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Abstract 

  Accurate estimation of genetic correlation requires large sample sizes and access to genetically 
informative data, which are not always available. Accordingly, phenotypic correlations are often 
assumed to reflect genotypic correlations in evolutionary biology. Cheverud’s conjecture asserts that the 
use of phenotypic correlations as proxies for genetic correlations is appropriate. Empirical evidence of 
the conjecture has been found across plant and animal species, with results suggesting that there is indeed 
a robust relationship between the two. Here, we investigate the conjecture in human populations, an 
analysis made possible by recent developments in availability of human genomic data and computing 
resources. A sample of 108,035 British European individuals from the UK Biobank was split equally 
into discovery and replication datasets. 17 traits were selected based on sample size, distribution and 
heritability. Genetic correlations were calculated using linkage disequilibrium score regression applied 
to the genome-wide association summary statistics of pairs of traits, and compared within and across 
datasets. Strong and significant correlations were found for the between-dataset comparison, suggesting 
that the genetic correlations from one independent sample were able to predict the phenotypic 
correlations from another independent sample within the same population. Designating the selected traits 
as morphological or non-morphological indicated little difference in correlation. The results of this study 
support the existence of a relationship between genetic and phenotypic correlations in humans. This 
finding is of specific interest in anthropological studies, which use measured phenotypic correlations to 
make inferences about the genetics of ancient human populations. 

 

Introduction 

 Genetic correlations are a measure of genetic factors shared between two traits. When two traits 

are highly genetically correlated, the genes that contribute to the traits are usually co-inherited (Lynch 

& Walsh, 1998).  While traditionally used in animal breeding (Lynch & Walsh, 1998), in a broader 
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research context, genetic correlations contribute to understanding the development and pathways of 

traits, population level gene flow and the co-occurrences of traits (Via & Hawthorne, 2005). For this 

reason, genetic correlations play an important role in evolutionary biology, and estimates of genetic 

correlations are also used in theoretical modelling of human populations.  

 Genetic correlations (𝑟") are calculated from the additive genetic variance and covariance 

between traits, as shown for traits X and Y,  

𝑟" =
$%&'(),+)

-.'/.'0
, or for standardized traits where the phenotypic variances are one, 𝑟" =

$%&'(),+)

12/
320

3
, where 

ℎ)5and where ℎ+5are the heritability estimates of the two traits and 𝑉")and 𝑉"+are the variances of the 

traits. 

Traditionally genetic correlations are calculated from pedigree data using statistical methods to 

partition phenotypic (co)variance into genetic variance and genetic covariance (Henderson 1986). More 

recent methods make use of genome-wide single nucleotide polymorphism (SNP) data and the very 

small coefficients of relationship between very large numbers of unrelated individuals in order to 

calculate these parameters (Lee et al., 2012). Since only common variants are included in the 

calculations, this approach assumes that the genetic correlation is the same across the allelic frequency 

spectrum. Accepting this caveat as reasonable, the approach has an advantage over the traditional 

methods, as unrelated individuals are less likely to have had exposure to similar environmental effects, 

reducing confounding from shared environment. Additionally, as genotyping becomes cheaper, genome-

wide SNP data is becoming more readily and widely available than pedigree data. Moreover, unbiased 

estimates of genetic correlations are achievable with minimal computing resources from analysis of 

summary statistics from genome-wide association studies via the LD-score regression method (Bulik-

Sullivan et al., 2015a; Ni et al., 2017).  
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 The sampling variance of a genetic correlation estimate, depends on, and is larger than, the 

sampling variances of the concurrently estimated heritabilities (Robertson, 1959; Visscher et al., 2014). 

Hence, large sample sizes are needed to estimate genetic correlations with accuracy. James Cheverud 

proposed in 1988 that phenotypic correlations (𝑟7) could be used as a proxy for genetic correlations 

(Cheverud, 1988).   

Whilst there has been criticism of the conjecture, most notably by Willis et al. (1991), subsequent 

studies in various organisms have provided much empirical evidence and theory supporting the 

conclusion. Roff (1996) considered a variety of traits from previously published datasets. This 

investigation showed that the relationship between the two correlations was most concordant in 

morphological traits, as opposed to behavioral or life history traits. In addition, while the average 

absolute disparity (Dabs = |rp-rg| (Willis et al., 1991)) between the correlations was relatively high (0.24-

0.46), this difference could be attributed to the sampling error of rg.  In 2008, Kruuk et al. repeated the 

analysis of Roff’s 1996 paper with more recent data with an increased sample size, reaching similar 

conclusions.  

 The suitability of using phenotypic correlations as a proxy for genetic ones in various traits has 

been discussed by Hadfield et al. (2007), concluding that while the conjecture may be true in traits with 

high heritability, particularly those related to growth, there are still exceptions, and the conjecture most 

likely does not apply to all traits generally. Since phenotypic correlations depend both on the correlation 

of additive genetic and on the correlation of environmental effects (with the term environmental 

representing any effects that are not additive genetic), differences between phenotypic and genetic 

correlations must be explained by the relationship between genetic and environmental effects. Cheverud 

(1984) suggests that most environmental effects often act in the same direction and through the same 

pathways as genetic effects, which leads to a similarity between phenotypic and genetic correlations. 

Hadfield (2007), on the other hand, suggested that certain traits have environmental effects that act in 
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the opposite direction to the genetic effects, which could reflect the conclusion of Roff (1996), who 

found lower correlation for life history and behavioral traits than morphological ones.  

Despite the possible deficiencies of the conjecture when applied to non-morphological traits, 

behavioral researchers often assume that correlations between behaviors can give insight into the 

genetics behind the behavior. In order to test this assumption, Dochtermann (2011) tested the relationship 

between published behavioral genetic and phenotypic correlations from animal studies. The author found 

that while the correlation between the phenotypic and genetic correlations was high (r=0.86), the mean 

absolute difference between traits was also high (0.27), suggesting that phenotypic correlations were not 

a good predictor of genetic correlations between behavioral traits. Dochtermann found that while not a 

good predictor, the phenotypic correlation is able to reliably provide information on the direction of the 

genetic effect for behavioral research, still allowing to make certain genetic conclusions based on 

phenotypic data. 

To date, studies investigating the existence of Cheverud’s conjecture in specific populations have 

looked at morphological traits in insects (Roff, 1995; Reusch & Blanckenhorn, 1998), tamarins 

(Ackermann & Cheverud, 2002), and plants (Waitt & Levin, 1998) with results corroborating the 

findings of Cheverud and Roff. While the conjecture has not been investigated in humans, it has been 

applied in human modelling. As genetic data are not directly accessible in many ancient human 

populations, phenotypic traits have been used to make conclusions regarding genetic information 

(Weaver et al., 2007; Relethford & Blangero, 1990).  

 While the proportionality of phenotypic and genetic correlations has been assumed to be true in 

human populations, there has yet to be a study to investigate the conjecture in the context of humans.  

This study aims to fill the gap in understanding how the conjecture applies in human populations. 

Moreover, it aims to show whether human data differs from the results seen in animal and plant studies. 

Here, first we investigate the relationship between phenotypic and genetic correlations across 17 traits. 
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We then investigate the relationship by considering two general types of traits: morphological traits and 

other (non-morphological) traits. It was hypothesized that, similar to other species, genetic and 

phenotypic correlations are concordant in human traits, with a strong relationship particularly in 

morphological traits. Historically, the study of genetic correlations in humans has been limited by 

availability of data. This study uses genetic and phenotypic data, drawn from the first phase of the UK 

Biobank - a large sample of unrelated individuals (Sudlow et al., 2015). This wealth of data allows a 

new look at Cheverud's conjecture in the context of humans.  

Methods 

 Participants from the UK Biobank with British/Irish ancestry were selected based on self-

reported ancestry and leading principal components calculated from SNP data, resulting in a sample size 

of 108,035 participants with available genotypes cleaned and imputed to a combined reference panel of 

1000 Genomes and UK10K (see UKB documentation for details about QC and imputation, with sample 

selection following Robinson et al. (2017)). For our analyses we selected Hapmap3 SNPs, with minor 

allele frequency (MAF) > 0.01, a Hardy-Weinberg Equilibrium (HWE) test p-value > 1.0E-6 and 

imputation info-score > 0.3. The total sample was randomly split into two sets (n=54,017, n=54018), 

with no evidence for differences in demographic variables (Supplementary Table 1). This allowed us to 

estimate genetic and phenotypic correlations within in each set, and also allowed estimation of genetic 

correlations between the two independent sets. 

 Traits with > 10,000 observations in each dataset were selected for analysis. Selection of these 

traits included inspecting the distribution, and traits with drastically non-normal distributions were 

excluded. Key covariates and exclusion variables were identified for all traits. Exclusions were handled 

on a trait-by-trait basis. For example, subjects were excluded from analysis for spirometry traits if they 

had smoked within the last hour (see Supplementary Table 2). The effects of sex, age, age2 and testing 
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centre were regressed out of the data using a linear model. Traits relating to the cardiovascular system 

had the effect of blood pressure medication regressed out (medication use was taken as a binary variable). 

Genetically derived principal components were also used as covariates, however only when calculating 

genetic correlations, and not phenotypic ones. This was done to emulate a situation where genetic 

information is not available, which is where Cheverud’s conjecture is relevant. Finally, the residuals 

were transformed with a rank normal transformation (Van der Waerden transformation; (Lehaman, 

1975)).  

 Phenotypic correlations were estimated as Pearson correlations between each pair of traits, within 

both discovery and replication data sets (Figure 1). A genome-wide association study (GWAS) analysis 

was performed using PLINK 1.9 (Chang et al., 2015) for each trait in discovery and replication samples 

separately, using a linear association model. The proportion of variance attributable to genome-wide 

SNPs (SNP-heritability) and the genetic correlation attributable to genome-wide SNPs was estimated 

from the GWAS summary statistics using an LD-score regression analysis as implemented by Bulik-

Sullivan et al. (2015b) in the LDSC software package, using LD-scores estimated from the full data set.  

Briefly, genetic variances (or covariances) are estimated as a function of regressions of the square (or 

product) of association analysis z-statistics of SNPs for traits (or pairs of traits) on their linkage 

disequilibrium scores (LD-scores), where an LD-score is the sum of LD r2 made by the SNP with all 

other SNPs. The method assumes that traits have a polygenic genetic architecture. LD-score estimates 

of genetic correlations agree well with those based on mixed model analysis of full individual level 

genotype data (e.g., GREML in GCTA; Yang et al., 2010; Lee et al., 2012), but are achieved at a small 

fraction of computing resources, albeit with higher standard errors (Bulik-Sullivan et al., 2015a; Ni et 

al., 2017). Traits with estimated SNP-heritability less than 0.05 were removed, as the estimates of genetic 

correlation are unstable for traits with low SNP-heritability. Seventeen traits were used in the final 

analysis (Table 1), which were characterized as either morphological (n=10) or non-morphological 
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(n=7), thereby generating 45 pairwise correlations within the morphological traits, 21 between non-

morphological traits and 70 correlations between-traits for each data set. Genetic correlations were also 

estimated between all pairs of traits between the two data sets. 

 Pearson correlation coefficient, linear regression and absolute disparity (Willis et al., 1991), were 

calculated for within-trait, between-trait and all traits (combined) in both within-dataset and between-

dataset comparisons (see Figure 1). The difference of the slope from the unity line was assessed by 

comparing the least squares linear regression to a linear model with a slope of one. Significance of the 

slope being different from one was set at p < 0.003125, with Bonferroni correction for 16 tests.   

 Comparisons of the environmental correlations (re) and genetic correlations were also performed, 

where 𝑟8 =
9:;9<12=3233

1>?;2=3@>?;233@
 (Supplementary Text 1). Similar analyses were performed as with the 

phenotypic correlation, but using the environmental correlation in its place. The results of the analysis 

are shown in Supplementary Figure 1 and Supplementary Table 3.  

 Finally, in sensitivity analyses to assess the similarity of the structure of the matrices, various 

matrix similarity tests were applied, as discussed by Roff et al. (2012). It is suggested that a variety of 

these tests should be used, as it is possible that they are not all sensitive to the same differences between 

matrices. The random skewers, T-test and T2-test, and modified Mantel test were applied to compare 

phenotypic and genetic correlations. The random skewers method investigates whether two matrices 

respond similarly to selection (Cheverud & Marroig, 2007), the T-test and T2-test consider the equality 

by examining the sum of the absolute difference or squared difference between matrix elements, and the 

modified Mantel test looks at the correlation between the matrix elements. Results for each of the tests 

are shown in Supplementary Materials - Table 4. 

 Given the sample sizes available, phenotypic correlations were estimated with high accuracy. 

There is no current literature on the expected standard error or power from LD score regression, however 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2018. ; https://doi.org/10.1101/291062doi: bioRxiv preprint 

https://doi.org/10.1101/291062
http://creativecommons.org/licenses/by/4.0/


 9 

it can be compared to those expected from the linear mixed model maximum likelihood method 

(GREML), which estimates SNP-heritabilities and genetic correlations from GWAS genotype data 

(Visscher et al., 2014). Empirical comparisons have shown that the error associated with using LD score 

regression is approximately fifty percent larger than that of GREML (Ni et al., 2017). Using the GCTA-

GREML power calculator developed by Visscher et al., the trait with the smallest sample size (heel bone 

density, n=31254/31174) has a power of “0.99” to detect the heritability cutoff of 0.05, with a standard 

error of 0.0101. The pair of traits with lowest sample size (heel bone density and forced vital capacity) 

had a power of 0.98, and a standard error of 0.0219 to detect the genetic correlation of -0.089, as 

estimated by LDSC. In comparison, the observed standard error from LDSC was 0.051, a little more 

than double that predicted for bivariate GREML, although still relatively low. Hence, we conclude that 

the UK Biobank Pilot data is well-powered for the analyses conducted.  
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Figure 1: Schematic diagram of statistical analyses performed. 108,035 British European individuals 
were evenly divided into discovery and replication datasets. Genetic and phenotypic correlations were 
calculated within group for 17 traits. Black arrows show the comparisons performed. Empty grey arrows 
indicate comparisons similar to the equivalent grey arrow (ie. the within-replication, between-trait 
comparison is the same as the within-discovery, between-trait comparison). *=Figure 3, Table 2A †= 
Table 2B 
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Table 1: Final list of traits used in study with corresponding sample size for both discovery and 
replication samples. 

Morphological Traits  Non-Morphological Traits 

Trait Sample Size*  Trait Sample Size* 
Body Mass Index 53871/53867  Basal Metabolic Rate 53112/53087 
Body Fat Percentage 53086/53046  Diastolic Blood Pressure 50801/50682 
Forced Vital Capacity 42341/42336  Heel Bone Density 31254/31174 
Height 53931/53926  Neuroticism Score 43940/44204 
Hip Circumference 53940/53937  Pulse Rate 50801/50682 
Peak Expiratory Flow 48399/48262  Reaction Time 53693/53716 
Waist Circumference 53942/53941  Systolic Blood Pressure 50801/50682 
Weight 53886/53885    
Grip Strength (R) 53802/53789    
Grip Strength (L) 53803/53796    

Average 48927/48897  Average 48927/48897 

* Formatted as “discovery/replication” 
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Results 

 Across all traits the estimated SNP-heritabilities ranged from 0.073 to 0.52, with a mean of 0.20 

(Figure 2). The standard errors of the heritability estimates reflected the sample sizes and ranged from 

0.009 to 0.042. Morphological traits had a higher average estimated SNP-heritability (0.23) than non-

morphological traits (0.16), but the difference was not significant (p=0.22). The Pearson correlation 

coefficients between the phenotypic and genetic correlations for the combined comparison of all 17 traits 

were r=0.97 and r=0.96 for each of the between-dataset comparisons (Table 2A). The least squares linear 

regression coefficient was significantly different from the unity line when considering all traits 

combined, however it was not significant when considering only morphological or non-morphological 

traits (Table 2A). The mean difference between correlations was 0.06 in both cases, calculated using the 

method described by Willis et al. (1991) and described earlier (Dabs = |rp-rg|). This difference was not 

significantly different from 0 for both discovery and replication datasets. The maximum difference 

between two correlations was 0.24 and the minimum was 0.0004. On average, the magnitude of genetic 

correlations was 0.04 higher than phenotypic ones.  

 Comparison between morphological and non-morphological traits showed some general 

differences between the two types of traits. Both types of traits had strong positive correlations across 

both datasets (between r=0.92 and r=0.97, Table 2A). However, the distribution of correlations was 

different between the two groups: morphological traits were normally distributed with a range of genetic 

and phenotypic correlations (between 0 and 1) while distribution of the non-morphological trait 

correlations was right-hand skewed with a mean closer to 0 (Figure 3). In both sets of traits, however, 

least squares linear regression was not significantly different from the unity line. The mean absolute 

disparity between correlations ranged between 0.05 and 0.09 (Table 2A). Very similar results to those 

above were seen in within-dataset analysis (Table 2B). None of the parameters changed appreciably, and 

any differences were lost when rounding values.  
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 Repeating the same analysis with environmental correlation showed a similar result, albeit with 

slightly lower levels of correlation (r=0.90-0.96), and slightly higher mean absolute disparity (0.06-

0.11). Of note, non-morphological comparisons were lower than the morphological comparison for the 

within-trait correlation in the discovery dataset. Full results can be found in Supplementary Table 3. 

 Comparison between the phenotypic and genetic correlations using the random skewers method 

had p-values of 1.0 for all comparisons, giving no evidence to reject the null hypothesis (Supplementary 

Material – Table 4). Both the T-test and T2-test comparisons showed no overall difference between the 

off-diagonal elements of the matrices, and the modified Mantel test had a p-value of 1.0, supporting the 

null hypothesis of correlation between the matrix elements (Roff et al., 2012). Plots of difference in 

correlation versus mean heritability and mean sample size, as well as standard error versus mean 

heritability and mean sample size can be found in Supplementary Figure 2.  
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Figure 2: Boxplots of the distribution of estimated SNP-heritabilities for all traits (combined, 17 traits), 
morphological traits (10 traits), and non-morphological traits (7 traits). Quantitative traits were 
selected from the UK Biobank and SNP-heritabilities estimated through LD-score regression. Sample 
sizes used to calculate SNP-heritabilities range from 31174 to 53942 individuals.  

Figure 3: Plots of genetic correlation versus phenotypic correlation for the between-dataset 
comparison. 108,035 British European individuals were distributed into discovery (n=54017) and 
replication (n=54018) datasets. Genetic and phenotypic correlations were calculated within group for 
17 traits. A. Genetic correlations from discovery dataset, phenotypic correlations from replication 
dataset. B. Genetic correlations from replication dataset, phenotypic correlations from discovery 
dataset. The between-trait comparison refers to the correlations between morphological (M) and non-
morphological traits (N).  
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Table 2: Quantitative comparisons of phenotypic and genetic correlations  

A: Summary statistics of least squares linear regression of phenotypic correlations and between-dataset 
genetic correlations for all traits (combined), morphological traits, and non-morphological traits. Table 
headings indicate which correlations are being compared between the groups.   

 
Discovery genetic 

Replication phenotypic  
Discovery phenotypic 

Replication genetic 

 r Slope Intercept Avg Dabs‡  r Slope Intercept Avg Dabs‡ 

Morphological 0.97*(0.03) 1.08† 0.01 0.09(0.04)  0.97*(0.03) 1.03 0.04 0.08(0.04) 

Non-Morphological 0.93*(0.06) 0.92 -0.01 0.06(0.07)  0.93*(0.06) 0.90 0.00 0.05(0.06) 
Morphological/Non-
morphological 

0.96*(0.03) 1.08 -0.01 0.05(0.05)  0.96*(0.03) 1.10 -0.03 0.05(0.05) 

Combined 0.97*(0.02) 1.09† -0.01 0.06(0.05)  0.97*(0.02) 1.07† 0.00 0.06(0.05) 

 
B Summary statistics of least squares linear regression of within-dataset phenotypic and genetic 
correlations for morphological traits, non-morphological traits, between-trait and all traits (combined) 
in both the discovery and replication samples.  

 Discovery  Replication 

 r Slope Intercept Avg Dabs‡  r Slope Intercept Avg Dabs‡ 

Morphological 0.97*(0.03) 1.09† 0.01 0.09(0.04)  0.97*(0.03) 1.03 0.04 0.08(0.04) 
Non-Morphological 0.93*(0.06) 0.92 -0.01 0.05(0.07)  0.92*(0.06) 0.89 0.00 0.05(0.06) 
Morphological/Non-
morphological 0.96*(0.03) 1.07 -0.01 0.05(0.05)  0.96*(0.04) 1.10 -0.03 0.06(0.05) 

Combined 0.97*(0.02) 1.09† -0.01 0.06(0.05)  0.96*(0.02) 1.07† 0.00 0.06(0.05) 
 
*=significant at p<0.003125 (Bonferroni multiple testing correction) 

†=significant difference from unity line (p<0.003125)  
‡=average of absolute disparity 
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Discussion 

 The aim of this study was to investigate the relationship between genetic and phenotypic 

correlations in humans using data from large samples of unrelated individuals (ie very distantly related) 

from the UK Biobank.  Based on reports from other species, we hypothesized a strong correlation 

between genetic and phenotypic correlations but with a stronger correlation between morphological than 

non-morphological traits. Our analyses confirmed these hypotheses, but it is notable that the phenotypic 

and genetic correlations between non-morphological traits, while often different from zero, were smaller 

than those between morphological traits. High Pearson correlation coefficients were seen across both of 

the between-dataset comparisons (0.92-0.97), as well as in within-dataset correlations (0.93-0.97) (Table 

2A,B). These findings indicate that the results are reproducible in independent samples, and more 

practically, that overall the phenotypic correlations from one group are good predictors of genetic 

correlations in an independent sample of the same ethnicity. The mean absolute disparity between the 

combined phenotypic and genetic correlations was not significantly different from zero in both between-

dataset comparisons (Table 2), as well as in within-dataset comparisons (Table 3). These values support 

the conclusion of Roff (1996) and Kruuk et al. (2008) who suggested that their reported differences 

(0.24-0.46 and 0.245 respectively) are a reflection of sampling error of rg. The mean absolute disparity 

in the current paper is much lower, reflecting the larger sample sizes lowering the sampling error of rg. 

Additionally, application of the random skewers, T-test, T2-test and modified Mantel test methods (Roff 

et al., 2012; Cheverud & Marroig, 2007) indicated similar structure between the covariance matrices 

(Supplementary Material 4). In conclusion, these results confirm the prior assumptions used in 

anthropometric studies. Just as it was true in other species, phenotypic correlations are good proxies for 

genetic correlations in human traits. 

 Comparison between morphological and non-morphological traits showed little difference 

between the two in terms of the relationship between phenotypic and genetic correlations, although there 
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was a difference in the average magnitude of the correlations (mean magnitude of genetic correlations 

between morphological traits was 0.39(SE=0.04) and between non-morphological traits was 

0.11(SE=0.07), difference p=5x10-5). While the correlation coefficient of the morphological within-trait, 

between-dataset comparison (r=0.97/0.97, Table 2A) was higher than that of the non-morphological 

comparison (r=0.93/0.92, Table 2A), this was not a significant difference. This finding was also true in 

the within-dataset comparisons. It is possible that this difference in correlation is driven by the difference 

in SNP-heritability (Figure 2), and thus accuracy of rg estimation. However, while geometric mean 

heritability of the pair of traits and the standard error of rg is negatively correlated (Supplementary Figure 

2), this is not true between the mean heritability and the difference between the phenotypic and genetic 

correlations (Supplementary Figure 2). This would suggest that the difference in SNP-heritability 

between the traits does not play a major role in the differences between phenotypic and genetic 

correlations, and thus does not contribute to the differences between morphological and non-

morphological traits seen in this study. The between-trait, between-dataset comparison showed high 

correlation between the two types of traits (Table 2, Figure 3). It is worth noting that the strong overall 

phenotypic correlation between morphological and non-morphological traits may be a characteristic of 

the non-morphological traits selected in this study. The selected traits may not be representative of the 

whole spectrum of non-morphological traits. Consequently, the relationship of other non-morphological 

traits could be different from that observed here. 

 To summarise, a strong correlation of phenotypic and genetic correlations was found in human 

traits. This finding is novel in the context of humans, as previous analyses of this kind were limited by 

sample size and techniques. Additionally, the correlation relationship between phenotypic and genetic 

correlations was consistent between morphological and non-morphological traits. This is a surprising 

result given previous literature in the area, which suggested that morphological traits may fit the 

conjecture better than life history traits (Roff, 1996), but as discussed, this could partly be due to the 
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traits selected for this study as the non-morphological traits are not representative of life history traits. 

Additionally, the distinction between the categories of “morphological” and “non-morphological” is 

unclear for some traits. For example, forced vital capacity is directly related to lung volume, a 

morphological trait. On the other hand, non-morphological factors such as lung compliance, muscle 

strength and mucus secretions also affect the forced vital capacity, making it difficult to classify the trait. 

While the phenotypic and genetic correlations between non-morphological traits were relatively low, 

those between morphological and non-morphological traits covered a similar range, but had on average 

a slightly lower magnitude than those between the morphological traits. An important assumption of our 

approach is that the genetic correlations estimated from genome-wide SNP data are representative of the 

genetic correlations of variants across the allelic spectrum, but this seems to be a reasonable assumption. 

For example, the genetic correlation estimate calculated in this paper between BMI and body fat 

percentage was 0.86, consistent with estimates from twin studies (Faith et al., 1999). Another example 

is the correlation between systolic blood pressure and BMI, which was 0.21 in this study, consistent with 

twin studies (Cui et al., 2002).  

 The biological mechanism for the expected difference between types of traits discussed by Waitt 

& Levin (1998) is that of phenotypic plasticity - additive environmental effects on a trait. One of the 

criticisms of Cheverud’s conjecture by Willis et al. (1991) was that most of the data used in the original 

paper came from laboratory grown animals, leading to an underestimation of the environmental effects, 

which would be found in nature. Cheverud (1984) suggested that environmental and genetic effects are 

governed by the same developmental constraints and thus should have similar patterns, decreasing the 

impact on the correlation between traits. Hadfield et al. (2007), on the other hand, suggested that for 

certain groups of traits, the genetic and environmental effects act in opposing directions, decreasing 

correlation. In this study, rg and re were positively correlated (r=0.90-0.96, Supplementary Table 3), 

suggesting that the genetic and environmental effects have similar correlational patterns. This provides 
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support for Cheverud’s suggestion, and overcomes the “underestimation of environmental effects” 

argument posed by Willis et al. (1991), as the UK Biobank is a population based community sample. 

However, in the case of non-morphological traits, it may also indicate that our sample of traits is not 

fully representative of the whole spectrum.  

 When calculating the genetic correlations, many covariates were used in order to best estimate 

the value of rg, including genetically derived principal components. In order to simulate a scenario where 

no genetic information is available, phenotypic correlations did not include covariates that contained 

genetic information. Instead, they were limited to covariates that would have been available without such 

information (age, age2, sex and location). When these covariates were not accounted for, the mean 

absolute disparity ranged between 0.06 and 0.20 (Supplementary Table 5), higher than when covariates 

are accounted for (Table 2). Whilst the disparity without covariates is still quite low compared to prior 

literature, this finding indicates that environmental effects do play a role in modulating the phenotypic 

correlation, as suggested by phenotypic plasticity. Thus, it is important to account for some of the major 

confounding effects when using phenotypic correlations to estimate genetic ones, although in some 

studies confounding factors may not be recorded.  

 The results of this study are of specific interest in anthropological studies where anthropometric 

measurements are used as a proxy for genetic information. The results presented show support for this 

approximation in human studies, although, care should be taken when extrapolating the results of this 

study to other populations and environmental contexts, such as in ancient human populations subject to 

anthropological studies. The evidence provided here is based on observations in modern human 

populations, which may differ from earlier human populations. For example, large-scale famine and 

infections would have often affected earlier human populations, but are less of an issue for modern 

Europeans. Despite this, it is often already assumed that the phenotypic and genetic variance-covariance 

matrices are proportional between modern humans and even Neanderthals (Weaver et al., 2007). 
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Another caveat is that the morphological traits used in this study differ from those used in anthropometric 

studies. Nonetheless, the evidence from this study suggests that morphological traits do appear to fit 

Cheverud’s conjecture well, supporting its use in these kinds of traits.   

 In conclusion, this study investigated Cheverud’s conjecture in the context of human genetics. 

Correlations calculated using LD-score regression utilizing data from the UK Biobank support the 

validity of the conjecture in human populations. This study provides the quantitative evidence to support 

the use of phenotypic correlations as a proxy for genetic correlations in studies where genetic information 

is not available.  
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Supplementary Material 
Supplementary Table 1 - Population Demographic variables 
between samples 
 
Trait Discovery (mean(sd)) Replication (mean(sd)) Percent Difference (%) 

Number Male 28311 28452 0.50 

Number Female 25706 25566 -0.54 

Age 56.91(7.1) 56.93(7.9) 0.04 

Height 168.85(9.2) 168.82(9.2) -0.02 

Weight 78.68(16.0) 78.68(16.1) -0.007 

BMI 27.52(4.8) 27.52(4.8) 0.02 
 

108,035 British European individuals were distributed into discovery and replication datasets. The 

above table shows the distribution of certain demographic characteristics between the two datasets. 

Overall, there is only a small difference in the demographics between the datasets.  
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Supplementary Table 2 - All traits with exclusions and 
covariates 
 

Trait Description Type* 

Total 
sample 
size Exclusions† Covariates‡ 

id id - 108035 NA NA 

basalmetabolicrate Basal metabolic rate other 106199 NA sex,age,age2,centre 

diastolicpressure 

Diastolic blood 
pressure automated 
reading other 101483 NA 

sex,age,age2,centre
,bp 

FVCbest 
Forced vital capacity 
(FVC) Best measure morph 84677 

inhaler,smoked
,spiro,caffeine sex,age,age2,centre 

neuroticism Neuroticism score other 88144 NA sex,age,age2,centre 

PEF 
Peak expiratory flow 
(PEF) morph 96661 

inhaler,smoked
,spiro,caffeine sex,age,age2,centre 

pulserateauto 
Pulse rate automated 
reading other 101483 NA 

sex,age,age2,centre
,bp 

reactiontime 

Mean time to 
correctly identify 
matches other 107409 NA sex,age,age2,centre 

systolicpressure 

Systolic blood 
pressure automated 
reading other 101483 NA 

sex,age,age2,centre
,bp 

BMI 
Body mass index 
(BMI) morph 107738 NA sex,age,age2,centre 

bodyfat Body fat percentage morph 106132 NA sex,age,age2,centre 

gripleft 
Hand grip strength 
(left) morph 107591 NA sex,age,age2,centre 

gripright 
Hand grip strength 
(right) morph 107599 NA sex,age,age2,centre 

heelbonedensitytsc
ore 

Heel bone mineral 
density (BMD) T-
score automated other 62428 NA sex,age,age2,centre 

height Standing height Morph 107857 NA sex,age,age2,centre 

hipcircum Hip circumference Morph 107877 NA sex,age,age2,centre 

waistcircum Waist circumference Morph 107883 NA sex,age,age2,centre 
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weight Weight Morph 107771 NA sex,age,age2,centre 

age 
Age when attended 
assessment centre Covar 108035 - - 

age2 NA Covar 108035 - - 

bp 
Prescribed blood 
pressure medication Covar 108035 - - 

caffeine 
Caffeine drink within 
last hour Covar 101594 - - 

centre Testing centre Covar 108035 - - 

inhaler 
Used an inhaler in 
the last hour Covar 101594 - - 

PC1 Principal Component Covar 108035 - - 

PC10 Principal Component Covar 108035 - - 

PC11 Principal Component Covar 108035 - - 

PC12 Principal Component Covar 108035 - - 

PC13 Principal Component Covar 108035 - - 

PC14 Principal Component Covar 108035 - - 

PC15 Principal Component Covar 108035 - - 

PC2 Principal Component Covar 108035 - - 

PC3 Principal Component Covar 108035 - - 

PC4 Principal Component Covar 108035 - - 

PC5 Principal Component Covar 108035 - - 

PC6 Principal Component Covar 108035 - - 

PC7 Principal Component Covar 108035 - - 

PC8 Principal Component Covar 108035 - - 

PC9 Principal Component Covar 108035 - - 

sex Sex Covar 108035 - - 

smoked 
Smoked a cigarette 
or pipe in last hour Covar 12328 - - 

spiro 
Contraindications for 
spirometry Covar 107965 - - 

 
 

*=types can be morphological (morph), non-morphological (other) or a covariate (covar) 
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†=exclusions are based on using an inhaler in the previous hour (inhaler), smoking in the previous hour 
(smoked), caffeine drunk in the previous hour (caffeine), and having a contraindication for spirometry 
(spiro) 
 
‡=covariate column does not show principal components 1-15, which were used in addition to those 
listed 
 
The above table shows the selected traits, as well as the covariates used in the study. 

Supplementary Text 1 - Derivation of re 
Within each dataset there is ℎ?5, ℎ55, 𝑟7, 𝑟A, 𝑉B? and 𝑉B5. 
 
Since: 

𝐶𝑜𝑣(𝑃1, 𝑃2) = 𝐶𝑜𝑣(𝐺1, 𝐺2) + 𝐶𝑜𝑣(𝐸1, 𝐸2) 
 

𝑟7-𝑉B?𝑉B5 = 𝑟A1ℎ?5ℎ55𝑉B?𝑉B5 + 𝑟81(1 − ℎ?5)(1 − ℎ55)𝑉B?𝑉B5 

 

𝑟7 = 𝑟A1ℎ?5ℎ55 + 𝑟81(1 − ℎ?5)(1 − ℎ55) 

And thus: 

𝑟8 =
𝑟7 − 𝑟A-ℎ?5ℎ55

-(1 − ℎ?5)(1 − ℎ55)
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Supplementary Figure 1 - Comparison plots of between-dataset 
rg and re 
 

 

Plots of genetic correlation versus environmental correlation for the between-dataset comparison. 

108,035 British European individuals were evenly distributed into discovery and replication datasets. 

Genetic and phenotypic correlations were calculated within group for 17 traits. Environmental 

correlations were calculated using the formula 𝑟8 =
9:;9<12=3233

1>?;2=3@>?;233@
, as derived in the supplementary text.  

A. Genetic correlations from discovery dataset, environmental correlations from replication dataset. B. 

Genetic correlations from replication dataset, environmental correlations from discovery dataset. 
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Supplementary Table 3 - Summary statistics of linear regression between rg and 

re for between-dataset and within-dataset comparisons. 

The following tables contain the summary statistics of least squares linear regression of environmental 

correlations and between-dataset genetic correlations for all traits (combined), morphological traits, 

and non-morphological traits. Table headings indicate which correlations are being compared between 

the groups. Environmental correlation was calculated using the formula 𝑟8 =
9:;9<12=3233

1>?;2=3@>?;233@
, as derived 

in the supplementary text.  

 
Discovery genetic 

Replication environmental  
Discovery environmental 

Replication genetic 

 r Slope Intercept Avg Dabs‡  r Slope Intercept Avg Dabs‡ 

Morphological 0.95*(0.03) 1.08 0.02 0.11(0.04)  0.96*(0.03) 1.03 0.05 0.10(0.04) 
Non-Morphological 0.91*(0.07) 0.89 -0.01 0.06(0.07)  0.90*(0.07) 0.86 0.00 0.06(0.06) 
Between-trait 0.95*(0.04) 1.06 -0.01 0.06(0.05)  0.94*(0.04) 1.08 -0.03 0.06(0.05) 

Combined 0.95*(0.02) 1.08† 0.00 0.08(0.05)  0.95*(0.02) 1.07† 0.00 0.08(0.05) 
 
 

 Discovery  Replication 

 r Slope Intercept Avg Dabs‡  r Slope Intercept Avg Dabs‡ 

Morphological 0.95*(0.03) 1.08 0.02 0.11(0.04)  0.95*(0.03) 1.02 0.05 0.10(0.04) 
Non-Morphological 0.89*(0.07) 0.87 -0.01 0.07(0.07)  0.90*(0.07) 0.86 0.00 0.06(0.06) 
Between-trait 0.94*(0.04) 1.05 -0.01 0.06(0.05)  0.94*(0.04) 1.08 -0.03 0.06(0.05) 

Combined 0.95*(0.02) 1.08† 0.00 0.08(0.05)  0.95*(0.02) 1.06 0.00 0.08(0.05) 
 
*=significant at p<0.003125 (Bonferroni multiple testing correction) 

†=significant difference from unity line (p<0.003125)  

‡=average of absolute disparity 
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Supplementary Table 4 - Summary of results from matrix comparison methods. 

The comparison methods were implemented as supplied by Roff, 2012 ( doi: 
10.5061/dryad.kb27f3t1), adapted to compare off-diagonal of the matrices. The null hypothesis for 
each test is similarity between the matrices. 
 

Random Skewers Discovery genetic 
Replication phenotypic 

Discovery phenotypic 
Replication genetic 

 r p r p 

Morphological 0.98 1 0.98 1 

Non-Morphological 0.99 1 0.99 1 

Combined 0.98 1 0.98 1 
     

T-Method Discovery genetic 
Replication phenotypic 

Discovery phenotypic 
Replication genetic 

 T p T p 

Morphological 4.04 1 3.69 1 

Non-Morphological 1.12 1 1.15 1 

Combined 8.85 1 8.8 1 
     

T2-Method Discovery genetic 
Replication phenotypic 

Discovery phenotypic 
Replication genetic 

 T2 p T2 p 

Morphological 0.53 1 0.49 1 

Non-Morphological 0.09 1 0.09 1 

Combined 0.93 1 0.97 1 
     

Modified Mantel Test Discovery genetic 
Replication phenotypic 

Discovery phenotypic 
Replication genetic 

 r p r p 

Morphological 0.94 1 0.96 1 

Non-Morphological 0.98 1 0.98 1 

Combined 0.97 1 0.96 1 
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Supplementary Figure 2 - Various plots 

 
 

A. Plots of standard error of correlation (y-axis) versus the geometric mean heritability of the pair of 

traits (x-axis) for discovery (left) and replication (right) datasets. B. Plots of standard error of correlation 

(y-axis) versus the mean sample size of the pair of traits (x-axis) for discovery (left) and replication (right) 

datasets. C. Plots of difference between correlations (rg-rp, y-axis) versus the geometric mean 
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heritability of the pair of traits (x-axis) for discovery (left) and replication (right) datasets. D. Plots of 

difference between correlations (rg-rp, y-axis) versus the mean sample size of the pair of traits (x-axis) 

for discovery (left) and replication (right) datasets.   
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Supplementary Figure 3 - Comparison plots of between-dataset 
rg and rp without adjusting for covariates 
In the main paper, the genetic correlations were calculated while adjusting for all listed covariates 

(Supplementary Table 2), in addition to the 15 genetically derived principal components. The 

phenotypic correlations did not use the 15 PCs, in order to simulate a scenario where no genetic 

material is available. The analysis was also run where the phenotypic correlations were calculated 

without covariates altogether. This figure shows the between-dataset comparison with rg, similar to 

Figure 3 presented in the main paper.  

 

Plots of genetic correlation versus environmental correlation for the between-dataset comparison. 

108,035 British European individuals were evenly distributed into discovery and replication datasets. 

Genetic and phenotypic correlations were calculated within group for 17 traits. Environmental 

correlations were calculated using the formula 𝑟8 =
9:;9'12=3233

1>?;2=3@>?;233@
, as derived in the supplementary text.  
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A. Genetic correlations from discovery dataset, environmental correlations from replication dataset. B. 

Genetic correlations from replication dataset, environmental correlations from discovery dataset. 
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Supplementary Table 5 - Summary statistics of linear regression (comparison of 

rp and rg without covariates) 

The analysis presented here was run where the phenotypic correlations were calculated without 

covariates. This figure shows the summary statistics of the linear regression in the between-dataset 

comparison with rg, similar to Tables 2 and 3 presented in the main paper. 

 

 
Discovery genetic 

Replication environmental  
Discovery environmental 

Replication genetic 

 r Slope Intercept Avg Dabs‡  r Slope Intercept Avg Dabs‡ 

Morphological 0.81*(0.06) 0.82 0.04 0.20(0.04)  0.83*(0.06) 0.8† 0.06 0.19(0.04) 

Non-Morphological 0.9*(0.07) 0.82 0 0.07(0.07)  0.92*(0.06) 0.82† 0.01 0.06(0.06) 

Between-trait 0.75*(0.08) 0.71† 0.02 0.12(0.05)  0.81*(0.07) 0.78† -0.01 0.11(0.05) 

Combined 0.82*(0.03) 0.81† 0.02 0.14(0.05)  0.85*(0.03) 0.82† 0.01 0.13(0.05) 

 
 

 Discovery  Replication 

 r Slope Intercept Avg Dabs‡  r Slope Intercept Avg Dabs‡ 

Morphological 0.81*(0.06) 0.82 0.04 0.20(0.04)  0.83*(0.06) 0.8† 0.06 0.19(0.04) 

Non-Morphological 0.9*(0.07) 0.82 0 0.07(0.07)  0.92*(0.06) 0.83† 0.01 0.05(0.06) 

Between-trait 0.75*(0.08) 0.7† 0.02 0.12(0.05)  0.82*(0.07) 0.78† -0.01 0.11(0.05) 

Combined 0.82*(0.03) 0.8† 0.02 0.14(0.05)  0.85*(0.03) 0.83† 0.01 0.13(0.05) 

 
*=significant at p<0.0083 (Bonferroni multiple testing correction) 

†=significant difference from unity line (p<0.00625)  

‡=average of absolute disparity 
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Supplementary Table 6 - Heritability estimates with standard 
errors 
 
108,035 British European individuals were evenly distributed into discovery and replication datasets. 
A GWAS study was performed and LD-scores calculated. These were used to perform an LD-score 
regression using the software LDSC. The estimated heritability and standard error for the estimates 
are shown below.   
 
Trait Discovery Heritability Replication Heritability 

basalmetabolicrate 0.12(0.01) 0.15(0.01) 

BMI 0.25(0.01) 0.24(0.01) 

bodyfat 0.24(0.01) 0.22(0.01) 

diastolicpressure 0.15(0.01) 0.14(0.01) 

FVCbest 0.27(0.02) 0.23(0.01) 

gripleft 0.12(0.01) 0.12(0.00) 

gripright 0.11(0.01) 0.11(0.01) 

heelbonedensitytscore 0.31(0.04) 0.33(0.03) 

height 0.47(0.03) 0.51(0.03) 

hipcircum 0.21(0.01) 0.22(0.01) 

neuroticism 0.11(0.02) 0.15(0.01) 

PEF 0.18(0.01) 0.18(0.02) 

pulserateauto 0.17(0.01) 0.14(0.01) 

reactiontime 0.07(0.01) 0.09(0.00) 

systolicpressure 0.14(0.01) 0.12(0.01) 

waistcircum 0.20(0.01) 0.20(0.01) 

weight 0.27(0.01) 0.27(0.01) 
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Supplementary Tables 7-14 - Genetic and phenotypic 
correlation matrices 
 

The genetic and phenotypic correlation matrices used in this study, as well as their corresponding 

standard errors, are provided in the supplementary material spreadsheet.  
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