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ABSTRACT 
Over the past decade, multivariate pattern analyses and especially decoding analyses have            
become a popular alternative to traditional mass-univariate analyses in neuroimaging          
research. However, a fundamental limitation of decoding analyses is that the source of             
information driving the decoder is ambiguous, which becomes problematic when the           
to-be-decoded variable is confounded by variables that are not of primary interest. In this              
study, we use a comprehensive set of simulations and analyses of empirical data to evaluate               
two techniques that were previously proposed and used to control for confounding variables             
in decoding analyses: counterbalancing and confound regression. For our empirical          
analyses, we attempt to decode gender from structural MRI data when controlling for the              
confound 'brain size’. We show that both methods introduce strong biases in decoding             
performance: counterbalancing leads to better performance than expected (i.e., positive          
bias), which we show in our simulations is due to the subsampling process that tends to                
remove samples that are hard to classify; confound regression, on the other hand, leads to               
worse performance than expected (i.e., negative bias), even resulting in significant           
below-chance performance in some scenarios. In our simulations, we show that           
below-chance accuracy can be predicted by the variance of the distribution of correlations             
between the features and the target. Importantly, we show that this negative bias disappears              
in both the empirical analyses and simulations when the confound regression procedure            
performed in every fold of the cross-validation routine, yielding plausible model performance.            
From these results, we conclude that foldwise confound regression is the only method that              
appropriately controls for confounds, which thus can be used to gain more insight into the               
exact source(s) of information driving one’s decoding analysis. 
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HIGHLIGHTS 
● The interpretation of decoding models is ambiguous when dealing with confounds; 
● We evaluate two methods, counterbalancing and confound regression, in their ability           

to control for confounds; 
● We find that counterbalancing leads to positive bias because it removes           

hard-to-classify samples;  
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● We find that confound regression leads to negative bias, because it yields data with              
less signal than expected by chance; 

● Our simulations demonstrate a tight relationship between model performance in          
decoding analyses and the sample distribution of the correlation coefficient; 

● We show that the negative bias observed in confound regression can be remedied by              
cross-validating the confound regression procedure; 

INTRODUCTION 
In the past decade, multivariate pattern analyses (MVPA) have emerged as a popular             
alternative to traditional univariate analyses of neuroimaging data (Haxby, 2012; Norman,           
Polyn, Detre, & Haxby, 2006). The defining feature of MVPA is that it considers patterns of                
brain activation instead of single units of activation (i.e., voxels in MRI, sensors in              
MEG/EEG). One of the most-often used MVPA methods is “decoding”, in which machine             
learning algorithms are applied to neuroimaging data directly to decode a particular stimulus,             
task, or psychometric feature. For example, decoding analyses have been used to            
successfully decode different experimental conditions within subjects, such as object          
category from fMRI activity patterns (Haxby et al., 2001) and working memory            
representations from EEG data (LaRocque, Lewis-Peacock, Drysdale, Oberauer, & Postle,          
2013), as well between-subject factors such as Alzheimer's disease (vs. healthy controls)            
from structural MRI data (Cuingnet et al., 2011) and major depressive disorder (vs. healthy              
controls) from resting-state functional connectivity (Craddock, Holtzheimer, Hu, & Mayberg,          
2009). One reason for the popularity of MVPA methods, and especially decoding, is that they               
appear to be more sensitive than traditional mass-univariate methods in detecting effects of             
interest, which is often attributed to the ability of MVPA to pick up spatially distributed               
multidimensional representations while univariate methods, by definition, cannot (Jimura &          
Poldrack, 2012).  
 
In the past years, however, MVPA’s apparent superior sensitivity and ability to pick up              
distributed representations has been criticized for a number of reasons, both statistical            
(Allefeld, Görgen, & Haynes, 2016; Davis et al., 2014; Gilron, Rosenblatt, Koyejo, Poldrack,             
& Mukamel, 2017; Haufe et al., 2014) and more conceptual (Naselaris & Kay, 2015;              
Weichwald et al., 2015) in nature. For the purposes of the current study, we focus on the                 
specific criticism forwarded by Naselaris and Kay (2015), who argue that decoding analyses             
are inherently “representationally ambiguous”. This representational ambiguity arises when         
the classes of the to-be-decoded variable systematically vary in more than one source of              
information (see also Carlson & Wardle, 2015; Ritchie, Kaplan, & Klein, 2017; Weichwald et              
al., 2015). The current study aims to investigate how decoding analyses can be made more               
interpretable by reducing representational ambiguity. 
 
To illustrate the problem of representational ambiguity, consider, for example, the scenario in             
which a researcher aims to decode gender (male/female) from structural MRI with the aim to               
contribute to the understanding of gender differences — an endeavour that generated            
considerable interest and controversy within the scientific community (Chekroud, Ward,          
Rosenberg, & Holmes, 2016; Del Giudice et al., 2016; Glezerman, 2016; Joel &             
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Fausto-Sterling, 2016; Rosenblatt, 2016). By performing a decoding analysis on the MRI            
data, the researcher hopes to capture meaningful patterns of variation in the data of male               
and female participants that are predictive of the participant's gender. From the literature, we              
know that gender dimorphism in the brain is manifested in two major ways (Good et al.,                
2001; O’Brien et al., 2011). First, there is a global difference between male and female               
brains: men have on average about 15% larger intracranial volume than women, which falls              
in the range of gender differences in height (8.2%) and weight (18.7%; Gur et al., 1999;                
Lüders, Steinmetz, & Jäncke, 2002). Second, brains of men and women are known to differ               
locally: some specific brain areas are found to be larger in women than in men (e.g., in                 
superior and middle temporal cortex; Good et al., 2001) and vice versa (e.g., in frontomedial               
cortex; Goldstein et al., 2001). One could argue that, given that one is interested in               
explaining behavioral or mental gender differences, global (i.e., absolute) differences are           
relatively uninformative, as it reflects the fact than male bodies are in general larger than               
female bodies (Gur et al., 1999; Sepehrband et al., 2018). As such, our hypothetical              
researcher is likely primarily interested in the local sources of variation in the neuroanatomy              
of male and female brains. 
 
Now, suppose that the researcher is able to decode gender from the MRI data significantly               
above chance, it remains unclear on which source of information the decoder is capitalizing:              
the (arguably meaningful) local difference in brain structure or the (in the context of this               
question arguably uninteresting) global difference in brain size? In other words, the data             
contains more than one source of information that may be used to predict gender. In the                
current study, we aim to evaluate methods that improve the interpretability of decoding             
analyses through controlling for these “uninteresting” sources of information. 

Partitioning effects into true signal and confounded signal 
Are multiple sources of information necessarily problematic? And what makes a source of 
information interesting or uninteresting? First of all, this depends on the particular goal of the 
researcher employing the decoding analysis. In principle, multiple sources of information in 
the data does not pose a problem if a researcher is only interested in accurate prediction 
and not necessarily interpretability of the model (Bzdok, 2017; Haufe et al., 2014; Hebart & 
Baker, 2017). In brain-computer interfaces (BCI), for example, accurate prediction is 
arguably relatively more important than interpretability, i.e., knowing which sources of 
information are driving the decoder. Similarly, if the researcher from our gender-decoding 
example is only interested in accurately predicting gender regardless of model 
interpretability, representational ambiguity is not a problem . As such, whether 1

representational ambiguity in decoding analyses is a problem thus depends on the specific 
goal of the researcher (Hebart & Baker, 2017).  
 
In most scientific applications of decoding analyses, however, model interpretability is           
important, because researchers are often interested in the relative contributions of different            
sources of information in their models. Specifically, in most decoding analyses, researchers            

1 However, if accurate prediction is the only goal in this scenario, we would argue that there are                  
probably easier and less expensive methods than neuroimaging to predict a participant’s gender. 
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often (implicitly) assume that the decoder is only using information in the neuroimaging data              
that is related to the variable that is being decoded (Ritchie, Kaplan, & Klein, 2017 ). In this                 
scenario, representational ambiguity (i.e., the presence of multiple sources of information) is            
problematic as it violates the (implicit) assumption that the decoded variable is the only              
source of information driving the decoder. Another way conceptualize the problem of            
representational ambiguity is that, using the aforementioned example, (global) brain size is            
confounding the decoding analysis of gender. Here, we define a confound as a variable that               
is not of primary interest, which correlates with the to-be-decoded variable (the target) and is               
encoded in the imaging data . 2

 
To give an example of confounding variables in the context of decoding, suppose one is               
interested in building a classifier that is able to predict whether subjects are suffering from               
schizophrenia or not based on the subjects’ gray matter data. Here, the variable             
“schizophrenia-or-not” is the variable of interest, which is assumed to be encoded in the              
neuroimaging data (i.e., the gray matter) and can thus be decoded. However, there are              
multiple factors known to covary with schizophrenia, like gender (i.e., men are more often              
afflicted than women; McGrath, Saha, Chant, & Welham, 2008) and substance abuse            
(Dixon, 1999), which are also known to affect gray matter (Bangalore et al., 2008; Gur et al.,                 
1999; Van Haren, Cahn, Hulshoff Pol, & Kahn, 2013). As such, the variables gender and               
substance abuse can be considered confounds according to our definition, because they are             
both correlated with the target (schizophrenia or not) and are known to be encoded in the                
neuroimaging data (i.e., the effect of these variables is represented in the gray matter data).               
Now, if one is able to classify schizophrenia with above-chance accuracy from gray matter              
data, one cannot be sure which source of information within the data is picked up by the                 
decoder: the actual neural representation of schizophrenia or the neural representation of            
gender or substance abuse? If one is interested in more than mere accureate prediction of               
schizophrenia, then this ambiguity due to confounding sources of information becomes           
problematic. 
 
Importantly, as our definition suggests, what is or is not regarded as a confound is               
relative —it depends on whether the researchers deems it of (primary) interest or not. In the               
aforementioned hypothetical schizophrenia decoding study, for example, one may equally          
well define the severity of substance abuse as the to-be-decoded variable, in which the              
variable “schizophrenia-or-not” becomes the confounding variable. In other words, one          
researcher’s signal is another researcher’s confound. Regardless, if decoding analyses of           
neuroimaging data are affected by confounds, the data thus contain two types of information:              
the "true signal" (i.e., variance in the data related to the target, but unrelated to the confound)                 
and the "confounded signal" (i.e., variance in the data related to the target that is also related                 
to the confound; see Figure 1 ). In other words, representational ambiguity arises due to the               
presence of both true signal and confounded signal and, thus, controlling for confounds (by              
removing the confounded signal) provides a crucial methodological step forward in improving            

2 Note that our definition of a confound assumes that the primary aim of a decoding analysis in                  
interpretability rather than mere prediction. In fact, when one is interested in accurate prediction only,               
any source of information covarying with the target (given that this effect is also present in the                 
population) is actually beneficial for model performance and is thus often not regarded as problematic               
(see for a different definition, e.g., Rao et al., 2017, p. 40). 
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the interpretability of decoding analyses. In the following section, we will review the             
previously proposed methods to control for confounds. 

 
Figure 1 . Visualization of how variance in brain data ( ) can partitioned into “true signal” and “confounded         X         
signal”, depending on the correlation structure between the brain data ( ), the confound ( ), and the target ( ).          X    C     y  
Overlapping circles indicate a non-zero (squared) correlation between the two variables. 

Methods for confound control 
In decoding analyses, one aims to predict a certain target variable from patterns of              
neuroimaging data. In this section, we will review some common methods for controlling             
confounds in the context of decoding analyses, some of which are supplemented with a              
mathematical formalization; for consistency and readability, we define the notation we will            
use in Table 1 . 
 
Table 1 . Notation. 
Symbol Dims. Description 

N   Number of samples (usually subjects or trials) 

K   Number of neuroimaging features (e.g., voxels or sensors) 

P   Number of confound variables (e.g., age, reaction time, or brain size) 

 X ij  N × K  The neuroimaging (activation) patterns (often called the ‘data’ in the current article),            
where refers to individual samples, and to individual 1, ..., N}i∈ {        1, ..., K}j ∈ {     
features 

 y   N × 1  The target variable (i.e., what is to be decoded) 

 C  N × P  The confound variable(s) 

β   K + 1  The parameters estimated in a general linear model (GLM) 

/rCy ρCy   Sample/Population Pearson correlation coefficient(s) between and C y  

/ry(X .C) ρy(X .C)   Sample/Population semipartial Pearson correlation coefficient between and ,      X   y  
controlled for  (i.e.,  is regressed out of )C C X  

(r )p Cy   p-value of the Pearson correlation between  and C y  
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Note: format based on (Diedrichsen & Kriegeskorte, 2017)(Diedrichsen & Kriegeskorte, 2017). For the             
correlations, we assume that  and thus that the correlations in the table reduce to a scalar.P = 1  

A priori counterbalancing 
Ideally, one would prevent confounding influences as much as possible before the            
acquisition of the neuroimaging data . One common way (in both traditional           3

‘activation-based’ and decoding analyses) to prevent confounding is to make sure that            
potential confounding variables are counterbalanced in the experimental design (Görgen,          
Hebart, Allefeld, & Haynes, 2017). In the gender/brain size example described earlier,            
counterbalancing would entail ensuring that brain size does not differ significantly between            
men and women (i.e., given that men on average have larger brains than women, this would                
entail including only men with relatively small brains and women with relatively large brains) . 4

 
Formally, in decoding analyses, a design is counterbalanced when the confound and the            C    
target are statistically independent. In practice, this often means that the sample is chosen  y               
so that there is no significant correlation coefficient between and (although this does          C    y     
not necessarily imply that and are actually independent). To illustrate the process of     C    y          
counterbalancing, let's consider another hypothetical experiment: suppose one wants to set           
up an fMRI experiment in which the goal is to decode abstract object category (e.g. faces vs.                 
houses) from the corresponding fMRI patterns (cf. Haxby et al., 2001), while controlling for              
the potential confounding influence of low-level or mid-level stimulus features, like           
luminance, spatial frequency, or texture (Long, Yu, & Konkle, 2017). Proper           
counterbalancing would entail making sure that the images used for this particular            
experiments have similar values for these low-level features across object categories (again            
see Görgen et al., 2017 , for details). Thus, in this example, low-level stimulus features              
should be counterbalanced with respect to object category, such that above chance            
decoding of object category cannot be attributed to differences in low-level stimulus features             
(i.e., the confounds). 
 
A priori counterbalancing of potential confounds is, however, not always feasible. For one,             
the exact measurement of a potentially confounding variable may be unknown until data             
acquisition. For example, brain size of a participant is only known after data collection.              
Similarly, Todd and colleagues (2013) found that their decoding analysis of rule            
representations was confounded by reaction times corresponding to the to-be-decoded          
trials. Another example of a “data-driven” confound is motion during data acquisition            
(important in, for example, decoding of clinical populations, like ADHD; Yu-Feng et al.,             
2007). In addition, counterbalancing confounds a priori may be challenging because of            

3 In the context of behavioral data, a priori counterbalancing is often called ‘matching’ or a employing                 
a ‘case-control design’ (Cook, Campbell, & Shadish, 2002). 
4 Note that the counterbalancing process is the same for both univariate (activation-based) studies              
and decoding studies, but the direction of analysis is reversed in univariate (e.g., gender → brain) and                 
decoding studies (e.g., brain → gender). As such, in univariate studies the confound (e.g., brain size)                
is counterbalanced with respect to the predictor(s) (e.g., gender) while in decoding studies the              
confound (e.g., brain size) is counterbalanced with respect to the target (e.g., gender). 
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limited clinical populations, in which researchers do not have the luxury of maintaining a              
counterbalanced sample due to small sample sizes. Lastly, researchers may simply discover            
confounds after data acquisition.  
 
Given that a priori counterbalancing is not possible or undesirable in many situations, it is               
paramount to explore the possibilities of controlling for confounding variables after data            
acquisition for the sake of model interpretability. From the neuroimaging literature, we            
identified several methods that aim to control for confounds in decoding analyses, which we              
discuss below in turn.  

Include confounds in model 
One perhaps intuitive method to control for confounds in decoding analyses is to include (or,               
technically, column-wise concatenate) the confounds to the set of predictors (i.e., the            
neuroimaging data, ; see, e.g., Sepehrband et al., 2018). This intuition may stem from the   X              
analogous situation in univariate (activation-based) analyses of neuroimaging data, in which           
confounding variables are similarly controlled for by including them in the design-matrix            
together with the stimulus/task regressors. For example, in univariate analyses of functional            
MRI, movement of the participant is often controlled for by including motion estimates in the               
design matrix of first-level analyses (Johnstone et al., 2006); in EEG, some control for              
activity due to eye-movements by including activity measured by concurrent          
electro-oculography as covariates in the design-matrix (Parra, Spence, Gerson, & Sajda,           
2005). Usually, the general linear model is then used to estimate each predictor's influence              
on the neuroimaging data. Importantly, the parameter estimates are often interpreted as            
reflecting the unique contribution of each predictor variable, independent from the influence            
of the confound. 
 
In the context of decoding, however, this arguably intuitive method to control for confounds              
by including them as predictors is problematic. This is because this method neglects the fact               
that these two types of analyses perform inference on different statistics: univariate            
(activation-based) analyses usually focus on parameter estimates ( ), while decoding       β    
analyses focus on model performance (usually measured as explained variance, R2, or            
classification accuracy; Hebart & Baker, 2017). While including confounds in the model            
effectively controls for the parameter values of predictors-of-interest , this method does not            5

control the value for model fit. Model performance statistics (e.g., R2, classification accuracy,             
etc.) alone cannot disentangle the contribution of different sources of information as it only              
represents a single summary statistic of model fit (Ritchie, Kaplan, & Klein, 2017 ), which will               
only increase when adding more predictors to the model (especially if these predictors are              
correlated to the target, as is the case with confounds). One might, then, argue that               
additionally inspecting parameter values of decoding models may help in disambiguating           
different sources of information (Sepehrband et al., 2018). However, it has been shown that              
the weight and direction of those parameters cannot reliably be mapped to specific sources              
of information, i.e., as being task- or confound-related (e.g., features with large weights may              

5 Parameter estimates only reflect unique variance when ordinary least squares is used to find the                
model parameters. Other (regularized) linear models, such as ridge regression or LASSO, are not              
guaranteed to yield parameters with unique variance.  
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be completely uncorrelated to the target variable; Haufe et al., 2014). As such, it does not                
make sense to include confounds to the set of predictors when the goal is to disambiguate                
the different sources of information in decoding analyses.  

Control for confounds during pattern estimation 
Another method that has been used by some decoding studies on functional MRI data deals               
with confounds in the initial procedure of estimating activity patterns of the to-be-decoded             
events (Woolgar, Golland, & Bode, 2014). In this method, an initial first-level (univariate)             
analysis models the fMRI time series ( ) as a function of both predictors-of-interest ( ) and      s         X   
the confounds ( ), often using the GLM : C  6

 
          (1) β X C  s =  x + βc + ε  

 
Then, only the estimated parameters ( , or normalized parameters, such as t-values or     β̂         
z-values) corresponding to the predictors-of-interest ( ) are used as activity estimates (i.e.,     β̂x        
the used for predicting the target ) in the subsequent decoding analyses. This method  X       y         
thus takes advantage of the shared variance partitioning in the pattern estimation step to              
control for potential confounding influences. However, while elegant in principle, this method            
is not applicable in between-subject decoding studies (e.g. clinical decoding studies; e.g.,            
van Waarde et al., 2014 ; Cuingnet et al., 2011), in which confounding variables are defined               
across subjects, or in electrophysiology studies, in which activity patterns do not have to be               
estimated in a first-level model , thus limiting the applicability of this method. 7

Post-hoc counterbalancing of confounds 
When a priori counterbalancing is not possible, some have argued that post-hoc            
counterbalancing might control for the influence of confounds (Rao et al., 2017, p. 24, 38). In                
this method, given that there is some sample correlation between the target and confound              
( ) in the entire dataset, one takes a subset of samples in which there is no empirical= 0  rCy /                   
relation between the confound and the target anymore (e.g., when ). In other words,          rCy ≈ 0     
post-hoc counterbalancing is a way to decorrelate the confound and the target through             
subsampling the data. Then, subsequent decoding analysis on the subsampled data can            
only capitalize on true signal, as there is no confounded signal anymore after subsampling              
(see Figure 2 ). While intuitive in principle, we are not aware whether this method has been                
evaluated before and whether it yields unbiased performance estimates. 
 

6 Note that X and C, here, refer to (usually HRF-convolved) predictors of the time series signal (s) for                   
a single voxel. In the rest of the article, X and C refer to features that are defined across samples (not                     
time).  
7 Note that, technically, one could use the “Control for confounds during pattern estimation” method in                
electrophysiology, by first fitting a univariate model explaining the neuroimaging data (Xj for j = 1, …,                 
K) as a function of both the target (y) and the confound (C) and subsequently only using the                  
parameter estimates of the target-predictor (βy) as patterns in the subsequent decoding analysis; this              
is, in fact, equivalent to the “confound regression” technique, discussed in the next section. 
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Figure 2. A schematic visualization how the main two confound control methods evaluated in this               
article deal with the “confounded signal”. 

Confound regression 
The last and perhaps most common method to control for confounds is by removing the               
variance of the confound (i.e., the confounded signal) from the neuroimaging data directly             
(Abdulkadir, Ronneberger, Tabrizi, & Klöppel, 2014; Dukart, Schroeter, Mueller, Initiative, &           
Others, 2011; Kostro et al., 2014; Rao, Monteiro, Mourao-Miranda, & Alzheimer’s Disease            
Initiative, 2017; Todd et al., 2013) — a process we refer to as confound regression (also                
known as “image correction”; Rao et al., 2017). In this method, a (usually linear) regression               
model is fit on each feature in the neuroimaging data (i.e., a single voxel or sensor) with the                  
confound(s) as predictor(s). Thus, each feature in the neuroimaging data is modelled as       j       X    
a linear function of the confounding variable(s), : C  
 

          (2)β ε  X j = C +   
 
We can estimate the parameter(s) for feature using, for example, ordinary least     β̂j     X j       
squares as follows (but for an example using a different model, see Abdulkadir et al., 2014): 
 

          (3)C) C Xβ̂j = (CT −1 T
j  

 
Then, to remove the variance of (or "regress out") the confound from the neuroimaging data,               
we can subtract the variance in the data associated with confound ( ) from the original           βC ˆ

j     
data: 
 

          (4)βX j, corr = X j − C ˆ
j   

 
In which represents the neuroimaging feature from which all variance of the   X j, corr      X j        
confound is removed (including the variance shared with , i.e., the confounded signal; see         y       
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Figure 2 ). When subsequently applying a decoding analysis on this corrected data, one can              
be sure that the decoder is not capitalizing on signal that is correlated to the confound, which                 
thus improves interpretability of the decoding analysis. 
 
Confound regression has been applied in several studies in the context of decoding . Todd              8

and colleagues (2013) were, as far as the current authors are aware, the first to use this                 
method to control for a confound (in their case, reaction time) that was shown to correlate                
with their target variable (rule A vs. rule B). Notably, they both regressed out reaction time                
from the first-level time series data (similar to the “Control for confounds during             
pattern-estimation” method) and regressed out reaction time from the trial-by-trial activity           
estimates (i.e., confound regression as described in this section). They showed that            
controlling for reaction time in this way completely eliminated the above-chance decoding            
performance in a substantial amount of voxels that was observed when not controlling for              
reaction time. Similarly, Kostro et al. (2014) observe a substantial drop in classification             
accuracy when controlling for scanner-site in the decoding analysis of Huntington’s disease,            
but only when scanner-site and disease status were actually correlated. Lastly, Rao and             
colleagues (2017) found that, in contrast to Kostro et al. and Todd et al., confound               
regression yielded similar (or slightly lower, but still significant) performance compared to the             
model without confound control, but it should be noted that this study used a regression               
model (instead of a classification model) and evaluated confound control in the specific             
situation when the training set is confounded, but the test-set is not . In sum, while confound                9

regression has been used before, it has yielded variable results, possibly due to slightly              
different approaches and differences in the correlation between the confounding variable           
and the target. 

Current study 
In summary, multiple methods have been proposed to deal with confounds in decoding             
analyses. Often, these methods have specific assumptions about the nature or format of the              
data (like “A priori counterbalancing” and “Confound control during pattern estimation”), differ            
in their objective (e.g., prediction vs. interpretation, like in “Include confounds in the model”),              
or have yielded variable results (like “Confound regression”). Therefore, given that we are             
specifically interested in disambiguating decoding analyses, the current study evaluates the           
two methods that are applicable in most contexts: post-hoc counterbalancing and confound            
regression. In addition to these two methods, we propose a third method—a modified             

8 While uncommon in decoding analyses, confound regression is more common as a tool for variance                
partitioning in neuroimaging studies using representational similarity analysis (Groen et al., 2018;            
Hebart, Bankson, Harel, Baker, & Cichy, 2018), which is discussed in more detail in the discussion . 
9 Note that we did not discuss studies that implement a different confound regression procedure (e.g.,                
Abdulkadir, Ronneberger, Tabrizi, & Klöppel, 2014; Dukart, Schroeter, Mueller, et al., 2011), in which              
confound regression is only estimated on the samples from a single class of the target variable (e.g.,                 
in our gender decoding example, this would mean that confound regression models are only              
estimated on the data from male, or female, subjects). As this form of confound regression does not                 
disambiguate the sources of information driving the decoder, it can be seen a method for nuisance                
regression rather than confound regression, and is thus not discussed in this article. 
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version of confound regression—which we show yields plausible, unbiased, and          
interpretable results. 
 
To test whether these methods are able to effectively control for confounds and whether they               
yield unbiased results, we apply them both to empirical data and simulated data in which the                
ground truth with respect to the signal in the data (i.e., the proportion of true signal and                 
confounded signal) is known. For our empirical data, we enact the previously mentioned             
hypothetical study in which participant gender is decoded from structural MRI data. We use              
a large dataset ( ) with structural MRI data and try to predict subjects' gender   17  N = 2            
(male/female) from the respective gray matter patterns while controlling for the confound of             
"brain size" using the aforementioned methods, which we compare to a baseline model in              
which confounds are not controlled for. Given the previously reported high correlations            
between brain size and gender (Barnes et al., 2010; Smith & Nichols, 2018), we expect that                
successfully controlling for brain size yields lower decoding performance than using           
uncorrected data, but not below chance level. Note that higher decoding performance after             
controlling for confounds is theoretically possible when the correlation between the confound            
and the target is sufficiently low to cause suppressor effects (see Figure 1 in Haufe et al.,                 
2014). However, because our confound, brain size, is known to correlate strongly with our              
target, gender (approx. r = 0.63; Smith & Nichols, 2018), classical suppression effects are              
unlikely and thus we expect lower model performance after controlling for brain size. 
 
However, our results indicate that both counterbalancing and confound regression lead to            
unexpected results: counterbalancing fails to reduce model performance while confound          
regression consistently yields very low model performance up to the point of significant             
below-chance accuracy. In subsequent simulations, we show that both methods lead to            
biased results: counterbalancing yields inflated model performance (i.e., positive bias)          
because subsampling selectively selects a subset of samples in which features correlate            
more strongly with the target variable, suggesting (indirect) circularity in the analysis            
(Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). Furthermore, our simulations show that           
negative bias (including significant below-chance classification) after confound regression on          
the entire dataset is due to reducing the signal below what is expected by chance               
(Jamalabadi, Alizadeh, Schönauer, et al., 2016), which we show is related to and can be               
predicted by the standard deviation of the empirical distribution of correlations between the             
features in the data and the target. We propose a minor but crucial addition to the confound                 
regression procedure, in which we cross-validate the confound regression models (which we            
call “Foldwise Confound Regression”), which solves the below-chance accuracy issue and           
yields plausible model performance in both our empirical and simulated data.  

METHODS 

Data 
For the empirical analyses, we used voxel-based morphometry (VBM) data based on            
T1-weighted scans and tract-based spatial statistics (TBSS) data based on diffusion tensor            
images from 217 participants (122 women, 95 men), acquired with a Philips Achieva 3T              
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MRI-scanner and a 32-channel head coil at the Spinoza Centre for Neuroimaging            
(Amsterdam, The Netherlands).  

VBM acquisition & analysis 
The T1-weighted scans with a voxel size of 1.0 × 1.0 × 1.0 mm were acquired using 3D             
fast field echo (TR: 8.1 ms, TE: 3.7 ms, flip angle: 8°, FOV: 240 × 188 mm, 220 slices). We                    
used "FSL-VBM" protocol (Douaud et al., 2007) from the FSL software package (version             
5.0.9; (Smith et al., 2004) using default and recommended parameters (including non-linear            
registration to standard space). The resulting VBM-maps were spatially smoothed using 3            
millimeter (FWHM) gaussian kernel. Subsequently, we organized the data in the standard            
pattern-analysis format of a 2D ( ) array of shape 217 (subjects) × 412473 (non-zero     N × K          
voxels). 

TBSS acquisition & analysis 
Diffusion tensor images with a voxel size of 2.0 × 2.0 × 2.0 mm were acquired using a             
spin-echo echo-planar imaging (SE-EPI) protocol (TR: 7476 ms, TE: 86 ms, flip angle: 90°,              
FOV: 224 × 224 mm, 60 slices), which acquired a single b=0 (non-diffusion-weighted) image              
and 32 (diffusion-weighted) b=1000 images. All volumes were corrected for eddy-currents           
and motion (using the fsl command 'eddy_correct') and the non-diffusion-weighted image           
was skullstripped (using FSL-BET with the fractional intensity threshold set to 0.3) to create              
a mask that was subsequently used in the fractional anisotropy (FA) estimation. The             
FA-images resulting from the diffusion tensor fitting procedure were subsequently processed           
by FSL's tract-based spatial statistics (TBSS) pipeline (Smith et al., 2006), in which we used               
the pipeline's recommended parameters (i.e., non-linear registration to FSL's 1 millimeter FA            
image, construction of mean FA-image and skeletonized mean FA-image based on the data             
from all subjects, and a threshold of 0.2 for the skeletonized FA-mask). Subsequently, we              
organized the resulting skeletonized FA-maps into a 2D ( ) array of shape 217        N × K      
(subjects) × 128340 (non-zero voxels). 

Brain size estimation 
To calculate the values for our confound, global brain size, we calculated for each subject               
separately the total number of nonzero voxels in the gray matter and white matter map               
resulting from the segmentation step in the FSL-VBM pipeline (using FSL's segmentation            
algorithm "FAST"; Zhang, Brady, & Smith, 2001). The number of non-zero voxels from the              
gray matter map was used as the confound for the VBM-based analyses and the number of                
non-zero voxels from the white matter map was used as the confound for the TBSS-based               
analyses. Note that brain size estimated from total white matter volume and total gray matter               
volume correlated strongly, .(216) .93, p .001  r = 0  < 0  

Data and code availability 
In the Github repository corresponding to this article (https://github.com/lukassnoek/MVCA),         
we included a script to download the data (the 4D VBM and TBSS nifti-images as well as the                  
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non-zero 2D samples × features arrays). The repository also contains detailed Jupyter            
notebooks with the annotated empirical analyses and simulations reported in this article.  

Decoding pipeline 
All empirical analyses and simulations use a common decoding pipeline, which is            
implemented using functionality from the scikit-learn Python package for machine learning           
(Abraham et al., 2014; Pedregosa et al., 2011). This pipeline includes univariate feature             
selection (based on a prespecified amount of voxels with highest univariate difference in             
terms of the ANOVA F-statistic), feature-scaling (ensuring zero mean and unit standard            
deviation for each feature), and a support vector classifier (SVC) with a linear kernel, fixed               
regularization parameter ( ), and sample weights set to be inversely proportional to   C = 1           
class frequency (to account for class imbalance). In our empirical analyses, we evaluate             
model performance for different amounts of voxels (as selected by the univariate feature             
selection). We report model performance as the F1 score, which is insensitive to class              
imbalance (which, in addition to adjusted sample weights, prevents the classifier to learn the              
relative probabilities of target classes instead of representative information in the features).            
The F1 score has an expected chance level of 0.5. Statistical significance was calculated              
using non-parametric permutation tests as implemented in scikit-learn with 1000          
permutations (Ojala & Garriga, 2010). 

Evaluated methods for confound control 

Counterbalancing  
We implement post-hoc counterbalancing in two steps. First, to quantify the relation between             
the confound and the target in our dataset, we estimate the point-biserial correlation             
coefficient between the confound, (brain size), and the target, (gender) across the entire     C       y      
dataset (all samples ). Because of both sampling noise and measurement    1, ... , N  i =            
noise, sample correlation coefficients vary around the population correlation coefficient and           
are thus improbable to be 0 exactly . Therefore, in the next step, we subsample the data                10

until the correlation coefficient between and becomes non-significant at some      C    y      
significance threshold :α  
 

          (5)(r )p Cy > α  

 

10 For continuous confounds, it is practically impossible achieve a correlation with the target of exactly                
zero, which is the reason we subsample until it is smaller than a prespecified threshold. For                
categorical confounds, however, a correlation between the confound and the target is possible (this              
amounts to equal proportions of levels of c within each class of y; (Görgen, Hebart, Allefeld, &                 
Haynes, 2017)(Görgen, Hebart, Allefeld, & Haynes, 2017)), even necessary, because it is impossible             
to find a (K-fold) cross-validation partitioning in which each split is counterbalanced w.r.t. the confound               
if the correlation in the entire dataset between the target and the confound is not zero.  
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In our analyses, we use an  of 0.1.α   11

 
Then, given that the subsampled dataset is counterbalanced with respect to the confound, a              
random stratified K-fold cross-validation scheme is repeatedly initialized until a scheme is            
found in which all splits are counterbalanced as well (cf. Görgen et al., 2017). This particular                
counterbalanced cross-validation scheme is subsequently used to cross-validate the MVPA          
pipeline. We implemented this counterbalancing method as a scikit-learn-style         
cross-validator class, available from the aforementioned Github repository (in the          
counterbalance.py module). 

Confound regression  
In our empirical analyses and simulations, we tested two different versions of confound             
regression, which we call "whole-dataset confound regression" (WDCR) and "foldwise          
confound regression" (FwCR). In WDCR, we regress out the confounds from the predictors             
from the entire dataset at once, i.e., before entering the iterative cross-validated MVPA             
pipeline (the approach taken by Abdulkadir et al., 2014; Dubois, Galdi, Han, Paul, &              
Adolphs, 2017; Kostro et al., 2014; Todd et al., 2013). Note that we can do this for all                  K  
voxels at once using the closed-form OLS solution, in which we first estimate the parameters               

:β̂C  
 

         (6)C C) C X  β̂C = ( T −1 T  
 
In which is an array in which the first column contains an intercept and the second   C   N × 2              
column contains the confound brain size. Accordingly, is an array. We then       β̂C      2 × K    
remove the variance associated with the confound from our neuroimaging data as follows: 
 

          (7)X  Cβ  Xcorr =  −  ˆ
C  

 
Now, is an array with the same shape as the original array, but with the variance  Xcorr             X       
related to the confound  removed (i.e.,  is residualized with regard to ). C  X  C   
 
In our proposed cross-validated version of confound regression (which was mentioned but            
not evaluated by Rao et al., 2017 , p. 25), "FwCR", we similarly regress out the confounds                
from the neuroimaging data, yet instead of estimating on the entire dataset, we estimate        β̂C       
this within each fold of training data ( ): X train  
 

          (8)C C ) C Xβ̂C, train = ( T
train train

−1 T
train train  

 

11 Note that this is more strict than the conventionally used threshold (α = 0.05), but given that                  
decoding analyses are often more sensitive to signal (whether it is confounded or true signal) in the                 
data, we choose to err on the safe side and counterbalance the data using a relatively strict                 
“threshold” of α = 0.1.  
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And we subsequently use these parameters ( ) to remove the variance related to the      β̂C, train         
confound from both the train-set ( and ): X train  C train  
  

          (9)X C βX train, corr =  train −  train
ˆ
C, train  

 
and the test-set ( and ): X test  C test  
 

          (10)X C βX test, corr =  test −  test
ˆ
C, train  

 
Thus, essentially, FwCR represents the cross-validated version of WDCR. We implemented           
these confound regression techniques as a scikit-learn compatible transformer object,          
available in the open-source skbold Python package (Snoek, 2017).  

Simulations 
In addition to the empirical evaluation of counterbalancing and confound regression in the             
gender decoding example, we ran three simulations: one generic simulation to evaluate the             
three confound control methods on synthetic data (“generic simulation ”), one simulation to            
specifically investigate positive bias observed after counterbalancing (“counterbalancing        
follow-up simulation ”), and one simulation to specifically investigate the negative bias after            
WDCR and to demonstrate FwCR solves this negative bias (“WDCR/FwCR follow-up           
simulation ”). We discuss the implementation of these simulations below. 

Generic simulation 
In this simulation, we evaluate how the three methods for confound control behave on data               
with a prespecified correlation between the confound and the target, , and different          rCy    
amounts of "confounded signal" (i.e., the explained variance in driven by shared variance          y      
between and ). These simulations allow us to have full control over (and knowledge of)  X    C              
the influence of the signal and confound in the data, and thereby help diagnosing the issues                
associated with counterbalancing and confound control (which are investigated in detail in            
the method-specific simulations).  
 
Specifically, in the generic simulation, we generate hypothetical data sets holding the            
correlation coefficient between and constant, while varying the amount of true signal    C    y          
and confounded signal. We operationalize true signal as the the squared semipartial            
Pearson correlation between and each feature in , controlled for . As such, we will    y       X     C      
refer to this term as signal R2: 
 

          (11)ignal Rs 2 = ry(X .C)
2  

 
Similarly, we operationalize the confounded signal as the shared explained variance of by             y   
each feature of and . This term, which we will refer to as confound R2, is calculated as    X   C               
follows: 
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         (12)onfound R ignal Rc 2 = ryX2 − s 2  

 
In the simulations reported and shown in the main article, we use , which            .65  rCy = 0   
corresponds to the observed correlation between brain size and gender in our dataset. To              
create data with this prespecified structure, within our simulations we generated (1) a             
data-matrix of shape , (2) a target variable of shape , and (3) a confound  X    N × K       y     N × 1      
variable of shape . For the simulations reported in this manuscript, we generate  C    N × P           
data with , , and (i.e., a single confound variable). We generate as a  00  N = 2   K = 5    P = 1          y    
categorical variable with binary values, , with equal class probabilities (i.e., 50%),     0, 1}  y ∈ {         
given that most decoding studies focus on binary classification. We generate as a            C    
continuous random variable drawn from a standard normal distribution. We generate each            
feature as a linear combination of and plus Gaussian noise. Thus, for each  X j        y    C        
predictor  in :, ... , K  j = 1    X j  
 

          (13)C ε , ε 〜 N (0, 1)  X β y βj =  y +  
C

+      

 
in which represents the weight given to and represents the weight given to in   βy       y   βC        C   
the generation of the feature , and is the normal distribution with mean and      X j   (a, )  N b        a   
standard deviation . Then, we partition the explained variance of into signal R2 and  b          y      
confound R2. If one or both of these values are off by more than 0.01 from the desired                  
values, the generative parameters β y and β C are adjusted after which is generated again,            X j     
which is iterated until the data contain the desired "true signal" and "confounded signal".              
Here, we evaluate the different methods for confound control for two different values for              
signal R2 (0.004, representing plausible null data , and 0.1, representing a plausible true             12

effect) and a range of confound R2 values (in steps of 0.05: 0.00, 0.05, 0.10, …, 0.35). This                  
simulation is iterated 10 times (with different partitions of the folds) for robustness.             
Importantly, the specific scenario in which confound R2 equals 0, which represents data             
which quantitatively does not contain any confounded signal ( ), will serve as        ignal RryX2 = S 2     
“reference model performance” to which we can compare the efficacy and bias of the              
confound control methods. 
 
After the data have been generated, a baseline model (no confound control) and the three               
methods outlined above (counterbalancing, WDCR, and FwCR) are applied to the simulated            
data using the standard pipeline described in the “Decoding pipeline ” section (but without             
univariate feature selection) and compared to the “reference performance”. 

Counterbalancing follow-up simulation 
To further investigate the positive bias after counterbalancing, we simulate a multivariate            
normal dataset with three variables, which reflect our data ( ), target ( ), and confound (          X    y     C

12 Note that plausible null data does not reflect a signal R2 of 0, because this statistic is biased                   
towards values larger than 0 (because it represents a squared number) when dealing with noisy data,                
hence our choice of signal R2 = 0.004. 
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), with 1000 samples ( ) and a single feature ( ). We iterate the process 1000 times    N       K = 1        
and subsequently use the dataset which yields the largest (positive) difference between            
model performance after counterbalancing versus no confound control; in other words, we            
use the dataset in which the counterbalancing issue is most apparent. While not necessarily              
representative of typical (neuroimaging) datasets, this process allows us to clearly explain            
and visualize what causes the positive bias after counterbalancing the data. 
 
To generate data from a multivariate normal distribution, we specified the           
variance-covariance matrix to have unit variance for all variables, so that covariances can be              
interpreted as correlations. The covariances in the matrix were generated as pairwise            
correlations ( ), each sampled from a uniform distribution with range , r , r  ryX  Cy  CX          

. We generate data using such pre-specified correlation structure because the − .65, 0.65[ 0  ]            
relative improvement in model performance after counterbalancing does not appear to occur            
when generating completely random (normal) data. Moreover, we restrict the range of the             
uniform distribution from which the pairwise correlations are drawn to because           − .65, 0.65[ 0  ]   
a larger range may result in the covariance matrix not being positive-semidefinite. After             
generating the three variables, we binarize the target variable ( ) using a mean-split (          y      y = 0  
if , otherwise) to frame the analysis as a classification problem rather than a  y < ȳ   y = 1              
regression problem. 
 
We then subsample the selected dataset using on our post-hoc counterbalancing algorithm            
and subsequently run the decoding pipeline (without univariate feature selection) on the            
subsampled (“retained”) data in a 10-fold cross-validation scheme. Notably, we          
cross-validate our fitted pipeline not only to the left-out retained data, but also to the data                
that did not survive the subsampling procedure (the “rejected” data; see Figure 3 ). Across              
the 10 folds, we keep track of two statistics of both the retained and rejected samples: (1)                 
whether the samples were predicted correctly and (2) the signed distance to the decision              
boundary. Negative distances in binary classification (in simple binary classification with           

) reflect a prediction of the sample as , while positive distances reflect a y ∈ {0, 1}          y = 0       
prediction of the sample as . Here, however, we want to count the distance of samples      y = 1            
that are on the “incorrect” side of the decision boundary as negative distances, while              
counting the distance of samples that are on the “correct” side of the decision boundary as                
positive distances. To this end, we use a “re-coded” version of the target variable ( if              −  y* = 1   

, otherwise) and multiply it with the distance. As such, we calculate the signed y = 0   y* = 1               
distance from the decision boundary ( ) for any sample  as:δi  i  
 

          (14)(w X )  δi = y* T
i + b  

 
in which refers to the feature weights (coefficients) and refers to the intercept term.  w         b       
Then, differences in these two statistics (proportion correctly classified and distance to            
boundary) between the retained and rejected samples allows us to evaluate if            
counterbalancing yields unbiased estimates (i.e., better cross-validated model performance         
on the retained data than on the rejected data would confirm positive bias, as it indicates that                 
subsampling tends to reject hard-to-classify samples). We apply this analysis similarly to the             
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empirical data (separately for the different values of ) to show that the effect of        K        
counterbalancing as demonstrated using simulated data also occurs in the empirical data. 
 

 
Figure 3 . Visualization of method to evaluate whether counterbalancing yields unbiased cross-validated model             
performance estimates. 

WDCR/FwCR follow-up simulation 
To demonstrate the problem with WDCR (and to demonstrate that FwCR solves this), we              
perform two follow-up simulations: the first follow-up simulation shows that below-chance           
accuracy depends on the distribution of feature-target correlations ( ; see Jamalabadi et        ryX     
al., 2016 , for a similar argument) and the second follow-up simulation to show that WDCR               
artificially narrows this distribution, leading to below chance accuracy, which is exacerbated            
by increasing number of features ( ) and higher correlations between the target and     K         
confound ( ). In the first simulation, we simulate random null-data (drawn from a standard rCy              
normal distribution) with 100 samples ( ) and 200 features ( ), as well as a binary target     N     K        
feature ( ). We then calculate the cross-validated accuracy using the standard 0, }  y ∈ { 1           
pipeline (without univariate feature selection) described in the “Decoding pipeline” section;           
we iterate this process 500 times. Then, we show that the variance of the cross-validated               
accuracy is accurately predicted by the standard deviation (i.e., “width”) of the distribution of              
correlations between the features and the target ( with ), which we will denote       ryX j  , ..., K  j = 1        

by . Importantly, we show that below-chance accuracy likely occurs when the d(r )s yX            
standard deviation of the feature-target correlation distribution is lower than the standard            
deviation of the sampling distribution of the Pearson correlation coefficient parameterized           
with the same number of samples ( ) and the same effect (i.e., , because we      00  N = 2        ρ = 0    
simulated random null-data). The sampling distribution of the Pearson correlation coefficient           
is described by Kendall & Stuart (1973). When (as in our simulations), the equation is         ρ = 0         
as follows: 
 

          (15)(r; N ) (1 ) [B( , )]f  =  − r2 ( )2
N−4

2
1

2
N−2 −1
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where represents the Beta-function.(a, b)  B    
 
Then, in a second simulation, we similarly simulate null-data as in the previous simulation,              
but now we also generate a continuous confound ( ) with a variable correlation with the         C        
target ( . Before subjecting the data to the decoding 0.0, 0.1, 0.2, ... , .9, 1.0})  rCy ∈ {    0          
pipeline, we regress out the confound from the data (i.e., WDCR). We do this for different                
amount of features ( ). Then, we apply FwCR on the   1, 5, 10, 50, 100, 500, 1000}  K ∈ {              
simulated data as well for comparison.  

RESULTS 

Influence of brain size  
Before evaluating the different methods for confound control, we determined whether brain            
size is truly a confound given our proposed definition ("a variable that is not of primary                
interest, correlates with the target and is encoded in the neuroimaging data"). We evaluated              
the relationship between the target and the confound in two ways. First, we calculated the               
(point-biserial) correlation between gender and brain size, which was significant for both the             
estimation based on white matter, , and the estimation based on grey     (216) 645, p .001  r = .  < 0        
matter, , corroborating the findings by Smith & Nichols (2018). (216) 588, p .001  r = .  < 0          
Second, as recommended by Görgen et al. (2017), who argue that the potential influence of               
confounds can be discovered by running a classification analysis using the confound as the              
(single) feature predicting the target, we ran our decoding pipeline (without univariate feature             
selection) using brain size as a single feature to predict gender. This analysis yielded a               
mean classification performance (F1 score) of 0.78 ( ) when using brain size       D 10  S = .      
estimated from white matter and 0.81 ( ) when using brain size estimated from gray      D 9  S = .         
matter, which are both significant with (see Figure 4A)..001  p < 0   
 
To estimate whether brain size is encoded in the neuroimaging data, we compared the              
distribution of bivariate correlation coefficients (of each voxel with brain size) with the             
sampling distribution of correlation coefficients when and (see section       ρ = 0   17  N = 2    
“WDCR/FwCR follow-up simulation ” for details). Under the null hypothesis that there are no             
correlations between brain size and voxel intensities, each individual correlation coefficient           
between a voxel and the confound can be regarded as an independent sample with              17  N = 2  
(ignoring correlations between voxels for simplicity). Because is very large for both the       K        
VBM and TBSS data, the empirical distribution of correlation coefficients should, under the             
null hypothesis, approach the analytic distribution of correlation coefficients parametrized by           

and . Contrarily, the density plots in Figure 4B clearly show that the observed17  N = 2    ρ = 0              
correlation coefficients distribution do not follow the sampling distribution (with both an            
increase in variance and a shift of the mode), indicating that at least some of the correlation                 
coefficients between voxel intensities and brain size are extremely unlikely under the null             
hypothesis. 
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Figure 4. A) Model performance when using brain size to predict gender for both brain-size estimated from grey                  
matter (left) and from white matter (right). Points in yellow depict individual F1 scores per fold in the 10-fold                   
cross-validation scheme. Whiskers of the box plot are 1.5x the interquartile range. B) Distributions of observed                
correlations between brain size and voxels ( ), overlayed with the analytic sampling distribution of correlation      rXC          
coefficients when  and , for both the VBM data (left) and TBSS data (right).ρ = 0 17N = 2  

Baseline model: no confound control 
In our baseline model on the empirical data, for different amounts of voxels, we predicted               
gender from structural MRI data (VBM and TBSS) without controlling for brain size (see              
Figure 5 ). The results show significant above chance performance of the MVPA pipeline             
based on both the VBM-data and the TBSS-data. All performance scores averaged across             
folds were significant ( )..001  p < 0   
 

 
Figure 5 . Baseline scores using the VBM (left) and TBSS (right) data without any confound control. Scores                 
reflect the average F1 score across 10 folds; error bars reflect 95% confidence intervals across 1000 bootstraps.                 
The dashed black line reflect theoretical chance-level performance and the dashed orange line reflects the               
average model performance when only brain size is used as a predictor for reference; * indicates significant                 
performance above chance with p < 0.001.  
 
These above-chance baseline performance estimates replicate previous studies on gender          
decoding from MRI data (Del Giudice et al., 2016; Rosenblatt, 2016; Sepehrband et al.,              
2018) and will serve as a baseline estimate of model performance to which the confound               
control methods will be compared. In the next three subsections, we test the three discussed               
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methods to control for confounds: post-hoc counterbalancing, whole-dataset confound         
regression (WDCR), and foldwise confound regression (FwCR).  

Counterbalancing 

Empirical results 
In order to decorrelate brain size and gender (i.e., ), our subsampling algorithm         .1  rCy > 0     
selected 117 samples in the VBM data (i.e., a reduction in samples of 46.1%) and 131                
samples in the TBSS data (i.e., a reduction of 39.6%). The model performance for different               
values of (number of voxels) are shown in Figure 6 . Contrary to our expectations, the  K               
predictive accuracy of our decoding pipeline is, for a substantial part of the results              
(especially in the VBM data), higher after counterbalancing than before counterbalancing.           
This is particularly surprising in light of the large reductions in sample size, which normally               
results in a hit in power and thus lower model performance. 
 

 
Figure 6 . Model performance after counterbalancing (green) versus the baseline performance (blue) for both the               
VBM (left) and TBSS (right) data. Performance reflects the average F1 score across 10 folds; error bars reflect                  
95% confidence intervals across 1000 bootstraps. The dashed black line reflect theoretical chance-level             
performance (0.5) and the dashed orange line reflects the average model performance when only brain size is                 
used as a predictor; * indicates significant performance (p < 0.001) above chance. 
 
One could argue that this increase in model performance after counterbalancing can be             
explained by the possibility that the subsampling and counterbalancing just leads to the             
selection of different features using univariate feature selection compared to the baseline            
model. In other words, the increase in model performance may be caused by the feature               
selection function to select “better” voxels (i.e., containing better or more “robust” signal),             
which lead to higher model performance regardless of the reduction in sample size.             
However, this does not explain the similar scores for counterbalancing and the baseline             
model when using all voxels (the data points at in Figure 6 ), as it is          voxels .. (all)  K = .        
expected that successful confound control would yield a lower model performance given the             
high correlation between the target and the confound and the confound and the             
neuroimaging data (see “Influence of brain size ” section).  
 
Another possibility for the relative increase in performance of the model based on the              
counterbalanced data versus the baseline model is that counterbalancing increases the           
signal in the data. Indeed, counterbalancing appears to increase the (absolute) correlations            
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between the data and the target ( ), which is visualized in Figure 7 , suggesting an      ryX          
increase in signal. 
 

 
Figure 7 . Density plots of the correlations between the target and voxels across all voxels before (blue) and after                   
(green) subsampling for both the VBM and TBSS data  
 
As can be seen in Figure 6 and Figure 7 , counterbalancing increases the correlations              
between the target and neuroimaging data, which goes against the intuition that removing             
the influence of a confound that is highly correlated to the target will reduce decoding               
performance. To further investigate these issues, we first replicate this effect of            
counterbalancing on simulated data in our “generic simulation ” section and then elucidate            
the mechanism behind this phenomenon in the “counterbalancing follow-up simulation ”. 

Generic simulation 
In the generic simulation, we simulated data in which we varied the strength of confound R2                
and signal R2, after which we applied the three confound control methods to the data. The                
results from this generic simulation shows that counterbalancing maintains chance-level          
model performance when there is almost no signal (i.e., signal R2 = 0.004; Figure 8 , left                
graph, green line). However, when there is some signal (i.e., signal R2 = 0.1; Figure 8 , right                 
graph), we see that counterbalancing yields similar or even higher scores than the baseline              
model, replicating the effects observed in the empirical analyses.  
 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2018. ; https://doi.org/10.1101/290684doi: bioRxiv preprint 

https://doi.org/10.1101/290684
http://creativecommons.org/licenses/by/4.0/


 
23 

 

 

 
Figure 8. Results from the different confound control methods on simulated data without any experimental effect                
(signal R2 = 0.004; left graph) and with some experimental effect (signal R2 = 0.1; right graph) for different values                    
of confound R 2. The orange line represents the average performance (± 1 SD) when confound R2 = 0, which                   
serves as a “reference performance” for when there is no confounded signal in the data. For both graphs, the                   
correlation between the target and the confound, , is fixed at 0.65. The results from the WDCR and FwCR       ryC             
methods are explained later in the paper. 
 
As is apparent from Figure 8, the counterbalanced data seems to yield better performance              
than the baseline model only for relatively low confound R2 values (confound R2 < 0.15). As                
suggested by our findings in the empirical data (see Figure 7 ), we hypothesized that the               
observed improvement in model performance after counterbalancing is caused by the           
increase in correlations between the target and neuroimaging data. In support of this             
hypothesis, we find that the increase in correlations after counterbalancing 
( ) is indeed strongly correlated to the difference in performancer   Δ yX = ryX

af ter − ryX
before           

between the counterbalancing model and the baseline model, (see        (79 922, p .001  r = .  < 0   
Figure 9 ), which seems to be inversely related to confound R2 ( color-coded in Figure 9 ).  

 
Figure 9 . The relationship between the increase in correlations between target and data ( ) after subsampling,             ryX    
confound R2, difference in model performance (here: accuracy) between the counterbalance model and baseline              
model (ACCCB - ACCbaseline). 
 
While this relationship in Figure 9 might be statistically interesting, it does not tell us why                
counterbalancing tends to increase the correlations between neuroimaging data and target           
and even outperforms the baseline model when confound R2 is low and there is signal               
present. More importantly, it does not tell us whether the counterbalancing procedure            
uncovers signal that is truly related to the target—in which case the confound acted as a                
suppressor before counterbalancing—or inflates performance estimates and thereby        
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introduces positive bias. Therefore, in the next section we report and discuss results from a               
follow-up simulation that intuitively shows why counterbalancing leads to an increase in            
performance, and that this increase is in fact a positive bias. 

Counterbalancing follow-up simulation 
In this follow-up simulation, we aim to visualize the scenario in which counterbalancing leads              
to a clearly better performance than in case of no confound control. As such, we iteratively                
generate data with a correlation structure that we know leads to a large difference between               
counterbalancing and the baseline model (i.e., data with a low confound R2) and choose the               
variables ( ) that yielded the largest difference for our visualization (see the , y, C  X              
“Counterbalancing follow-up ” section in the Methods for details).  
 
The data that yielded the largest difference (i.e., a performance increase from 0.589 to              
0.801, 26%) are visualized in Figure 10 . The samples are plotted against the value of their                
feature ( , on the x-axis) and the value of their confound ( , on the y-axis), both before  X            C       
subsampling (upper scatter plot) and after subsampling (lower scatter plot). From visual            
inspection, it appears that the samples rejected by the subsampling procedure (i.e., the             
samples with the red border) tend to lie relatively close to (or on the “wrong” side of) the                  
decision boundary (i.e., the dashed black line). In other words, subsampling tends to reject              
samples that are harder to classify based on the data (here, the single feature of ). The                X   
density plots in Figure 10 show the same effect in a different way: while the difference in the                  
mode of the distribution of the confound ( ) is reduced after subsampling (i.e., the density        C         
plots parallel to the y-axis), the difference in the mode of the distribution of the data ( ) is                 X   
actually increased after subsampling (i.e., the density plots parallel to the x-axis). 
 
We quantified this effect due to subsampling by comparing the signed distance from the              
decision boundary (i.e., the dashed line in the upper scatter plot) between the retained              
samples and the rejected (subsampled) samples, in which a larger distance from the             
decision boundary reflects a higher confidence of the classifier’s prediction (see Figure 3 for              
a visualization of this method). Indeed, we find that samples that are removed by              
subsampling lie significantly closer to (or on the “wrong” side of) the decision boundary (              

) than samples that are retained after subsampling (358, SD 619  M =  − .  = .         
), as indicated by a independent samples t-test, .506, SD 580  M = .  = .         (998) 2.32, .001  t = 2 p < 0  

Also (which follows from the previous observation), samples that are been removed by             
subsampling are more often classified incorrectly (75% incorrect) than the samples that            
would have been retained by subsampling (20% incorrect), as indicated by a chi-squared             
test, .270.29, p 0.001  χ2 =   <   
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Figure 10. Both scatterplots visualize the relationship between the data ( with , on the x-axis), the          X   K = 1      
confound ( , on the y-axis) and the target ( ). Dots with a red border in the upper scatterplot are samples that C        y              
are rejected in the subsampling process; the lower scatterplot visualizes the data without these rejected samples.                
The dashed black lines in the scatterplot represent the decision boundary of the SVM classifier; the color of the                   
background shows how samples in that area are classified (a blue background means a prediction of and a               y = 0    
green background means a prediction of ). The density plots parallel to the y-axis depict the distribution of      y = 1             
the confound ( ) for the samples in which (blue) and in which (green). The density plots parallel to  C       y = 0      y = 1        
x-axis depict the distribution of the data ( ) for the samples in which (blue) and in which (green),       X       y = 0      y = 1   
from which it is clear that subsampling preferentially removes samples close to the decision boundary. 
 
To show that the same effect (i.e., removing samples that tend to be hard to classify) occurs                 
in the empirical data after counterbalancing, we apply the same analysis of comparing the              
model performance and distance-to-boundary between the retained and rejected samples to           
the empirical data. Indeed, across all different amounts of voxels ( ), the retained samples          K     
were classified correctly significantly more often (Figure 11A) and had a significantly larger             
distance to the classification boundary (Figure 11B) than the rejected samples. This            
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demonstrates that the same effect of counterbalancing as shown in the simulated data (i.e.,              
the removal of hard-to-classify samples) likely underlies the increased model performance of            
the counterbalanced data relative to the baseline model in the empirical data. 
 
In summary, the removal of a subset of observations to correct for the influence of a                
confound can induce significant bias by removing samples that are harder to classify using              
the available data ( ). The bias itself can be subtle (e.g., in our empirical results, the    X              
predictive performance falls in a realistic range of predictive performances), and could            
remain undetected when present. Therefore, we believe that counterbalancing through          
subsampling the data is an inappropriate method to control for confounds. 
 

 
Figure 11. A) The proportion of samples classified correctly, separately for the “retained” samples (blue line) and                 
“rejected” samples (green line); the dashed line represents chance level (0.5). B) The average distance to the                 
classification boundary for the retained and rejected samples; the dashed line represents the decision boundary,               
with values below the line representing samples on the “wrong” side of the boundary (and vice versa). * = p <                     
0.05, ** = p  < 0.01, *** p  < 0.001. 

Whole-dataset confound regression (WDCR) 

Empirical results 
In addition to counterbalancing, we evaluated the efficacy of ‘whole-dataset confound           
regression’, i.e. regressing out the confound from each feature separately using all samples             
from the dataset, to control for the of confounds. Compared to the baseline-model, WDCR              
yielded a strong decrease in performance, even dropping (significantly) below chance for all             
TBSS-analyses and a subset of the VBM-analyses (see Figure 12 ).  
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Figure 12 . Model performance after WDCR (orange) versus the baseline performance (blue) for both the VBM                
(left) and TBSS (right) data. Performance reflects the average F1 score across 10 folds; error bars reflect 95%                  
confidence intervals across 1000 bootstraps. The dashed black line reflect theoretical chance-level performance             
(0.5) and the dashed orange line reflects the average model performance when only brain size is used as a                   
predictor; * indicates significant performance (p < 0.001) above/below chance. 
 
This strong (and implausible) reduction in model performance after WDCR is investigated in             
more detail in the next two sections on the results from the simulations. 

Generic simulation 
In fact, the results from the generic simulation (see Figure 8 ) show that WDCR accurately               
corrects for the confound in both the case of data without signal (i.e., when signal R2 =                 
0.004) and in case of some signal (i.e., when signal R2 = 0.1), as evident from the fact that                   
the performance after WDCR is similar to the reference performance. This result (i.e.,             
plausible performance after confound control) stands in contrast to the results from the             
empirical analyses, which is why we ran a follow-up simulation to investigate this specific              
issue, as is reported in the next section. 

WDCR follow-up simulation 
Inspired by the work of Jamalabadi et al. (2016) on below-chance accuracy in decoding              
analyses, we ran several follow-up analyses to get insight into why WDCR leads to              
below-chance model performance. As Jamalabadi et al. (2016) show, below-chance model           
performance occurs when the data contains little signal, which they operationalize using            
Cohen’s (which is proportional to ). In our first follow-up simulation, we sought to refine δ      ryX           
the explanation of the cause of below-chance model performance by linking it to the              
observed standard deviation of the empirical distribution of correlations between the data (             X
) and the target ( ). To do so, we simulate random data ( ) and a binary target (     y          X      0, 1}  y ∈ {  
) and estimated (per fold) the cross-validated classification accuracy using the standard            
pipeline described in the methods section. We repeated this process 500 times, yielding 500              
data sets. The expected average predictive accuracy for each dataset is 0.5, but this varies               
randomly across folds and iterations. We hypothesized that this variance can be explained             
by the standard deviation (“width”) of the initial feature-target correlation distribution, :           d(r )s yX  
narrower distributions may yield relatively lower cross-validated classification accuracy than          
relatively wider feature-target correlation distributions. Indeed, we find that the initial           
standard deviation of this distribution is significantly correlated with the cross-validated           
accuracy, (Figure 13A). Importantly, we find that this relationship .73, p 0.001  r(499) = 0  <           
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holds for different values of (see Supplementary Figure 1 ), for different sizes of the     N          
test-set (see Supplementary Figure 2 ), and for different sizes of (see Supplementary          K   
Figure 3 ). 
 

 
Figure 13. A) The relationship between the standard deviation of the distribution of feature-target correlations,               

, and accuracy across iterations of cross-validated classification analyses of null-data. The vertical dashedd(r )s yX               
line represents the standard deviation from the sampling distribution parameterized with and (i.e.,           ρ = 0   00N = 1   
the same parameters used to generate the null-data); the horizontal dashed line represents the expected               
accuracy for data with this standard deviation based on the regression line estimated from the data across                 
simulations (see Supplementary Figure 1 for the same plot with different values for ). B) The relationship             N     
between the weighted difference between feature-target correlations in the train and test set and accuracy. 
 
This observation, then, begs the question: why do narrower-than-chance correlation          
distributions lead to below-chance accuray? In follow-up analyses of the data in Figure 13A,              
we found that relatively narrow distributions of feature-target correlations induce what is            
known in the machine learning literature as “dataset shift”, which describes the phenomenon             
of a change in feature-target relationship between the train and test set (Jamalabadi et al.,               
2016; Quionero-Candela, Sugiyama, Schwaighofer, & Lawrence, 2009). An example of          
“dataset shift” is observing a positive correlation of 0.1 between a particular feature and the               
target in the train set while observing a negative correlation of -0.1 for this same feature is                 
the test set. We quantified the effect induced by “dataset shift” as the average (across               
features ) difference between the train-set feature-target correlation ( ) , ... , K  j = 1          rX , ytrain train

 

and test-set feature-target correlation ( ), weighted by coefficients assigned to the    rX , ytest test
       13

feature by the classifier ( ). Formally, we estimate dataset shift ( ) as follows:w dŝ  
 

          (16) (r )wdŝ = 1
K ∑

K

j=1
X , yj, train train

− rX , yj, test test j  

 
Indeed, the correlation between this particular operationalization of “dataset shift” and           
accuracy across simulations is highly significant, r(499) = -0.934 (Figure 13B). 
 

13 We weigh the train-test difference in feature-target correlations with the classifier weights to capture               
the importance of each feature in the model. 
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Having established the relation between the standard deviation of the initial feature-target            
correlation distribution and (below-chance) accuracy, we followed up our simulation by           
investigating specifically the effect of WDCR on the standard deviation of the correlation             
distribution. We investigated this by simulating data with different strengths of the correlation             
between the confound and the target ( ) and the number of features ( ). In Figure 14A, it      rCy       K      
is clear that, while the expected chance level is 0.5 in all cases, model performance quickly                
drops below chance for increasing correlations between the target and the confound and for              
increasing numbers of features, and even leading to a model performance of 0% correct              
when the the confound is perfectly correlated with the target and when using 1000 features.               
Figure 14C shows that, indeed, higher values lead to smaller widths of the correlation      rCy         
distribution, which is shown in Figure 14D to yields relatively lower accuracy scores. 
 

 
Figure 14. A) The effect of WDCR on data varying in the correlation of the confound with the target ( ; x-axis)                   rCy   
and the number of features ( ; different lines). B) The effect of FwCR on data varying in the correlation of the     K                 
confound with the target and the number of features. The dashed black line represents chance model                
performance in subplots A and B. C) The relation between the correlation of the confound with the target ( )                  rCy  
and the standard deviation of the feature-target correlation distribution, for the WDCR data. The dashed         )sd(ryX        
black line represents the standard deviation of the correlation distribution predicted by the sampling distribution.               
D) The relation of the standard deviation of the correlation distribution and accuracy for the WDCR data (only                  
shown for the data when ; see Supplementary Figure 4 for visualizations of this effect for different values     00K = 1              
of ). The data depicted in all panels are null-data (see WDCR/FwCR follow-up simulation for simulation K                
details). 
 
In summary, our simulations show that below-chance accuracy is accurately predicted by the             
standard deviation (i.e., “width”) of the distribution of empirical feature-target correlations and            
that WDCR reduces this standard deviation, which explain why the empirical analyses            
yielded below-chance model performance (especially for larger amounts of voxels). 

Foldwise confound regression (FwCR) 

Empirical results 
As the results from the empirical analyses and simulations suggest, WDCR appear            
problematic because of the partitioning of the dataset into a separate train-set and test-set              
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after confound regression. As such, our proposed foldwise confound regression (FwCR)           
suggest to move the confound regression procedure inside the cross-validation loop and            
thus also cross-validating this step. As expected, compared to the baseline model (i.e., no              
confound control), the results from the empirical analyses using FwCR show reduced (but             
not below-chance) model performance for both VBM and TBSS and all different number of              
voxels (see Figure 15 ). All performance estimates (for all amounts of voxels and in both VBM                
and TBSS) are significant ( )..001  p < 0   
 

 
Figure 15 . Model performance after FwCR (pink) versus the baseline performance (blue) for both the VBM (left)                 
and TBSS (right) data. Performance reflects the average F1 score across 10 folds; error bars reflect 95%                 
confidence intervals across 1000 bootstraps. The dashed black line reflect theoretical chance-level performance             
(0.5) and the dashed orange line reflects the average model performance when only brain size is used as a                   
predictor. * indicates significant performance (p < 0.001) above chance. 

Generic simulation 
Similar to WDCR, FwCR yields plausible and unbiased model performance (see Figure 8 ,             
pink line).  

FwCR follow-up simulation 
When applied to the simulated null-data as described in the “WDCR follow-up simulation ”             
section, FwCR yields model performance scores at chance level across all levels of the              
confound-target correlation and different amount of features (see Figure 14B). 

Summary methods for confound control 
In this section, we have shown the effects of different method to control confounds              
(counterbalancing, WDCR, and FwCR) on empirical MRI data and simulated data (see            
Figure 16 ). Counterbalancing is clearly unable to correctly control for confounding           
influences, which is putatively caused by indirect circularity in the analysis process due to              
subsampling. Confound regression shows an expected drop in model performance (but not            
below chance-level), given that the confound regression step is properly cross-validated (i.e.,            
the FwCR version).  
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Figure 16. An overview of the empirical results on the four different confound methods: None, Counterbalancing,                
WDCR, and FwCR. 

DISCUSSION 
Decoding has become a popular alternative to univariate analyses of neuroimaging data.            
This analysis approach, however, inherently suffers from ambiguity in the source of            
information picked up by the decoder (Naselaris & Kay, 2015). One way to improve the               
interpretation of decoding results is to control for alternative sources of information (i.e.,             
other than the target-of-interest) that might drive decoding. Effectively controlling for these            
alternative sources of information, or confounds, helps in disambiguating decoding models.           
In this article, we reviewed and tested two generic, broadly applicable methods that aim to               
control for confounds in decoding analyses: (post-hoc) counterbalancing and confound          
regression. Additionally, we proposed a third method (a modification of traditional confound            
regression) that, unlike the other two methods, effectively and in an unbiased way controls              
for confounds.  
 
In both the empirical data and simulations, we found that neither (post-hoc) counterbalancing             
nor (whole-dataset) confound regression yielded plausible and unbiased model performance          
estimates. First, we found that post-hoc counterbalancing leads to optimistic (i.e., positively            
biased) model performance estimates, which is caused by removing samples that are hard             
to classify during the subsampling process. Because this subsampling process is applied to             
the entire dataset at once (i.e., it is not cross-validated), it can be seen as a form of indirect                   
circular analysis (Kriegeskorte et al., 2009), in which the data itself is used to inform analysis                
decisions, and is thus bound to yield optimistic generalization estimates. Second, our initial             
evaluation of confound regression, which was applied on the entire dataset (“WDCR”),            
yielded pessimistic (i.e., negatively biased) and even significantly below-chance model          
performance estimates. Extending previous research (Jamalabadi et al., 2016), we show           
that this negative bias occurs when the “signal” in the data (operationalized as the width of                
the feature-target correlation distribution) is lower than would be expected by chance, which             
we link to the sampling distribution of the Pearson correlation coefficient. Importantly, we             
show that WDCR systematically narrows the width of the correlation distribution — and thus              
leads to lower model performance — which is exacerbated by higher correlations by the              
target and the confound and more features. 
 
To overcome the negative bias observed in WDCR, we propose to cross-validate the             
confound regression procedure (which we call “Foldwise Confound Regression”, FwCR). We           
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show that this method yields plausible model performance in the empirical analyses (i.e.,             
significantly above-chance model performance) and nearly unbiased model performance in          
the simulations for different datasets varying in the amount of features ( ) and the strength           K     
of the confound ( ). As FwCR can be used with any type of data (electrophysiology, MRI,   rCy              
and even behavioral data), it represents a universal method to disambiguate decoding            
analyses . 14

Relevance and consequences for previous and future research 
We believe our results have implications for not only post-hoc counterbalancing, but            
counterbalancing in general. In both behavioral research (Wacholder, Silverman,         
McLaughlin, & Mandel, 1992) and neuroimaging research (Görgen et al., 2017), a priori             
counterbalancing (or ‘matching’) is common to avoid confound effects. However, as we show             
in the current study, this may unintentionally remove samples that are harder to predict,              
especially when there is little shared variance between the confound and the other predictors              
(i.e., when there is low confound R2). Because, conceptually, this represents a form of              
circular analysis, counterbalancing — regardless of whether it is applied a priori or post-hoc              
— is bound to yield overly optimistic model performance estimates. Another way of             
interpreting this finding, more in terms of classical frequentist statistics, is that the model              
performance estimates are based on a sample that is not representative of the population              
(see also Sedgwick, 2013). As a result, out-of-sample predictive performance drops           
significantly, in our case even to chance level. 
 
In contrast to post-hoc counterbalancing, confound regression in its uncross-validated form           
(i.e., WDCR) has been applied widely in the context of decoding analyses (Dubois et al.,               
2017; Kostro et al., 2014; Rao et al., 2017; Todd et al., 2013). Indeed, the first study that                  
systematically investigated the effect of confounds in decoding analyses (Todd et al., 2013)             
used WDCR to account for the confounding effect of reaction times (RT) on decoding of rule                
representations and found that WDCR completely eliminated the effect found when not            
controlling for RT. This observation, however, can potentially be explained by the negative             
bias induced by WDCR. This possible explanation is corroborated by a follow-up study that              
similarly looked into RT confounding decoding of rule representations (Woolgar et al., 2014),             
who did not use WDCR but accounted for RT confounding by including it as a covariate                
during the pattern estimation procedure (see “Control for confounds during pattern           
estimation ” section), which in contrast to the study by Todd et al. yielded widespread              
significant decoding. Moreover, while not specifically investigated here, we expect a similar            
negative bias to occur when a confound is removed from a continuous target variable using               

14 While FwCR offers an unbiased method to control for confounds in decoding analyses, it is limited                 
to confounding effects that are linearly encoded in the neuroimaging data (because, here, we use               
OLS to regress out the confound from the data). Theoretically, if one would use a non-linear model                 
(such as radial-basis SVMs or decision trees) in a decoding analysis, this model could potentially pick                
up confounded signal that is non-linearly related to the target variable. However, this issue could be                
mitigated by using non-linear models to regress out the confound from the data (as done in, e.g.,                 
Abdulkadir et al., 2014; Kostro et al., 2014).  
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WDCR - which may offer an explanation for the null-finding of (Dubois et al., 2017), who fail                 
to decode personality characteristics from resting-state fMRI. 
 
Interestingly, a technique related to confound regression is recently gaining popularity in            
studies using representational similarity analysis (RSA) to analyze neural data (Kriegeskorte,           
Mur, & Bandettini, 2008). In the context of RSA , the explained variance in the neural data is                 15

often partitioned into different (model-based) feature sets (i.e., sources of information), which            
allows one to draw conclusions about the unique influence of each source of information              
(see, e.g., Groen et al., 2018; Hebart, Bankson, Harel, Baker, & Cichy, 2018; Ramakrishnan,              
Scholte, Groen, Smeulders, & Ghebreab, 2014). Specifically, variance partitioning in RSA is            
done by removing the variance from the representational dissimilarity matrix (RDM) based            
on the feature set that needs to be controlled for. Notably, the variance of the RDMs that are                  
not of interest can be removed from only the neural RDM (Hebart et al., 2018; Ramakrishnan                
et al., 2014) or both from the neural RDM and the RDM-of-interest (Groen et al., 2018).                
While the context is different, the underlying technique is identical to confound regression as              
described and evaluated in this article. Importantly, the studies employing this variance            
partitioning technique (Groen et al., 2018; Hebart et al., 2018; Ramakrishnan et al., 2014)              
similarly report plausible model performances after confound regression (i.e., relatively lower           
but not below-chance performance), corroborating our results with (foldwise) confound          
regression. Note that the distinction between WDCR and FwCR in the context of most RSA               
studies (including the aforementioned studies) is irrelevant, as representational similarity          
analyses are not commonly cross-validated. However, recently, some have proposed to use            
cross-validated distance measures (such as the cross-validated Mahalanobis distance;         
Guggenmos, Sterzer, & Cichy, 2018; Walther et al., 2016) in representational similarity            
analyses, which could suffer from negative bias when combined with (not cross-validated)            
variance partitioning similar to what we observed with WDCR in the context of decoding              
analyses. 
 
The importance of proper confound control is highlighted by the empirical question we             
address. Without any prediction pipeline optimization, we were able to predict gender with a              
model performance up to approximately 0.85 without confound control. This is in line with              
reports from various other studies (Del Giudice et al., 2016; Rosenblatt, 2016; Sepehrband             
et al., 2018). However, this predictive performance is driven by a mixture two sources of               
information: global and local differences in brain structure. With confound control, however,            
we show that predictive performance using only local differences lies around 70%—a            
substantial drop in performance. Especially because the remaining predictive performance is           
lower than predictive performance using only brain size, we argue that proper confound             
control may lead one to draw significantly different conclusions about the differences in brain              
structure between men and women. For the debate on sexual dimorphism, it is thus              
extremely important to take global brain size into account in the context of decoding              
analyses (as has been similarly recommended for mass-univariate analyses; Barnes et al.,            
2010). 
 

15 See, e.g., de Heer, Huth, Griffiths, Gallant, & Theunissen (2017) and Lescroart, Stansbury, & 
Gallant (2015) for applications of variance partitioning in the context of (voxelwise) encoding models. 
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In general, we believe that the contributions of the current study are twofold. First and               
foremost, it provides a systematic evaluation of two widely applicable methods to control for              
confounds and shows that only a single method (“foldwise confound regression”) yields            
plausible and unbiased results. The results from this evaluation hopefully prevents           
researchers from using counterbalancing and (whole-dataset) confound regression, which         
we show may introduce (unintended) biases. Moreover, we open-sourced all analyses and            
preprocessed data (https://github.com/lukassnoek/MVCA) and provide a simple       
implementation for foldwise confound regression that interfaces with the popular scikit-learn           
package in Python. Second, we believe that this study improves understanding of the elusive              
phenomenon of below-chance accuracy (building on previous work by Jamalabadi et al.,            
2016). In general, we hope that this study helps researchers in gaining more insight into their                
decoding analyses by providing a method that disentangles the contributions of different            
sources of information that may by encoded in their data.  
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Supplementary Figure 1. These plots show that the relationship between the standard            
deviation of the empirical feature-target correlation distribution, , and accuracy holds       d(r )s yX     
for different samples sizes (i.e., values for ). Note that the predicted accuracy based on       N         
the standard deviation expected from the sampling distribution is at 0.5 for every plot. The               
data were generated in the same manner as reported in the “WDCR follow-up ” section. 

 

Supplementary Figure 2. These plots show that the relationship between the standard            
deviation of the empirical feature-target correlation distribution, , and accuracy also       d(r )s yX     
holds for sizes of the test-set (replicating results from (Jamalabadi et al., 2016)(Jamalabadi             
et al., 2016). Note that the predicted accuracy based on is again at 0.5 for every plot.          d(r )s yX         
The data were generated in the same manner as reported in the “WDCR follow-up ” section.  

 

Supplementary Figure 3. These plots show that the relationship between the standard            
deviation of the empirical feature-target correlation distribution, , and accuracy also       d(r )s yX     
holds for different amounts of features ( ). Note that the predicted accuracy based on      K         

is approximately at 0.5 for every plot. The data were generated in the same mannerd(r )s yX                 
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as reported in the “WDCR follow-up ” section.  

 

Supplementary Figure 4. The relation of the standard deviation of the correlation            
distribution and accuracy for different values of .K   
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