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Abstract

Proteins are chains of amino acids which adopt a three-dimensional structure and are
then able to catalyze chemical reactions or propagate signals in organisms. Without
external influence, most proteins fold into their correct structure, and a small number of
Early Folding Residues (EFR) have previously been shown to initiate the formation of
secondary structure elements and guide their respective assembly.

A dataset of 30 proteins and 3,337 residues provided by the Start2Fold database was
analyzed. Proteins were represented as residue graphs in order to analyze topological
descriptors of EFR. These residues constitute crucial connectors of protein regions
which are distant at sequence level. Especially, these residues exhibit a high number of
non-covalent residue-residue contacts such as hydrogen bonds and hydrophobic
interactions. This tendency also manifests as energetically stable local regions in a
knowledge-based potential. These distinct characteristics can give insights into what
drives certain residues to initiate and guide the folding process. Furthermore, these
features are not only characteristic for EFR but also differ significantly with respect to
functional residues such as active or ligand binding sites. This unveils a split between
structurally and functionally relevant residues in proteins which can improve their
evolvability and robustness.

Aminoacyl-tRNA synthetases demonstrate this separation in an evolutionary context:
the positions of EFR are preserved over the course of evolution and evolutionary
pressure is smaller in comparison to positions relevant for protein function. The shown
separation between functional and EFR has implications for the prediction of mutation
effects as well as protein design and can provide insights into the evolution of proteins.

Introduction 1

Most proteins adopt their three-dimensional conformation autonomously during the 2

process of protein folding [1,2]. Various diseases are caused by misfolding or aggregation 3

of proteins [3–6]. During the protein folding process, the denatured chain of amino acids 4

passes an energetic barrier, called transition state, to form a compact and functional 5

structure [2]. 6

How proteins fold is an open question [1]. There is a lack of experimental data 7

describing which events or residues guide the folding process [7–9]. The protein 8
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sequence resembles the starting point and the three-dimensional structure captures the 9

result of the protein folding process for a wide range of proteins, yet how they connect 10

via transition states is unclear. The unstable nature of transition states hinders their 11

experimental determination [10,11]. Another obstacle for the understanding of the 12

sequence-structure relation is that some proteins depend on chaperons to fold 13

correctly [6]. 14

The defined-pathway model 15

Alternative folding pathways have been described for homologous proteins [12]. It is an 16

open question if a general folding pattern can be derived which is relevant for all 17

proteins [13]. Also, there is dispute which aspects of protein folding are stochastic and 18

which are deterministic [14,15]. The defined-pathway model proposes that small 19

fragments fold first and then guide a step-wise assembly of further parts of the protein 20

until the native structure is formed [14,16,17]. Such fragments fold autonomously – no 21

other region of the protein directly supports or hinders their formation [14,17]. Which 22

parts of the protein initiate the formation of local, ordered structures, e.g. secondary 23

structure elements, is encoded in their sequence [18–23]. Consequently, these regions 24

decrease in free energy as well as entropy and stabilize the protein during the folding 25

process [23,24]. This also supports the observation that proteins fold cotranslationally 26

as they are being synthesized by a ribosome and stabilizing long-range contacts cannot 27

be formed yet [25]. These local structures form long-range contacts and assemble the 28

global structure [14,18,22, 26,27]. The formation of a native structure causes a further 29

decrease in free energy [17, 28, 29]. Long-range contacts are especially important for the 30

stability of the hydrophobic core of the native structure [30]. 31

Identifying Early Folding Residues during protein folding 32

In recent years, various experimental strategies [31–34] were established which can 33

identify residues crucial for the folding process. Pulse labeling hydrogen-deuterium 34

exchange (HDX) [14,30,35–40] tracks the protein folding process with spatial and 35

temporal resolution. The state of a protein can be controlled e.g. by denaturants or 36

temperature [36]. Starting from a denatured protein, folding conditions are gradually 37

established until the protein refolded completely. The resulting folding trajectory can be 38

studied by HDX. Depending on the state of the folding process, individual amino acids 39

will be susceptible to or protected from an exchange of the hydrogen atom of their 40

amide group. Residues become protected when their amide group is isolated from the 41

solvent as the effect of other residues surrounding them. When the folding process 42

affects a residues, its spatial neighborhood is altered. Thereby, especially the formation 43

of hydrogen bonds involving the amide group is relevant. Where and when these 44

exchanges occur is tracked by a downstream mass spectroscopy or nuclear magnetic 45

resonance spectroscopy. Residues which are protected from the exchange at the earliest 46

stages [14,38–40] are called Early Folding Residues (EFR). Residues which are protected 47

only at later stages or not at all are referred to as Late Folding Residues (LFR). One 48

can also argue that the experimental signal of EFR is currently too little understood. 49

The protection of amide groups occur at an exceedingly fast timescale. In some cases, 50

they may not be the effect of the formation of hydrogen bonds but rather be the mere 51

result of undirected physical chemistry. Also, other experimental techniques for the 52

determination of key residues in the folding process [31–34] show little correlation with 53

the annotation of EFR [23]. E.g., data from φ-value analysis is difficult to interpret on 54

its own [31] and may differ drastically depending on the introduced amino acid 55

substitution, so no one-to-one relation between it and EFR can be expected [30] which 56

pronounces the difficulties of studying the structural role of EFR. They were shown to 57
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initiate the folding process and the formation of secondary structure elements [40] or 58

even larger autonomously folding units [14]. EFR tend to be conserved, but 59

non-functional residues [41]. In contrast, LFR may be relevant during later stages of the 60

folding process, implement protein function, or be mere spacers between protein regions. 61

The data obtained by HDX experiments is difficult to interpret [42] and results of 62

other experiments or techniques are tedious to compare [30,40]. The Start2Fold 63

database [40] provides an invaluable annotation of EFR in a standardized manner [30]. 64

In a previous study [39], EFR have been shown to exhibit lower disorder scores and 65

higher backbone rigidity. Regions with relatively high backbone rigidity are likely to 66

constitute ordered secondary structure elements and this tendency is manifested in local 67

sequence fragments [19, 20, 39, 40, 43]. Especially aromatic and hydrophobic amino acids 68

were linked to ordered regions of proteins [39]. Subsequently, it was shown that EFR are 69

likely buried according their relative accessible surface area (RASA) and proposed that 70

they are also the residues which form the greatest number of contacts in a structure [40]. 71

EFoldMine [9] is a classifier that predicts EFR from sequence. Due to the nature of the 72

trained models [9, 39], it is still unclear what characteristics cause EFR to fold first [23]. 73

Furthermore, early folding events are enigmatic [15,44,45]. EFR are a resource to 74

address this question: are the experimental signals of EFR transient implying that EFR 75

are only relevant in the early stages of the folding process or will EFR also exhibit 76

distinct characteristics in the successfully folded, native conformation? 77

Representing proteins by Energy Profiling and residue graphs 78

The free energy of a native protein structure is minimal [14]. Thus, knowledge-based 79

potentials are a potent tool to describe the process of protein folding [28] and have been 80

previously employed for the quality assessment of protein structures [29]. The complex 81

interactions of a residue in the three-dimensional structure are expressed as single 82

computed energy. Each amino acid has a propensity to be exposed to the solvent or be 83

buried in the core of a protein which can be expressed as pseudo-energy according to 84

the inverse Boltzmann law. The energy of a residue is calculated by summing up the 85

pseudo-energy of all residues in spatial proximity (i.e. distance less than 8 Å) [28]. Low 86

computed energies occur for hydrophobic amino acids which are stabilized by many 87

contacts. Thus, this approach is a valuable feature to assess the stability of individual 88

residues as well as their interactions with their spatial neighborhood. 89

Individual residues can also be characterized in the context of protein structures by 90

topological features derived from network analysis. Protein structures are represented as 91

graphs: amino acids constitute the nodes and contacts between residues are represented 92

as edges [11,46–52]. There is a plethora of contact definitions and most are based on 93

distance cutoffs between certain atoms of amino acids [53]. Graph representations of 94

proteins were previously employed to describe residue flexibility [54] as well as residue 95

fluctuation [46], protein folding [11,49], structural motifs [55], and evolvability [52]. 96

Furthermore, residue graphs were shown to exhibit the character of small world 97

networks [11,46–49] whereby a small number of residues has high connectivity and the 98

average path length in the graph is small. Hydrophilic and aromatic amino acids were 99

found to be crucial connectors in the graph – so-called hubs – which underlines their 100

importance in the context of protein folding [56]. 101

Graph representations of proteins also allow to assess whether proteins feature a 102

modular design [57,58]. Similar problems are solved by similar strategies and existing, 103

established, and safe strategies seem to reemerge [59]. This may explain why the 104

explored sequence and structure space is relatively small: by evolving established 105

sequences, misfolding sequences or those prone to unfavorable aggregation [60] are 106

avoided [59, 61]. This behavior is likely the result of a separation of residues relevant for 107

folding and those relevant for protein function [41] such as ligand binding sites or active 108
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sites. Functional residues also were shown to exhibit distinct topological features [48]. 109

This separation increases robustness and evolvability of protein 110

sequences [41,52,57,58,62] because functional residues can be changed without any 111

impairment of the protein’s stability and the fold can be improved without 112

compromising function. 113

The Start2Fold database [40] constitutes a dataset of EFR [9,14,17,23]. Previous 114

studies considered a small number of proteins, whereas the 30 proteins of the Start2Fold 115

database [40] allow a more robust characterization of EFR. Because the annotation of 116

EFR is standardized, a workflow can be established to analyze also future results of 117

HDX experiments added to the database. 118

Motivation 119

It is unknown what sequence features causes particular residues to fold early and how 120

these residues contribute to the formation of the native structure (Fig 1A). EFR are 121

connected to the defined-pathway model and provide an opportunity to understand the 122

driving forces behind the assembly of stabilizing local structures as well as the 123

formation of tertiary contacts [14,23]. 124

Fig 1. Graphical abstract. (A) During the folding process, an extended protein
chain passes the transition state and forms a native structure [2]. (B) Protein structures
are represented as graphs to derive topological descriptors of residues. Amino acids
constitute nodes, whereas residue contacts are represented as edges. EFR are
structurally relevant residues which participate early in the folding process by forming
local contacts to other residues. They are separated from functional residues which are
primarily ligand binding sites and active sites as derived from UniProt [63]. EFR show
a great number of long-range contacts which furnish the spatial arrangement of protein
parts which are far apart at sequence level.

In this study, several novel structural features are employed for the characterization 125

of EFR. Especially, the Energy Profiling approach, topological descriptors of residue 126

graphs, and the explicit consideration of non-covalent contacts types provides a new 127

level of information in order to describe the folding process. EFR exhibit lower, more 128

stable computed energies in their Energy Profile [28, 29]. Network analysis reveals that 129

EFR are more connected to other residues and that they are located at crucial positions 130

in the residue graph (Fig 1B). This distinct wiring to the rest of the protein is especially 131

furnished by hydrophobic interactions. EFR are likely structurally relevant for the 132

correct protein fold [9]. This information is used to demonstrate that proteins separate 133

structurally relevant residues from functional residues (Fig 1B). We show that positions 134

of EFR are preserved over the course of evolution in the diverse superfamily of 135

aminoacyl-tRNA synthetases (aaRS). Again a separation between EFR and functional 136

residues is evident. Furthermore, positions of EFR are less sequentially conserved than 137

positions relevant for protein function. Interestingly, EFR are in all cases predicted to 138

be located in the center of secondary structure elements. 139

Results and Discussion 140

A previously described dataset [23] of 30 proteins and 3,377 residues is the basis of this 141

study and summarized in S1 Table. 482 (14.3%) of the residues are labeled as EFR, the 142

remaining residues are considered LFR. Hydrophobic amino acids have a higher 143

propensity of being EFR (S1 Fig) as previously described in literature [23]. 144
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To characterize EFR in more detail, various features were defined and compared to 145

the values of LFR. EFR form a significantly greater number of residue-residue contacts 146

(i.e. distance less than 8 Å) than their LFR counterparts (Fig 2A). The loop fraction is 147

defined as the ratio of unordered secondary structure elements in a window centered on 148

a particular residue [64]. Fewer unordered secondary structure elements can be found 149

around EFR (Fig 2B), whereas LFR exhibit a higher propensity to occur in coil regions. 150

EFR are on average closer to the centroid of a protein structure and are likely 151

embedded in the hydrophobic core (Fig 2C). Analogously, they also tend to be more 152

distant to the N- or C-terminus of the sequence than other residues and are likely 153

buried regarding their RASA as per S2 Table. 154

Fig 2. General properties of Early (dark blue) and Late Folding Residues
(light blue). (A) EFR form more contacts to their surroundings than LFR. (B) The
loop fraction [64] is the ratio of unordered secondary structure elements which are
observed in a windows of nine amino acids around a residue. EFR are more commonly
surrounded by ordered secondary structure elements. (C) EFR are located significantly
closer to the centroid of the protein than LFR.

The propensity of EFR to participate in more contacts and to occur in the core of a 155

protein are in agreement with previous studies [14, 23, 39, 49]. The shift in loop fraction 156

can also be attributed to these findings and is further substantiated by the fact that 157

long ordered secondary structure elements tend to contain more EFR [23]. It has been 158

reported that buried residues are more likely to be EFR [23,30] which also explains why 159

they are closer to the spatial centroid of a protein and more separated from sequence 160

termini (S2 Table). Evolutionary couplings scores reported by the direct couplings 161

analysis [65,66] and evolutionary information exhibit interesting properties: the 162

reported coupling strength as well as evolutionary information of EFR is significantly 163

increased. The relation of evolutionary information and EFR has been the subject of 164

previous studies [9, 23]. Correlations between features are presented in S3 Fig, e.g. the 165

contact count as well as the evolutionary coupling descriptors are strongly correlated. 166

All these factors can neither explain why some residues become EFR while others do 167

not nor how EFR relate to the rest of a protein in terms of network analysis. 168

Early Folding Residues constitute stable local conformations 169

To assess the energetic contribution of EFR to the native structure, the proteins of the 170

dataset were transformed by the Energy Profiling approach [28,29]. The computed 171

energy of EFR are significantly lower than the values of LFR. A more detailed 172

investigation of computed energy (Fig 3 and S2 Fig) shows that this trend can be 173

observed for individual amino acids, but the change is insignificant for aspartic acid and 174

isoleucine. Hydrophilic amino acids commonly feature high computed energies, whereas 175

the values for hydrophobic and aromatic amino acids are low. The changes in computed 176

energy for amino acids with hydroxyl groups in their side chain such as serine and 177

threonine are remarkable. Futhermore, cysteine stands out with a high variance of 178

computed energy in the LFR state and low variance for EFR. Energy values predicted 179

from sequence using the eGOR method [28] are also lower for these residues (see S2 180

Table) which indicates that the position of EFR is the consequence of the sequence 181

composition of small fragments. Regarding the average absolute contact frequencies, a 182

EFR participates in 3.87 hydrogen bonds and forms 1.30 hydrophobic interactions with 183

other residues. This constitutes a significant increase compared to LFR (see S2 Table). 184

The results indicates that EFR occur in parts of proteins which are more stable and 185

contain an increased number of hydrophobic amino acids in their spatial surroundings. 186

Especially amino acids such as serine or threonine, which can form hydrogen bonds via 187
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Fig 3. Computed energy by amino acid. The Energy Profiling approach [28,29]
was used to characterize the surrounding of each residue. Hydrophobic and aromatic
amino acids have a high tendency to be located in the buried core of a protein.
Hydrophilic and polar amino acids prefer to be exposed to the polar solvent. This
tendency is reflected by low and high average computed energies respectively. The
distribution of computed energies of EFR always exhibits a lower median than LFR.
Significance in change is indicated by asterisks (*). EFR observations of serine and
threonine exhibit relatively low computed energies. The side chains of both amino acids
can form hydrogen bonds. The decrease in computed energy is insignificant for aspartic
acid and isoleucine. No annotation of EFR is available for proline.

their side chains, feature relatively low computed energies even though they have an 188

overall tendency to be exposed to the solvent due to their hydrophilic nature. The 189

energy contribution of hydrogen bonds has been shown to be context-specific [67], but 190

also crucial for the correct formation of protein structure [56]. Especially amino acids 191

capable of forming side chain hydrogen bonds contribute to the protein stability [1, 67]. 192

Hydrophilic and aromatic amino acids like arginine, histidine, and methionine are 193

considered strong hubs in protein structures [56], which is substantiated by a significant 194

change in computed energy for EFR. Furthermore, arginine and histidine can form 195

hydrogen bonds by their side chain as well. Hydrophobic amino acids occur in the core 196

of a protein and are stabilized by an increased number of hydrophobic interactions. 197

Almost all amino acids experience a significant decrease in computed energy in the EFR 198

state which probably relates to their specific preferences being fulfilled. E.g., 199

hydrophobic amino acids in a hydrophobic environment have favorable computed energy 200

and the same is true for polar amino acids if they favorably interact with similar 201

residues. A wide range of biological roles has been reported for cysteine. It is relevant 202

for ligand binding sites as well as metal coordinating motifs [68] and is also well known 203

for structure stabilization by disulfide bridges especially in extracellular proteins [69]. 204

Also, a strong hydrophobic tendency has been observed in the reduced state [70], which 205

explains why cysteines, when they are also EFR, commonly occur in the hydrophobic 206

core and exhibit low, stable computed energies. How the hydrophobic core of a protein 207

is established is still in debate [1,71]. There are cases where the hydrophobic collapse to 208

a molten globule precedes the formation of secondary structure elements [72]. The low 209

computed energies indicate that EFR have an intrinsic propensity to form stable, local 210

conformations. EFR might be the mediators between the formation of local structure 211

elements and their assembly in the context of the three-dimensional structure. 212

Secondary structure elements such as helices interact e.g. by hydrophobic 213

interactions [73], however, it seems that single contacts are neither strong nor specific 214

enough to guide their assembly [17,74,75]. A fine-grained distinction of contact types 215

including π-stacking and hydrophobic interactions would be required to assess the role 216

of EFR as potential driving force behind the correct of arrangement of secondary 217

structure elements. 218

Network analysis shows a unique wiring of Early Folding 219

Residues 220

The way residues interact with their spatial surrounding was assessed by network 221

analysis based on residue graphs. Regarding the topological properties of residues 222

derived from network analysis (see S4 Fig for a graphical depiction), EFR show a higher 223

interconnectedness than LFR. They exhibit higher betweenness (Fig 4A) and closeness 224

(Fig 4B) values. High betweenness values are observed for well-connected nodes which 225

are passed by many of the shortest paths in a graph. High closeness values occur for 226

6/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/


nodes which can be reached by relatively short paths from arbitrary nodes. The distinct 227

neighborhood count expresses to how many sequentially separated regions of a protein a 228

residue is connected. Again a significant increase can be observed for EFR (Fig 4C). 229

Residues are considered separated when they are more than five sequence positions 230

apart. This threshold was also used to distinguish local contacts (i.e. less than six 231

residues apart) and long-range contacts. Interestingly, the clustering coefficient features 232

a significant decrease when EFR are considered. The clustering coefficient of a node is 233

the number of edges between its adjacent nodes divided by the theoretical maximum of 234

edges these nodes could form. However, EFR are biased to be in the core of the 235

protein [40], thus, it was assessed if this change is also significant when only buried [76] 236

residues are considered. The differences are insignificant in that case (see S2 Table). 237

Fig 4. Topological properties of EFR and LFR. Proteins were represented as
residue graphs and a network analysis was performed. (A) EFR have higher
betweenness values implying that shortest paths in the graph tend to pass through these
nodes more often. (B) They also exhibit higher closeness values because their average
path length to other nodes is lower on average. (C) The distinct neighborhood count of
a residues describes to how many separated regions it is connected. Residues are
considered separated when their separation at sequence level is greater than five. EFR
connect significantly more regions of a protein than LFR.

The betweenness property is closely related to the small-world characteristics of 238

networks (i.e. they are well-connected even when between most nodes no edge is 239

present) and can be observed in this case due to the ratio of protein surface and 240

volume [49]. Residues relevant for the folding process have been shown to exhibit high 241

betweenness values in the transition state and to be crucial for the formation of the 242

folding nucleus [49]. Interestingly, the clustering coefficient shows no difference between 243

EFR and LFR when only buried residues are considered. Also, the value is higher for 244

LFR, which is probably an effect of EFR being hubs which connect several separated 245

regions of a protein (as shown by the distinct neighborhood count). These regions 246

themselves are not well-connected, which results in a lower clustering coefficient for 247

EFR. The performed network analysis aids the understanding on the idiosyncratic 248

properties of EFR in the context of the whole protein and is in agreement with previous 249

studies [10,49,56]. EFR are hubs between sequentially distant protein regions which 250

underlines their importance for the correct assembly of the tertiary structure of a 251

protein. Nevertheless, the increased number of local and long-range contacts of EFR 252

point to their importance for the whole protein folding process as described by the 253

defined-pathway model [14,17]. The protein folding process is difficult to study due to 254

various aspects such the existence of disordered proteins [6, 39], the relevance of 255

chaperons [6], cotranslational folding [25], and the insertion of membrane proteins by 256

the translocon [73,77]. EFR are a welcome simplification to advance the understanding 257

of the protein folding process. 258

Early Folding Residues are non-functional residues 259

Division of labor is one of the most successful strategies of evolution [41,57,58,78–81]. 260

The separation of residues crucial for folding and those furnishing function may allow 261

reuse of established protein folds [33,41,57–59,62]. The sequence and structure space 262

ascertained over the course of evolutions seems small for a truly random exploration. 263

Reusing established folds could also avoid slow-folding sequences or those prone to 264

aggregation [32,44,59,82]. There seem to be a delicate balance in proteins between 265

robustness and evolvability [58,62,71]. Functional residues [83] can be mutated and new 266

functions can be adopted without compromising the fold of the protein [33]. In 267

7/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/


consequence, a clear division should be observable between EFR – which initiate and 268

guide the folding process – and the functional ones implementing protein function. 269

To address this question, residues in the dataset were labeled as either EFR or LFR 270

as well as being either functional or non-functional. Active sites and ligand binding 271

regions were considered to be the functional parts of proteins. The distribution of both 272

binary variables (Table 1) shows that the majority of residues in the dataset are neither 273

EFR (87.2%) nor functional (95.4%) residues. Only 0.5% share both classes, whereas 274

0.8% are expected to share both classes if their association was random (see methods for 275

details). The distribution of both variables separated by individual proteins is presented 276

in S1 Table. For most proteins, no residues are both EFR and functional (Fig 5A). 277

Furthermore, EFR tend to be located in the core of proteins, whereas functional 278

residues are exposed towards the solvent in order to realize their respective function 279

(Fig 5). The acyl-coenzyme A binding protein (STF0001) [34,84,85] features five 280

residues which are both EFR and functional (Fig 5B). 281

Table 1. Contingency table of folding characteristics and functional
relevance.

functional non-functional
early 14 345
late 116 2332

Out of 2807 observations, 0.5% are EFR and functional at the same time. Based on the
presented frequencies, 0.8% of all residues are expected to share both labels if their
association was independent. This captures the tendency of EFR to not be functional
and vice versa. Proteins were excluded when no annotation of functional residues
existed.

Fig 5. Rendered structures of 2 dataset entries. EFR are rendered in blue,
functional residues are rendered in orange. (A) In the case of lysozyme (PDB:2eql A)
the intersection of EFR and functional residues is empty. For most proteins in the
dataset, there is a clear distinction between both classes and structurally relevant
residues have a propensity to be located in the core, while functional residues are
exposed on the protein’s surface. (B) Five residues are both EFR and functional in the
acyl-coenzyme A binding protein (PDB:2abd A) which is one of the exceptions in the
dataset where some residues are both EFR as well as functional.

For the majority of the dataset, a clear separation of EFR and functional residues 282

can be observed. The acyl-coenzyme A binding protein may exhibit five residues which 283

are both EFR and functional because its a rather small protein of 86 residues which 284

binds ligands with large aliphatic regions. Intuitively, the residues furnishing the 285

bowl-like shape of the protein are also those which participate in the function of ligand 286

binding [34,84,85]. Roughly half the residues of the acyl-coenzyme A binding protein 287

are marked as EFR which further accentuates why the separation is less strict in this 288

case. Exceptionally well separated are EFR and functional residues in the fibroblast 289

growth factor 1 (STF0024, S5 FigA) and Villin-1 (STF0028, S5 FigB). The first protein 290

contains a large number of EFR distributed throughout the sequence and a large 291

heparin-binding region which are distinct at sequence level. Villin-1 exhibits a similar 292

distribution of EFR and features a C-terminal polyphosphoinositide binding region 293

which contains no EFR. In both cases, the functional sites bind other molecules. This 294

characteristic is commonly associated to increased structural flexibility [86] which may 295

explain why EFR rarely occur there. The primary selection pressure during evolution is 296

on protein function [87] rather than on structural integrity [88]. In cases where a certain 297

8/25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/290627doi: bioRxiv preprint 

https://doi.org/10.1101/290627
http://creativecommons.org/licenses/by/4.0/


position is crucial for function, slower folding is tolerated which implies that structure 298

and folding are subordinated to function [71]. Disordered proteins are another example 299

of proteins without structural integrity which achieve a high robustness of function [52]. 300

In structural biology, structure is commonly considered to be equal to function [52,87]. 301

However, ultimately it is most important that proteins are functional [87,89]. This 302

potential irrelevance of a particular fold underlines that the separation of structurally 303

and functionally relevant residues may be advantageous for evolvability. However, also 304

cases were described where it is advantageous to place functional residues close to 305

residues ensuring structural integrity in order to maintain protein function over the 306

course of evolution [90]. Another interpretation with respect to the defined-pathway 307

model [14] is that EFR initiate and guide the folding process. By assigning this 308

responsibility to a small number of residues, the remaining residues can constitute 309

active sites. 310

Early Folding and functional residues exhibit distinct features 311

The previously described features were employed to substantiate the identified 312

separation of structure and function at residue level (S3 Table). EFR show significantly 313

lower computed energies when compared to LFR or functional residues (Fig 6A). 314

Functional residues exhibit higher computed energies than their non-functional 315

counterparts. Most residues form only a small number of hydrophobic interactions, 316

however, the number for EFR is significantly increased (Fig 6B). 97.7% of EFR form 317

hydrogen bonds and 64.3% participate in hydrophobic interactions. Functional residues 318

participate to 93.1% in hydrogen bonds and to 43.8% in hydrophobic interactions. On 319

the contrary, the change between the hydrogen bond count of EFR and functional 320

residues in a buried state is insignificant (S3 Table). The clustering coefficient of a node 321

captures how many edges can be observed between the adjacent nodes and, thus, 322

describes how well-connected the direct surroundings of a node are. Functional residues 323

show an insignificant change regarding this property (S3 Table). In contrast, the 324

clustering coefficient significantly decreases when EFR are compared to LFR or 325

functional residues (Fig 6C). In summary, EFR exhibit distinct properties compared to 326

functional residues. Their surrounding secondary structure elements, values in Energy 327

Profiles, and the number of hydrophobic interactions are especially characteristic. In 328

terms of evolutionary information, functional residues exhibit a significant change 329

compared to non-functional residues (S3 Table). When buried EFR evolutionary 330

information of functional residues amounts to 49.11 compared to 42.04 for EFR which 331

constitutes a significant increase. LFR and non-functional residues are less conserved at 332

sequence level. 333

Fig 6. Characteristics of EFR and functional residues. EFR (dark blue) and
LFR (light blue) are compared to functional (dark orange) and non-functional (light
orange) residues. (A) EFR show lower computed energies than they are in contact with
many residues and tend to be embedded in the hydrophobic core. In contrast,
functional residues are exposed to the solvent in order to constitute e.g. binding sites.
(B) Hydrophobic interactions occur especially in the core of a protein, thus, most
residues do not form any. However, EFR show an significant increase compared to LFR.
(C) The clustering coefficient of a node describes how well-connected its adjacent nodes
are. EFR connect regions of a protein which are separated at sequence level and, thus,
not well-connected on their own. Functional residues exhibit higher clustering coefficient
indicating a more connected set of adjacent nodes.

Due to their purpose, EFR are located in the hydrophobic core and functional 334

residues are primarily exposed to the solvent. These distinct requirements manifest in 335
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the computed energies. Furthermore, protein function can commonly be broken down to 336

amino acids which feature hydrophilic, chemically functional groups [83]. Hydroxyl 337

groups are a prominent examples for functional groups contributing to catalysis [83]. 338

Thus, functional residues are likely to exhibit above average computed energies because 339

of their higher propensity to contain hydrophilic side chains. Analogously, fewer 340

hydrophobic amino acids constitute the functional residues of binding sites and they 341

form fewer hydrophobic interactions. Most of the hydrophobic interactions are 342

accumulated in the hydrophobic core of a protein [1, 28,91]. EFR tend to be crucial 343

connectors in proteins, however, their clustering coefficient is low. This can be 344

attributed to the fact that EFR connect many distinct neighborhoods. Furthermore, 345

functional residues feature above average closeness values: they are well-connected to 346

other parts of the protein, even though they are unaffected by the early folding events. 347

It was shown that functional residues have special requirements on how they are wired 348

to the rest of a protein [48]: surrounding residues ensure the correct placement of 349

functional residues [48,68,92], modulate their chemical properties such as pK a 350

values [48, 83, 93], or propagate signals to other parts of a protein [48]. Analogously, the 351

evolutionary pressure on functional residues is increased compared to EFR and 352

non-functional residues as indicated by the evolutionary information (S2 Table). In 353

particular, catalytic activity of amino acids can be broken down to functional groups of 354

their side chain [83]. The hydroxyl side chain of serine may be substituted by threonine 355

or tyrosine. In contrast, contacts which stabilize protein structures can be primarily 356

broken down to the hydrophobic or hydrophilic character of amino acids [94,95] which 357

allows for a wider range of tolerated mutations. Early stages of protein folding sample 358

transient conformations [14,23] and settle for stable, local structures as indicated e.g. 359

by the Energy Profiling approach. It has been shown that the characteristic of EFR is 360

not directly linked to individual amino acids but rather the effect of the sequence 361

composition of sequence fragments [9, 23,39]. This may be another explanation why 362

EFR are less conserved at sequence level than functional residues. That the folding 363

nucleus of proteins is not necessarily sequentially conserved has been demonstrated 364

previously [14,96,97], and makes it even more remarkable that coevolution techniques 365

such as the direct coupling analysis perform so well for structure prediction tasks [65,66]. 366

Modularity in proteins is also present in domains [57], secondary structure elements, 367

and autonomous folding units of the defined-pathway model [17,27]. Particularized 368

knowledge of EFR may improve synthetic biology and could allow the design of proteins 369

combining existing functional domains without influencing one another 370

negatively [2, 57,58,98]. Furthermore, understanding the differences of structurally 371

relevant residues and those implementing function could help in predicting mutation 372

effects and provide a new level of detail by allowing whether a mutation disrupts the 373

fold or the function of a protein [99,100]. 374

The position of Early Folding Residues is consistent in 375

aminoacyl-tRNA synthetases 376

For the Start2Fold dataset [23] a separation of EFR and functional residues can be 377

observed. However, no analysis of EFR in an evolutionary context is feasible due to 378

limitations of this dataset. aaRS may be the protein superfamily with the most 379

intriguing evolutionary history and, thus, are a prime candidate to analyze in the 380

context of the previous findings as their emergence is well-discussed in 381

literature [80,81,101–104]. aaRS enzymes attach amino acids to their cognate tRNA, 382

which is subsequently recognized by its anti-codon and consumed by a ribosome. Thus, 383

aaRS implement the genetic code and give insights into the earliest stages of life. For 384

each amino acid, a dedicated aaRS implementation exists in each organism. E.g., 385
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AspRS attaches aspartic acid to tRNAAsp in two-step reaction which involves the 386

recognition of ATP, amino acid, and tRNA: 387

Asp + ATP
AspRS

Asp AMP + PPi 388

Asp AMP + tRNAAsp AspRS
Asp tRNAAsp + AMP. 389

The 20 implementations can be divided into two complementary classes which differ 390

significantly at sequence and structure level, feature distinct reaction mechanisms, and 391

occur in diverse oligomerization states. In a recent study [104], two ligand binding 392

motifs – the Backbone Brackets and the Arginine Tweezers – were identified, 393

characteristic for each aaRS class. These motifs were furthermore linked to primordial 394

implementations of both aaRS classes called protozymes [80,81]. It is hypothesized that 395

all contemporary aaRS genes originate from the protozyme region of either class I or 396

class II aaRS. Further analysis focuses on regions of today’s aaRS structures which 397

correspond to the protozyme regions in order to assess how EFR predicted by 398

EFoldMine [9] related to functional residues [104] in an evolutionary context. ATP and 399

amino acid recognition sites were considered functional (see S6 Fig). Furthermore, we 400

wanted to assess whether the predicted positions of EFR are consistent in these highly 401

diverse superfamily of enzymes. This analysis is backed by a manually curated dataset 402

which accounts for high diversity of contemporary aaRS implementations [104]. 403

Fig 7. Hypothesized protozyme regions of both aaRS classes. The
protozymes [80,81,104] (in cartoon style) and the respective aminoacyl-AMP ligand (in
sticks style) are depicted. This captures the state after the first reaction after ATP and
amino acid have been covalently bound. The ATP part is oriented to the left, whereas
the amino acid is located on the right. Residues predicted to be Early Folding [9] are
colored blue, whereas functional residues [104] are rendered in orange. ATP interaction
sites are depicted in dark orange, residue positions observed to interact with the amino
acid in any aaRS structure are rendered in light orange (see S6 Fig for a schematic
depiction). In the rare cases that residues are both EFR and functional, they bind the
amino acid part of the ligand in two specific aaRS implementations. (A) The class I
protozyme is represented by truncated PDB:1euy A. The respective EFR as located in
the center of the ordered secondary structure elements. In contrast, functional ligand
binding sites are located in the upper part of each subfigure. They are primarily located
in unordered coil regions. (B) The class II protozyme, represented by truncated
PDB:1c0a A, shows similar tendencies.

Fig 7 depicts the hypothesized protozyme [80,81,104] of each aaRS class with an 404

aminoacyl-AMP ligand present which captures the intermediate of the enzymatic 405

reaction. Analysis is based on 81 non-redundant structure for class I and 75 for class II, 406

respectively. For each analyzed structure the corresponding sequence was used to 407

predict the position of EFR [9]. A consistent numbering of residues within each class 408

was established by a structure-guided multiple sequence alignment (MSA) [105]. Even 409

within the depicted catalytic core of aaRS structures, sequences feature a high degree of 410

variability and various inserts. Interestingly, residues predicted to be Early Folding are 411

located at MSA columns which may not be extraordinarily conserved but are present in 412

at least half of the corresponding sequences. Despite the high sequence variability of 413

aaRS proteins, EFR positions are mostly conserved among homologues. ATP binding 414

sites are also consistent for the structures, whereas the exact position of amino acid 415

binding sites varies drastically. In the visualized protozyme regions (Fig 7), positions of 416

EFR are located in ordered secondary structure elements. Functional residues, 417

especially those realizing ATP recognition, are located in spatial proximity to one 418

another. Furthermore, they occur in unordered coil regions and are located close to the 419
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ligand. ATP binding sites (dark orange) can be found on the left in proximity of the 420

adenine part, whereas amino acid recognition sites (light orange) can be found on the 421

right close to the amino acid part of the ligand. The average sequence conservation of 422

the protozyme regions is 1.59 (1.42) for class I (and class II respectively). Positions 423

predicted to be EFR exhibit scores of 2.50 (2.80). That for ATP binding sites is 3.75 424

(3.75) and for amino acid binding sites 1.85 (2.17). On average the EFoldMine prediction 425

is 0.09 (0.09) for the protozyme regions. Positions considered EFR exhibit high values 426

of 0.21 (0.20). ATP binding sites feature low scores, whereas amino acid binding sites 427

feature slightly increased probabilities of being EFR (summarized in S4 Table). 428

Detailed data for the annotated EFR and functional positions is provided in S4 File and 429

S5 File. Because the position of amino acid binding sites is not consistent in the MSA, 430

sequence conservation of these positions is relatively small. In contrast, ATP binding 431

sites are mapped consistently in the MSA for both aaRS classes [104]. EFR exhibit 432

smaller sequence conservation scores than ATP binding sites which indicates that more 433

sequence variability can be tolerated for folding initiation sites. Again, protein function 434

depends on particular amino acid side chains [83], whereas protein structure and 435

secondary structure element formation is mainly the consequence of the hydrophobicity 436

of amino acids [94,95]. ATP binding sites exhibit lower EFR prediction scores compared 437

to the average in the protozyme region which captures their tendency to occur in 438

exposed, unordered coil regions as observed in the previously reported findings. 439

Table 2. Comparison of folding characteristics and functional relevance for
aaRS classes.

class early ATP aa ATP int. aa int. ATP shift aa shift
class I 16 4 13 0 1 -0.95% -1.87%
class II 10 4 8 0 2 -0.82% 1.22%

26 8 21 0 3 -0.90% -0.39%

ATP refers to the number of ATP binding sites and aa refers to the number of positions
realizing amino acid recognition in any aaRS implementation. The intersection of
functional residues involved in ATP and amino acid binding is given. The shift in
probability to the expected intersection is stated. A perfect separation of EFR and
functional residues in the sense of ATP binding positions can be observed. Also,
positions relevant for amino acid specificity are remarkably well separated from EFR
most of the time. The overlap is present in the amino acid recognition sites in two
implementations respectively: TrpRS and TyrRS in class I and AspRS and PylRS in
class II.

In class I (visualized by truncated PDB:1euy A), position 311 is the only residue 440

which is both EFR and functional (Table 2). This position is only functional in TrpRS 441

and TyrRS where it realizes binding of the respective amino acid. Both tryptophan and 442

tyrosine are large, aromatic amino acids and it is hypothesized that they were added 443

late to the genetic code [103]. This implies that these EFR became functional late 444

during the evolution of aaRS. The clear separation with respect to ATP recognition 445

implies that the unifying aspect of all aaRS is binding of the ATP ligand and catalysis 446

at the respective α-phosphate [104]. At first protozymes where required to bind ATP 447

and later the amino acid binding sites improved in specificity, allowing them to 448

discriminate between amino acids more reliably. Position 274 corresponds to the 449

N-terminal residue of the Backbone Brackets structure motif. Close to this position 450

various amino acid binding sites can be observed in other class I aaRS, while EFR are 451

further away (S4 File). Despite being functionally relevant, the sequence conservation of 452

position 274 amounts to 3 and is relatively small. This residue has been shown to 453

realize ATP binding by backbone hydrogen bonds which can be virtually realized by all 454
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amino acids [104]. Thus, change can be compensated at this position as along as the 455

backbone atoms can still bind the ATP ligand. Furthermore, this position interacts with 456

the α-phosphate position of the ligand to which the aaRS attaches the proper amino 457

acid [104]. Therefore, it is intuitive that many positions involved in amino acid 458

recognition are located at neighbored sequence positions. In class I, 15 of 16 EFR 459

positions in the MSA relate to well-mapped positions (i.e. present in the majority of 460

aligned sequences). Moreover, the LFR position 284 features a remarkably high 461

sequence conservation of 10. This position is part of the HIGH sequence motif which 462

relates to ATP binding and the stabilization of the transition state [102]. In most class I 463

aaRS, the HIGH motif is located at the C-terminal end of a α-helix. Despite this 464

defined secondary structure, the HIGH motif is predicted to consist of LFR. EFR are 465

located in the center of the helix: sites, with a high drive to fold, will initiate the 466

formation of helices and then extend them until the sequence composition hinders any 467

further extension [7, 8]. 468

In class II, positions 665 and 666 are both functional and predicted to be EFR 469

(Table 2). Again, these positions are not functional in most class II aaRS. Only in 470

AspRS and PylRS they are observed to bind the amino acid part of the ligand. In 471

agreement with the observation for aaRS class I and the acyl-coenzyme A binding 472

protein, asparagine and pyrrolysine are relatively large ligands which may require EFR 473

to participate in protein function. 9 of 10 EFR positions are well-mapped in class II. 474

For both classes, functional positions are well-mapped as well in the majority of 475

observations. For position 698 of class II a sequence conservation score of 11 is observed. 476

This position is the N-terminal residue of the Arginine Tweezers structure motif [104] 477

which has been demonstrated to depend on the conservation of this particular amino 478

acid for ATP binding via salt bridges and π-cation interactions. Similar to class I, ATP 479

binding positions can be found accumulated together at sequence level without any 480

EFR between them (S5 File). 481

The findings related to the protozymes of aaRS substantiate that the most 482

important aspect of a protein during evolution is function [87] and not retaining a 483

particular protein fold [88]. Functional residues (i.e. ATP binding sites consistently 484

shared by all aaRS implementations) exhibit a higher sequence conservation than EFR. 485

The separation of EFR and functional residues is perfect when amino acid binding 486

positions are ignored which are only relevant in a small number of implementations. 487

Even when these amino acid binding positions were considered to be functional in all 488

implementations, the intersection is remarkably small for class I. In this diverse 489

superfamily, EFR are located consistently in the same columns of the MSA which agrees 490

with the observation that this characteristic depends on the composition of larger 491

sequence fragments [9] and relatively insensitive to inserts. Furthermore, it is shown 492

that the position of folding initiation sites is preserved over the course of evolution even 493

when the corresponding sequence conservation is small. Folding initiation sites occur in 494

the center of secondary structure elements, independent of aaRS class. 495

Conclusion 496

A dataset of Early Folding Residues for the protein folding process was studied. They 497

are highly connected nodes in residue graphs and were observed to be located in 498

energetically favorable conformations as pointed out by the approach of Energy 499

Profiling [28,29]. These structurally relevant residues have distinct properties e.g. 500

regarding the number of hydrophobic interactions compared to functional residues. 501

Future hydrogen-deuterium exchange data can substantiate the presented trends 502

regarding the nature of EFR. Potentially, the arsenal of experimental techniques to 503

study the folding process of proteins will expand and become more refined and 504
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standardized, so that the underlying dataset of studies like this one will become more 505

robust. Early Folding Residues are an excellent tool to gain insights into the folding 506

process with spatial and temporal resolution. Future studies may link them to 507

characteristics at sequence level to understand the sequence composition which causes 508

particular regions of a protein to initiate the folding process. Features presented in this 509

study were shown to be discriminative for Early Folding Residues. Classifiers for them 510

based on sequence [9] or structure may annotate residues crucial for protein folding. 511

Trained classifiers can also report as well as visualize the most discriminative 512

features [106, 107] which may further delineate EFR. This information is also invaluable 513

for mutation studies, φ-value analysis, or protein design and can serve as basis for the 514

prediction of mutation effects [99]. The same is true for the observed separation of 515

structurally relevant and functional residues in proteins. Understanding these 516

topological differences provides insights into the way they interact with the rest of the 517

protein and to what degree they tolerate or compensate manipulation. For decades, 518

scientists longed for a glimpse into the folding process [7–9] and the analyzed 519

dataset [40] provides just that. The experimental signals of early folding events are still 520

difficult to interpret and the analyzed dataset may not be generalizable for large 521

proteins, but the made observations indicate that Early Folding Residues are also 522

relevant for the stabilization of the native structure. In an evolutionary context as 523

captured by the analysis of the aaRS dataset [104], the positions of Early Folding 524

Residues are consistent among homologues which implies that folding initiation sites are 525

preserved over the course of evolution even though their sequence conservation is 526

relatively small compared to functional residues. 527

Methods 528

Dataset creation 529

Folding characteristics of residues were obtained from the Start2Fold database [40]. 530

Therein, the authors adopted the definition of EFR from Li et al. [30] and presented a 531

refined dataset which ignores possible back-unfolding and aggregation events [108]. The 532

database covers all structural protein families present in CATH and SCOP [9]. However, 533

the size of the deposited proteins [9, 23] varies from 56 to 164 residues (S1 Table) which 534

likely makes this resources only relevant for the folding of similarly small proteins. 535

This procedure resulted in a dataset for EFR characteristics encompassing 30 536

proteins and 3,377 residues – 482 of the EFR class and 2,895 of the LFR class. Due to 537

the nature of the HDX experiments no data can be obtained for proline residues which 538

feature no amide group susceptible to HDX [38], rendering them LFR in any case. 539

Annotation of functional residues was performed using the SIFTS [109] and 540

UniProt [63] resources. For 23 proteins an annotation of binding sites or regions existed, 541

totaling in 2,807 residues – 130 classified as functional and 2,677 as non-functional. A 542

detailed summary of the dataset is provided in S1 Table. Information used from the 543

Start2Fold database can be found in S1 File. Residues annotated as functional are 544

summarized in S2 File. 545

Graph representation and analysis 546

Protein structures are commonly represented as graphs. This allows a scale-invariant 547

characterization of the neighborhood relation of individual amino acids in the context of 548

the whole protein [50]. 549

In this study, amino acids constitute the nodes of a graph, whereas covalent bonds 550

and residue contacts are represented as edges. Residues were considered in contact 551
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when their Cβ atoms were less than 8 Å apart – if no Cβ atom was present the Cα 552

position was used as fallback. Furthermore, contacts were labeled as either local (i.e. 553

the separation in sequence is less than six) or long-range (i.e. sequence separation 554

greater than five) [110]. This distinguishes contacts stabilizing secondary structure 555

elements and those which represent contacts between secondary structure elements. The 556

set of distinct neighborhoods of a node is defined as all adjacent nodes which do not 557

share any local edge to any element of the set. Betweenness is defined the number of 558

shortest paths on the graph passing through a specific node, normalized by the number 559

of node pairs [49, 111]. Closeness of a node is defined as the inverse of the average path 560

length to any other node [48]. The clustering coefficient of a node is the number of 561

edges between its nk adjacent nodes divided by the maximal number of edges between 562

nk nodes: 0.5 · nk · (nk − 1) [49]. 563

Feature computation 564

Energy Profiles were calculated from structure and predicted from sequence according 565

to the methodology used in the eQuant web server [28,29]. Energy Profiles represent a 566

protein’s complex three-dimensional structure as one-dimensional vector of computed 567

energies. Thereby, the surroundings of each residue are characterized by one energy 568

value. Therefor, the frequencies of an amino acid to occur buried or exposed to the 569

solvent were determined. Using the inverse Boltzmann law, the fraction of both states 570

can be expressed as pseudo-energy. The energy of a residue can then be computed by 571

summing up the corresponding pseudo-energies of all interacting residues. Residues 572

were considered in contact, when the distance of their Cβ atoms was less than 8 Å [28]. 573

RASA values were computed by the algorithm of Shrake and Rupley [112]. Buried 574

residues are defined as those with RASA values less than 0.16 [76]. Non-covalent 575

residue-residue contacts were detected by PLIP [113]. Secondary structure elements 576

were annotated using DSSP [114]. For both ASA and secondary structure element 577

annotation the BioJava [115,116] implementations were used. The loop fraction is 578

defined as fraction of unordered secondary structure in a window of nine residues around 579

the evaluated amino acid [64]. This yields a fraction, where high values are tied to 580

regions of high disorder, whereas amino acids embedded in α-helices or β-sheets result 581

in scores close to zero. The centroid distance of a residue is the spatial distance of its 582

centroid to that of all atoms. The terminus distance is lower of the sequence separation 583

to either terminus divided by the number of residues. Evolutionary information as well 584

as couplings scores were computed using the EVfold web server [65,66]. The 585

evolutionary information is based on the MSA of homologues automatically retrieved for 586

the query sequence and expresses how conserved a column in this MSA is. 587

Data integration was performed by a Java library publicly available at 588

https://github.com/JonStargaryen/jstructure. 589

Statistical analysis 590

Dependence of distributions of real-valued variables was tested by the Mann-Whitney U 591

test. Dependence of distributions of count variables was tested using the Dunn test with 592

Bonferroni correction. * corresponds to significant p-values <0.05 for the 593

Mann-Whitney U and p-values <0.025 for the Dunn test. The observed intersection 594

between EFR and functional residues was expressed as probability and compared to the 595

expected probability of a residue to share both the EFR and functional label based on 596

their respective probabilities to occur individually. 597
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Creation of the aminoacyl-tRNA synthetase dataset 598

An evolutionary trajectory of highly diverse proteins can be found in aaRS. A detailed 599

description of the methodology can be found in a previous study [104]. 972 aaRS 600

structures from the PDB were analyzed. Within each class, sequences were clustered 601

together when their sequence identity was above 95%. For clusters of highly similar 602

sequences, a representative was determined. All representatives within a class were 603

aligned by the T-Coffee expresso pipeline [105]. Thereby, all structures were 604

renumbered within each class and allows to directly compare structures: e.g. the first 605

residue of the Backbone Brackets motif is at renumbered position 274 and can by found 606

by that residue number in all other class I structures despite the high sequence 607

variability. From these renumbered protein chains, the corresponding sequence was 608

extracted and used as input for the EFoldMine algorithm [9] which predicts the 609

probability of residues being EFR. This was necessary because no experimentally 610

derived folding characteristics are available for aaRS proteins. Predicted scores 611

exceeding 0.163 where considered EFR; this value has been shown to optimally separate 612

EFR and LFR [9]. The annotation of functional residues was derived from a curated 613

annotation of ligand binding sites [104]. For ligand binding, ATP binding sites and 614

amino acid binding sites were distinguished as detected by PLIP [113]. Protozyme 615

regions were extracted from PDB:1euy A and PDB:1c0a A to represent aaRS class I 616

and II. This selection was for visualization purpose only and focused on structures 617

which ligands in aminoacyl-AMP ligands. Selected residue numbers of the protozymes 618

are 255–336 and 648–718, respectively [104]. In contrast to the evolutionary information 619

scores [65,66], the sequence conservation in aaRS sequences was computed by 620

Jalview [117,118] using only sequences which were used as input of the MSA. Positions 621

composed of sets of amino acids with similar characteristics result in high values. 622
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Supporting information

S1 Fig. Amino acid frequencies. The gray bars correspond to the amino acid
frequencies in the dataset [23]. The blue bars depict the frequency of a particular amino
acid to be an EFR. Hydrophobic amino acids show an increased tendency to be EFR.

S2 Fig. Fine-grained distribution of computed energies. A more fine-grained
version of Fig 3. Additionally, the overall distribution of computed energies of an amino
acid is depicted in gray.
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S3 Fig. Correlation matrix of computed features. Depicts correlations of
analyzed correlation. The bigger the circle, the higher the association of both variables.
Blue refers to positive correlation, whereas red represents a negative correlation.

S4 Fig. Network descriptors. Depiction of the used network descriptors:
betweenness, closeness, clustering coefficient, and distinct neighborhood count.

S5 Fig. Dataset entries where EFR and functional residues are
well-separated. EFR are rendered in blue, functional residues are rendered in orange.
(A) In the case of fibroblast growth factor (PDB:1rg8 A) EFR are distributed
throughout the sequence are accumulated in the core of the protein. In contrast,
functional residues primarily occur in a N-terminal heparin-binding region. (B) Similar
tendencies are present in Villin-1 (PDB:2vil A). This time the functional binding site is
located near the C-terminus and contains no EFR.

S6 Fig. Binding site of aaRS enzymes. ATP binding regions are depicted in
dark orange, whereas amino acid specific positions are rendered in light orange. Figure
adapted from [104].

S1 Table. EFR dataset summary. Summarizes identifiers [23] of each entry as
well as the number of residues in the corresponding protein chain, the number of EFR
and functional residues as well as the cardinality of the intersection of both sets. In
order to assess the relevance of the observed intersection it was compared to the
expected intersection. Proteins not containing any functional residues according to
UniProt [63] are marked with dashes.

S2 Table. Statistical characterization of EFR. For each presented feature the
mean (µ) and standard deviation (σ) of both the EFR and LFR category is reported.
pburied refers to the p-value of the test on residues buried according their RASA value,
this was done because EFR have a tendency to be located in the core of a protein and
without filtering all differences are significant. Features and employed tests are
described in the Methods section.

S3 Table. Comparison of EFR and functional residues. For each presented
feature the distribution of values is compared between functional and non-functional
residues as well as EFR and functional residues. The corresponding p-values and
significance level are stated for buried residues. Mean values are shown for EFR (µearly)
and functional residues (µfunc). Features and employed tests are described in the
Methods section.

S4 Table. Summary of the aaRS dataset. Sequence conservation [117,118] and
EFoldMine [9] predictions for the aaRS protozyme regions [80,81,104] are presented.
Encompassed are the average values for all residues, residues in the protozyme region,
for positions predicted to be EFR, functional residues, ATP binding residues, and amino
acid binding sites.

S1 File. Start2Fold dataset as JSON file. Machine-readable JSON version of
the dataset. Provides protein name, Start2Fold identifier, PDB identifier, UniProt
identifier, number of EFR, range of residues numbers, and the secondary structure
element composition for each dataset entry.
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S2 File. Start2Fold dataset as table. Summary table of all protein chains used
for the analysis. Provides Start2Fold identifier, PDB identifier, evaluated experiments,
number of EFR, UniProt identifier, and identifiers of functional residues derived from
UniProt.

S3 File. Table of computed features for the Start2Fold dataset. Contains
for all residues the set of computed features as well as the annotation of Early Folding
and functional residues.

S4 File. Detailed description of aaRS class I structures. For each
renumbered position, it is stated whether it is functional [104] or an EFR. Furthermore
given are the sequence conservation [117,118], the number of backing sequences [104],
and the average EFoldMine score [9].

S5 File. Detailed description of aaRS class II structures. For each
renumbered position, it is stated whether it is functional [104] or an EFR. Furthermore
given are the sequence conservation [117,118], the number of backing sequences [104],
and the average EFoldMine score [9].
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