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ABSTRACT	
Human	metapneumovirus	(hMPV)	utilizes	a	bifurcated	cellular	entry	strategy,	fusing	either	
with	the	plasma	membrane	or,	after	endocytosis,	with	the	endosome	membrane.	Whether	
cellular	factors	restrict	or	enhance	either	entry	pathway	is	largely	unknown.	We	found	that	
the	interferon-induced	transmembrane	protein	3	(IFITM3)	inhibits	hMPV	infection	to	an	
extent	similar	to	endocytosis-inhibiting	drugs,	and	an	IFITM3	variant	that	accumulates	at	
the	plasma	membrane	in	addition	to	its	endosome	localization	provided	increased	virus	
restriction.	Mechanistically,	IFITM3	blocks	hMPV	F	protein-mediated	membrane	fusion,	
and	inhibition	of	infection	was	reversed	by	the	membrane	destabilizing	drug	amphotericin	
B.		Conversely,	we	found	that	infection	by	some	hMPV	strains	is	enhanced	by	the	
endosomal	protein	Toll-like	receptor	7	(TLR7),	and	that	IFITM3	retains	the	ability	to	
restrict	hMPV	infection	even	in	cells	expressing	TLR7.			Overall,	our	results	identify	IFITM3	
as	an	endosomal	restriction	factor	that	limits	hMPV	infection	of	cells.			
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INTRODUCTION	

Human	metapneumovirus	(hMPV)	is	a	member	of	the	Pneumoviridae	family,	a	recent	

classification	distinguishing	it	from	related	Paramyxoviridae	family	members[1].		Since	its	

discovery	in	2001[2],	hMPV	is	increasingly	recognized	as	a	significant	cause	of	respiratory	

infections	in	infants,	children,	and	the	elderly[3-6].	This	virus	infects	over	85%	of	the	

population	by	age	ten[7],	and	is	one	of	the	most	common	causes	of	respiratory	tract	

infections	in	infants[3,	5].	The	frequency	of	detection	of	hMPV	in	elderly	patients	with	

respiratory	infections	approaches	that	of	influenza	virus[4].	However,	unlike	influenza	

virus,	there	are	currently	no	licensed	vaccines	or	drugs	targeting	hMPV.	While	vaccination	

strategies	have	been	proposed	for	eliciting	an	adaptive	immune	response	against	hMPV[8,	

9],	roles	for	innate	immune	restriction	factors	in	controlling	the	virus	remain	to	be	

identified.		

	 The	early	classification	of	hMPV	as	a	paramyxovirus	suggested	that	it	would	exhibit	

pH-independent	fusion	at	the	plasma	membrane	similarly	to	other	prototypical	

paramyxoviruses,	such	as	Sendai	virus	(SeV)[10].			However,	early	reports	indicated	that	

acidic	pH	enhanced	fusion	mediated	by	the	F	proteins	of	certain	hMPV	strains[11,	12].	

Follow	up	studies	utilizing	single	virus	particle	tracking	and	fusion	assays	showed	that	a	

portion	of	hMPV	fuses	at	the	plasma	membrane	as	is	typical	of	paramyxoviruses,	but	also	

that	a	significant	fraction	of	the	virus	is	endocytosed	and	fuses	with	endosomal	membranes	

in	a	manner	characteristic	of	low	pH-dependent	viruses,	such	as	influenza	A	virus	(IAV)[13-

15].	These	data	suggested	that	hMPV	utilizes	a	bifurcated	cellular	entry	strategy	with	

characteristics	typified	by	both	SeV	and	IAV.		From	this,	we	reasoned	that	hMPV	may	be	

susceptible	to	inhibition	by	interferon-induced	transmembrane	protein	3	(IFITM3),	which	
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is	a	cellular	antiviral	factor	that	inhibits	virus-endosome	membrane	fusion	reactions[16-

21].			

	 IFITM3	broadly	restricts	endocytosed	virus	infections	by	blocking	their	fusion,	thus	

preventing	cytosolic	entry	of	virus	genomes[16].	Though	the	exact	mechanism	of	fusion	

inhibition	is	unknown,	IFITM3	may	alter	membrane	properties,	including	the	rigidity	and	

curvature	of	endosome	membranes[18,	22].	Our	recent	work	demonstrated	that	a	

palmitoylated	amphipathic	helix	within	IFITM3	is	required	for	its	inhibition	of	virus	

protein-mediated	membrane	fusion[23-25].			Viruses	such	as	IAV	that	enter	cells	primarily	

through	endocytosis	are	strongly	inhibited	by	IFITM3	while	viruses	such	as	SeV	that	fuse	at	

the	cell	surface	are	poorly	inhibited[26,	27].	IFITM3	KO	mice	and	humans	with	deleterious	

IFITM3	gene	polymorphisms	experience	severe	influenza	virus	infections,	confirming	the	

importance	of	this	protein	in	antiviral	defense	in	vivo[28-30].		Effects	of	IFITM3	on	hMPV	

have	not	yet	been	adequately	investigated.				

	 Here	we	show	that	IFITM3	is	able	to	inhibit	hMPV	infection,	thus	identifying	the	first	

known	cellular	restriction	factor	for	this	important	respiratory	pathogen.	We	observed	

partial	inhibition	of	hMPV	infection	by	endocytosis	inhibitors	and	partial	restriction	by	

IFITM3,	both	of	which	are	consistent	with	the	dual	entry	mechanism	proposed	for	this	

virus.		We	demonstrate	that	IFITM3	can	block	membrane	fusion	mediated	by	the	hMPV	F	

protein	and,	importantly,	that	manipulating	the	levels,	localization,	or	activity	of	IFITM3	in	

cells	can	have	significant	effects	on	hMPV	infection.		
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METHODS	

Cell	culture,	transfections,	and	transductions	

HEK293T,	A549,	Vero,	and	MEF	cells	were	grown	in	DMEM	supplemented	with	10%	

Equafetal	FBS	(Atlas	biologicals).	LLC-MK2	cells	were	grown	in	OPTI-MEM	reduced	serum	

media	+	Glutamax	supplement	(Thermo	Fisher)	with	2%	FBS	(Atlas	biologicals).		HAP1	WT	

and	IFITM3	KO	cells	(Horizon	Discovery)	were	grown	in	IMDM	with	10%	Equafetal	FBS.		

Macrophages	were	grown	in	RPMI	with	10%	Equafetal	FBS.		All	cells	were	grown	at	37oC	

with	5%	CO2	in	a	humidified	incubator.	HEK293T	cells	transduced	with	human	TLR7	or	

vector	control	were	purchased	from	InvivoGen.	NEDD4	WT	and	KO	MEFs	were	generated	

by	Dr.	Hiroshi	Kawabe	(Max	Planck	Institute)[31,	32].	Macrophage	cell	lines	were	

generated	by	Dr.	Douglas	Golenbock	(University	of	Massachusetts)	and	obtained	through	

the	NIH-sponsored	BEI	Resources.	Cells	were	transfected	with	plasmids	using	LipoJet	

transfection	reagent	(Signagen	Laboratories)	following	the	manufacturer’s	instructions.	

For	generation	of	stable	cell	lines,	myc-IFITMs	were	inserted	into	pLenti-puro,	and	VSV	G	

pseudotyped	lentiviruses	were	generated	as	described	previously[33].		

Treatment	with	IFN,	siRNA,	or	drugs	

Where	indicated,	cells	were	treated	with	human	IFN-β	(obtained	through	BEI	resources	

and	utilized	at	a	1:100	concentration)	or	with	IFN-α2	(eBioscience,	1:1000	concentration)	

for	24	h	to	induce	IFITM3	expression.	IFITM3	knockdown	was	achieved	using	Dharmacon	

ON-TARGET	Plus	Smart	Pool	human	IFITM3-targeting	(L-014116)	or	non-targeting	control	

(D-001810-10-20)	with	Lipofectamine	RNAiMAX	reagent	(Invitrogen)	according	to	the	

manufacturer’s	protocol.	For	experiments	involving	inhibitors	or	drugs,	cells	were	treated	
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with	chlorpromazine	or	genistein	at	concentrations	of	10µg/mL	or	200µM,	respectively,	or	

with	2.5	ug/mL	amphotericin	B.			

Virus	propagation,	infection,	and	flow	cytometry	

Influenza	A	virus	A/PR/8/34	(H1N1,	PR8)	was	propagated	in	10	day	old	embryonated	

chicken	eggs	(Charles	River)	for	48	h	at	37C	and	titered	on	MDCK	cells.	SeV	expressing	GFP	

was	generated	by	Dr.	Dominique	Garcin	(University	de	Geneve),	and	was	propagated	in	10	

day	old	embryonated	chicken	eggs	at	37oC	for	40	h	and	titered	on	Vero	cells.		hMPV	and	

hMPV-GFP	were	generated	by	a	reverse	genetics	system	based	on	the	NL/1/00	(A1)	strain	

utilizing	previously	described	methodology[34].	The	hMPV	02-202	(B1)	strain	was	

provided	by	Dr.	John	Williams	(University	of	Pittsburgh).	All	hMPV	strains	were	

propagated	in	Vero	cells,	concentrated	by	ultracentrifugation	through	a	20%	sucrose	

cushion,	and	titered	on	LLC-MK2	cells.	For	flow	cytometry	quantification	of	infection,	IAV-

infected	cells	were	stained	with	anti-H1N1	IAV	NP	(obtained	from	BEI	resources),	hMPV-

infected	cells	were	stained	using	anti-hMPV	antibody	(Millipore,	MAB80138),	and	cells	

infected	with	GFP-expressing	viruses	were	analyzed	for	GFP	fluorescence	directly.	Flow	

cytometry	was	performed	on	a	FACSCanto	II	flow	cytometer	(BD	Biosciences),	and	

analyzed	using	FlowJo	software.	

Western	blotting	and	antibodies	

For	Western	blotting,	cells	were	lysed	in	buffer	containing	0.1	mM	triethanolamine,	150	

mM	NaCl,	and	1%	SDS	at	pH	7.4	supplemented	with	EDTA-free	Protease	Inhibitor	Cocktail	

(Roche)	and	Benzonase	Nuclease	(Sigma).	Primary	antibodies	for	IFITM1	(Cell	Signaling),	

IFITM2	(Cell	Signaling),	IFITM3	(Proteintech	group),	HA	tag	(HA.11,	Biolegend),	GAPDH	
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(Invitrogen),	Actin	(Abcam),	Tubulin	(Antibody	Direct),	Myc	tag	(Developmental	Studies	

Hybridoma	Bank	at	the	University	of	Iowa,	deposited	by	Dr.	J.	Michael	Bishop,	catalog	no.	

9E10),	and	NEDD4	(Millipore)	were	used	at	1:1000	dilutions.	

Cell-cell	fusion	assay	

The	trypsin-independent	hMPV	F	protein	was	cloned	previously	by	mutating	the	RQSR	

motif	of	the	hMPV	NL/1/00	strain[35].	Cell-cell	fusion	assays	were	performed	as	outlined	

previously[24,	36].	For	pH	5.0	pulses,	freshly	prepared	DMEM	containing	25	mM	MES	at	pH	

5.0	was	used	to	replace	cell	media	for	2	min.		Cells	were	then	washed	with	PBS	and	

incubated	in	standard	media	for	8	hours	at	37oC.	Luciferase	activity	was	measured	using	

the	Promega	Dual-Luciferase	Reporter	Assay	System.		

RESULTS	

Overexpression	of	IFITM3	inhibits	hMPV	infection.		

To	examine	effects	of	IFITM3	on	hMPV	strain	NL/1/00	(A1)	infection,	we	compared	

susceptibility	of	HEK293T	cells	after	stable	transduction	with	empty	vector	or	myc-tagged	

human	IFITM3	(Figure	1A).		Importantly,	HEK293T	cells	do	not	express	detectable	IFITM3	

or	other	IFITMs	at	baseline	and	are	thus	a	useful	model	for	assessing	virus	infection	upon	

introduction	of	IFITM3	(Supplementary	Figure	1A)[37].		Percent	hMPV	infection	of	IFITM3-

expressing	cells	as	measured	by	flow	cytometry	was	decreased	by	approximately	half	

compared	to	vector	control	cells	(Figure	1B).	As	a	positive	control,	we	tested	susceptibility	

of	the	cells	to	IAV	and	saw	that	infection	was	reduced	almost	completely	in	IFITM3-

expressing	cells	(Figure	1A)[16,	24].		As	a	negative	control,	we	found	that	SeV	was	largely	

insensitive	to	expression	of	IFITM3	(Figure	1A)[26,	32].			These	results	are	consistent	with	
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the	endocytic	entry	of	IAV,	plasma	membrane	entry	of	SeV,	and	dual	entry	of	hMPV.		To	

confirm	the	role	of	endocytosis	in	hMPV	infection	of	HEK293T	cells,	we	examined	effects	of	

two	broad	inhibitors	of	endocytosis,	chlorpromazine	and	genistein.		These	inhibitors	

caused	a	nearly	complete	elimination	of	infection	of	cells	by	IAV	and	blocked	hMPV	

infection	by	roughly	50%,	correlating	in	magnitude	to	the	extent	of	inhibition	by	IFITM3	for	

both	viruses	(Figure	1B,C).		We	additionally	observed	that	overexpression	of	IFITM1	

partially	inhibited	hMPV	infection	of	HEK293T	cells,	and	that	IFITM2	modestly	inhibited	

infection,	though	both	proteins	strongly	inhibited	IAV	infection	(Supplementary	Figure	1).		

These	results	suggested	that	IFITMs	1-3	are	capable	of	inhibiting	hMPV	when	

overexpressed.		However,	given	that	IFITMs	1	and	2	do	not	compensate	for	loss	of	IFITM3	

in	vivo[28-30,	38,	39],	and	given	that	our	early	studies	examining	IFITM3	KO	cells	

suggested	an	important	role	for	IFITM3	in	restricting	hMPV,	we	focused	our	subsequent	

experiments	on	IFITM3.		

Endogenous	cellular	IFITM3	limits	hMPV	infection.		

We	next	examined	the	role	of	endogenously	expressed	IFITM3	in	hMPV	infection	using	

IFITM3	KO	HAP1	cells	(Figure	2A).	Infection	of	IFITM3	KO	cells	with	hMPV	was	

significantly	increased	with	and	without	IFN-α	or	-β	treatment	as	compared	to	WT	cells	

(Figure	2A,B,	Supplementary	Figure	2).	Likewise,	human	A549	lung	epithelial	cells,	

exhibited	a	significant	increase	in	susceptibility	to	hMPV	when	IFITM3	was	knocked	down	

using	siRNAs	in	both	mock	and	IFN-treated	cells	(Figure	2C,D).		These	results	demonstrate	

that	endogenous	IFITM3	restricts	hMPV	infection	and	that	other	IFN-induced	effectors	

cannot	compensate	for	loss	of	IFITM3.	
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Amphotericin	B	reverses	protective	effects	of	IFITM3.		

Amphotericin	B	is	a	membrane	destabilizing	antifungal	drug	that	negates	the	protective	

effects	of	IFITM3	against	IAV[22].	We	sought	to	confirm	these	results	and	to	determine	

whether	amphotericin	B	could	similarly	reverse	IFITM3	restriction	of	hMPV.	We	pretreated	

IFITM3-expressing	HEK293T	cells	or	vector	control	cells	with	amphotericin	B,	and	

subsequently	measured	infection	with	IAV	or	hMPV.	We	observed	potent	restriction	of	IAV	

by	IFITM3	that	was	completely	ablated	by	amphotericin	B	(Figure	3A).	Likewise,	hMPV	

restriction	by	IFITM3	was	also	completely	reversed	when	cells	were	treated	with	

amphotericin	B	(Figure	3B).		These	results	may	suggest	that	IAV	and	hMPV	are	inhibited	by	

IFITM3	via	similar	mechanisms,	and	also	that	amphotericin	B	may	be	clinically	detrimental	

for	hMPV-infected	patients	as	has	been	previously	suggested	for	IAV	infections[22].			

Mutation	of	the	IFITM3	endocytic	trafficking	motif	enhances	hMPV	restriction.		

IFITM3	possesses	a	four	amino	acid	YxxΦ	endocytosis	signal	at	residues	20-23	(20-YEML-

23)	that	mediates	its	trafficking	to	endosomes	and	lysosomes	from	the	plasma	

membrane[19,	20,	27].		A	polymorphism	in	the	human	IFITM3	gene	that	is	linked	to	severe	

influenza	virus	infections	has	been	proposed	to	disrupt	this	motif	by	altering	RNA	

splicing[28].		Multiple	laboratories	have	demonstrated	that	mutation	of	Y20	to	Ala	within	

this	motif	results	in	accumulation	of	IFITM3	at	the	plasma	membrane	and	diminishes	its	

ability	to	inhibit	IAV	when	expressed	at	low	levels[19,	20,	27].		When	strongly	expressed,	

IFITM3-Y20A	can	be	visualized	at	both	the	plasma	membrane	and	at	endosomes,	possibly	

owing	to	passive	endocytosis	of	the	protein[20,	27,	40].		Given	the	dual	localization	of	

IFITM3-Y20A	at	the	plasma	membrane	and	at	endosomes,	and	the	proposed	dual	entry	

mechanism	of	hMPV,	we	sought	to	examine	effects	of	the	IFITM3-Y20A	variant	on	hMPV	
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infection.		We	thus	generated	a	stable	HEK293T	cell	line	expressing	myc-IFITM3-Y20A	and	

confirmed	that	its	expression	was	similar	to	cells	stably	expressing	WT	myc-IFITM3	

(Figure	4A,	B),	and	that	the	IFITM3-Y20A	variant	exhibited	the	expected	localization	

compared	to	WT	IFITM3,	including	plasma	membrane	as	well	as	intracellular	vesicle	

accumulation	(Figure	4C).		Infection	of	these	cells	with	hMPV	showed	that	IFITM3	

significantly	decreased	infection,	and	remarkably,	that	IFITM3-Y20A	expression	resulted	in	

a	near-complete	resistance	of	the	cells	to	infection	(Figure	4D).		These	results	demonstrate	

that	the	IFITM3-Y20A	variant	has	an	enhanced	ability	to	inhibit	hMPV,	correlating	with	its	

expanded	pattern	of	localization	[19,	28,	41].		

Expression	of	IFITM3	restricts	cell-cell	fusion	mediated	by	the	hMPV	F	protein.			

IFITM3	prevents	formation	of	fusion	pores	between	IAV	and	host	membranes[16,	17].		

Thus,	we	reasoned	that	restriction	of	hMPV	by	IFITM3	likely	also	involves	inhibition	of	

fusion.	Previous	work	by	other	groups	has	demonstrated	that	the	hMPV	fusion	

glycoprotein	(F	protein)	is	sufficient	for	virus	membrane	fusion	and	that	it	promotes	cell-

cell	fusion	when	expressed	alone	in	cells[11,	12].	Previous	studies	have	also	utilized	cell-

cell	fusion	assays	to	examine	the	ability	of	IFITMs	to	block	fusion	mediated	by	viral	

fusogens[18,	24].	Here,	we	used	a	characterized	cell-cell	fusion	assay	in	which	cells	

expressing	the	hMPV	F	protein	were	mixed	with	target	cells	expressing	or	lacking	

IFITM3[24].		Each	population	of	cells	was	also	transfected	with	distinct	plasmids	that	

produce	luciferase	only	when	they	are	present	in	the	same	cell,	i.e.,	only	when	cell-cell	

fusion	has	occurred,	such	that	fusion	can	be	quantified	by	measurement	of	luciferase	

activity	(Figure	5A).	We	first	confirmed	that	hMPV	F	is	capable	of	inducing	fusion	between	

HEK293T	cell	populations	(Figure	5B).	Importantly,	fusion	was	only	observed	when	hMPV	
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F	was	present.	Previous	work	by	others	has	demonstrated	that	low	pH	is	not	required,	but	

can	increase	fusion	mediated	by	some	hMPV	F	proteins[11,	12].	Indeed,	pulsing	of	our	

mixed	cell	population	with	media	at	pH	5.0	resulted	in	enhanced	luciferase	production	

indicative	of	increased	cell-cell	fusion	(Figure	5B).	To	examine	effects	of	IFITM3	on	hMPV	

F-mediated	fusion,	we	transfected	IFITM3,	IFITM3-Y20A,	or	vector	control	into	target	cells.	

Consistent	with	past	reports	in	which	IFITM3	inhibited	cell-cell	fusion	mediated	by	

numerous	viral	fusion	proteins[18,	24],	WT	IFITM3	inhibited	F-mediated	fusion	both	with	a	

pH	5.0	pulse	(Figure	5B)	and	at	neutral	pH	(Supplementary	Figure	4).	The	Y20A	mutant,	

consistent	with	its	increased	accumulation	at	the	plasma	membrane	(Figure	4C)	[19,	20,	27,	

41],	further	decreased	fusion	both	with	a	pH	5.0	pulse	(Figure	5B)	and	at	neutral	pH	

(Supplementary	Figure	4).	These	data	demonstrate	that	IFITM3	is	able	to	block	membrane	

fusion	mediated	by	the	hMPV	F	protein.				

Knockout	of	NEDD4	reduces	hMPV	infection.			

We	previously	identified	NEDD4	as	the	primary	E3	ubiquitin	ligase	responsible	for	

ubiquitination	and	turnover	of	steady-state	IFITM3[32].	Depletion	of	NEDD4	results	in	

reduced	ubiquitination	of	IFITM3	and	increased	IFITM3	levels	even	in	the	absence	of	

infection	or	IFN	stimulation.	As	such,	NEDD4	KO	cells	are	more	resistant	to	IAV	infection	

dependent	on	their	enhanced	IFITM3	levels[32].	Using	WT	or	NEDD4	KO	mouse	embryonic	

fibroblasts,	we	confirmed	increased	levels	of	basal	IFITM3	in	the	KO	versus	WT	cells	

(Figure	6A).		Upon	infection	with	hMPV,	we	observed	that	NEDD4	KO	cells	were	

significantly	more	resistant	to	hMPV	infection	than	WT	cells	(Figure	6B).		These	results	

further	support	a	role	for	IFITM3	as	a	cellular	restriction	factor	able	to	inhibit	hMPV	

infection	and	also	identify	NEDD4	as	a	novel	target	for	inhibiting	hMPV	infections.	
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Toll-like	receptor	7	promotes	hMPV	infection	

In	a	previously	published	screen	of	more	than	300	potential	antiviral	restriction	factors,	

overexpression	of	Toll-like	receptor	(TLR)	7,	an	endosome-localized	TLR	that	is	usually	

associated	with	an	antiviral	response,	was	surprisingly	observed	to	increase	infection	with	

an	hMPV	A2	strain	to	131%	when	normalized	to	infection	of	control	cells	[42].		Given	that	

IFITM3	and	TLR7	are	both	endosomal	proteins	that	may	have	opposing	effects	on	hMPV	

infection,	we	sought	to	determine	whether	this	unusual	effect	of	TLR7	on	hMPV	was	

reproducible,	and	whether	IFITM3	restricts	infection	in	the	presence	of	TLR7.		To	

substantiate	or	refute	the	reported	effect	of	TLR7	on	hMPV,	we	first	examined	infection	

susceptibility	of	HEK293T	cells	when	stably	expressing	TLR7	or	vector	control	with	the	

hMPV	A1	strain	used	in	our	IFITM3	studies.	Cells	expressing	TLR7	were	infected	at	a	

significantly	higher	rate	than	control	cells,	independently	confirming	the	published	large-

scale	screen	(Figure	7A).		To	determine	whether	endogenous	TLR7	affects	hMPV	infection,	

we	measured	the	infection	susceptibility	of	WT	and	TLR7	KO	murine	macrophage	cell	lines.		

Consistent	with	our	overexpression	results,	the	percent	infection	of	TLR7	KO	cells	was	

significantly	decreased	as	compared	to	WT	cells	(Figure	7B).		Infections	of	cells	lacking	

TLR3,	another	endosomal	protein,	or	TLR4,	which	localizes	to	the	cell	surface,	were	not	

significantly	different	from	WT	cells,	providing	additional	specificity	controls	(Figure	7B).		

We	next	examined	whether	hMPV	strain	02-202	(B1)	was	affected	by	IFITM3	and	TLR7	

expression	in	HEK293T	cells.		We	found	that,	like	the	A1	strain,	the	B1	strain	was	

susceptible	to	IFITM3	restriction	(Supplementary	Figure	3A).		However,	we	observed	no	

effect	of	TLR7	on	the	B1	strain,	distinguishing	it	from	the	A1	strain	used	in	our	studies	and	

the	A2	strain	used	previously	[42]	(Supplementary	Figure	3B).			Finally,	to	determine	
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whether	IFITM3	can	restrict	hMPV	infection	in	the	presence	of	TLR7,	we	stably	introduced	

either	IFITM3	or	vector	control	into	HEK293T	cells	stably	expressing	TLR7	(Figure	7C).		

Upon	infection	with	the	hMPV	A1	strain,	the	cells	expressing	TLR7/IFITM3	showed	a	

robust	decrease	in	the	percentage	of	infection	as	compared	to	TLR7/Vector	cells,	indicating	

that	IFITM3	maintains	activity	in	the	presence	of	TLR7.		Overall,	these	results	demonstrate	

that	TLR7	facilitates	cellular	infection	by	certain	strains	of	hMPV,	though	this	enhancement	

of	infection	does	not	preclude	restriction	by	IFITM3,	thus	highlighting	the	complex	

interactions	between	hMPV	and	cellular	endosomes.	

DISCUSSION	

Our	work	has	identified	IFITM3	as	the	first	confirmed	restriction	factor	able	to	limit	hMPV	

infection	of	cells.		Infection	by	hMPV	was	decreased	by	overexpression	of	IFITM3	(Figure	

1A,B)	and	was	increased	by	knockout	or	knockdown	of	endogenous	IFITM3	(Figure	2).		

Cellular	pathways	that	regulate	IFITM3	levels	may	thus	represent	new	targets	for	limiting	

hMPV	infections.		Indeed,	NEDD4	KO	cells,	which	accumulate	high	levels	of	IFITM3	due	to	

inefficient	IFITM3	ubiquitination	at	steady	state[32]	were	more	resistant	to	hMPV	infection	

than	WT	cells	(Figure	6).		Our	data	indicate	that	IFITM3	is	able	to	restrict	hMPV	of	the	A1	

and	B1	lineages	(Figure	1	and	2,	and	Supplementary	Figure	3),	and	the	previously	

mentioned	large-scale	overexpression	screen	of	potential	antiviral	factors	also	showed	

partial	inhibition	of	an	A2	virus	by	IFITM3[42].		These	findings	indicate	that	IFITM3	

broadly	restricts	multiple	hMPV	lineages.			

Past	work	studying	IAV	and	its	inhibition	by	IFITM3	showed	that	the	drug	

amphotericin	B,	which	destabilizes	lipid	membranes,	neutralizes	the	antiviral	effects	of	

IFITM3[22].		Our	examination	of	hMPV	infection	of	cells	expressing	IFITM3	showed	that	
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amphotericin	B	similarly	negates	the	activity	of	IFITM3	against	this	additional	virus	(Figure	

3B).		Importantly,	amphotericin	B	is	a	commonly	used	antifungal	agent,	and	our	new	work	

suggests	that	its	clinical	use	may	enhance	susceptibility	to	not	only	IAV,	but	also	hMPV.		

This	work	also	suggests	that	IFITM3	inhibits	hMPV	infection	via	effects	on	membranes.		

Using	cell-cell	fusion	assays,	we	found	that	indeed,	IFITM3	is	able	to	inhibit	membrane	

fusion	mediated	by	the	hMPV	F	protein	(Figure	5).		This	work	is	in	line	with	the	previously	

established	ability	of	IFITM3	to	block	fusion	pore	formation	in	IAV	infection	and	cell-cell	

fusion	mediated	by	a	multitude	of	viral	fusion	proteins[16-18,	24].			

TLR7	is	generally	considered	an	antiviral	molecule	since	it	detects	viral	single-

stranded	RNA	and	signals	for	the	production	of	type	I	IFNs[43].		TLR7	is	expressed	on	

macrophages,	conventional	dendritic	cells,	and	plasmacytoid	dendritic	cells[43],	and	our	

work	suggests	that	its	presence	makes	these	cell	types	more	susceptible	to	infection	with	

certain	hMPV	strains	(Figure	7A,B).	Staining	of	primary	human	lung	airway	epithelial	cells	

with	anti-TLR7	antibodies	also	indicated	that	TLR7	is	expressed	on	these	cells[44],	which	

are	additional	relevant	targets	of	hMPV	infection.		How	hMPV	utilizes	TLR7	to	facilitate	

cellular	infection	is	not	yet	mechanistically	understood,	though	the	increase	in	the	

percentage	of	cells	infected	when	TLR7	is	expressed	may	suggest	that	TLR7	is	a	cell	entry	

factor	(Figure	7A,B).		Remarkably,	the	ability	of	hMPV	to	coopt	TLR7	is	complemented	by	

the	reported	inhibition	of	TLR7	signaling	by	the	hMPV	M2-2	protein[45].	Thus,	some	

strains	of	hMPV	have	evolved	to	utilize	TLR7	while	also	inhibiting	its	antiviral	function.		

Detection	of	hMPV	infection	by	retinoic	acid	inducible	gene	I	(RIG-I),	a	cytosolic	sensor	of	

viral	replication	products,	is	similarly	inhibited	by	the	P	or	G	proteins	of	some	hMPV	

strains[46,	47].		Likewise,	IFN	signaling	activity	is	also	decreased	in	hMPV-infected	cells	via	
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inhibition	of	Signal	Transducer	and	Activator	of	Transcription	(STAT)	protein	

phosphorylation[48,	49].		Thus,	hMPV	utilizes	several	mechanisms	to	evade	the	type	I	IFN	

response	while	potentially	benefitting	from	the	presence	of	TLR7.			

IFITM3	and	TLR7	are	primarily	endosomal	proteins,	though	they	appear	to	have	

opposite	effects	on	hMPV	infection.		In	most	cell	types,	IFITM3	levels	are	low	prior	to	

infection	and	its	induction	by	IFNs[32].		Consistent	with	a	role	for	IFN-induced	proteins,	

such	as	IFITM3,	in	controlling	hMPV	infection	in	vivo,	type	I	IFN	receptor	KO	mice	show	

increased	hMPV	titers	in	the	lungs	at	early	timepoints	post	infection[50].		It	will	be	

interesting	to	examine	pathogenesis	of	hMPV	infection	in	IFITM3	and	TLR7	KO	mice	in	the	

future,	and	to	determine	whether	TLR7-blocking	antibodies	or	nucleic	acids	can	impact	

hMPV	infections.		Likewise,	our	work	suggests	that	polymorphisms	in	the	human	IFITM3	

gene	that	have	been	linked	to	severe	IAV	infections	should	also	be	examined	for	effects	on	

hMPV	infections[28-30].		Overall,	we	have	revealed	that	two	endosomal	proteins,	IFITM3	

and	TLR7,	differentially	regulate	vulnerability	of	cells	to	hMPV	infection,	though	IFITM3	

appears	to	dominate	when	both	proteins	are	expressed	(Figure	7C).		These	findings	

support	the	proposed	role	for	endocytosis	in	hMPV	infection,	and	have	identified	new	

factors	that	may	be	manipulated	or	targeted	to	prevent	or	treat	infection	by	this	important	

human	pathogen.				
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Figure	1:		Endocytosis	inhibitors	and	overexpressed	IFITM3	restrict	hMPV	
infection.		A)	Anti-myc	and	anti-Actin	Western	blotting	of	HEK293T	cells	stably	
transduced	with	vector	control	or	myc-IFITM3.		B)	HEK293T	cells	stably	transduced	
with	vector	control	or	myc-IFITM3	(IFITM3)	were	infected	with	IAV	(MOI	2.5),	
hMPV	(MOI	2),	or	SeV	(MOI	2)	for	24	h.		Percent	infection	was	determined	by	flow	
cytometry	after	staining	with	virus-specific	antibodies	using	non-infected	cells	to	set	
gates.		Results	shown	are	averages	of	three	or	more	experiments	with	error	bars	
representing	standard	deviation.		C)	HEK293T	cells	were	treated	for	1	h	with	
chlorpromazine	(Chlor,	10	ug/mL)	or	genistein	(Gen,	200	uM),	or	were	mock	
treated,	followed	by	infection	with	IAV	(MOI	2.5)	or	hMPV	(MOI	2)	in	the	presence	
or	absence	of	the	inhibitors	as	indicated	for	24	h.		Percent	infection	was	determined	
by	flow	cytometry	after	staining	with	virus-specific	antibodies	using	non-infected	
cells	to	set	gates.				Results	shown	are	representative	of	three	experiments	with	IAV,	
two	experiments	with	WT	hMPV	and	two	experiments	with	hMPV-GFP.		Error	bars	
represent	standard	deviation	of	triplicate	samples.		B,C)	Asterisks	indicate	p<0.001	
and	NS	indicates	not	significant	by	Student’s	t-test.		
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Figure	2:		Endogenous	IFITM3	restricts	hMPV	infection.		A,B)	WT	and	IFITM3	
KO	HAP1	cells	were	mock	treated	or	treated	with	IFN-β	overnight.		A)	Anti-IFITM3	
and	anti-GAPDH	Western	blotting.		B)	Cells	were	infected	with	hMPV	(MOI	2)	for	24	
h.		Percent	infection	was	determined	by	flow	cytometry	after	staining	with	virus-
specific	antibodies	using	non-infected	cells	to	set	gates.		Results	shown	are	averages	
of	three	or	more	experiments	with	error	bars	representing	standard	deviation.	C,D)	
A549	cells	were	mock	treated	or	treated	with	IFN-β	overnight.		Cells	were	
simultaneously	transfected	with	siRNA	targeting	IFITM3	(siIFITM3)	or	non-
targeting	control	siRNA	(siControl)	as	indicated.		C)	Anti-IFITM3	and	anti-GAPDH	
Western	blotting.		D)	Cells	were	infected	with		hMPV	for	24	h.		Percent	infection	was	
determined	by	flow	cytometry	after	staining	with	virus-specific	antibodies	using	
non-infected	cells	to	set	gates.		Results	shown	are	averages	of	triplicate	samples	
from	an	experiment	representative	of	two	experiments	with	WT	hMPV	and	one	
experiment	with	hMPV-GFP.		Error	bars	represent	standard	deviation.		B,D)	
Asterisks	indicate	p<0.001	by	Student’s	t-test.			
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Figure	3:		Amphotericin	B	reverses	IFITM3	inhibition	of	hMPV	infection.		A,B)	
HEK293T	cells	stably	transduced	with	vector	control	or	myc-IFITM3	(IFITM3)	were	
treated	for	1	h	with	amphotericin	B	at	a	concentration	of	2.5	ug/mL	or	were	mock	
treated,	followed	by	infection	with	IAV	(A)	or	hMPV	(B)	in	the	presence	or	absence	
of	amphotericin	B	as	indicated	for	24	h.		Percent	infection	was	determined	by	flow	
cytometry	after	staining	with	virus-specific	antibodies	using	non-infected	cells	to	set	
gates.		Results	shown	are	averages	of	three	experiments	with	error	bars	
representing	standard	deviation.		Asterisks	indicate	p<0.001	as	compared	
individually	to	all	other	samples	on	the	respective	graphs	by	Student’s	t-test.			
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Figure	4:		Mutation	of	the	IFITM3	endocytosis	motif	enhances	restriction	of		
hMPV	infection.		A)	Anti-myc	and	anti-GAPDH	Western	blotting	of	HEK293T	cells	
stably	transduced	with	vector	control,	myc-IFITM3,	or	myc-IFITM3-Y20A.		B)	Cells	
as	in	(A)	were	analyzed	by	flow	cytometry	after	staining	for	IFITM3.		C)	Cells	as	in	
(A,B)	were	analyzed	by	bright	field	and	confocal	microscopy	imaging	with	anti-myc	
staining.		D)	Cells	as	in	(A-C)	were	infected	with	hMPV	(MOI	2)	for	24	h.		Percent	
infection	was	determined	by	flow	cytometry	after	staining	with	virus-specific	
antibodies	using	non-infected	cells	to	set	gates.		Results	shown	are	averages	of	four	
experiments	with	error	bars	representing	standard	deviation.		Asterisk	indicates	
p<0.001	and	double	asterisks	represent	p<0.0001	by	Student’s	t-test.			
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Figure	5:		IFITM3	can	inhibit	membrane	fusion	mediated	by	the	hMPV	F	
Protein.		A)	Scheme	for	cell-cell	fusion	assay.		B)	HEK293T	cells	were	transfected	
with	pFR-Luc	plus	plasmid	expressing	hMPV	F	protein.	A	second	set	of	cells	were	
transfected	with	pBD-NFκB.	Mixed	cell	populations	were	treated	with	media	at	pH	5	
or	with	standard	media	for	2	min.	After	8	h,	cell	lysates	were	analyzed	for	luciferase	
activity	indicative	of	cell-cell	fusion.	Bar	graphs	depict	averages	of	triplicate	samples	
representative	of	three	experiments	with	error	bars	representing	standard	
deviation.		C)	HEK293T	cells	were	transfected	with	pFR-Luc	plus	plasmid	
expressing	hMPV	F	protein.	A	second	set	of	cells	were	transfected	with	pBD-NFκB	
plus	plasmid	expressing	myc-IFITM3	(IFITM3),	myc-IFITM3-Y20A	(IFITM3-Y20A)	
or	vector	control.	Mixed	cell	populations	were	treated	with	media	at	pH	5	for	2	min.	
After	8	h,	cell	lysates	were	analyzed	for	luciferase	activity	indicative	of	cell-cell	
fusion.	Bar	graphs	depict	averages	of	triplicate	samples	representative	of	three	or	
more	experiments	with	error	bars	representing	standard	deviation.	B,C)	Asterisks	
indicate	p<	0.001	and	double	asterisks	indicate	p<0.0001	by	Student's	t-test.	
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Figure	6:		NEDD4	KO	cells	are	partially	resistant	to	hMPV	infection.	A)	Anti-
IFITM3,	anti-Tubulin,	and	anti-NEDD4	Western	blotting	for	WT	or	NEDD4	KO	MEFs.			
B)	Cells	as	in	(A)	were	infected	with	hMPV	at	the	indicated	MOIs	for	24	h.	Percent	
infection	was	determined	by	flow	cytometry	after	staining	with	virus-specific	
antibodies	using	non-infected	cells	to	set	gates.		Results	shown	are	an	average	of	
triplicate	samples	from	an	experiment	representative	of	two	experiments	with	WT	
hMPV	and	one	experiment	with	hMPV-GFP.		Error	bars	represent	standard	
deviation.		Asterisks	indicate	p<0.0001	by	Student’s	t-test.	
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Figure	7:		TLR7	enhances	hMPV	infection.		A)	HEK293T	cells	stably	transduced	
with	vector	control	or	TLR7-HA	were	subjected	to	Western	blotting	with	anti-HA	
and	anti-GAPDH	antibodies,	and	were	infected	with	hMPV	(MOI	2)	for	24	h.		Percent	
infection	was	determined	by	flow	cytometry	after	staining	with	virus-specific	
antibodies	using	non-infected	cells	to	set	gates	(bar	graph).		Results	shown	are	
averages	of	five	experiments	with	error	bars	representing	standard	deviation	of	the	
mean.		Asterisk	indicates	p<0.0001	by	Student’s	t-test.		B)	WT,	TLR3	KO,	TLR4	KO,	
or	TLR7	KO	murine	macrophages	were	infected	with	hMPV	(MOI	2)	for	24	h.		
Percent	infection	was	determined	by	flow	cytometry	after	staining	with	virus-
specific	antibodies	using	non-infected	cells	to	set	gates.		Results	shown	are	averages	
of	three	experiments	with	error	bars	representing	standard	deviation	of	the	mean.	
Asterisk	indicates	p<0.001	compared	to	all	other	samples	in	the	graph	by	Student’s	
t-test.		C)	HEK293T	cells	stably	transduced	with	TLR7-HA	and	either	vector	control	
or	myc-IFITM3	were	subjected	to	Western	blotting	with	anti-HA,	anti-IFITM3,	and	
anti-GAPDH	antibodies,	and	were	infected	with	hMPV	(MOI	2)	for	24	h.		Percent	
infection	was	determined	by	flow	cytometry	after	staining	with	virus-specific	
antibodies	using	non-infected	cells	to	set	gates	(bar	graph).		Results	shown	are	
averages	of	four	experiments	with	error	bars	representing	standard	deviation	of	the	
mean.		Asterisk	indicates	p<0.0001	by	Student’s	t-test.	
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Supplementary	Figure	1:		Overexpressed	IFITMs	restrict	hMPV	infection.		A)	
Anti-myc	and	anti-GAPDH	Western	blotting	of	HEK293T	cells	stably	transduced	
with	vector	control,	myc-IFITM1,	myc-IFITM2,	or	myc-IFITM3.		B,C)	HEK293T	cells	
stably	transduced	with	vector	control	or	myc-IFITMs	were	infected	with	IAV	(MOI	
2.5)	(B)	or	hMPV	(MOI	2)	(C)	for	24	h.		Percent	infection	was	determined	by	flow	
cytometry	after	staining	with	virus-specific	antibodies	using	non-infected	cells	to	set	
gates.		Results	shown	are	averages	of	two	or	more	experiments	with	error	bars	
representing	standard	deviation.		Asterisks	indicate	p<0.001	as	compared	to	vector	
control	by	Student’s	t-test.		Some	data	from	Main	Text	Figure	1	is	re-plotted	here	for	
comparison	between	IFITM3	and	other	IFITMs.			
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Supplementary	Figure	2:		Endogenous	IFITM3	restricts	hMPV	infection.		A,B)	
WT	and	IFITM3	KO	HAP1	cells	were	mock	treated	or	treated	with	IFN-α	overnight.		
A)	Anti-IFITM3	and	anti-GAPDH	Western	blotting.		B)	Cells	were	infected	with	
hMPV-GFP	(MOI	2)	for	24	h.		Percent	infection	was	determined	by	flow	cytometry	
detection	of	GFP	using	non-infected	cells	to	set	gates.		Results	shown	are	
representative	of	two	experiments	with	error	bars	representing	standard	deviation	
of	triplicate	samples.	Asterisks	indicate	p<0.001	by	Student’s	t-test.			
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Supplementary	Figure	3:		Strain-specific	effects	of	IFITM3	and	TLR7	on	hMPV	
infection.		A)	HEK293T	cells	stably	transduced	with	vector	control	or	myc-IFITM3	
(IFITM3)	were	infected	with	hMPV	A1	or	B1	strains	(MOI	2)	for	24	h.		Percent	
infection	was	determined	by	flow	cytometry	after	staining	with	virus-specific	
antibodies	using	non-infected	cells	to	set	gates.		Results	shown	are	averages	of	
triplicate	samples	from	an	experiment	representative	of	more	than	three	
experiments	with	error	bars	representing	standard	deviation.		B)	HEK293T	cells	
stably	transduced	with	vector	control	TLR7-HA	(TLR7)	were	infected	with	hMPV	A1	
or	B1	strains	for	24	h.		Percent	infection	was	determined	by	flow	cytometry	after	
staining	with	virus-specific	antibodies	using	non-infected	cells	to	set	gates.		Results	
shown	are	averages	of	triplicate	samples	from	an	experiment	representative	of	
more	than	three	experiments	with	error	bars	representing	standard	deviation.		A,B)	
Asterisks	represent	p<0.001	and	NS	indicates	not	significant	by	Student’s	t-test.			
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Supplementary	Figure	4:		IFITM3	can	inhibit	membrane	fusion	mediated	by	
the	hMPV	F	Protein.	HEK293T	cells	were	transfected	with	pFR-Luc	plus	plasmid	
expressing	hMPV	F	protein.	A	second	set	of	cells	were	transfected	with	pBD-NFκB	
plus	plasmid	expressing	myc-IFITM3	(IFITM3),	myc-IFITM3-Y20A	(IFITM3-Y20A)	
or	vector	control.	The	two	cell	populations	were	mixed	and	plated	for	8	h	and	cell	
lysates	were	analyzed	for	luciferase	activity	indicative	of	cell-cell	fusion.	Bar	graphs	
depict	averages	of	triplicate	samples	representative	of	two	experiments	with	error	
bars	representing	standard	deviation.	Asterisks	indicate	p<	0.001	and	double	
asterisks	indicate	p<0.0001	by	Student's	t-test.	
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