screen overview. (A) Escherchia coli lateral cell wall growth. Unlike mycobacteria, E. coli inserts new cell wall along the lateral cell body, mixing old and new peptidoglycan. Green portion represents old cell wall, grey portion represents new material. (B) Cartoon of penicillin binding proteins (PBPs), L,D-transpeptidases (LDTs), and both 4-3 and 3-3 crosslinking. PBPs utilize a pentapeptide substrate found on new peptidoglycan, ending in D-alanine-D-alanine. LDTs utilize a tetrapeptide substrate found on processed peptidoglycan. TP, transpeptidase; TG, transglycosylase (C) Schematic of (Fluorescence Activated Cell Sorting (FACS)-based FDAA transposon library enrichment. A Mycobacterium smegmatis transposon library was stained with FDAAs, and the dimmest cells were sorted, grown, sorted again to enrich for transposon mutants that are unable to incorporate FDAA. (D) Results from S1C screen. Ratio ($\log 2$) of transposon reads per gene in the second sort low FDAA staining (L2) over the second sort high FDAA staining (H2) compared to the Mann-Whitney U P-value.

Fig. S2

Figure S2: Fluorescent D-amino acid screen validation. (A) Mean line profiles (from new to old pole) of FDAA incorporation in log-phase WT ($\mathrm{N}=97$), $\Delta l d t A B E(\mathrm{~N}=64)$. (B) Quantification of FDAA incorporation at cell poles and quantification of cell length. Mann-Whitney U P-Value shown ($* * * *$ P-Value <0.0001). (C) Representative image of FDAA incorporation in log-phase WT, $\Delta \mathrm{LDT}$ and $\Delta \mathrm{LDT}_{\text {comp }}$ cells. Scale bar $=5 \mu \mathrm{~m}$. (D) Quantification of FDAA incorporation at poles and cell lengths of WT, $\Delta \mathrm{LDT}$ and $\Delta \mathrm{LDT}_{\text {comp }}$ cells shown in S2C and whose mean incorporation is shown in Figure 3C.

Fig. S3

S3A

 Retention time (minutes)

S3C

3-3 crosslink (tripeptide-tripeptide)
m/z: 904.44 (100.0\%), 905.44 (38.9\%),
906.44 (7.4\%), 905.43 (4.1\%), 906.44 (3.3\%), 906.44 (1.6\%), 907.44 (1.3\%)

S3B

PEAK	Tripeptides observed	Description*
1	461.2	
	Tetrapeptides observed	
2	532.3	Tetra (2 NH2)
3	534.2	Tetra (OH)
4	533.2	Tetra (NH2)
	pentapeptides observed	
5	604.3	Penta (OH)
6	602.3	Penta(2 NH2)
	4-3 observed	
7	974.5	4--3 (2 NH2)
8	1045.4	4--4 (4 NH2)
9	1046.5	4--4 (3 NH2)
10	1049.4	4--4
11	975.4	4--3 (NH2)
12	974.3	4--3 (2 NH2)
13	1047.5	4--4 (2 NH2)
	3-3 observed	
14	974.4	4--3 (4 NH2)
15	904.4	3--3 (3 NH2)
16	975.5	$4-3$ (3 NH2)
	Tripeptide(anhydrous)	
17	865.4	
	4-4-4	
18	1559.7	
19	1560.0	

S3D

Figure S3: 3-3 crosslinks are not detectable in \triangle LDT cells. (A) Total ion chromatograms of $\mathrm{WT}, \Delta \mathrm{LDT}$ and $\Delta \mathrm{LDT}_{\text {comp }}$ peptidoglycan. (B) Table of muropeptide masses (Da) observed in
(S3A). The molecular weight difference by one of the identified peptides is due to differential amidation. The descriptions include the peptide lengths in the crosslink ($4=$ tetra-, $3=$ tri- peptide) and the following parenthesis specifies the number of amidation in the species according to mass. (C) Structure of a representative 3-3 crosslink with a $\mathrm{m} / \mathrm{z}=904.4$. (D) Extracted ion chromatograms from WT, $\Delta \mathrm{LDT}$ and $\Delta \mathrm{LDT}_{\text {comp }}$ for a representative 3-3 crosslink with a $\mathrm{m} / \mathrm{z}=904.4$.

Fig. S4

Figure S4: Δ LDT cell morphological characteristics. (A) Time-lapse microscopy montage of Δ LDT cells. The white stars mark new poles. The orange arrow points to the first new pole daughter cell of this series. The red arrow indicates the second resulting new pole daughter cell. In the last frame, white arrows point to all new pole daughter cells (besides the orange arrow and red arrow). (B) Time-lapse microscopy of $\Delta \mathrm{LDT}_{\text {comp }}$ cells expressing LdtE-mRFP. (C) Model of rodshape loss in old cell wall of \triangle LDT cells compared to WT. Green portions of the cell represents old cell wall, grey portion represents new cell wall. The larger arrows indicate more growth from the old pole, while smaller arrows show less relative growth from the new pole. Dotted lines represent septa. All scale bars $=5 \mu \mathrm{~m}$

Fig. S5

S5B

Figure S5: Inheritance of old cell wall and occurrence of blebs in new pole daughter cells. (A) WT Msm stained with Alexa Fluor ${ }^{\mathrm{TM}} 488$ NHS ester, washed and visualized over time. New material is unstained, old material is stained green. Orange arrows indicate a new pole. Orange stars mark new pole daughter cells. All scale bars $=5 \mu \mathrm{~m}$ (B) Maximum cell width of Δ LDT cell
lineages over time. Width of new pole daughters = blue circle; width of old pole daughters = orange circle. Division signs denote a division event. At each division, there are two arrows from the dividing cell leading to the resulting new and old pole daughter cell widths (blue and orange respectively).

Fig. S6

S6A

S6B

Genetic Background:$\Delta L D T$ ponA1 WT (KanR)Number of colonies	Proportion of true swaps	
SWAP: L5 TetO-ponA1 WT (NuoR)	249	$26 / 50$
SWAP: L5 TetO-ponA1 TP mutant (NuoR)	0	

Figure S6: L5 allele swapping to test essentiality of PonA1's ability to form 4-3 crosslinks (transpeptidation). (A) Schematic of L5 allele swapping experiment. Adapted from (12). (B) Results of ponAl allele swapping experiment in \triangle LDT cells.

Fig. S7

S7B

Figure S7: MSMEG_2433 (DacB2) functions as a D,D-carboxypeptidase and D,Dendopeptidase in vitro. (A) Coomassie-stained gel of purified His 6_{6}-DacB2. (B) Bocillin-FL and Penicillin G binding assay of purified DacB2. (C) Schematic of in vitro experiment to test D,D-carboxy- and D,D-endopeptidase activity. Lipid II extracted from B. subtilis is first polymerized into linear (using SgtB) or crosslinked (using B. subtilis PBP1) peptidoglycan and then reacted with DacB2. The reaction products are analyzed by LC-MS. (D) Extracted ion chromatograms of the reaction products produced by incubation of DacB2 with peptidoglycan substrates.

Fig. S7 (Continued)

Fragment $\mathrm{B}\left(\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{20}\right)$ Theoretical Isotope Distribution: $[\mathrm{M}+1]^{+}$

Observed Mass: $[M+1]^{+}$

Observed Mass: $[\mathrm{M}+2]^{+} / 2$

Fragment $\mathrm{D}\left(\mathrm{C}_{74} \mathrm{H}_{126} \mathrm{~N}_{16} \mathrm{O}_{39}\right)$
Theoretical Isotope Distribution: $[\mathrm{M}+2]^{+} / 2$
Observed Mass: $[M+2]^{+} / 2$

Figure S7 (continued): MSMEG_2433 (DacB2) functions as a D,D-carboxypeptidase and D,D-endopeptidase in vitro. (E) Mass spectra of the reaction products of DacB2 digestion reactions.

Fig. S8

	1	2	3	4	5	6	7	8	9	10	11	12
	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	
A	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	0.01	
	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
B	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	0.01	
	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	
C	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	0.01	
	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	
D	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	0.01	
	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	
E	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	0.01	
	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	
F	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	0.01	
	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	
G	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	0.01	
	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	
H	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	0.01	

S8B

	1	2	3	4	5	6	7	8	9	10	11	12	amoxicillin
A	40.00	20.00	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	
B	40.00	20.00	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	
C	40.00	20.00	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	
D	40.00	20.00	10.00	5.00	2.50	1.25	0.63	0.31	0.16	0.08	0.04	0.02	

Figure S8: Minimum inhibitory concentration (MIC) of amoxicillin or meropenem alone or in combination against Mycobacterium tuberculosis. (A) Resazurin MIC plate and dilution
matrix of amoxicillin and meropenem in combination in a checkerboard MIC plate. The table below shows the concentration of each drug per well in $\mu \mathrm{g} / \mathrm{mL}$. The concentration of meropenem is in black text and the concentration of amoxicillin is in red text in each well. (B) Dilution matrix of amoxicillin or meropenem (alone). The concentrations of drugs are shown in the table. Pink indicates metabolically active cells, blue indicates not metabolically active. In both single drug and checkerboard MIC plates, $5 \mu \mathrm{~g} / \mathrm{mL}$ clavulanate was used.

Fig. S9

Figure S9: Light production (RLU) correlated to colony forming units (CFU) in mycobacterial cells expressing luxABCD in drug treatment. (A) Mycobacterium smegmatis colony forming units (CFU) and luminescence (RLU) during drug treatment.

Fig. S10

Figure S10: New and old cell wall are spatially segregated in mycobacteria. 2-minute FDAA pulse (cyan), 45-minute outgrowth, followed by 2-minute FDAA chase (magenta) in WT Mycobacterium smegmatis cells. Newest cell wall (magenta), older cell wall (cyan). Scale bar $=5 \mu \mathrm{~m}$

Table S1: List of Primers
$\left.\begin{array}{|c|c|c|c|}\hline \text { Primer description } & \text { Primer Sequence } & \text { 5' or 3' features } & \text { Primer \# } \\ \hline \begin{array}{c}\text { MSMEG_3528 } \\ \text { (IdtA) upstream } \\ \text { flanking region } \\ \text { FOR }\end{array} & \begin{array}{c}\text { CGTTGTAAAACGACGGCCAG } \\ \text { TGATGGCGGGCGTGATCTGG } \\ \text { AATCTCT }\end{array} & & \\ \hline \begin{array}{c}\text { MSMEG_3528 } \\ \text { (IdtA) upstream } \\ \text { flanking region } \\ \text { REV }\end{array} & \begin{array}{c}\text { ACCCAACTTAATCGCCTTGCA } \\ \text { GCTCTTCCAGTGTAGGTTGT } \\ \text { CGAAAACG }\end{array} & \begin{array}{c}\text { Zeo cassette } \\ \text { overlap }\end{array} & 208 \\ \hline \begin{array}{c}\text { MSMEG_3528 } \\ \text { (IdtA) downstream } \\ \text { flanking region } \\ \text { FOR }\end{array} & \begin{array}{c}\text { TAATCATGGTCATAGCTGTTT }\end{array} & \begin{array}{c}\text { TCATCGTGCAGGCGTGACGT } \\ \text { GCAG }\end{array} & \text { Zeo cassette } \\ \text { overlap }\end{array}\right]$

flanking region REV			
MSMEG_4745 (IdtB) downstream flanking region FOR	GTACCTCGAGTCTAGAAGTA GCGCTATCGCACCGCGCGGT CCAG	hyg cassette overlap	446
MSMEG_4745 (IdtB) downstream flanking region REV	CGACCCGGCCCGTCACAAGG ACACCGAAC		447
MSMEG_0929 (IdtC) upstream flanking region FOR	CGTTGTAAAACGACGGCCAG TGAACTGGCGACGGCGCTGG GCGTGG	pUC57 overlap	216
MSMEG_0929 (IdtC) upstream flanking region REV	TGGAGCTCCAATTCGCCCTA GTGGATCTAGGGTACCGACA GCACGC	hyg cassette overlap	448
MSMEG_0929 (IdtC) downstream flanking region FOR	GGTACCTCGAGTCTAGAAGT AGTCCGGCGGCTAGGTCCG GCGGTTGAAG	hyg cassette overlap	449
MSMEG_0929 (IdtC) downstream flanking region REV	CAGTCGACGGGCCCGGGAT CCCAAGGGACTCGCGCCGGT CTCC	pUC57 overlap	219
MSMEG_0929 (ldtC) upstream flanking region FOR	GGCTCGTTCTTCACCAACC		507
MSMEG_0929 (IdtC) downstream flanking region REV	CTGCCCAAGCTCATCGAC		508
MSMEG_0674 (IdtG) upstream flanking region FOR	GTTGTAAAACGACGGCCAGT GCGGCGTCGACCTCCCGGC CGGGTC	pUC57 overlap	228
MSMEG_0674 (IdtG) upstream flanking region REV	GTGGAGCTCCAATTCGCCCT AGCGCATTGGCTTCCGATTT CCCTCG	hyg cassette overlap	454

MSMEG_0674 (IdtG) downstream flanking region FOR	CGGTACCTCGAGTCTAGAAG TACGCCGACGTGTATGCCCA CCCCCGCG	hyg cassette overlap	455
MSMEG_0674 (IdtG) downstream flanking region REV	GCAGTCGACGGGCCCGGGA TCGCCTGCGCCCGCGGGAG CGCCTGCC	pUC57 overlap	231
MSMEG_0674 (IdtG) upstream flanking region FOR	GCATCTGAGTTTCGGCAAG		513
MSMEG_0674 (IdtG) downstream flanking region REV	CAACTACCCCGCAGTTGAAT		514
MSMEG_1322 (IdtF) upstream flanking region FOR	GTTGTAAAACGACGGCCAGT GCGAGGTAAGGGTCTCGACG GTTTCT	pUC57 overlap	224
MSMEG_1322 (IdtF) upstream flanking region REV	GTGGAGCTCCAATTCGCCCT ATCCAATGTGCTTCGGCGAA AGCCAGTTTG	hyg cassette overlap	452
MSMEG_1322 (ldtF) downstream flanking region FOR	GTACCTCGAGTCTAGAAGTA GTTCCCCCCGGCCCACATAT GTCTGGACG	hyg cassette overlap	453
MSMEG_1322 (IdtF) downstream flanking region REV	GCAGTCGACGGGCCCGGGA TCCACGACAACGCCAGCGCG AT	pUC57 overlap	227
MSMEG_1322 (IdtF) upstream flanking region FOR	GGTCGACGACGAACTGGT		511
MSMEG_1322 (IdtF) downstream flanking region REV	AACGGCACGTACATCAGGAC		512

MSMEG_0233 (IdtE) FOR with TetO overlap (vector)	CATGCTTAATTAAGAAGGAGA TATACAATGCCGAAATCGGC AAAACGCAG		
MSMEG_0233 (IdtE) REV (no stop codon) with ser- ser-gly linker	GATGACGTCCTCGGAGGAGG CCGAGCCGCCGAACATCTGC CAGTCGGATG		
mRFP FOR with ser-ser-gly linker	CATCCGACTGGCAGATGTTC GGCGGCTCGGCCTCCTCCGA GGACGTCATC		351
mRFP REV with vector overlap	GTCCCCAATTAATTAGCTAAG TGATGGTGATGGTGATGACA GGGG		
MSMEG_2433 (dacB2) FOR (first 27 amino acids truncated)	GGCCTGGTGCCGCGCGGCA GCCATCGCGCGGACGCCGA CATCCAG	with 5' overlaps to pet28b cut with Ndel	
MSMEG_2433 (dacB2) REV	GCTGTCCACCAGTCATGCTA GCCATCAGAGCGCCCCGATG CTCG	with 3' overlaps to pet28b cut with Ndel	662

Table S2: List of Strains

Strain	Description	Primers
KB134	mc2155 $/$ /dtA::IoxP	208/209; 210/211
KB156	mc2155 $/$ /dtA: :IoxP + $\Delta / d t E:$ zeoR	220/221; 222/223
KB200	$\mathrm{mc} 2155 \Delta / d t A:$:loxP $\Delta / d t E::$ zeoR + $\Delta / d t B::$ hygR	444/445; 446/447
KB209	mc2155 $1 / d t A:$:IoxP $\Delta / d t E:: I o x P$ $\Delta / d t B:: 10 x P+\Delta / d t C::$ hygR	216/448; 449/219 (create original hyg KO) but used 507/508; (amplify KO from strain within the flanks)
KB222	mc2155 $\Delta / d t A:$:IoxP $\Delta / d t E:: I o x P$ $\Delta / d t B:$:IoxP $\Delta / d t C::$ hygR $\Delta / d t G:$ zeoR	228/454; 455/231 (create original hyg KO) but used 513/514; (amplify KO from strain within the flanks)
$\begin{aligned} & \text { KB303 } \\ & (\Delta L D T) \end{aligned}$	mc2155 $1 / d t A:: I o x P ~ \Delta / d t E: I o x P$ $\Delta / d t B:$:IoxP $\Delta / d t C::$ loxP $\quad \Delta l d t G:: ~ l o x P$ $\Delta l d t F::$ hygR	224/452; 453/227 (create hyg KO) but used 511/512 (amplify KO from strain or gibson)
KB302	pTetO-IdtE(MSMEG_0233)-linkermRFP in CT94 XH (XL1-Blue)	323A/351; 352/353
KB316 (Δ LDTcomp)	[mc2155 1 ldtA::loxP $\Delta \mathrm{ddt}$::loxP sldtB::loxP $\Delta \mathrm{ldtC}:: ~ l o x P ~ \Delta l d t G:: ~ l o x P ~$ $\Delta \mathrm{ldtF}::$ hygR] + KB302	
KB428	E.coli BL21 + pet28b (dacB2)	662/663

