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Abstract 

 

Stochasticity in gene expression impacts the dynamics and functions of gene regulatory circuits. 

Intrinsic noises, including those that are caused by low copy number of molecules and transcriptional 

bursting, are usually studied by stochastic analysis methods, such as Gillespie algorithm and Langevin 

simulation. However, the role of extrinsic factors, such as cell-to-cell variability and heterogeneity in 

microenvironment, is still elusive. To evaluate the effects of both intrinsic and extrinsic noises, we 

develop a new method, named sRACIPE, by integrating stochastic analysis with random circuit 

perturbation (RACIPE) method. Unlike traditional methods, RACIPE generates and analyzes an 

ensemble of mathematical models with random kinetic parameters. Previously, we have shown that the 

gene expression from random models form robust and functionally related clusters. Under the 

framework of this randomization-based approach, here we develop two stochastic simulation schemes, 

aiming to reduce the computational cost without sacrificing the convergence of statistics. One scheme 

uses constant noise to capture the basins of attraction, and the other one uses simulated annealing to 

detect the stability of states.  By testing the methods on several gene regulatory circuits, we found that 

high noise, but not large parameter variation, merges clusters together. Our approach quantifies the 

robustness of a gene circuit in the presence of noise and sheds light on a new mechanism of noise 

induced hybrid states. We have implemented sRACIPE into a freely available R package. 

 

Keywords: gene regulation, gene circuits, gene expression noise, stochastic, RACIPE, simulated 

annealing, sampling scheme, network robustness 
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Introduction 

Noise or stochastic fluctuations in molecular 

components have been shown to play important role in 

many biological processes1–3, such as phenotypic 

switching, gene expression coordination, cell cycle and 

cell differentiation4, in both prokaryotic5 and eukaryotic 

organisms3,4,6,7. Noise can propagate in a gene network 

with a cascade of circuit motifs, and the expression 

level of a gene can vary up to six orders of magnitude 

between cells1,8. On the one hand, processes in gene 

regulation induce noise in the expression of transcripts 

or proteins, owing to factors such as transcription 

bursting and low copy numbers1,8,9; on the other hand, 

stochastic gene expression can influence the dynamics 

of biological systems8 or even create new dynamical 

features like oscillations, bistability etc1,10–12.  It is not 

hard to imagine that, through evolution, cells eventually 

learn to use gene expression noise for their own 

advantage. For example, noise-induced cell-to-cell 

variability in protein levels in an isogenic cell 

population allows cells to assume different, 

functionally important and heritable fates3. This 

heterogeneity in clonal populations of cells may be 

essential for many biological processes as it enables the 

cells to respond differently to inducing stimulus1. 

Conversely, heterogeneous individuals in different 

environments can produce the same cell phenotype 

through phenotypic buffering/capacitance8.  

 

Previous studies have unveiled many features 

of stochasticity in gene expression, yet, a 

comprehensive and quantitative understanding of the 

noise-induced dynamics is still elusive13. Various 

mathematical frameworks14,15 have been developed to 

model the dynamics of gene regulatory circuits (GRCs) 

governing cellular processes. Here, a GRC is a 

functional regulatory network motif, composed of a 

small set of interconnected regulators. To study the 

dynamics of gene circuits, various simulation schemes 

have been developed, including stochastic simulation 

algorithms (SSA, such as Gillespie algorithm16), 

methods solving stochastic differential equations 

(SDEs), asynchronous random Boolean network 

model17, hybrid methods that incorporate stochasticity 

in both discrete and continuous variables18, and the 

multiscale nature of different types of noise19. However, 

most of these methods require a fixed set of kinetic 

parameters that are associated with the regulation of 

individual genes, such as production rates, degradation 

rates, and binding/unbinding rates of protein-DNA 

(dis)association. Unfortunately, it is very hard to 

measure these parameters directly from experiments14, 

and therefore it limits the accuracy and prediction 

power of the traditional simulation schemes. 

 

We have recently developed a systems-biology 

modeling method, named random circuit perturbation 

(RACIPE)20, to deal with this long-lasting issue of 

parameter uncertainty. RACIPE takes the GRC 

topology as the only input, and generates an ensemble 

of models with random kinetic parameters. Then 

conventional ordinary differential equation based 

simulation is used for each random model to obtain 

steady-state gene expression.  Finally, statistical 

analysis is performed on the in silico gene expression 

data from all the models to obtain the robust features. 

From our previous tests on simple GRC motifs and the 

biological regulatory circuits governing epithelial-to-

mesenchymal transition (EMT)20 and B-cell 

development21, etc., we found that the steady-state 

solutions from an ensemble of random models form 

several distinct clusters according to their expression 

patterns, which correspond to the functional states of 

the circuits (e.g. the functional states AONBOFF and 

AOFFBON for a toggle switch with two genes A and B). 

The spread of the parameters of the models in a 

particular cluster can be associated with the robustness 

of the functional state against the parametric 

perturbation. 

 

To facilitate the stochastic analysis, here we 

present a new modeling method that integrates 

stochastic methods with RACIPE. Compared to 

existing methods, this method has the following 

advantages. First, the stochastic RACIPE (sRACIPE) 

provides a holistic picture to evaluate the effects of both 

the stochasticity in cellular processes and the parametric 

variations. Typically the noise in cellular processes is 

regarded as “intrinsic” if it is caused by the stochastic 

nature of transcriptional, translational and post-

translational regulations due to either low copy number 

of molecules or slow switching among the states of 

promoter structure, chromatin epigenetics, or nuclear 

architecture8. If the noise is due to pathway specific or 

global differences in the abundance of cellular 

components, or due to differences in the timing of cell-

cycle events, it could be considered as “extrinsic”22,23. 

Segregating the effects of  “intrinsic” and “extrinsic” 

noises in gene expression is not straight forward and is 

being actively studied1,24. Our randomization-based 
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method, sRACIPE, captures the effects of both the 

intrinsic and extrinsic noises as it incorporates both the 

stochastic fluctuations and the parametric variations. 

Second, sRACIPE allows us to evaluate the effects of 

noise on the cellular states of a GRC. In conventional 

mathematical modeling, a cellular state is defined as a 

stable steady state (fixed point) of a nonlinear 

dynamical model. However, when the signaling of the 

system alters, the corresponding fixed point shifts 

accordingly. Therefore, it is particularly difficult to 

associate different steady states to a cellular phenotype. 

To deal with this issue, we define a distinct cellular state 

as one of the clusters of steady state gene expression 

profiles from random models21. With sRACIPE, we can 

evaluate how gene expression noise affects the 

formation of the clusters and the changes in their 

expression patterns. Third, the stochastic analysis can 

quantify the relative stability of the steady states for 

systems allowing multiple states. This is especially hard 

in the original RACIPE, where the deterministic 

analysis is adopted to solve the rate equations and where 

every stable steady state was considered equally 

probable.  

 

To integrate the stochastic analysis with 

RACIPE, we have to address an important challenge as 

described below. Typically, one starts from an initial 

condition and runs stochastic simulation for a long time 

to obtain the steady-state probability distribution and 

transition rates. In RACIPE, we generate a large (~104-

106) number of random models and this stochastic 

simulation scheme will have a very high computational 

cost. Moreover, each model has a distinct set of kinetic 

parameters; therefore, the convergence of one model 

does not necessarily imply the convergence of another. 

A good simulation scheme has to be designed to reduce 

the computational cost without sacrificing the 

convergence of statistics.  

 

In the following, we will introduce the 

stochastic analysis methods employed in sRACIPE. We 

will first describe two simulation schemes – a constant 

noise based method to estimate the basin of attraction 

of various states and another simulated annealing based 

method to compare the relative stability of different 

states and find the most stable state of GRCs. We will 

illustrate the methods using the canonical double-well 

potential system. Afterwards, we will explain the 

integration of these stochastic analysis methods with 

RACIPE and apply the new method on simple toggle 

switches, coupled toggle switches and an epithelial-

mesenchymal transition (EMT) network20,25. We will 

demonstrate how the parametric variations and noise 

influence the functions of GRCs. The workflow of the 

sRACIPE method is presented in Fig.1. 

 

Results 

Sampling schemes for stochastic analysis 

The temporal dynamics of a dynamical system 

can be obtained through numerical simulations of 

stochastic differential equations (SDEs) or 

Gillespie/kinetic Monte Carlo algorithms. A standard 

approach is to start with a random initial condition, run 

the simulation at a constant noise level for a long time, 

and record the state variables at equidistant time points. 

The histogram of these state variables gives the steady 

state probability distribution of the system. Here, we 

refer to this method as single initial condition (SIC) 

method.  

 

For a system with multiple minima and a low 

noise level, the SIC method converges slowly as the 

system gets trapped in a local minimum26. To address 

it, we can instead perform statistics on an ensemble of 

simulations. Here, the method performs multiple 

simulations for a short simulation time starting from 

different initial conditions, and then it records the state 

variables only once at the end of each simulation. This 

approach, referred to as multiple initial conditions 

(MIC) method, has three advantages: (1) it can 

simultaneously sample multiple configurations of the 

system, therefore providing better coverage; (2) it can 

be naturally integrated into RACIPE as RACIPE is also 

an ensemble based method; (3) it can be easily 

parallelized as each initial condition evolves 

independently of others. Indeed, MIC and its 

variants27,28 have been adopted in simulations of 

equilibrium systems, but it is nontrivial for non-

equilibrium systems27. However, in the low noise 

scenario, while MIC can sample multiple 

configurations (thus basins of attraction29,30), each of 

the trajectories is still trapped in a local minimum; 

therefore, it does not estimate the stability of the 

minima.  

 

Here, we propose another sampling scheme 

based on simulated annealing31 (SA) to investigate the 

stability of a system. This method also generates an 

ensemble of simulations using multiple initial 

conditions. Each simulation starts with a random initial 

condition and a large noise level. Then, a constant noise 

simulation is performed for relaxation, and the state 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 28, 2018. ; https://doi.org/10.1101/291153doi: bioRxiv preprint 

https://doi.org/10.1101/291153


 3 

variables are recorded. The corresponding histogram of 

state variables from the ensemble of simulations gives 

the steady state probability distribution at that noise 

level. After the initial stage, the noise is reduced to a 

slightly lower level. Here, the states obtained from the 

simulations of the previous noise level provide a good 

estimate of the initial conditions for the simulations at 

the next noise level. This procedure is repeated till the 

system reaches zero noise.  The simulations from the 

whole protocol produce steady state probability 

distributions at various noise levels. The initial high 

noise allows the simulations to adequately sample 

multiple minima, while the intermediate to low noise 

levels allow more transitions from less stable minima to 

more stable minima, eventually reaching the most 

stable state (Fig.1B). In the following sections, we will 

show how we tested the sampling schemes and how we 

integrated them into RACIPE to study the stochastic 

dynamics of GRCs. 

 

Comparison of the sampling schemes in double-well 

potentials  

We first tested the three sampling schemes for 

stochastic analysis, i.e. SIC, MIC and SA, in the 

canonical double well potentials, where the 

corresponding potential functions can be obtained 

analytically. Calculation of such potentials for GRCs is 

usually difficult and computationally intensive32,33. 

Tests were performed on four variants of double-well 

potentials, where each variant differs from others in 

terms of the basin width and/or stability of wells. In 

SIC, the histogram of the particle positions was 

obtained from the positions at equidistant time points 

from a long simulation at a specific noise level. In MIC, 

the histogram was generated from the final positions of 

multiple short simulations for a fixed noise. In the SA 

scheme, histograms for different noise levels were 

obtained from the final positions of all the short 

simulations for the corresponding constant noises 

during simulated annealing. 

 

For each potential variant shown in the first row 

of Fig. 2, the 2nd-4th rows in the same figure show the 

corresponding steady state probability distributions at 

different noise levels using SIC (2nd row), MIC (3rd 

row), and SA (4th row). At high (blue curves) and 

intermediate (orange curves) noise levels, the 

probability distributions from all the methods converge 

in all the four variants, as noise is large enough to 

induce sufficient transitions between the two basins.  

However, at low noise levels (green curves), a single 

trajectory is trapped in one of the basins. Thus, SIC, 

unlike the ensemble-based methods MIC and SA, never 

yields a converged distribution for all the four variants. 

For the fully symmetric double well potential (Fig. 2A, 

Fig. S1), both MIC and SA yield same probability 

distribution in all the cases. When the two wells have 

the same basins of attraction but different stability 

(potential), MIC provides equal probability in both 

wells but SA identifies the more stable well (Fig. 2B, 

Fig. S1). If the two wells differ in their basins of 

attraction but have same minimum potential values (Fig 

2C, Fig. S1), the probability distributions obtained from 

MIC are proportional to their basins of attraction. 

However, SA has all the probability in the well with the 

larger basin. Lastly, when one well has larger basin 

width and the other is more stable (Fig. 2D, Fig. S1), 

SA correctly yields all the probability in the more stable 

well (supplementary video) whereas the probability 

distribution from MIC is proportional to the basin 

width. Altogether, our tests demonstrate that MIC and 

SA complement each other, especially for low noise 

cases, when MIC better estimates the basin of attraction 

and SA better estimates the stability. 

 

Integration of stochastic analysis into RACIPE 

In the above sections, we have described two 

ensemble-based sampling schemes for stochastic 

analysis. Here, we will introduce a new method named 

sRACIPE, which integrates these sampling schemes 

with RACIPE. In the case of double-well potentials, the 

simulations using multiple initial conditions in MIC and 

SA can be considered as simulations of an ensemble of 

identical models using only one initial condition for 

each model. In contrast, the models in sRACIPE are not 

identical as it generates a large ensemble of random 

models, and each of these models is subject to a 

simulation scheme (either MIC or SA) using one initial 

condition only.  We chose this scheme because of the 

following reasons. First, since sRACIPE generates a 

very large number of models, there are multiple models 

with similar parameters, and a collection of these 

models will identify most of the states. Second, as we 

learned from our previous studies, increasing the 

number of models provides better convergence of the 

probability distribution of the simulated gene 

expression data compared to increasing the number of 

initial conditions21. Third, we have tested and found 

similar results when sampling multiple initial 

conditions for each random model (Fig S4). 
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In the first MIC-based sampling scheme, for each 

model, a short simulation using a random initial 

condition and a fixed noise level is used to obtain the 

gene expressions of that model at that noise level. Such 

gene expressions from all the models are used for 

further statistical analysis. This procedure is repeated 

for other noise levels to obtain gene expressions for 

those noise levels.  

 

In the second SA-based simulation scheme, we first 

pick a random initial condition for a model and perform 

a simulation at a high noise level. Then, for each model, 

using the final gene expressions from the simulation at 

a higher noise as the new initial condition, we perform 

another simulation at a slightly lower noise level. We 

repeat this procedure until the noise level gradually 

decreases to zero (details in SI). The final gene 

expressions from all the simulations and all the models 

are used for further statistical analysis for the 

corresponding noise levels. In the following, we will 

show the application of sRACIPE to several biological 

GRCs.  

 

Expression noise induces state merging 

We applied sRACIPE to a toggle switch GRC 

consisting of two mutually inhibiting genes (Fig.3A, the 

rate equations shown in SI). Here, the MIC-based 

method was used to obtain the gene expression profiles 

for an ensemble of models. To obtain features at 

different noise levels, we considered the noise level as 

an additional model parameter and randomized it from 

a uniform distribution ranging from 0 to 50. Fig 3A 

shows the 2D histogram of the normalized gene 

expression at different noise levels. At low noise levels, 

we observe two distinct clusters or states, as evident 

from the histogram on the left showing the distribution 

of the expressions of gene A for noise levels between 0 

and 1.  The distribution is similar to that from the 

deterministic analysis. As the noise levels increase, the 

two states merge, and we find a single peak in the 

distribution of gene expressions for noise levels 

between 49 and 50 (the histogram on the right in Fig. 

3A). This observation of state merging can be explained 

as follows. When the noise increases, the contribution 

of noise on gene expression exceeds the contribution of 

the regulatory interactions. Therefore, the circuit under 

high noise does not have the two distinct states 

anymore; instead, the only state left has similar 

expression of both genes. Since the two clusters are 

symmetric, both of the MIC-based and SA-based 

methods produce the same results. 

 

Here, we treated the noise level as a control parameter 

and evaluated the response of gene expression. In a 

sense, this analysis can be considered as a global 

bifurcation analysis. Unlike traditional bifurcation 

diagram, where one alters a single parameter and keeps 

the other parameters constant, this global bifurcation 

analysis considers variations from the other parameters 

as well. Thus, this method has the potential to provide 

global pictures of systems under the control of a 

parameter, which in this case is the noise level. Similar 

idea can be applied to any other parameter (Fig. S3). 

 

Differential roles of noise level and parameter 

variation 

We further explored the behavior of the toggle 

switch GRC by changing both the noise levels and 

parametric variations. Here, the parametric variation (P) 

is defined as the spread of the parameter ranges relative 

to the parameter range used in the original RACIPE20 

while keeping the median constant. P is measured in 

percentages such that the ranges are same if P is set to 

100, and a larger P implies a wider spread of parameter 

values. For any given value of P, if the range of a 

parameter is set to be (xmin, xmax) by default in RACIPE, 

the new range (ymin, ymax) can be obtained as  

𝑦𝑚𝑖𝑛 =
(𝑥𝑚𝑖𝑛+𝑥𝑚𝑎𝑥)

2
−

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

2

𝑃

100
,   

𝑦𝑚𝑎𝑥 =
(𝑥𝑚𝑖𝑛+𝑥𝑚𝑎𝑥)

2
+

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

2

𝑃

100
. 

 

Using both the noise levels and parametric variations as 

two control parameters, we can plot a global 2D 

bifurcation diagram, as shown in Fig. 3B. We observe 

that while an increase in the parametric variations 

increases the spread around the two states, an increase 

in noise levels brings the states closer, and eventually, 

for large noise levels, the two states merge. This new 

state is different from the two states obtained from the 

deterministic analysis (when noise is zero) and 

corresponds to the previously unstable state in which 

both genes are expressed. These results are consistent 

with previous studies in that gene expression noise can 

create new states of a GRC 5,10,12,23,34–38. We 

demonstrated this point by sampling a large space of 

parameters and systematically testing the circuit 

behaviors. Moreover, our results indicate differential 

roles of the parametric variation and expression noise in 

influencing circuits’ behavior.  
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Application of sRACIPE to complex GRCs 

Next, we studied some complex circuits, i.e., a 

toggle switch with one self-activation link, a toggle 

switch in which both genes are self-activating, and a 

circuit with five coupled toggle switches (Fig 4). 

Similar to the earlier toggle switch example, the number 

of states as well as the gene expression pattern of these 

states changes with the increase in noise levels. These 

circuits have more than two states (i.e. clusters) and 

different states merge at different noise levels, 

suggesting these states have different levels of stability. 

For example, in the toggle switch with self-activations 

on both genes, the third intermediate cluster merges 

before the merging of two larger clusters. We used both 

of the MIC and SA methods to evaluate the basins of 

attraction and the stability of the states. Similar to the 

double well potential cases discussed earlier, we 

observe that the number of models in the different states 

at high noise is similar for both MIC and SA (again 

indicating that both methods estimate the stability), and 

more stable states have larger number of models. At low 

noise, the difference between the two methods can be 

observed prominently for the toggle switch with one 

self-activation, indicating different basins of attraction 

and stability of the two states. The difference is less 

evident in the symmetric cases where the two dominant 

states are not affected much, but the intermediate state 

has lesser number of models at low noise using the SA 

method. In short, sRACIPE can provide a global view 

of the dynamics of GRCs and allow the estimation of 

the basin of attraction by MIC and the stability by SA.  

 

Quantification of GRC’s robustness 

We also observed that noise improves system’s 

response time, or so as to say, the time that the circuits 

take to reach the steady state probability distribution 

decreases with the increase in the noise levels (Fig. 5 

for the results of the toggle switch GRC). Here, we 

compared the probability distributions at multiple time 

points to the probability distributions at the end of the 

simulations by calculating the Bhattacharyya Distance 

(BD, details in SI Methods) between them. Saturation 

in the BD values implies that the system has relaxed and 

converged. At higher noise levels, there is more 

variability in the steady state distributions, so the 

saturated BD values are larger for higher noise levels. 

But the system reaches this saturated BD value at a 

shorter simulation time. Further, we found that self-

activating switches have larger BD than switches 

without self activations (Fig 5B), indicating that circuits 

with self-activating loops are less robust against noise. 

To quantify the robustness of GRCs against noise, we 

define the noise robustness (RD) index of a GRC as the 

rate of the increase of BD with the increase in noise 

level in the low noise limit: 

𝑅𝐷 = lim
𝐷→0

𝑑(𝐵𝐷)

𝑑𝐷
   . 

The RD values for the toggle switch, the toggle switch 

with one self-activation, the toggle switch with two self-

activations and two mutual activating genes were found 

to be 0.06, 0.23, 0.48 and 0.07, respectively. We expect 

RD to be valuable to quantify the robustness and 

stability of a gene circuit.  

 

Application to a GRC governing EMT 

Lastly, we applied sRACIPE to an EMT gene 
regulatory circuit, which we previously constructed 

from former studies and an extensive literature search20. 

Evidences39–42 suggest that the EMT circuit controls the 

decision making of the cell transition from the epithelial 

to mesenchymal states during embryonic development, 

wound healing and cancer metastasis40,41,43. Hybrid 

epithelial/mesenchymal (E/M) states25,41 with mixed 

characteristics of collective cell migration, as in 

morphogenesis and wound healing, have been found in 

experiments40 as well as several computational 

modeling studies25,41, including our previous RACIPE 

analysis20.  

 

The EMT GRC consists of 9 microRNAs 

(miRs) and 13 transcriptional factors (TFs), as shown in 

Fig. 6. In the deterministic case, clustering of the steady 

states of the randomized models yields two big clusters 

and other small clusters20 (also in Fig.6C, the first row). 

In the first big cluster, CDH1 and miRNAs are highly 

expressed, whereas some other TFs like ZEB1, ZEB2, 

CDH2, SNAI1, and SNAI2 are not expressed. This state 

can be mapped to the epithelial state (E). Similarly, in 

the other big cluster, miRNAs are not expressed, and 

TFs are highly expressed. Thus, it can be mapped to the 

mesenchymal state (M). The other clusters are hybrid 

states in which these key TFs and miRs have 

intermediate expressions. Here, we study how different 

levels of noise in the system affect the gene expression 

patterns of the models. The expression levels of 

different genes across all models vary over a large 

range; therefore, we scaled the noise level of each gene 

by the median of the expression of that gene over all 

models in the deterministic case. We observed relative 

shifts in the E and M states and more models in the 
hybrid E/M states as the noise levels increase. 

Eventually, the clusters merge together when noise 
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levels became very high. Comparing the heatmaps for 

D=0 and D=10-5, we notice an increase in the number 

of models in the E state and the hybrid states. Notably, 

the CDH1 levels have increased significantly even in 

the models corresponding to the M state. On further 

increase of the noise levels, the expression levels of 

miR-200b increase (D=10-3), and TGF-beta decrease in 

the M (D=10-1) state. Therefore, CDH1, miR-200b and 

TGF-beta are susceptive to noise perturbation, 

suggesting they may play crucial role in EMTs. Indeed, 

this is in line with the earlier findings that these genes 

are crucial in distinguishing the EMT phenotypes20,39. 

We have explored possible mechanisms to stabilize the 

hybrid EMT phenotype in our previous studies41,44. 

Here we present an additional mechanism in which the 

hybrid EMT phenotype can be stabilized due to the 

increase of gene expression noise. It would be 

interesting to validate this hypothesis experimentally in 

the further. In addition, our SA simulations suggest that 

the E state is more stable than the M state (Fig.6B). 

 

Discussion 

In this work, we have developed a method, 

named sRACIPE, to integrate stochastic analysis with 

the random circuit perturbation (RACIPE) method.  It 

allows us to study the effect of both gene expression 

noise and parametric variations on any gene regulatory 

circuit (GRC) using only its topology. To facilitate 

sampling, we proposed two ensemble-based schemes 

for stochastic analysis. The two methods, constant noise 

simulations with multiple initial conditions (MIC) and 

simulated annealing (SA), complement each other to 

provide a holistic picture, where MIC estimates the 

basin of attraction and SA estimates the stability. Our 

tests show that expression noise and parametric 

variation have qualitatively different effects on the 

states of GRC. Parametric variation slightly broadens 

the spread of the states while high expression noise 

causes some states to merge together. We have found 

that GRCs with different topology have different 

response times and sensitivity to noise. We have 

implemented sRACIPE as an R package, and it will be 

freely available for academic use. 

 

By sampling only one initial condition for each 

model, sRACIPE can easily generate as many as 106 

models. One major challenge is how to fully utilize such 

a large amount of gene expression and parameter data 

to analyze the robust features of a GRC. These data 

analysis methods can be potentially used to quantify the 

robustness of a GRC and evaluate how this can be 

associated with evolutionary fitness45, estimate the 

Waddington’s epigenetic landscape46, and predict state 

transitions33. A better understanding of stochastic 

behavior can be exploited to induce desired cell states 

and control noise-induced switching between different 

states47. 

 

Both gene expression noise and parametric 

variations are common in biological systems1,4,6,7,13,22,48. 

On the one hand, the Gillespie algorithm (Fig S2) has 

been used to model the stochastic dynamics of gene 

expression caused by low copy number and slow 

switches between gene states16. On the other hand, cells 

of different size and microenvironment can be modeled 

by the same rate equations but different kinetic 

parameters49. Our method allows the analysis of both 

factors, therefore being an invaluable tool to study the 

nature of variations in a cell population, especially with 

the advent of single cell techniques. 

 

We have found that GRCs with different circuit 

topology may allow similar states but differ in their 

sensitivity to noise, consistent with several theoretical 

and experimental studies2,50. Biological circuits are 

usually robust against small noise; sometimes, they 

could even use noise for their functions1. For example, 

noise can create new states or destabilize existing 

ones5,10,12,23,34–38. 

 

In summary, we have presented an improved 

randomization-based method for gene circuit modeling 

by incorporating stochastic analysis. This method is 

relevant to the study of multi-stable biological 

processes. Our methods provide a quantitative 

characterization of the robustness of biological 

networks in the presence of both intrinsic and extrinsic 

noises. Further investigation of biological data with the 

modeling approach is expected to provide better insight 

into the role of noise in network dynamics. 

 

A public R package of sRACIPE 

We provide an R package of sRACIPE, which 

is freely available for academic use. The core program 

is written in C++ to speed up the simulations, and the 

interface of R facilitates the processing of user inputs. 

We also provide R scripts to perform the basic statistical 

analyses that we have mentioned in the paper. We hope 

sRACIPE will be a valuable systems biology tool to 

analyze gene regulatory circuits.  
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Fig. 1: Illustration of sRACIPE. (A) The workflow of sRACIPE. The method integrates two ensemble-based 

sampling schemes – constant noise with multiple initial conditions (MIC) and simulated annealing (SA). (B) 

Illustration of the stability and basin of attraction using an example of a double well potential. (a) High noise enables 

frequent transitions between the minima, and the steady-state probability distribution in each well is proportional 

to the stability of the well. (b) Intermediate noise permits a larger number of transitions from the less stable well to 

the more stable well, and some trajectories are trapped in the more stable well. (c) As the noise is decreased further, 

the annealing based sampling scheme results in more occurrences of the particles in the more stable well. (d) For 

low noise cases, the transitions between wells are rare. Thus, each well traps all the particles in its basin of attraction, 

and the steady state probability distribution is proportional to the basin width of the wells. 
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Fig. 2: Tests of the stochastic analysis methods using double well potentials. First row shows four variants of 

double well potentials. (A) The two wells have identical potentials as well as the basins of attraction; (B) the left 

well has lower stability than the right well, but their basins are same; (C) two wells have same stability but 

asymmetric basins with the right well having a larger basin, and (D) the two wells differ in stability as well as basins 

such that the left well is more stable but has a smaller basin of attraction. The 2nd-4th rows show the histogram of 

the steady states for different sampling schemes, namely, single initial condition (SIC, 2nd row), multiple initial 

conditions (MIC, 3rd row) and simulated annealing (SA, 4th row) for each of the four potentials and at three different 

noise levels - high (blue), intermediate (orange) and low noise (green). All of the methods converge for the high 

and intermediate noise levels whereas, for the low noise, the particle is trapped in a random well in the SIC scheme, 

MIC captures the basin of attraction of the wells and SA captures the most stable well. The equations, parameter 

values and figures for other noise levels (Fig. S1) are available in SI.     
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Fig. 3: Application of sRACIPE to a toggle switch circuit. The stochastic analysis was performed using the MIC 

scheme. (A) The circuit diagram is illustrated in the leftmost panel. The middle panel shows the steady-state 

expression levels of gene A at different noise levels. The histogram on left shows the two distinct states for low 

noise (D<1), and the histogram on the right shows a single state for high noise (49<D<50). (B) Heatmaps of the 

normalized gene expression levels of the two genes for different parametric variations and noise levels. The 

parametric variations increase from top to bottom and the noise levels increase from left to right. Two distinct 

clusters observed at low noise merge into a single new cluster at high noise. Parametric variations increase the 

spread of the clusters but do not affect their relative positions.  
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Fig. 4: Normalized gene expressions for several toggle-switch-like-circuits using the MIC and SA methods. 

When noise is low, the MIC scheme provides an estimate of the basins of attraction of the states, whereas SA 

provides the most stable state. At high noise, the two methods yield similar results. The results are presented for 

(A) a toggle switch in which one gene is self-activating, (B) a toggle switch in which both genes are self-activating 

and (C) a circuit with five coupled toggle switches. Principal component analysis of the gene expression patterns 

was used for dimensionality reduction and the first two components are shown here. In all the cases, increase in 

noise levels brings the clusters together and eventually merges them into a final state. Some clusters merge first, 

suggesting that they are less stable than the others. 
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Fig. 5: Response time and noise robustness of gene regulatory circuits (A) Tests were performed on a toggle 

switch circuit. The Bhattacharyya distance (BD) was calculated between the probability distribution of the gene 

expression sampled at the end of the simulations (simulation time, T=50) for 106 models at zero noise (D=0) and 

the probability distributions at different time points during the simulations for different noise levels. The BD value 

for D=0 approaches zero after T=15, indicating that the models have converged to steady state solutions. 

Simulations with larger noise converge faster, though BD is larger. (B) The response of BD with respect to the noise 

levels for different toggle-switch-like circuits. The results indicate that the self-activation links decrease the noise 

robustness. 
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Fig. 6: Application of sRACIPE to an EMT core circuit. (A) An EMT core circuit consisting of 9 microRNAs 

(miRs) and 13 transcription factors (TFs). The activating links from a TF are shown in black, the inhibitory links 

from a TF are shown in red and the regulatory links (inhibitory) starting from miRs are shown in green. (B) The 

first and second principal components from the gene expression patterns at different noise levels for both of the 

MIC and SA schemes of sRACIPE. Here, the noise level in each gene is scaled by its median expression from the 

deterministic analysis. The steady states corresponding to the E and M states form two distinct clusters in the 

PC1/PC2 projection, with the hybrid states occupying the space between them. With the increase in noise levels, 

both of the E and M states move toward each other and finally reach the hybrid states. The shifting of the M state 

is larger than that of the E state. From the simulations of the SA scheme, we find that the M state is much less stable 

than the E state. (C) Hierarchical clustering heatmaps using the MIC scheme. As the noise levels increase, the 

models in the M state have increased CDH1 expression, followed by increased miR200b expression.  
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