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Abstract

Tumor immune cell infiltration is a well known factor related to survival of cancer
patients. This has led to deconvolution approaches that can quantify immune cell
proportions for each individual. What is missing, is an approach for modeling joint
patterns of different immune cell types. We adapt a deep learning approach, deep
Boltzmann machines (DBMs), for modeling immune cell gene expression patterns in
lung adenocarcinoma. Specifically, a partially partitioned training approach for dealing
with a relatively large number of genes. We also propose a sampling-based approach that
smooths the original data according to a trained DBM and can be used for visualization
and clustering. The identified clusters can subsequently be judged with respect to
association with clinical characteristics, such as tumor stage, providing an external
criterion for selecting DBM network architecture and tuning parameters for training.
We show that the hidden nodes of the trained networks cannot only be linked to clinical
characteristics but also to specific genes, which are the visible nodes of the network. We
find that hidden nodes that are linked to tumor stage and survival represent expression
of T-cell and mast cell genes among others, probably reflecting specific immune cell
infiltration patterns. Thus, DBMs, trained and selected by the proposed approach,
might provide a useful tool for extracting immune cell gene expression patterns. In the
case of lung adenocarcinomas, these patterns are linked to survival as well as other
patient characteristics, which could be useful for uncovering the underlying biology.

Introduction 1

The heterogeneity in high dimensional gene expression measurements from tumor 2

specimens partially will be due to different cell types present in the sample. A prominent 3

example is the infiltration of tumors by immune cells which affects patients survival. 4

Immune cell type-specific marker genes have been inferred [1] allowing for techniques 5

such as CIBERSORT [2] that estimate proportions of immune cell types in tumor 6

samples based on gene expression profiles. However these compact representations of 7

immune cell related gene expression lack joint patterns of the abundance of different 8

immune cell types since the representation is limited to discrete estimates of cell type 9

abundances ignoring interactions between cell type-specific marker genes. 10

Deep learning approaches on the other hand allow for a low-dimensional 11

representation of a large number of measurements by learning the joint distribution of 12

the represented features [3]. Specifically, deep Boltzmann machines (DBMs; [4]) provide 13

a network-structured probability model that can be used for exploring the 14
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low-dimensional representation that corresponds to the activation of hidden nodes in 15

the network. The probability distribution learned by the network is manifested in 16

weights between nodes of different abstraction layers that can be actively inspected and 17

interpreted. 18

Unfortunately, deep learning techniques in general, and DBMs in particular, are 19

limited to settings where the number of individual training data (patients) is much 20

larger compared to the number of features (gene expression). Yet, there are approaches 21

such as partitioning DBMs, which we have recently adapted for genomic data in a 22

different context [5]. Here we adapt such a partitioning approach for modeling immune 23

cell related gene expression in lung adenocarcinoma. Specifically, we propose an 24

approach for selecting between different network architectures and sets of tuning 25

parameters based on visualization and clustering. Subsequently, association with clinical 26

characteristics of patients and specific immune cell groups is investigated. Specifically, 27

the learned representation is then tested for association with tumor stage and patient 28

survival. 29

In the Methods section, we introduce the lung adenocarcinoma immunome data 30

considered for modeling. Then, we briefly introduce DBMs, including an approach for 31

determining partitions of gene expression features, as a basis for subsequently 32

suggesting different variants of partitioned DBM training to deal with a large number of 33

genes. For judging DBMs, we introduce a sampling-based approach for obtaining a 34

representation of the observed data that is smoothed according to a trained DBM. The 35

latter will be used for clustering the original data, to allow for visually judging DBM 36

model quality based on the resulting patterns. This is illustrated in the Application 37

section. Subsequently, clinical characteristics and different types of immune cell genes 38

will be linked to hidden DBM units. In the Concluding Remarks, we will discuss 39

potential extensions and other promising application areas. 40

Materials and methods 41

Immune gene type-specific expression data 42

Gene expression measured in lung adenocarcinoma (LUAD) of 515 different patients 43

was retrieved from the cancer genome atlas (TCGA). Normalized counts were accessed 44

via the Broad Institute TCGA Firehose (data run: July 15th 2016). We considered 45

immune cell type-specific marker genes as provided by Bindea et al. [1]. We removed 46

five genes that showed no variation, resulting in expression measurements for 461 47

immune cell-type specific marker genes for DBM training. 48

The range of values observed for different immune cell genes varied widely. This 49

makes it difficult to specify a continuous joint distribution that adequately reflects 50

underlying immune cell proportions. Therefore, we chose to dichotomize the expression 51

for each value at the median across all individuals per gene, in essence using each gene 52

as its own reference. This approach would work best if there were two groups of 53

patients for each cell type, one group with high expression, and the second with low 54

expression, and if the two groups were of equal size. This will probably not be the case, 55

but nevertheless the proposed approach might serve as a good working model in absence 56

of further knowledge. 57

Training Deep Boltzmann machines 58

We model the joint distribution P (X1, ..., Xp) of p dichotomized gene expression 59

measurements by deep Boltzmann machines (DBMs) [4]. Assuming a DBM with two 60
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hidden layer (h(1),h(2)), the following log-probability is attributed to the data (v): 61

log(P (v; θ)) = log(
∑

h(1),h(2)

e−E(v,h(1),h(2)))− log(Z(θ)) (1)

where θ corresponds to the parameters of the DBM. E is the energy function 62

E(v,h(1),h(2)) =

− aTv − b(1)Th(1) − b(2)Th(2)−
vTW(1)h(1) − h(1)TW(2)h(2)

(2)

where W(1) and W(2) are the weight matrices connecting v with h(1) and h(1) with 63

h(2) respectively. a, b(1) and b(2) are bias vectors. log(Z(θ)) is the log-partition 64

function 65

log(Z(θ)) = log(
∑
v

∑
h(1),h(2)

e−E(v,h(1),h(2))) (3)

that normalizes the probability. The layered architecture of DBMs enables high-level 66

information to influence parameters in the upper (here second) layer for combining 67

lower-level information for better representation of the data [6]. 68

In order to optimize the likelihood, layer-wise pre-training is employed using 69

contrastive divergence [7], i.e. a two-hidden-layer deep Boltzmann machine is initialized 70

via two stacked restricted Boltzmann machines, RBM1 and RBM2. After the 71

parameters of RBM1 are estimated, RBM2 is trained on the activations of the first layer 72

which are derived by passing the training data through RBM1. Joint refinement of the 73

overall DBM is performed using mean field approximation of the data dependent 74

distribution by variational learning [8] and Gibbs sampling with parallel Gibbs chains 75

for the approximation of the distribution defined by the DBM. 76

Partitioned training 77

To efficiently train a DBM in situations where the number of features (genes) is similar 78

to the number of training data (tumor samples, patients) a partitioned approach was 79

suggested in Hess et al. [5]. Briefly, the idea is to coarsely determine multivariable 80

patterns of dependence by using several multivariable regression model, one for each 81

feature, entering the remaining features as covariates. Based on regression parameters 82

obtained from regularized regression, i.e. on the inferred correlation structure, genes are 83

hierarchically clustered using average linkage. Clusters are obtained by cutting the 84

resulting tree at a specific level such that 10 to 50 genes are clustered together. In Hess 85

et al. [5], a DBM is fully trained for each cluster, and the resulting cluster DBMs are 86

assembled into an overall DBM without further training, setting cross-connections to 87

zero. This allows to consider a number of features that is much larger than the number 88

of observations. In the present setting, the number of features is more moderate. 89

Therefore, we also take cross-connections between cluster DBMs into account. 90

Specifically, we do not train individual DBMs on each partition but only performed 91

the layer-wise pre-training on different partitions, with refinement performed on the 92

overall, assembled DBM. Furthermore, we allow for flexibility in the training by 93

performing the partitioning in the pre-training only for bottom layers (the first hidden 94

layer in the two-hidden-layer DBM considered subsequently), and adding a joint 95

terminal layer that links the cluster DBMs (Fig 1). This in turn would allow for a 96

better representation of high-level dependencies between gene abundances. 97
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Figure 1. Design of the semi-partitioned DBM. During pre-training, weights
between the nodes in the visible layer (v) and the lower hidden layers (only h1 in the
DBM with two hidden layers, shown here) are initialized separately for cluster of
correlated genes. The resulting sub-networks are joined by adding the terminal hidden
layer (here h2). Correlation between genes is inferred by modeling the mean expression
of one gene conditional on the expression of all other genes. Clustering is performed
based on the matrix of the resulting βs. For details of the clustering see Hess et al. [5].
The design of the semi-partitioned DBM is demonstrated for six hypothetical genes.

Joint refinement of the overall DBM is performed as described above. Since weights 98

that connect the previously partitioned layers in the assembled network are initialized 99

to zero, these weights will receive less adjustment during the joint refinement, effectively 100

leading to regularization of connections between the clusters. 101

As in Hess et al. [5], we employed a network with two hidden layers. We use p nodes 102

in the first layer, and p/10 nodes in the second layer to achieve a lower-dimensional 103

representation. For the number of iterations the data is presented to the network 104

(epochs) we considered rather small values, as in Hess et al. [5]. We tested different 105

combinations of the number of epochs for pre-training and joint refinement. For judging 106

the DBMs resulting for different settings, we developed a visualization-based approach, 107

as described in the following. 108

Assessing the learned representation based on sampling 109

We developed a new approach to visualize and evaluate the representation learned by a 110

DBM, based on sampling from the network. The DBM allows to sample from the 111

network by randomly initializing the states of the nodes in the visible and hidden nodes 112

and performing Gibbs sampling for several steps. Yet, in order to arrive at a smoothed 113

representation of the original data, we suggest to initialize the visible units of the 114

network to the original training data. Thereby the Gibbs chain is set to a state close to 115

the original data. After running a Gibbs chain for small number of steps, the visible 116

units correspond to a representation of the original data learned by the network that is 117

still close to the data. We found that 20 steps are sufficient for obtaining such a 118

smoothing effect, and results do not change much with a somewhat larger number of 119

steps, such as 100. 120

Subsequently, the smoothed representation of the original data is used to infer 121

sample to sample and gene to gene distances, using Euclidean distance. Based on the 122

corresponding distance matrices, patients are clustered using hierarchical clustering and 123

average linkage. While the distances themselves can be used for visualizing DBMs, the 124

clustering result also allows for displaying the original data as a kind of heatmap, sorted 125

according to the smoothed representation. Such a plot can be enriched by clinical 126
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annotation, such as tumor stage, to provide a quick glance on whether meaningful 127

patient and gene groups are obtained. To formalize this, we propose to cut the patient 128

clustering tree such as to retrieve two patient clusters, and to inspect for association of 129

these clusters with clinical characteristics. For example, χ2 statistics will be used when 130

considering association with dichotomized tumor stage, contrasting patients with stage I 131

tumors with stage II, III and stage IV patients. 132

Linking hidden units to clinical characteristics and specific 133

immune genes 134

To extract clinical relevant gene patterns from a DBM, we tested for association between 135

hidden units in the terminal layer (hidden layer two) and the clinical characteristics of 136

interest. Specifically, we propagate activations in the network, starting from the original 137

training data, to obtain for each training sample the activation of nodes in the terminal 138

hidden layer, that can be used in a regression model with the clinical characteristic as 139

outcome. Association between significantly clinically associated hidden nodes and visible 140

nodes (genes), reflecting a strong connection, is investigated analogously. However, since 141

we observed many associations between significant hidden units and visible units, we 142

only considered associations as significant that were stronger than 5% of all the 143

associations between terminal hidden and visible units, observed in the network. The 144

genes corresponding to the resulting visible nodes can be considered to be associated 145

with the clinical characteristics associated with the linked terminal layer hidden unit. 146

Results 147

For adequate modeling of immunome patterns in lung adenocarcinomas, we chose the 148

DBM approach described above. Specifically, we considered expression data from 515 149

different lung adenocarcinomas to analyze the immune cell related gene expression, 150

represented by 461 immune cell type-specific marker genes. 151

We used different (partitioned) training approaches and tuning parameters. We set 152

up a standard DBM (DBM), consisting of 461 visible units, 461 units in the first hidden 153

layer and 46 units in the terminal layer. In order to improve learning in presence of a 154

number of gene expression features that is relatively large compared to the number of 155

patients, we also set up different variants of partially partitioned DBMs. In one setting, 156

similar to the approach described in Hess et al. [5], pre-training was performed within 157

completely separated partitions (called “partDBM no joint” in the following). In 158

another setting, as a novel approach, only the visible and first hidden layer were 159

partitioned for pre-training (called “partDBM 1 joint” in the following). In both 160

variants, refinement was performed for the whole DBM. The effect of these choices is 161

illustrated in the following, in particular using the proposed graphical tools. 162

Clustering the original normalized and dichotomized expression data revealed two 163

patient clusters that demonstrated weak concordance with patient groups differing in 164

tumor stage (Fig 2; original). When using 5 epochs for pre-training and 20 epochs for 165

refinement, clustering the original data based on the learned representations extracted 166

from the network by Gibbs sampling (20 steps) lead to more readily visually apparent 167

structure for the partitioned approaches (Fig 2; partDBM no joint, partDBM 1 joint), 168

while standard DBM training resulted in less structure. Except for the standard DBM, 169

all cluster solutions were significantly associated with tumor stage. 170

Yet, the association with tumor stage strongly depends on the number of epochs 171

used for training, besides the overall training approach, as seen from Fig 3. In particular 172

the unpartitioned DBM did only perform well in a certain combination with a very 173

large number of epochs, which might be prone to overfitting. The DBMs which were 174
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Figure 2. Representations of the lung adenocarcinoma gene expression
data learned by DBMs with 5 epochs of pre-training and 20 epochs of
refinement. Expression of dichotomized gene expression data of 461 immune cell
type-specific marker genes in 515 tumors is shown. Expression was either clustered
based on distances inferred from the original data (original) or based on distances
inferred from the learned representations of the DBM. The learned representations were
extracted by sampling from the network after running a Gibbs chain for 20 steps (DBM,
partDBM no joint, partDBM 1 joint). White and grey horizontal lines in the left
margin bar indicate T-cell and Cytotoxic cell type-specific marker genes, respectively.
Solutions with two patient clusters inferred from clustering the original expression data
or the learned representations are indicated by vertical gray and black colored bars
respectively. Tumor stage groups are indicated by cyan and red colored vertical bars in
the bottom margins. Concordance of patient groups and inferred patient clusters is
determined by a χ2 test.

partially partitioned performed better in many scenarios and were more robust against 175

variation of the number of epochs. The partially partitioned DBM where only the 176

visible and the first hidden layer were partitioned during pre-training (“partDBM 1 177

joint”) seems to perform best with an intermediate number of epochs, with performance 178

degradation for a larger number of epochs. In contrast the DBM that was fully 179

partitioned during pre-training (“partDBM no joint”) might even result in better results 180

for a larger number of epochs. Overall, using 5 epochs for pre-training and 20 epochs for 181

joint-refinement, i.e. the setting shown in Fig 2, led to good concordance between 182

clusters extracted from the learned representation and patient groups differing in tumor 183

stage. 184

Although the three architectures differed in the performance to learn the differential 185

gene expression patterns, observed between patients differing in tumor stage, the DBM 186

training approaches performed equally well in clustering genes into a group that does 187

not contribute to the patient clustering and a group of genes that seemed to drive 188

patient clustering. This is indicated by a group of immune cell type-specific gene 189

categories (T cells and Cytotoxic cells) that were similarly clustered in all three network 190
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Figure 3. Concordance of patient groups that differ in tumor stage with
patient clusters, inferred from the expression data using DBMs. Three
different network architectures (DBM, partDBM no joint and partDBM 1 joint) were
evaluated using eight different combinations of epochs during which layer-wise
pretraining (pre) or joint refinement (joint) was performed. Concordance among
identified patient cluster and previously defined patient groups (stage I patients vs.
stage II, III and IV patients) was assessed by χ2 statistics. The horizontal line
represents the concordance observed when clustering the original representation of the
gene expression data.

architectures (white and gray horizontal lines in the left border bars of Fig 2). 191

Having assured association of the patterns that were learned by the DBMs with 192

tumor stage, we also investigated association with the clinical endpoint survival as well 193

as with specific gene groups, to obtain a more complete picture of the underlying 194

biological process. Correspondingly, we tested the terminal hidden units for association 195

with tumor stage as well as for association with survival, using Cox proportional 196

hazards models for the latter. Interestingly we found several nodes that were both 197

connected to survival and tumor stage. We exemplarily selected two of the most 198

strongly associated hidden nodes and inferred their connections to immune cell marker 199

gene categories. One hidden node (Fig 4; 1) was strongly connected to T-cell, Cytotoxic 200
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Figure 4. Connection of hidden nodes, that were associated with tumor
stage and survival, with immune cell type-specific marker gene categories.
Significant hidden nodes (FWER ≤ 0.05) were tested for association with visible units
(genes) using linear regression models. Connections between terminal hidden units and
visible units (genes) were considered significant if they were stronger than 5% of all
connections found between the visible layer and the terminal hidden layer. The boxes
indicate the distribution of z-scores that indicate the strength of connection of the
respective marker-gene group with the hidden nodes. The IDs of the hidden nodes are
indicated in the figure headings.

cells and B-cell marker gene expression while the other node was rather connected with 201

Mast cells or TFH cells. Thus different cell type groups might be associated jointly with 202

tumor stage and patient survival. 203

Discussion 204

The immunome in cancer can be investigated by considering the expression levels of 205

immune cell type-specific genes. We investigated complex patterns in such expression 206
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levels for lung adenocarcinoma using deep Boltzmann machines (DBMs). To be able to 207

do so we adapted a partitioned learning approach that can deal with a number of genes 208

that is relatively larger compared to the number of patients, in contrast to many other 209

deep learning approaches. 210

Specifically, we investigated a flexible extension of the partitioning approach 211

presented in Hess et al. [5]. We compared the performance of the approach with 212

unpartitioned deep Boltzmann Machines and evaluated tuning parameter settings. To 213

be able to select a good deep Boltzmann machine, we introduced a visualization-based 214

approach. This relied on a smoothed version of the original data, moved closer to the 215

DBM network representation. 216

Heatmap-type plots of the original data, sorted according to the smoothed version, 217

allowed to visually assess association of identified gene and patient groups with clinical 218

characteristics. This was formalized via a two-cluster-based criterion and served to 219

select a DBM for subsequent more detailed analysis. Specifically, the DBMs obtained 220

from partitioned training were superior compared to unpartitioned training. These 221

results suggest that regularization, here performed by constraining the weights 222

connecting weakly correlated genes, does allow for improved learning of a meaningful 223

representation when the number of investigated features is equally large compared to 224

the number of independent training data. As a consequence, deep Boltzmann machines 225

may be applied in many scenarios occurring in the field of biostatistics in order to 226

explore the data and to extract interpretable patterns. In our example, terminal layer 227

hidden nodes of DBMs trained by the newly proposed approach were found to be 228

associated with tumor stage and survival. These nodes could be linked to genes that 229

reflected specific immune cells, such as T-cells, Cytotoxic cells or mast cells. Tumor 230

infiltration by cytotoxic cells is associated with improved survival in lung cancer 231

patients [9] and a high amount of T-cells is generally known to be linked with good 232

prognosis in many cancers including lung cancer [10]. This concordance suggests 233

biological relevance of our findings which sheds some light on potential mechanisms and 234

demonstrates the power of deep Boltzmann machines to unravel patterns in the data. 235

Since we observed a partially differential performance between our partitioned training 236

approaches, we plan to further investigate which partitioning scheme performs well in 237

which particular scenario, in order to optimize the training. 238

Conclusion 239

Deep Boltzmann machines are a promising approach for learning compact 240

representations of high dimensional data such as gene expression data. Using immune 241

cell type-specific gene expression in lung adenocarcinoma as model, we evaluated a new 242

approach for partially training partitioned DBMs on subsets of correlated features and 243

selecting between DBMs obtained from different training schemes. The resulting DBM 244

could be linked to clinical covariates as well as specific immune cell types, which shows 245

that properly trained DBMs can be useful for gaining biological insight, beyond black 246

box prediction applications that are dominant in the deep learning field so far. 247
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