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Abstract Electronic health records and health insurance claims, providing observational data on millions of patients, offer great 
opportunities, and challenges, for population health studies. The objective of this study is identifying subpopulations that are likely 
to benefit from a given treatment using observational data. We refer to these subpopulations as “better responders” and focus on 
characterizing these using linear scores with a limited number of variables. Building upon well-established causal inference 
techniques for analyzing observational data, we propose two algorithms that generate such scores for identifying better responders, 
as well as methods for evaluating and comparing these scores. We applied our methodology to a large dataset of ~135,000 epilepsy 
patients derived from claims data. Out of this sample, 85,000 were used to characterize subpopulations with better response to 
next-generation (“Newer”) anti-epileptic drugs (AEDs), compared to an alternative treatment by first-generation (“Older”) AEDs. 
The remaining 50,000 epilepsy patients were then used to evaluate our scores. Our results demonstrate the ability of our scores to 
identify large subpopulations of epilepsy patients with significantly better response to newer AEDs. 
 
 
Index Terms—causal inference, claims data, comparative effectiveness, electronic health records, epilepsy, population studies, precision 
medicine.  
 
 
 

I. INTRODUCTION1 
central problem in population health studies is inferring 
the influence of a treatment, or intervention, on a given 
outcome. For example, the influence of the drug 

“metformin” on the risk for cancer incidence [1]. There are 
several widely-used statistical techniques for estimating the 
average effect of a treatment, with respect to a given 
population [2].  However, the average effect may vary across 
different subpopulations, due to differences in individual 
susceptibilities to treatment.  Therefore, certain patient 
groups may show stronger, or alternatively, weaker, response 
to treatment, than the larger population. In this study we 
focus on identifying “better responders”, which are 
subpopulations that are likely to benefit more from a given 
treatment, compared to the larger population.  

Ideally, estimating whether a patient has a better response 
to a treatment requires comparing the outcome in two 
“parallel realities”; one in which the treatment is given, while 
in the other the alternative is used. We refer to these 
compared outcomes as “counterfactual”, as only one of them 
can be observed. Consequently, identifying better responders 
is essentially different from supervised learning problems, 
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since we have no “better response” labels for the patients. In 
recent years there has been a growing interest in combining 
machine learning and principles of causal inference to 
construct models of individual treatment effect [3], [4]. 
However, these models are highly complex and do not 
provide interpretable characterizations of patients predicted 
as better responders.   

Here we focus on finding interpretable models for 
identifying “better responders”, which point to the major 
factors that differentiates better responders from other 
patients. Such models may have a large applicability in 
Health Economics and Outcome Research (HEOR), as well 
as for building personalized treatment recommendation 
systems. 

Validating a given characterization of better responders 
requires estimating the average causal effect of the treatment 
in the corresponding subpopulation. Ideally, average causal 
effects should be estimated with randomized controlled trials 
(RCTs), in which participants are randomly assigned to 
treatment groups. Unfortunately, RCTs are often costly, 
sometimes impractical, and may raise ethical questions. On 
the other hand, real world evidence (RWE) data, such as 
retrospective analysis of electronic health records and claims 
data, are abundant and offer new opportunities to study 
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causal effects [5].   
There are several common statistical methods for 

estimating average causal effects using observational data, 
such as inverse probability weighting (IPW) and 
standardization [2], [5]. These methods can be used to test 
specific hypotheses for better responder groups. One may 
suggest enumerating all hypotheses regarding the 
characterization of better responders and test each one using 
these validation methods. However, for high dimensional 
data, such as electronic health records, this approach implies 
a severe multiple testing problem and therefore becomes 
practically infeasible. Previous works presented methods for 
identifying better responders using randomized control trials 
[6], [7]. However, these studies are not directly applicable to 
observational data in which treatment assignment is not 
random. A different approach for identifying better 
responders suggest patients at high risk for the alternative 
treatment [8], [9]. However, such patients may not 
necessarily be at a lower risk with the treatment under 
consideration. More recently, decision trees were used to 
recursively partition the data into subpopulations that differ 
in the magnitude of their treatment effects [10] or by their 
optimal treatments [11]. In this study we take a different 
approach of learning sparse linear scores for better response. 
Such scores pinpoint the major factors associated with 
heterogenous treatment effects and enable the detection of 
subpopulations of various size showing better treatment 
effect using a score threshold. 

In this work, we combine predictive modeling and causal 
inference theory to generate scores for identifying better 
responders using observational data. To ensure a simple and 
interpretable characterization of the identified 
subpopulations, we limit the generated scores to be sparse 
(i.e. including few variables) and linear. Building upon well-
established techniques for estimating causal effects, we 
present two novel approaches for selecting the major 
variables that associate with differential response to the 
treatment.  The generated scores are validated on a held-out 
test set, by verifying that the estimated average causal effect 
for groups of high-scored (respectively, low-scored) patients 
is larger (respectively, smaller) than the estimated average 
causal effect in the entire population.  

We applied our methodology to a large dataset of epilepsy 
patients, comparing two alternative classes of AEDs: 
“Newer” vs. “Older”. The first class included second-
generation AEDs that were approved over the last two 
decades for treating epilepsy in the US: felbamate, 
gabapentin, lacosamide, lamotrigine, levetiracetam, 
oxcarbazepine, pregabalin, tiagabine, topiramate, vigabatrin, 
and zonisamide. The second class contained the following 
first-generation AEDs that are available in the US market: 
carbamazepine, phenobarbital, phenytoin, primidone, and 
sodium valproate.  In general, AEDs are initially approved 
as adjunctive therapy for patients with refractory epilepsy, 
based on data from randomized placebo-controlled trials. 
When an AED is initially marketed, there is uncertainty 
regarding the benefit to most epilepsy patients having less 
severe epilepsy and compared to the available Older AEDs. 
It is acknowledged within the clinical community that AED 

selection for epilepsy management should be optimized by 
adapting the treatment decisions to the characteristics of the 
individual [12]. Even when applied to a population that 
theoretically has a high chance to respond to it, prognosis 
remains difficult in most cases [13]. It is likely that there are 
characteristics that play an individual or interactive role in 
determining response / non-response that are currently 
unknown. This study aims to elucidate some of these 
characteristics by characterizing better responders to Newer 
AEDs using retrospective claims data. 

II. MATERIAL AND METHODS 
We start by formulating the problem of characterizing better 
response, providing the necessary background and 
terminology on causal inference concepts (Section A). In 
Section B we present two algorithms for this problem.  We 
present methods for evaluating and comparing scores for 
better responders in Section C. Finally, in Section D we 
describe the epilepsy use case in which we applied our 
methodology and describe specific implementation details. 
An overview of the entire methodology is presented in  
Fig. 1.  
 

A. Problem definition 
Suppose we have two treatment options, denoted by 𝑎 = 1 
and 𝑎 = 0, and only one of these treatment options is given 
to a patient. Let 𝑌 be a random variable that indicates a 
patient outcome used for evaluating the response to the given 
treatment. Examples for outcomes may be: death, lab test 
result, hospitalization, etc. We denote by 𝐴 the random 
variable that indicates the assigned treatment, and by 𝑌' the 
random variable corresponding to the potential outcome 
when 𝐴 = 𝑎. The outcomes 𝑌'() and 𝑌'(* are referred to as 
“counterfactuals”, as only one of them is observed for each 
individual: when 𝐴 = 1 then 𝑌 = 𝑌'(*, and when 𝐴 = 0 
then 𝑌 = 𝑌'() is observed. 

 
 
Fig. 1. Overview of the methodology for generating and 
validating sparse linear scores for better responders. The 
symbols X, A, and Y correspond to observed variables, 
assigned treatment, and treatment outcome respectively. 
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The average causal effect is defined by the deviance between 
the expected potential outcomes for the two treatment 
alternatives, 𝐸(𝑌'(*) and 𝐸(𝑌'()). Specifically, when the 
outcome variable 𝑌 is dichotomous (e.g. hospitalized / non-
hospitalized, death/survival) the average causal effect is the 
deviance between the two potential outcome probabilities: 
𝑝* = 𝑃(𝑌'(* = 1), and 𝑝) = 𝑃(𝑌'() = 1).   Common 
measures for the average causal effect are the difference: 

                  𝐸(𝑌'(*) − 	𝐸(𝑌'())           (1) 

and the ratio:  

    𝐸(𝑌'(*) 𝐸(𝑌'())⁄              (2) 

For a dichotomous outcome, it is also common to consider 
the odds ratio (OR) of 𝑝* = 𝑃(𝑌'(* = 1) and 𝑝) =
𝑃(𝑌'() = 1) as the measure of the effect: 

34	/	(*634)
37	/	(*637)

                       (3) 

If the assignment of patients to treatments was random (i.e. 
A is randomly set), then 𝑃(𝑌' = 1) could be estimated by 
𝑃(𝑌 = 1|	𝐴 = 𝑎). Randomized trials use randomization of 𝐴 
for just this purpose. However, in observational data, such as 
electronic health records or claims data, treatment 
assignment (𝐴) is usually far from being random and often 
depends on several factors that can potentially affect the 
outcome (𝑌). Such factors, which potentially affect both 
treatment assignment and the outcome, are referred to as 
confounders. The estimation of causal treatment effects from 
observational data must correct for biases in potential 
confounders.  
Formally, to infer treatments effects from observational data 
we employ two assumptions. First, the standard strong 
ignorability assumption [14] that potential outcomes are 
independent of the treatment assignment when conditioned 
on the covariates 𝑋 (i.e. no hidden confounders): 

𝑌' ⊥ 𝐴	|	𝑋	    for 𝑎 = 0,1 
Second, we assume positivity: 

	∀𝑥		0 < 𝑃(𝐴 = 𝑎	|𝑋 = 𝑥) < 1    for 𝑎 = 0,1  
We refer to a subset of the observed variables 𝐿 ⊂ 𝑋 as a 
sufficient set of confounders if it satisfies the above 
conditions. Note that such set may not necessarily be unique. 
The expected potential outcomes, and consequently the 
average causal effect, may change between different 
subpopulations, e.g. men vs. women, older vs. younger. We 
say that a random variable 𝑀 is an effect modifier when the 
average causal effect varies for subpopulations with different 
values of 𝑀.   
We are now ready to formulate the objective of this study, 
which is to identify better responders using sparse linear 
scores. We assume the interpretation of the response to be 
monotonic and that a better response corresponds to higher 
values of the response. Let 𝑋 be the set of observed variables, 
excluding the outcome variable 𝑌 and the treatment variable 
𝐴. Given a relatively small number 𝑘, the goal is to find a 
subset {𝑀*,… ,𝑀EF} 	⊆ 𝑋, 𝑘’ ≤ 	𝑘, and a linear score: 

 𝑓(𝑀*,… ,𝑀EF) = ∑ 𝛼N𝑀NN        (4) 

such that a subpopulation of patients with higher scores will 
have a better (i.e. larger) value for the average causal effect. 
 
 

B. The algorithms 
We propose two different algorithms for generating sparse 
linear scores for better responders. Such scores highlight the 
major factors that differentiates better responder subgroups 
from the larger population, facilitating their characterizing. 
The two algorithms share several common properties: They 
are both receive as input: (i) 𝐿, a sufficient set of confounders 
and (ii) 𝑋’ ⊆ 𝑋 a set of potential effect modifiers; 
Additionally, each of the algorithms uses a stepwise variable 
selection on 𝑋’ to generate a sparse linear model for the 
conditional average effect. The key difference between the 
two algorithms lies in the way they estimate the conditional 
average effects. The first algorithm learns a prediction model 
for the outcome, and uses it to estimate the expected causal 
effect for each individual. It then fits a sparse linear 
regression model to the estimated individual effects.  The 
second algorithm estimates conditional average effects with 
linear marginal structural models (MSMs) [15]. These linear 
MSMs yield linear scores for conditional effects. The two 
algorithms are described in detail below. 
The individual-effect score 
For a sufficient set of confounders, 𝐿, we get 𝐸(𝑌𝒂	|	𝐿) =
𝐸(𝑌|	𝐴, 𝐿). We assume that conditioning on additional 
variables from 𝑋, and in particular on the set of potential 
effect modifier 𝑋’, does introduce new biases. Therefore 
𝐸(𝑌𝒂	|	𝐿, 𝑋′) = 𝐸(𝑌|	𝐴, 𝐿, 𝑋′). Suppose that we have a 
prediction model for 𝐸(𝑌|	𝐴, 𝐿, 𝑋′), which generates 
predictions 𝐸Q(𝑌|	𝐴, 𝐿, 𝑋′). We can apply the model to each 
individual in the data and, and use the predicted values  
𝐸Q(𝑌|	𝐴 = 1, 𝐿, 𝑋′) and 𝐸Q(𝑌|	𝐴 = 0, 𝐿, 𝑋′) as estimates for 
𝐸(𝑌𝒂(𝟏	|	𝐿, 𝑋′) and 𝐸(𝑌𝒂(𝟎	|	𝐿, 𝑋′). This allows estimating 
the individual effect for each patient in the data, based on 
his/her own values for 𝐿 and 𝑋’. Finally, we augment 
patients’ data with their estimated individual effects as 
labels, and fit a sparse linear model that approximates these 
labels. A formal presentation of this approach is given 
Algorithm 1.   
The MSM-effect Score 
MSMs are models for the average potential outcome 𝐸(𝑌𝒂) 
[15], [5]. MSMs can be extended to include effect modifiers, 
that is, predict 𝐸(𝑌𝒂|𝑀) where 𝑀 corresponds to one or 
more effect modifiers [15], [5].  MSMs use the IPW method 
to reweight the population, such that in the resulting pseudo-
population the treatment assignment variable, 𝐴, is 
independent of the observed variables, 𝑋. Below we describe 
in detail the use of MSMs by the algorithm. Additional 
details on the implementation of the IPW method in the 
epilepsy case study are given in Section D.  

 

 
Fig. 2. Overview of the methodology for generating and validating sparse 
linear scores for better responders. The symbols X, A, and Y correspond 
to observed variables, assigned treatment, and treatment outcome 
respectively. 
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Let 𝑀 ⊆ 𝑋′ be a set of effect modifiers. If the average causal 
effect is measured by the difference, 𝐸(𝑌'(*) − 	𝐸(𝑌'()), 
then we use the following linear MSM: 

𝐸(𝑌'	|	𝑀) = 𝜓) +	𝜓*𝑎 + 𝜓V⃗ X ∙ 𝑀𝑎 + 𝜓V⃗ Z ∙ 𝑀      (5) 

where 𝜓V⃗ X and 𝜓V⃗ Z are coefficient vectors at the size of M. 
From this MSM we obtain a linear model for the 
conditional effect: 

𝐸(𝑌'(*	|	𝑀) − 𝐸(𝑌'()	|	𝑀) = 𝜓* + 𝜓V⃗ X ∙ 𝑀   (6) 

If the ratio 𝐸(𝑌'(*) 𝐸(𝑌'())⁄  is used for measuring the 
effect, then we consider a linear MSM with log link function:  

  log	 𝐸(𝑌'	|	𝑀) = 𝜃) +	𝜃*𝑎 + �⃗�X ∙ 𝑀𝑎 + 𝜃Z ∙ 𝑀   (7) 

This MSM leads to a linear model for the log of the 
conditional effect 

																					log 𝐸(𝑌'(*|𝑀) 𝐸(𝑌'()|𝑀)⁄ =	
log	 𝐸(𝑌'(*	|	𝑀) − 	log	 𝐸(𝑌'()	|	𝑀) 	= 𝜃* + �⃗�X ∙ 𝑀 (8) 

Finally, when using the odds-ratio for measuring the effect 
for a dichotomous outcome 𝑌, we use the following linear 
MSM with logit link function 

logit	𝑃(𝑌' = 1	|	𝑀) = 𝛽) +	𝛽*𝑎 + �⃗�X ∙ 𝑀𝑎 + 𝛽Z ∙ 𝑀 (9) 

The odds-ratio measurement of the effect conditioned on M 
is: 

𝑂𝑅(𝑀) = 	 34,d	/	(*634,d)
37,d	/	(*637,d)

         

Where 𝑝',e = 	𝑃(𝑌' = 1	|	𝑀). We use the MSM in Eq. 9 
to obtain a linear model for the log of the conditional effect  

log𝑂𝑅(𝑀)= log 𝑝*,ef1 − 𝑝*,eg − log 𝑝),ef1 − 𝑝),eg		
= 	logit	𝑃(𝑌'(* = 1	|	𝑀) − logit	𝑃(𝑌'() = 1	|	𝑀)	
= 𝛽* + 𝛽X ∙ 𝑀                                                                  (10) 

For each of the three causal effect measures that we consider: 
difference, ratio and odds-ratio, the corresponding linear 
MSM yields a linear score that estimates the conditional 
effect, or the log of it. Either way, the resulting score 

preserves the ranking of the patients induced by the 
conditional effect estimations predicted by the MSM. 
Consequently, higher scores correspond to subpopulations 
with larger estimated effect values.   

A variable is said to have additive effect modification if the 
corresponding coefficient in 𝜓V⃗ X / �⃗�X / 𝛽X is significantly 
different than 0. The number of variables that we include in 
the MSM is limited, and hence we would like to select those 
having maximal additive effect modification.  The MSM-
effect score uses the greedy heuristic of stepwise variable 
selection, adding in each iteration a pair of terms (𝑥′ + 𝑥′𝑎) 
to the MSM, where 𝑥’	 ∈ 𝑋’ has a maximal additive effect 
modification, if such exists. See Algorithm 2 for complete 
details on the MSM-effect score. 

C. Scores Evaluation and Comparison 

The evaluation and comparison of the generated scores is 
done on a held-out test set. A score 𝑓(𝑀) is expected to be 
an effect modifier since the average causal effect should vary 
across different levels this score. We verify that a score 𝑓(𝑀) 
is an effect modifier by testing whether the corresponding 
random variable has an additive effect modification in the 
MSM 𝐸(𝑌𝒂	|	𝑓(𝑀)). To compare scores, we plot curves that 
map every score-percentile to the average causal effect 
computed within the corresponding group of individuals (i.e. 
top or bottom-scored individuals defined by that percentile). 
Ideally, higher score percentiles should correspond to larger 

 
Algorithm 1: Individual-effect Score 

Input: 𝐿 - a sufficient set of confounders, 𝑋′ - potential 
effect modifiers, 𝑘 – maximum number of variables 

1:  Fit a model ℳ for predicting 𝐸(𝑌	|	𝐴, 𝐿, 𝑋′) 
2:  For each individual (𝐿 = 𝑙, 𝑋’ = 𝑥’):  
3:      Use the model ℳ to predict potential outcomes  

    𝐸Q(𝑌𝒂(𝟏	|	𝐿, 𝑋′) = 𝐸Q(𝑌|	𝐴 = 1, 𝐿 = 𝑙, 𝑋F = 𝑥′) and  
    𝐸Q(𝑌𝒂(𝟎	|	𝐿 = 𝑙, 𝑋F = 𝑥′) = 𝐸Q(𝑌|	𝐴 = 0, 𝐿 = 𝑙, 𝑋F = 𝑥′) 

4:      Use predicted potential outcomes 𝐸Q(𝑌𝒂(𝟏	|	𝐿 = 𝑙, 𝑋 =
					𝑥′) and 𝐸Q(𝑌𝒂(𝟎	|	𝐿 = 𝑙, 𝑋F = 𝑥′) to estimate the  
    individual effect 

5:  Fit a linear regression model 𝑓(𝑀) = 𝛼) + �⃗� ∙ 𝑀, |𝑀| ≤
𝑘, for predicting the individual effect, using stepwise 
selection on 𝑋’ 

6:  return 𝑓(𝑀) = �⃗� ∙ 𝑀 

 
Algorithm 2: MSM-effect Score 

Input: 𝐿 - a sufficient set of confounders, 𝑋′ - potential 
effect modifiers, 𝑘 – maximum number of variables 

1:  Use 𝐿 to compute weights such that the reweighted 
population has no confounders  

2:  𝑀 ← ∅	  

3:  Iterate 𝑘 times: 

4:      For each variable 𝑋N ∈ 𝑋′: 

5:          Fit a linear MSM model with the set of variables 𝑀	 ∪
									{𝑋N}  (see Equations 5, 7, 9 for difference, ratio and      
        odd-ratio measures of causal effect) 

6:          Evaluate the additive effect modification of 𝑋N in this  
        MSM model using the P-value of the coefficient  
        corresponding to the product term 𝑋N ∗ 𝐴 to be  
       different from 0.          

7:      If at least one of the variables has an additive effect  
        modification significantly different from 0:          

8:          𝑀 ← 𝑀	 ∪ {𝑋No'p} where 𝑋No'p is a variable having  
        the most significant additive effect 

9:      Else:  stop the iteration  

10:  return 𝑓(𝑀) = 	 �⃗� ∙ 𝑀, where �⃗� is the coefficient vector 
corresponding to the product terms in the final MSM.  (�⃗� =
𝜓V⃗ X in Equation 5,  �⃗� = �⃗�X in Equation 7,  �⃗� = �⃗�X in 
Equation 9.) 
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average causal effect. For dichotomous outcomes that 
correspond to events, such as hospitalization and death, we 
analyze the corresponding time for these events. We use 
Kaplan-Meier curves to compare the distribution of time-to-
event for the two potential outcomes, 𝑌'() and 	𝑌'(*, 
corresponding to the treatment and its alternative. To account 
for the bias in treatment assignment, the Kaplan-Meier 
curves are computed on a reweighted population in which 
there is no bias between the two treatment groups (i.e. no 
confounders). We repeat this comparison for different scores 
percentiles, to verify that high-scored (respectively, low-
scored) patients have larger (respectively, smaller) values for 
time-to-event.  
We consider a variable selected to a score 𝑓(𝑀) as robust, if 
it is likely to be selected on a different sample of the data. 
We test the robustness of the variables selected for each score 
using non-parametric bootstrapping. This is done by 
sampling the data with replacement, generating a new dataset 
of the same size as the original dataset (i.e. the same number 
of patients). We perform 𝑁 iterations of bootstrapping, 
generating our scores for each dataset. The robustness of a 
selected variable is evaluated by the fraction of the times it 
is selected during 𝑁 bootstrapping iterations. 

D. The epilepsy case study 

The Data 
To test our methodology, we used a dataset of ~135,000 
epilepsy patients derived from the IMS Health Surveillance 
Data Incorporated (SDI) medical claims database. Epilepsy 
patients were identified based on their diagnoses and 
prescribed drugs. Every patient in our dataset was assigned 
with an index-date, which is the start of an AED treatment 
having exactly one added drug that was not in the previous 
AED regimen. We refer to this added drug as the index drug. 
The treatment starting at the index-date was classified as 
“Newer AED” (𝐴 = 1) or “Older AED” (𝐴 = 0) based on 
the class of the index drug. For more details on the data and 
study design see the appendix.   
The year before the index-date is referred as the baseline 
period. It was used to derive variables (𝑋) that characterize 
the patient in that time period. The year after the index-date 
is referred as the treatment evaluation period and was used 
to compute the outcome of the treatment (𝑌). See Fig. 2 for 
a schematic explanation of the referred time periods and their 
relation to variable computations. The evaluation of a 
treatment was done in the year following the index-date. 
Because the primary symptom of epilepsy - seizures – was 
not available in the SDI database, we used treatment changes 
as a proxy measure of seizure control and patients status.  An 
unsuccessful outcome (𝑌 = 0) was defined as any change 
other than a dose change (i.e. increase/decrease) or a 
complete withdrawal of any AED treatment in the 
subsequent 1 to 12 months after the index-date. A longer-
term stable treatment or a complete withdrawal from an AED 
therapy was considered a successful outcome (𝑌 = 1).  
The derived variables (𝑋) included the following: age (at 
index date); gender; type of treatment change at index date; 
epileptic-state variables (indicator for each epilepsy-related 
ICD9 code, counts for each epilepsy-related Current 
Procedural Terminology (CPT) code, proxies for 
generalized/focal epilepsy as well as proxies for seizures 

[16]); medication possession ratio (MPR) and indicator for 
any use of AED and of each AED, indicator if patient used 
Newer/Older AEDs, the number of different AEDs, the 
number of treatment change events); comorbidities (based on 
an adapted list [17], as well as by diagnostic codes); mean 
monthly activity (using diagnoses, prescriptions and 
hospitalization data), indicator for hospital encounters, non-
AED treatments (indicators for specific list of non-epilepsy 
drugs [17]), ecosystem variables (payer, state, first digit of 
zip code, specialty of physicians, year of index date).   
Finally, the dataset was randomly partitioned into two sets: 
train and test datasets, which totaled ~85,000 and 50,000 
patients, respectively. 
The effect measure and scoring algorithms 
Since we had a dichotomous outcome variable, we used the 
odds-ratio (OR) as a measure of the effect. We refer to the 
MSM-effect and individual-effect algorithms with the OR 
effect measure as MSM-OR and individual-OR respectively. 
We use the term iOR as an abbreviation for individual-OR. 
We generated the MSM-OR and iOR scores using the train 
dataset and evaluated and compared these scores on the test 
dataset.  
Potential Confounders and Effect Modifiers 
Identifying potential confounders is a key problem in causal 
analysis of observational studies [18]. In the epilepsy case 
study, we identified a set of potential confounders, 𝐿, using 
the following ad-hoc procedure. We first excluded nearly 
constant variables (mode frequency larger than 0.99). In 
accordance with a previous recommendation [19] and to 
avoid overfitting of our models for 𝑃(𝐴	|	𝐿) and 𝑃(𝑌	|	𝐴, 𝐿), 
we included in 𝐿 only variables that were significantly (𝑃 <
0.05) associated with 𝑌. The association was measured by 
Chi-square (dichotomous variables) and t-test (continuous 
variables) after Bonferroni correction for multiple testing. 
Note that a variable is individually selected based on the 
strength of its association with 𝑌, that is, without any 
reference to the P-values computed for the other variables. 
Finally, we filtered out from 𝐿 variables that are highly 
correlated (Pearson correlation > 0.99) with each other, as 
such variables are expected to have low additive predictive 
value. We considered the resulting set of variables in 𝐿 as a 
sufficient set of confounders. Since effect modifiers are also 
expected to be statistically associated with the outcome, 𝑌, 
we used 𝐿 as the set of potential effect modifiers and limited 
the stepwise selection procedure of the two algorithms, 
MSM-OR and iOR, to select variables only from 𝑋’ = 𝐿.  
Outcome prediction model for iOR 
For the outcome prediction model in the iOR algorithm (see 
step 1 in Algorithm 1) we used the following logistic 
regression model: 

logit	𝑃(𝑌 = 1	|	𝐴, 𝐿, 𝑋F′) =	
𝛼) + ∑ 𝛼Npt∈u∪vw 𝑥N + 𝛽)𝐴 + ∑ 𝛽Npt∈vw 𝐴𝑥N       (11) 

 
In general, other classifiers could be used as well for 
predicting the outcome, including random forest, SVM, 
gradient boosted trees, etc. Specifically, it is possible to 
make the prediction models more flexible by considering 
adding polynomial terms and additional interaction terms. 
Generating balancing weights 
In the epilepsy case study, we used the IPW method [2], [5] 
to generate balancing weights for the MSM-OR score (step 
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1 in Algorithm 2), as well as for evaluating and comparing 
the scores (Section II.C). The IPW method reweights every 
individual with assigned treatment 𝐴 = 𝑎 and observed 
confounder values 𝐿 = 𝑙, with the following weight: 

 	 x(y(')
x(y('	|	u(z)

         (12) 

In this case study 𝑃(𝐴 = 𝑎	|	𝐿 = 𝑙) was estimated using a 
logistic regression model that was fitted to the data.  Note 
that models for 𝑃(𝐴 = 𝑎	|	𝐿 = 𝑙) should be evaluated based 
on their ability to minimize the bias between treatment 
groups, and not based on their accuracy [2]. In the next 
section we describe a standard statistical method for 
evaluating the bias between treatment groups.  
Testing imbalances between treatment groups 
After generating a pseudo-population using IPW, we 
validated that all observed variables show no major 
imbalances between the two treatment groups. We quantified 
the balance for each variable using its standardized 
difference, 𝑑, which is the (absolute) difference in the 
variable means between the two treatment groups, divided 
by the combined standard deviation. To be exact, we used 
the following definition of the standardized difference, 

 𝑑 =	 ||46	|7|

}(~4
��~7

�)/X
				      (13) 

where 𝜇* and 𝜇) denote the average  and 𝑠* and 𝑠) denote the 
sample variance of the variable in two treatment groups. 
Following [2], we considered a variable as balanced if its 
standardized difference was below 0.1. 

III. RESULTS 

In this section, we present the results of applying our 
methodology to the dataset of epilepsy patients. We start by 
providing some descriptive statistics on the dataset. 

A. Data Statistics 

Table 1 presents characteristics of the train and test datasets, 
demonstrating that the two datasets share the same data 
distributions. The causal effect of using a Newer AED in the 
entire population was estimated using the odds-ratio after 
balancing biases between treatment groups with IPW. The 
corrected OR values, which were independently computed in 
the train and test pseudo-populations, indicated that Newer 
AEDs had a positive casual effect on the outcome. As a 
comparison, the uncorrected OR values, which were 
computed in the original train and test datasets, erroneously 
indicated no causal effect. This striking difference between 
the correct and uncorrected OR values exemplifies the 
importance of correcting for the biases in treatment 
assignment 𝐴. 
The total number of variables in 𝑋 was 682. We selected the 
set of potential confounders by applying the methodology in 
Section II.D. We first excluded 308 nearly constant 
variables. Of the 374 remaining variables, 173 variables were 
found to be significantly associated with the outcome 𝑌 after 
Bonferroni correction. Finally, we excluded five additional 
variables due to high correlation with other variables. 
Overall, the set of potential confounders 𝐿 included 168 
variables. As described above, 𝐿 was also used as the set of 
potential effect modifiers, 𝑋’.  

B. The Scores 

We generated the MSM-OR and iOR scores for 𝐾 = 10 on 
the train dataset. Table 2 presents the variables selected by 
each of the scores, as well as their coefficients and the 
number of times they were selected in 10 bootstrap runs. The 
sets of variables selected by the 2 scores largely overlap, 
sharing 9/10 of the variables. Unless stated differently, all the 
variables in Table 2 were computed for the entire baseline 
period (one year). For example, the variable “Had 
neurological dx” indicates whether the patient had at least 
one diagnosis of neurological comorbidity during the year 
before the index-date. 
The variable “Had a seizure proxy in the previous month” 
was the strongest variable in the two scores. It had the largest 
coefficient and was shown to be most robust since it was 
selected by the two scores in all bootstrap runs. Another 
variable that was selected by the two scores and was found 
to be very robust was: “Index-drug switched a previous 
AED”. 

C. Scores Evaluation 

We tested the additive effect modification of the variables 
corresponding to the two scores, as described in Section II.C. 
Both scores showed very significant additive effect 
modification, with P-values of 7e-36 and 5e-31 for the iOR 
and MSM-OR, respectively.  
We also tested an intuitive variant of the MSM-OR score that 
used a more standard objective for a variable selection (Step 
8 in Algorithm 2): maximizing the overall likelihood of 
𝑃(𝑌	|	𝐴,𝑀). This variant of the MSM-OR score, which we 
noted MSMLL-OR, also showed a significant additive effect 
modification with a P-value of 7e-17. 
Fig. 3 compares the iOR and MSM-OR scores by plotting the 
average causal effect, measured by the OR, in top- and 

TABLE 1. TRAIN AND TEST DATA CHARACTERISTICS 
Characteristic Train 

dataset 
Test dataset 

Size 83184 50000 
Index-drug is Newer (A=1) 74 % 74 % 
Successful treatments (Y=1) 49 % 49 % 
Gender, female 62 % 62 % 
Age at index date (years) 51±16 51±16 
Index-drug by neurologist 42 % 42 % 
Index-treatment is 
monotherapy 57 % 57 % 
Corrected odds ratio (OR)   
   95% confidence interval 
   P-value 

1.10  
[1.07-1.14] 

1E-9 

1.14  
[1.09-1.18]  

4E-10 
Uncorrected odds ratio (OR)  
   95% confidence interval 
   P-value 

0.98  
[0.95-1.01] 

>0.1 

0.99  
[0.95-1.03]  

>0.1 
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bottom-scored patient groups as a function of the score 
percentile used to identify these groups. As shown in Fig. 3 
the iOR and MSM-OR scores had very similar performance. 
They both managed to identify large subpopulations of 
patients that have significantly larger, or smaller, OR values 
compared to the OR observed in the entire population. On 
the other hand, the MSMLL-OR was less successful in 
identifying groups with significant higher, or lower, OR. We 
tested the variables in Table 2 as single-variable scores and 
compared them to the previous multi-variable scores. As can 
be seen in Fig. 3, the gray lines that correspond to single-
variable scores were not able to significantly identify better 
treatment-responders – with the expectation of the variable 
“Had a seizure proxy in the previous month”. Since this 
variable is dichotomous, it was able to identify one group of 
better treatment responders, which included 11% of the 
patients.   
We compared the time-to-failure in different score-groups, 
where a failure corresponded to a treatment change. Fig. 4 
presents IPW-corrected Kaplan-Meier curves for the top-
20%, top-50%, and top-100% (i.e. entire population) score-
groups for the iOR score. As expected, the time-to-failure 
was longer on average for Newer AEDs in these score 
groups; this difference increased for score-groups with 
higher scores.  We repeated the same analysis for bottom-
score groups as well as for the MSM-OR score. In 
accordance to Fig. 3, the difference between Older and 
Newer in bottom-scored groups was in the expected direction 
(those on Newer AEDs having shorter time-to-failure than 
those on Older AEDs) but was less pronounced than the 
difference between top-scores patients (results not shown).  

IV. DISCUSSION 

In the epilepsy case study, the two algorithms we presented, 
iOR and MSM-OR, yielded similar results both in terms of 
the set of the selected variables (Table 2), as well as in the 
ability to identify subgroups of better /worse responders in a 
held-out dataset (Fig. 3). In general, the two algorithms are 
not a-priori guaranteed to produce similar results, as they 
learn inherently different models of the data: the iOR 
algorithm model 𝑃(𝑌	|	𝐴, 𝐿) while the MSM-OR algorithm 
model 𝑃(𝐴	|	𝐿). Thus, an agreement between the algorithms’ 
results strengthens their validity and the confidence in the 
underlying models.  

Another major difference between the iOR/individual-effect 
and the MSM-OR/MSM-effect algorithms lies in the 
intricacy of the iterative variable selection procedure, which 
dominates the running times of the algorithms. The MSM-
effect score uses a less-ordinary variable selection procedure, 
which in each iteration adds a pair of terms to a generalized 
linear regression (GLM) model. Conversely, the individual-
effect score uses a standard variable selection procedure that 

TABLE 2. THE VARIABLES SELECTED FOR THE MSM-OR AND IOR SCORES. 
Selected variables MSM-OR iOR 
Index-date AED switched a 
previous AED 0.3 (8 / 10) 0.4 (10 / 10) 
Had neurological dx 0.3 (4 / 10) 0.3 (7 / 10) 
Was treated by a neurologist 0.2 (6 / 10) 0.2 (4 / 10) 
Pregabalin MPR** -- (5 / 10) 0.1 (1 / 10) 
Older AED MPR** 0.1 (0 / 10) -- (0 / 10) 
Age  -- (1 / 10) -0.1 (5 / 10) 
Had a seizure proxy* in the 
previous month 0.6 (10 / 10) 0.7 (10 / 10) 
Received Older AED -0.3 (5 / 10) -0.2 (2 / 10) 
Had Medicare -0.1 (2 / 10) -- (4 / 10) 
Had lipid metabolisms dx -0.2 (4 / 10) -0.2 (3 / 10) 
Had back problem dx -0.2 (6 / 10) -0.2 (2 / 10) 
Had trauma-related dx -0.5 (0 / 10) -0.4 (1 / 10) 

The first number in each column indicates the coefficient, 
while the second number (in brackets) contains the number of 
times the variable was selected in 10 bootstrap trials. 
* A seizure is inferred by a claim for ER, hospitalization or 
ambulance with epileptic/seizure primary or secondary diagnosis. 
** MPR = medication possession ratio 
 

 

 

 
Fig. 3. Scores evaluation and comparison. Gray lines refer to single-variable 
scores corresponding to the 11 variables that were selected to the MSM-OR 
and/or iOR scores. 
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in each iteration adds a single term to a linear regression 
model. Note that for the individual-effect score, the variable 
selection procedure could have been replaced by other 
variable selection methods, such as Lasso [20].  Fitting a 
linear regression model has a simple closed-form solution, 
which can be implemented in 𝑂(𝑛𝑑X) operations, where 𝑛 is 
the number of samples and 𝑑 is the number of variables [21]. 
In contrast, fitting generalized linear models with log or logit 
link functions involves an iterative method that maximizes 
the likelihood function [22].  Fitting generalized linear 
models in Matlab (glmfit function) and in R (glm 
function) is implemented with the iteratively reweighted 
least squares (IRLS) method, which takes 𝑂(𝑛𝑑X) operations 
per iteration [23]. The number of iterations for fitting each 
model depends on the convergence rate for the data. Overall, 
in our epilepsy case study, the MSM-OR score was three-
time slower than the iOR score (results not shown). 
In the epilepsy case study, the iOR and MSM-OR scores 
were trained to include 10 variables. The variables selected 
by the scoring algorithms are used as predictors for the 
differential response to Newer AEDs. Inspection of the 
selected variables (Table 2) shows that most relate to 
epilepsy and usage of AEDs. The occurrence of seizures and 
the existence of comorbidities are known to affect AEDs 
response. Variables that have been less clearly described in 
the past, include age and the related variable ‘Had Medicare’. 
Since AEDs are also prescribed for pain relief, it is possible 
that the selection of the variables ‘Had back problem dx’, and 
‘Had trauma-related dx’ is a result of a contamination of our 
dataset with patients who consume AEDs for pain 
management.  This is a drawback of using claims data, which 
do not make an explicit link between prescriptions and the 
diagnoses/medical conditions for which they were 
subscribed.   
The iOR and MSM-OR scores showed superior performance 
to the MSMLL-OR score. This suggests that the variables 
selected by the iOR and MSM-OR scores better predict 
differential response to Newer AEDs than the variables 
selected by the MSMLL-OR score. Recall that the objective 
of the variable selection procedure in MSMLL-OR was to 
maximize the likelihood of the outcome prediction model. 
This implies that in this case study, the major predictors for 
differential response differ from the major predictors for the 
outcome itself.   
In comparison to single-variable scores, the iOR and MSM-
OR scores were much more successful in identifying better 
and worse responders (Fig. 3).  The binary variable “Had a 
seizure proxy in the previous month” identified a single 
strong group of better responders totaling ~10% of the 
patients. Conversely, our iOR and MSM-OR scores could 
identify much larger groups of better responders in various 
sizes, with up to ~50% of the patients. Another interesting 
point is the ability of our scores to identify worse responders, 
that is, patients that are more likely to benefit from Older 
AEDs. While Older AEDs had a negative effect in the entire 
dataset, our scores identified a group with ~10% of the 
patients for which the odds for success were significantly 
lower for Newer AEDs than for Older AEDs’ (OR = 0.77 
[0.68-0.87], P-value=5e-05). We note that the significance of 
the effect for this identified group of worse responders is 
much less pronounced than the effect observed in groups 
identified as better-treatment responders. For example, the 

treatment effect measured in the group corresponding to the 
10% top-iOR scores was OR=1.87 [1.65-2.12], P-value= 1e-
22.  
There are several limitations to our study. In general, 
observational data studies are limited by the possible 
existence of unobserved confounders and selection bias.  The 
claims data we analyzed were missing important data 
relevant to our study, such as seizure frequency, etiology, 
genetic data and/or neurological test results. Selection bias 
may exist due to the choice of patients showing regular 
medical activity. This selection of patients was done to 
control for potential data gaps due to the open nature of the 
database. Another limitation in our methodology relates to 
the selection of potential confounders by their statistical 
association with the outcome, in accordance with previous 
recommendations [19]. It may be preferable to base the 
detection of confounders on domain knowledge and causal 
diagrams that describe cause and effect relationships 
between variables [24]. However, identifying such a set in 
the presence of high-dimensional data where domain 
knowledge cannot capture the complex structure of the 
system is a challenging task of practical importance. 

V. CONCLUSION 

Building on well-established concepts and methods from 
causal inference and machine learning, we presented two 
algorithms for characterizing subpopulations with 
differential response to treatments using observational data: 
individual-effect and MSM-effect. The two algorithms are 
designed to select the major factors associated with 
differential response for the given treatments. The 
differential response by itself is not observed for individual 
patients, and therefore traditional variable selection 
techniques, which require labeled data, cannot be directly 
applied. The two algorithms take different approaches for 
this hurdle. The individual-effect algorithm augments the 
train dataset with estimates of the differential response for 
each patient, thus reducing the problem into a supervised 

 

 
Fig. 4 A comparison of Kaplan-Meier curves of time-to-failure for Newer and 
Older AED in top-scored patients by the iOR score. Newer/Older 20% means 
those on Newer/Older AEDs from the top-20% score groups and analogously 
for the 50% and 100% lines.  
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prediction task. On the other hand, the MSM-effect utilizes 
the causal inference method of linear MSMs to derive linear 
scores with most significant effect modifiers. We evaluated 
the generated scores by employing a machine learning 
train/test paradigm, that is, we tested the ability of scores to 
identify better/worse responders on a held-out dataset.  

The use of sparse linear scores, which are commonly used in 
the medical domain for risk prediction, facilitates the 
understanding of the major “risk factors” for a differential 
response and their contribution to it. In the epilepsy case 
study we also used a simple logistic regression for modeling 
𝐸(𝑌	|	𝐴, 𝐿), in the individual-effect algorithm  and 𝑃(𝐴	|	𝐿) 
in the MSM-effect algorithm. In principle, other more 
sophisticated prediction models, such as Bayesian Additive 
Regression Trees [25] or boosted regression [26] may be 
considered for these intermediate learning tasks.  In the 
recent years, various methods were proposed for generating 
balancing weights directly without modeling 𝑃(𝐴 = 𝑎	|	𝐿 =
𝑙) (e.g. [27]–[31]). Such methods can be incorporated into 
our framework, instead of the IPW method. Note that 
selecting the best method for a causal inference task is a 
challenge by itself, as the ground truth is unknown. A 
common approach to address this challenge is to test and 
compare the different models using simulated data under 
various mechanisms for generating the potential outcomes 
[32].   An interesting future work is to adapt such simulations 
for testing and comparing sparse models for differential 
response. 

APPENDIX 
For this study, we used the IMS Health SDI medical claims 
databases containing anonymous, aggregated claims data of 
~21 million patients from all major regions of the US. Data 
consist of diagnostic records (Dx), prescription records (Rx) 
and hospitalization records (Hosp). SDI is constructed as a 
provider-centric open database, in that it collects all data 
from providers (e.g. pharmacy) and identifies and links 
patients within that data. As such, SDI may contain unknown 
data gaps for individual patients if they visit providers that 
are not covered. To increase data reliability, we only 
considered data stretches in which there was 80% continuous 
monthly eligibility (in 1-year windows) in any of the SDI 
pharmacy, physician, or hospital databases, and quarterly 
pharmacy eligibility. This study was designed as a standard 
retrospective observational cohort study. The SDI data span 
7 years, from January 1st, 2006, up to September 30, 2012. 
The index date is defined as the first valid treatment change 
event in which only one drug (from the Older and Newer 
AED lists above) is added. The conditions for an event to be 
a valid index date are defined as:  
• The patient has at least 1 year of data before and after 

the index date.  
• The patient has at least 3 months of Rx eligibility before 

the index date.  
• During the 1-year period post index date, the patient is 

on some AED for at least 50% of the days. This is 
designed to exclude patients who are not actively 
consuming AEDs.  

• The treatment was unchanged during the 30-day period 
after the index date (to eliminate rescue medication in 
favor of chronic treatment).  

• There cannot be a prescription for the index drug in the 
year pre-index date.  

To capture data from patients with epilepsy rather than from 
patients receiving AEDs for other indications, a patient had 
to fulfill the below criteria to be included:  
• Diagnoses criterion: At least one International 

Classification of Diseases, Ninth Revision (ICD-9) 
epilepsy diagnosis code 345.* or two seizure diagnosis 
codes (780.39) at any time in the data.  

• Prescription criterion: At least one claim for an AED at 
any time in the data. This claim must be from a 
pharmacy with 80% stability (existence of monthly 
pharmacy claims data) over the entire data period.  

• Overall AED criterion: throughout the patient record, 
the patient had to have at least one AED claim which is 
not gabapentin/pregabalin or there had to be at least one 
gabapentin/pregabalin prescription from a physician 
whose specialty is one of: Neurology, Clinical 
Neurophysiology, Child Neurology, Neurological 
Surgery.  

• In addition, we focused on adults,  ³16 years of age at 
the beginning of data.  

• To avoid patients in whom AEDs were prescribed for 
indications other than epilepsy, the specialty of the 
physician prescribing the index drug was not allowed to 
be related to pain management or surgery.  

Patients who met all of the above but for whom no valid 
index date could be found, were excluded. 
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