
The CoLoMoTo Interactive Notebook: Accessible and

Reproducible Computational Analyses for Qualitative Biological

Networks

Aurélien Naldi 1, Céline Hernandez 1, Nicolas Levy 2,3, Gautier Stoll 4−8,

Pedro T. Monteiro 9, Claudine Chaouiya 10, Tomáš Helikar 11, Andrei Zinovyev 12−13,

Laurence Calzone 12−13, Sarah Cohen-Boulakia 2, Denis Thieffry 1,∗, Löıc Paulevé 2,∗

1 CNRS UMR8197, INSERM U1024, École Normale Supérieure, PSL Research University, Paris, France
2Laboratoire de Recherche en Informatique, Université Paris-Sud, CNRS, Université Paris-Saclay, Paris, France

3 École Normale Supérieure de Lyon, Lyon, France
4Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France

5Équipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
6Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France

7Université Pierre et Marie Curie, Paris, France
8Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France

9INESC-ID/Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
10Instituto Gulbenkian de Ciência, Oeiras, Portugal

11Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
12Institut Curie, INSERM U900, PSL Research University, Paris, France

13MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France

∗Corresponding authors: thieffry@ibens.fr ; loic.pauleve@lri.fr

Abstract

Analysing models of biological networks typically relies on workflows in which different software

tools with sensitive parameters are chained together, many times with additional manual steps.

The accessibility and reproducibility of such workflows is challenging, as publications often overlook

analysis details, and because some of these tools may be difficult to install, and/or have a steep

learning curve. The CoLoMoTo Interactive Notebook provides a unified environment to edit, execute,

share, and reproduce analyses of qualitative models of biological networks. This framework combines

the power of different technologies to ensure repeatability and to reduce users’ learning curve of these

technologies. The framework is distributed as a Docker image with the tools ready to be run without

any installation step besides Docker, and is available on Linux, macOS, and Microsoft Windows. The

embedded computational workflows are edited with a Jupyter web interface, enabling the inclusion of

textual annotations, along with the explicit code to execute, as well as the visualisation of the results.

The resulting notebook files can then be shared and re-executed in the same environment. To date, the

CoLoMoTo Interactive Notebook provides access to software tools including GINsim, BioLQM, Pint,

MaBoSS, and Cell Collective for the modelling and analysis of Boolean and multi-valued networks.

More tools will be included in the future. We developed a Python interface for each of these tools

to offer a seamless integration in the Jupyter web interface and ease the chaining of complementary

analyses.

Keywords: computational systems biology, reproducibility, model analysis, Boolean networks,

Python programming language

1

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

1 Introduction

Recently, the scientific community has been increasingly concerned about difficulties in reproducing

already published results. In the context of preclinical studies, observed difficulties to reproduce important

findings have raised controversy (see e.g. [7, 15, 40, 43], and [8] for a review on this topic). Although

not invalidating the findings, these observations have shaken the community. In 2016, a Nature survey

pointed to the multi-factorial origin of this “reproducibility crisis” [4]. Factors related to computational

analyses were highlighted, in particular the unavailability of code and methods, along with the technical

expertise required to reproduce the computations.

The scientific community is progressively addressing this problem. Prestigious conferences (such as

two major conferences from the database community, namely, VLDB1 and SIGMOD2) and journals such

as PNAS3, Biostatistics [38], Nature [41] and Science [54], to name only a few, now encourage or even

require published results to be accompanied by all the information necessary to reproduce them.

While the reproducibility challenges have first been observed in domains where deluge of data were

quickly becoming available (e.g., Next Generation Sequencing data analyses), the problem is now present

in many (if not all) communities where computational analyses and simulations are performed. In

particular, the System Biology community is facing a proliferation of approaches to perform a large variety

of tasks, including the development of dynamical models, complex simulations, and multiple comparisons

between varying conditions of model variants. Consequently, reproducing results from systems biology

studies becomes increasingly difficult. Furthermore, although the combination of different tools would

provide various new scientific opportunities, this is currently hindered by technical issues.

Several initiatives have been launched by the community to address reproducibility issues for computa-

tional modelling of biochemical networks. These include guidelines for model annotations (MIRIAM, [27])

and simulation descriptions (MIASE, [51]), as well as standards for model exchange (SBML, [23]) and

simulation parametrizations (SED-ML, [52]). This collective effort is coordinated by the COmputational

Modeling in BIology NEtwork (COMBINE4).

The Consortium for Logical Models and Tools (CoLoMoTo5) has been organized to bring together

computational modelling researchers and address the aforementioned reproducibility and reusability

issues within the sub-domain of logical models and software tools [33]. As a first outcome to foster

model exchange and software interoperability, the SBML L3 package qual was developed [9, 10]. In

this manuscript, we report the next phase of the CoLoMoTo efforts in the area of reproducibility in

computational systems biology: The CoLoMoTo Interactive Notebook, which provides an easy-to-use

environment to edit, execute, share, and reproduce analyses of qualitative models of biological networks

by seamlessly integrating various logical modelling software tools.

The teams involved in CoLoMoTo, gathering around 50 researchers within 20 groups and laboratories,

have produced various software tools for the qualitative modelling and analysis of biological networks. They

are also involved in the development of novel computational methods and models. This method article

presents a collective effort to provide the community with a reproducibility-oriented framework combining

software tools related to logical modelling. This framework combines the power of different approaches to

ensure repeatability and to reduce the requirement of technical knowledge from users. The provided Docker

image facilitates the stability of a contained environment needed for repeatable computational modelling

1International conference on Very Large Data Bases
2ACM’s Special Interest Group on Management Of Data.
3http://www.pnas.org/site/authors/format.xhtml
4http://co.mbine.org
5http://colomoto.org

2

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

http://www.pnas.org/site/authors/format.xhtml
http://co.mbine.org
http://colomoto.org
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

and analyses. The framework includes a set of pre-installed tools from the CoLoMoTo community. On the

other hand, specific binding and interfaces integrated in a Jupyter environment reduce the learning curve

and improve accessibility. The use of this framework is demonstrated by a case study in a companion

protocol article, which consists in a thoroughly annotated Jupiter notebook [28]6.

The method article is structured as follows. Section 2 provides a brief introduction to qualitative models

of biological networks and to their analyses. Section 3 describes the main components (Docker image,

Python programming interface, Jupyter interactive web interface) of our framework to facilitate the access

to CoLoMoTo software tools, a prime prerequisite for the reproducibility of the computational analyses.

Section 4 illustrates how our framework can address several challenges related to the reproducibility of

computational analyses, ranging from the repeat of a sequence of analyses in the exact same software

environment, to the use of alternate methods to reproduce a similar result. Finally, Section 5 provides an

introductory guide on how to use the new framework, and Section 6 discusses possible extensions.

2 Qualitative Dynamical Models of Biological Networks

Since the pioneering work of Kauffman [24], Thomas [49], and others, logical (e.g., Boolean) models have

emerged as a framework of choice to model complex biological networks, focusing for example on the

roles of transcriptional regulatory circuits in cell differentiation and development, signalling pathways in

cell fate decisions, etc. (for a review, see e.g. Abou-Jaoudé et al. [2]).

2.1 Qualitative modelling

The definition of a qualitative logical model, such as a Boolean model usually relies first on the delineation

of a regulatory graph, where each node denotes a regulatory component (e.g. a protein or a gene)

connected with (positive or negative) arcs denoting interactions (activation or inhibition) between its

source and target nodes. Each node is modelled as a discrete variable, having a finite number of possible

values, typically Boolean, i.e., only two values, 0 or 1, denoting e.g. protein absence/inactivity or

presence/activity. A Boolean function or rule is then defined for each node to specify how its value

evolves depending on the values of its regulators.

The state of a network is modelled as a vector encompassing the (Boolean or multi-valued) values of all

the nodes of the regulatory graph, with a prescribed ordering. The state of the network can be updated

according to the logical functions defined for each node, triggering a transition towards a successor state.

When at a given state, several nodes are called for an update, different updating modes can be considered.

The synchronous updating mode updates all nodes simultaneously, thus leading to a unique successor

state. Hence, the dynamical behaviour is fully deterministic. In contrast, the asynchronous updating

mode updates only one node, choosen non-deterministically, thus leading to different possible successor

states. Several variants and extensions of these updating mode have been defined, for instance assigning

pre-determined priorities or assigning probabilities to nodes updates, or considering simlultaneous updates

of sub-groups of nodes.

2.2 Dynamical analysis

The dynamical behaviour of the model can be represented by its state transition graph, where vertices

are the different states of the network, and directed edges are the possible transitions between states,

6The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/usecases/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb

3

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

following a selected updating mode. Dynamical analyses consist then in characterizing different properties

of this state transition graph.

Attractors are one of the most prominent features studied in Boolean and multi-valued networks.

Attractors model the asymptotic behaviours of the system, and correspond to the terminal strongly

connected components of the state transition graph. Attractors can be of different nature, either reduced

to a single stable state (or fixpoint), from which no transition are possible, or cyclic sequences of states,

modelling sustained oscillations. From a biological point of view, computing attractors is generally

particularly relevant. The presence of multiple (disjoint) attractors can represent alternative cell fates

(such as cell differentiation states), while cyclic attractors further represent periodic behaviours (such as

cell cycle or circadian rhythms). The computation of attractors is addressed by different software tools,

such as bioLQM [31], GINsim [32], Pint [36], BoolSim [19], BooleanNet [3], pyBoolNet [25], and

BoolNet [30].

Simulations allow capturing the states which are reachable from a given (set of) initial state(s). They

can consist of random walks in the complete state transition graph and take into account updating priority

schemes to distinguish fast versus slow processes and thereby obtain a simpler state transition graph [16]

as implemented in the software tool bioLQM, or user-defined transition probabilities and timing, as

implemented into the software tools MaBoSS [46, 47] and CellCollective [22, 50].

Model checking techniques developped for software verification in computer science allow verifying

formally dynamical properties on state transition graphs and are regularly employed for analysing

biological systems [1, 5, 6, 13]. The properties are specified using so-called temporal logics which enable

the formulation of queries regarding asymptotic or transient dynamical properties and taking into account

all the state transitions of the model. The accordance of a Boolean/multi-valued model with such

properties is verified using a general purpose model checker such as NuSMV [11] for which GINsim and

Pint provide access to.

It is worth noticing that the number of states of a Boolean or multi-valued network grows exponentially

with the number of nodes. The above mentioned methods typically suffer from this complexity, and can

be limited with the size of the networks (currently, mostly around fifty to a hundred of nodes, depending

on the analysis and the complexity of the dynamics).

Nevertheless, different approaches enable the analysis of large scale qualitative networks, for instance

by using model reductions, such as by Naldi et al. [34] which preserves stable states, while cyclic attractors

and reachability can be affected in predictable ways, as implemented in bioLQM, or by using formal

approximations of dynamics, as implemented in Pint, which allow tackling networks with several thousands

of nodes [36, 37].

Figure 1 gives an overview of a range of software tools for analysis of qualitative models, specifying

their main features along with the main underlying technologies.

3 Accessibility of CoLoMoTo software tools

The CoLoMoTo Interactive Notebook aims at offering a unified environment for accessing a range of

complementary software tools related to the analysis of qualitative models of biological networks. To

achieve such a goal, our framework relies on three complementary technologies.

First, we use the Docker system to provide images of pre-installed selected CoLoMoTo software tools,

thus reducing significantly the burden of installing individually each software tool. The software installed

within Docker images can be executed on GNU/Linux, macOS, and Microsoft Windows, and can be

4

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: Feature matrix and specifities of a range of software tools related to qualitative biological
networks: CellCollective [22]; GINsim [32]; bioLQM [31]; MaBoSS [46]; Pint [36]; NuSMV [11];
BoolSim [19]; BooleanNet [3]; pyBoolNet [25]; BoolNet [30]; CellNOpt [48]; CaspoTS [35].
The current CoLoMoTo Docker (2018-03-31) ships the software indicated with a bold font and a light
blue background. “Model repository” refers to searchable databases of models; “Model edition” refers
to the features related to creating and modifying a qualitative model, where “ab initio” refers to the
interactive model building from scratch, and “transformations” refers to operations such as mutations,
Booleanization, model reduction, etc. “Topological analysis” refers to the extraction of features from
the regulatory graph, such as the different feedback cycles, graph theory measures, etc. “Dynamical
analysis” refers to properties related to the state transition graph of Boolean/multi-valued networks, where
“Attractor analysis” refers to the identification of stable states, cyclic attractors, and related features;
“Simulation” refers to the sampling of trajectories within the state transition graph, possibly parameterized
with stochastic rates and mutations; “Formal verification and control” refers to exhaustive analyses for
assessing strictly temporal properties, such as reachability, and deducing mutations for controlling the
system. Finally, “Model inference” refers to the derivation of Boolean/multi-valued network which are
compatible with given properties and observation data.

5

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

accessed by standard workflow systems, such as SnakeMake [26].

Then, we developed a collection of Python modules to provide a unified interface to the features of

the selected software tools. The Python modules allow to parametrize and execute the different analyses,

and fetch their results which can be then further processed, including by a different tool through its

respective Python module.

This uniform Python interface is particularly relevant in the Jupyter web interface [39], where it

allows editing executable notebooks on qualitative biological networks by seamlessly combining different

software tools.

3.1 The CoLoMoTo Docker image

Overall, we witness a growing ecosystem of software tools based on different technologies and offering

a wide range of complementary features. Noteworthy, these tools typically rely on tailored formalisms

and settings, which enable specific methods but at the same time affect the results. One obvious

example is the consideration of a specific updating mode, as synchronous and asynchronous dynamics

may differ extensively. Furthermore, to address increasingly large networks, many tools rely on advanced

data-structures and resolution methods, which are implemented in dedicated software libraries. The

distribution of these tools then become quite challenging, as they rely on numerous dependencies, some of

which are difficult to install or available only for a few operating systems (most of the time GNU/Linux).

The Docker container technology allows to circumvent such distribution issues by providing a mean

to supply pre-installed and fully configured software environments in so-called Docker images. On

GNU/Linux, the execution of a Docker image consists mainly in executing the software in an isolated

environment, requiring no operating system virtualization. Therefore, the overhead of using Docker on

GNU/Linux is close to zero. A Docker image can also be executed on macOS or Microsoft Windows

without any modification. On these operating systems, Docker relies on virtualization technologies, which

are relatatively lightweight and result in limited performance loss on recent hardware.

The current CoLoMoTo Docker image colomoto/colomoto-docker:2018-03-31 contains the follow-

ing pre-installed software for the logical modelling and analsyis of biological networks: GINsim [32] ;

bioLQM [31] ; CellCollective [22] ; MaBoSS [46] ; Pint [36] ; and NuSMV [11].

The CoLoMoTo Docker image then provides access to these tools without requiring any installation

step beside installing Docker7. For instance, the Docker image can be used in association with a workflow

manager to chain and run a series of software functionalities. Supplementary file “SnakeMake” provides

an example of SnakeMake workflow relying on GINsim and NuSMV in the CoLoMoTo Docker.

An important challenge is the maintenance and extendibility of such Docker images to reduce the

complexity of upgrading or adding software tools with their respective dependencies. To that aim, we

require that each software tool is independently packaged for GNU/Linux using the Conda package

manager8. We then rely on the dependency management system of Conda to ensure that the correct

pre-requisites are installed in the Docker image9. A beneficial side effect of this technical choice is that

the aforementioned software tools can be installed on GNU/Linux platforms using Conda, without using

Docker.

7See https://docker.com for installation instructions
8https://conda.io
9CoLoMoTo-related conda packages are available in the colomoto conda channel. See https://anaconda.org/colomoto

6

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://docker.com
https://conda.io
https://anaconda.org/colomoto
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.2 A unified interface for calling and chaining tools with Python

The software tools considered for the CoLoMoTo Docker image present different interfaces: CellCol-

lective is a web application, GINsim has a graphical user interface along with a scripting interface,

bioLQM has a command line and a scripting interface, Pint has a command line and a Python interface,

MaBoSS has a command line interface.

GINsim, CellCollective and bioLQM support the SBML-qual format, while bioLQM provides

the conversion of a standard SBML-qual model into Pint or MaBoSS model formats, thereby enabling

the exchange of models between all these tools.

The recourse to different interfaces complicates the design of a model analysis combining multiple

tools. To address this issue, we have developed a Python interface for each of the tool embedded in the

CoLoMoTo Docker image, which greatly ease the execution of different tool functionalities, fetch the

results, and use these later as input for other executions.

Each tool comes with a dedicated Python module, providing a set of functions to invoke the underlying

software tool appropriately. Therefore, from a single Python shell, one can invoke and chain analyses

performed by different tools. This can be seen as an improved command line interface, greatly enhanced

by the use of intermediate Python objects. Such an approach also promotes the use of standard Python

data-structures to store objects such as model states or graphs, which can then be processed by common

Python libraries, e.g., Pandas10 or NetworkX11.

Hereafter, we give an overview of the resulting Python programming interface, focusing on the general

model input mechanism and the main features implemented for each of the software tools.

Model input and tool conversions Despite their very different features, all the tools considered

here take as input a logical model, in an adequate format. All the related Python modules provide a

load function, which takes as input the location of the model, being a local file, for instance:

m = biolqm.load("path/to/localfile.sbml")

a web link to a file, as obtained on GINsim repository12 for instance:

m = biolqm.load("http://ginsim.org/sites/default/...MamCC_Apr2016.sbml")

or a web link to the model on CellCollective, for instance:

m = biolqm.load("https://cellcollective.org/#5128/lac-operon")

In each case, the returned object (identified by m in the above examples) is a Python object representing

the loaded model and defined specifically for the corresponding tool (Python module). Table 1 lists the

supported input format for each software tool.

When possible, Python modules provide functions to convert a model for a compatible tool. These

functions are of the form moduleA.to moduleB(modelA). Figure 2 lists the currently supported model

conversions. The following Python code shows an example of usage:

lrg = ginsim.load("http://ginsim.org/sites/default/...MamCC_Apr2016.zginml")

lqm = ginsim.to_biolqm(lrg)

an = biolqm.to_pint(lqm)

Here, lrg is a Python object representing a GINsim model, lqm is a Python object representing a

bioLQM model, and an is a Python object representing a Pint model.

10https://pandas.pydata.org/
11http://networkx.github.io
12http://ginsim.org/models_repository

7

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://pandas.pydata.org/
http://networkx.github.io
http://ginsim.org/models_repository
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

Software tool Supported input formats
bioLQM SBML-qual (.sbml), raw logical functions, truth table
GINsim GINML (.ginml, .zginml)
Pint Automata network (.an)
MaBoSS Dedicated network/configuration files (.bnd/.cfg)
NuSMV SMV file (.smv)

Table 1: Model input formats for the software tools included in the CoLoMoTo Docker image

Figure 2: Supported conversion between Python module models

CellCollective– Modelling platform, repository, and knowledge base The cellcollective

Python module allows connecting to the CellCollective [22] web application (https://www.cellcollective.

org), in order to download the models in SBML-qual format and extract network nodes meta-data (e.g.,

UnitProt identifiers) when available.

The supplementary file “Notebooks/demo-cellcollective”13 provides a brief demonstration of the Python

module usage.

GINsim– Regulatory network modelling The ginsim Python module provides direct access to

the Java programming interface of GINsim [32]. GINsim is available and documented at http://www.

ginsim.org. In particular, besides the export of a GINsim model into various file formats, the Python

module allows to visualise the network regulatory graph, with the activation and inhibition relationships

between the nodes. The visualisation function (ginsim.show) optionally takes as argument a Python

dictionary associating a level with each node; then, the nodes of the network are coloured according to

these levels.

This is illustrated in the supplementary file “Notebooks/demo-ginsim”14.

bioLQM– Qualitative model toolbox The biolqm Python module provides direct access to the

Java programming interface of bioLQM [31]. bioLQM is available and documented at http://colomoto.

org/biolqm. bioLQM supports the conversion of SBML-qual files, GINML files, as well as simple textual

files specifying the raw logical functions into the formats associated with the different software tools.

13The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/CellCollective/CellCollective%20-%20Knowledge%20Base.ipynb
14The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb

8

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://www.cellcollective.org
https://www.cellcollective.org
http://www.ginsim.org
http://www.ginsim.org
http://colomoto.org/biolqm
http://colomoto.org/biolqm
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/CellCollective/CellCollective%20-%20Knowledge%20Base.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/CellCollective/CellCollective%20-%20Knowledge%20Base.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

Besides the file format features, bioLQM implements model modifications, such as mutations forcing

the value of given nodes, iterative model reduction(see above), model reversal, the conversion of multi-

valued model into Boolean ones, as well as the computation of stable states, trap spaces, and simulations.

Part of these features are illustrated in the supplementary file “Notebooks/demo-biolqm”15.

Pint– Formal predictions for controlling trajectories The pypint Python module provides com-

plete access to Pint [36] features documented at https://loicpauleve.name/pint. The software Pint

is devoted to the analysis of trajectories in very large-scale asynchronous Boolean and multi-valued

networks. Its main features include the verification of the existence of a trajectory reaching a state of

interest (reachability), the identification of common points between all the trajectories leading to a state

of interest (cut sets), and the formal prediction of mutations preventing the existence of any trajectory to

the given state.

These features are illustrated in the supplementary file “Notebooks/demo-pint”16.

NuSMV– Model verification The nusmv Python module provides a simple interface to the NuSMV

model checker [11] for verifying LTL (trace) and CTL (computation tree) temporal logic properties.

The specification of LTL and CTL properties can be facilitated using the colomoto.temporal logics

Python module, which takes advantage of Python objects for the different logical operators and ease their

combination.

Let us consider the following example using the CTL operators from the aforementioned Python

module:

p1 = AG (S(a=1))

p2 = EF (p1)

Here, the variable p1 is a CTL formula specifying that the node a is active (S(a=1)) in all the reachable

states (AG operator). The variable p2 is a CTL formula specifying that there exists a trajectory leading

to a state (EF operator) from which the property p1 is verified.

In the above example, S specifies a property on a state, by giving the values of some nodes of the

network. The conversion of a network model into NuSMV format depends on the tool used, sometimes

introducing different variable names for the nodes of the original biological network. But this technical

point is transparent for the user: the nusmv Python module will automatically translate the node names

into the correct NuSMV variable names.

The supplementary file “Notebooks/demo-nusmv”17 gives a simple example of usage of the nusmv

Python module to verify properties of a GINsim model.

MaBoSS– Stochastic simulations The maboss Python module provides an interface to MaBoSS

[46], available at https://maboss.curie.fr, as well as basic plotting functionalities. The purpose of

MaBoSS is to perform stochastic simulations of a Boolean network where the propensity of transitions

(probabilistic rates) are explicitly specified. The Python module allows to fully define and parameterize

a model, as well as parsing an existing MaBoSS model and modify it programmatically. The object

returned after the simulations can then be used to plot the probability of state activation over time, and

15The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/bioLQM/bioLQM_tutorial.ipynb
16The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/Pint/quick-tutorial.ipynb
17The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/NuSMV/NuSMV%20with%20GINsim.ipynb

9

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://loicpauleve.name/pint
https://maboss.curie.fr
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/bioLQM_tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/bioLQM_tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Pint/quick-tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Pint/quick-tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/NuSMV/NuSMV%20with%20GINsim.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/NuSMV/NuSMV%20with%20GINsim.ipynb
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

the proportion of states in which the simulations ended, in order to estimate the probability of reaching

different attractors.

The supplementary file “Notebooks/demo-maboss”18 provides a brief tutorial to the main features of

the maboss Python module.

Advanced combinations of tools These Python modules provide a unified interface to chain different

tools and process their results. The small tutorials referenced above show simple chaining of tools, most

of the time using a tool to import a model (e.g. from CellCollective or GINsim) and convert it

(using bioLQM) for specific analysis by another tool.

As the Python functions of the different modules relies on standard Python data-structures, such as

list and dictionaries, it is possible to easily re-use the result from a tool function as input to the function

of a different tool. A simple example is provided in supplementary file “Notebooks/demo-ginsim”19, where

we use bioLQM to compute the fixpoints of a GINsim model, and then give one of the resulting state as

input to GINsim show function to display the computed fixpoint in the regulatory graph.

Moreover, one can use the programmatic features of Python to implement advanced algorithms for

executing multiple analyses and process their result. For instance, one can program loops to iterate over

a list of results of a preceding analysis from one tool to perform a subsequent analysis on each result with

another tool. This is illustrated in the supplementary file “Notebooks/demo-pint+maboss”20 where we

use Pint to formally predict combinations of mutations controlling the existence of trajectories towards a

specified state; then, we quantify with MaBoSS the efficiency of applying only partially the predicted

combinations, by evaluating each related double-mutants. The example involves Python for loops and

a function to enumerate all possible subsets provided by the standard Python library. The notebook

also relies on CellCollective to fetch the model, and on bioLQM to perform the adequate model

conversions.

3.3 CoLoMoTo Jupyter interactive notebook

Jupyter21 is a software providing an interactive web interface for creating documents, called notebooks,

mixing code, equations, and formatted texts. A notebook typically describes a full analysis workflow,

combining textual explanations, the code itself, along with parameters to reproduce the results. A

notebook is a single file that can be easily modified, shared, re-executed and visualised online. The short

tutorials of the previous section provided in the supplementary file “Notebooks” are actually Jupyter

notebooks (files with the extension .ipynb) and can be re-executed using Jupyter.

A Jupyter notebook is sequence of so-called cells, which can contain formatted text, including sections,

links, images, tables, etc., or which can contain code in a specified programming language, typically

Python. A code cell can be executed (by pressing Shift-Enter) and the value returned by the code is

displayed below the cell. The display format is selected according to the type of the returned value (image,

graph, list, table, . . .) to offer an adequate visualisation.

Having a unified Python interface to invoke the CoLoMoTo software tools, one can directly create

Jupyter notebooks for the analysis of qualitative biological networks using these tools, as shown in

18The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/MaBoSS%20-%20Quick%20tutorial.ipynb
19The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
20The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/Predict%20mutations%20with%20Pint,%20refine%20with%

20MaBoSS.ipynb
21http://jupyter.org

10

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/MaBoSS%20-%20Quick%20tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/MaBoSS%20-%20Quick%20tutorial.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/GINsim/GINsim%20-%20visualization.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/Predict%20mutations%20with%20Pint,%20refine%20with%20MaBoSS.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/Predict%20mutations%20with%20Pint,%20refine%20with%20MaBoSS.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/MaBoSS/Predict%20mutations%20with%20Pint,%20refine%20with%20MaBoSS.ipynb
http://jupyter.org
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: Screenshot during a Jupyter notebook edition showing the menu of the bioLQM tool

supplementary file “Notebooks” and in the companion publication [28] providing a complete model

analysis workflow.

To improve the user experience for editing Jupyter notebooks, we added several features in the

CoLoMoTo Python modules, which increase interactivity. First, menus provide pre-defined Python code

for accessing to the main features of the tools. Figure 3 shows a screenshot during the edition of a Jupyter

notebook with its graphical interface. Next, we added the possibility to interactively upload a model file.

This feature is particularly useful when used in combination with Docker or on a remote server with no

direct access to the user file system. Finally, some Python modules, in particular maboss Python model,

provides JavaScript widgets to generate Python code interactively.

The Jupyter notebook server is included in the CoLoMoTo Docker image (see the Discussion section for

a quick usage guide), while a public demonstration web instance is available at http://tmpnb.colomoto.

org.

4 Reproducibility of computational analyses

4.1 From repeatability to reproducibility

The literature provides a range of definitions for the reproducibility of in silico experiments by analogy

to wet lab experiments [12, 14, 17, 18, 21, 29, 44]. Four levels of reproducibility are then commonly

distinguished.

An in silico experiment is said to be repeated when it is performed using the same computational

set-up as the original experiment. The major goal of the repeat task is to check whether the initial

experimental result was correct and can be obtained again. The difficulty lies in recording as much

information as possible to repeat the experiment so that the same conclusion can be drawn. Interestingly,

[17] discusses the granularity at which information (experiments, data sets, parameters, environment)

should or could be recorded and underlines the fact that the key point is to determine the right balance

between the effort required to record information and the capability of obtaining identical results.

An in silico experiment is said to be replicated when it is performed in a new setting and computational

environment, although similar to the original ones. When it can be successfully replicated, a result

has a high level of robustness: it remained valid when using a similar (although different) protocol. A

continuum of situations can be considered between repeated and replicated experiments.

11

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

http://tmpnb.colomoto.org
http://tmpnb.colomoto.org
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

A result is then defined as reproduced , in the broadest possible sense of the term by denoting the

situation where an experiment is performed within a different environment, with the aim to validate the

same scientific hypothesis. In other words, what matters here is the conclusion obtained and not the

methodology considered reaching it. Completely different approaches can be designed, different data sets

can be used, as long as the experiments support the same scientific conclusion. A reproducible result is

thus a high-quality result, confirmed in various ways.

A last very important concept related to reproducibility is that of reuse, which denotes the case

where a different experiment is performed, with similarities with an original experiment. A specific kind

of reuse occurs when a single experiment is reused in a new context (and thus adapted to new needs), the

experiment is then said to be repurposed.

It is worth noticing that repeating and replicating may appear to be technical challenges compared to

reproducing and reusing, which are the most important scientific objectives. However, before investigating

alternative ways of obtaining a result (to reach reproducibility) or before reusing a given methodology in

a new context (to reach reuse), the original experiment has to be carefully tested especially by reviewers

or any peer), demonstrating its ability to be at least repeated and hopefully replicated [17, 45].

4.2 Repeat analysis in the same software environment

Ensuring that a sequence of computational analyses can be repeated by other scientists several months or

years after its publication is difficult. Indeed, besides software availability, the version of the tools can be

crucial: a new version of a tool can change the default parameters and even some features so that the

published instructions become obsolete.

Whereas a Docker image addresses efficiently the issue of making software available, providing a safe

way for repeating a notebook content years after its creation requires additional technical procedures.

First, CoLoMoTo Docker images are constructed by specifying explicitly the version of each software.

Furthermore, an automatic validation procedure is performed by checking that a set of notebooks still

execute without error. Once validated, the Docker image is then tagged with a time-stamp, typically the

date of the image validation (of the form YYYY-MM-DD, e.g., 2018-03-31). These tagged images are then

stored in the public Docker image registry, and can be retrieved any time later. The list of existing tags of

colomoto/colomoto-docker Docker images can be viewed at https://hub.docker.com/r/colomoto/

colomoto-docker/tags/.

When sharing a notebook, and notably when attaching it to a publication, it is highly recommended

specifying the time-stamp of the Docker image in which the notebook has been executed. Then, by

downloading the image with this specific tag, it is ensured that other users will repeat the execution in

exactly the same software environment.

To help to follow this recommendation, we took two technical decisions. First, we do not use the

default non-persistent tag for Docker images (latest). It means that the user has to always specify

explicitly the time-stamp of the CoLoMoTo Docker image. To remove the burden of actively checking the

list of existing time-stamps, we provide a script which, by default, will fetch the most recent Docker image

(see Section 5). Second, when loading a CoLoMoTo-related Python module within a Docker container, a

textual message indicating the time-stamp of the Docker image is displayed. Therefore, when created

within a CoLoMoTo Docker image, notebooks always contain the required information to repeat their

execution.

Because a Jupyter notebook is a single file containing everything to execute it, one can easily check if

it can be replicated in a different software environment, i.e., using a more recent CoLoMoTo Docker image.

12

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://hub.docker.com/r/colomoto/colomoto-docker/tags/
https://hub.docker.com/r/colomoto/colomoto-docker/tags/
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

Moreover, a notebook can be easily repurposed by modifying some arguments of the Python function calls,

for instance changing the input model or analysis parameters. One can even define interactive notebooks

describing a common model analysis, so that the user only need to provide the input model and execute

the Jupyter code cells, as shown in the Supplementary file “Notebooks/demo-interactive-fixpoints”22 for

the computation and visualisation of the stable states of a bioLQM model.

4.3 Reproduce analysis with a different method

Reproducing a same analysis with two different methods is a good mean to increase confidence in the

results, as it reduces the chance of software misuse or that the results are affected by a software bug.

The subset of software tools selected for this first CoLoMoTo Docker image presentation already

provides redundant implementations of equivalent model analyses, in particular for the identification of

stable states and for the verification of temporal properties with NuSMV. To help switch between two

tools for performing the same task, we harmonised the usage of Python module functions to ensure that

the same functions with the same arguments generate equivalent results with different tools.

4.3.1 Stable states

There exists several methods to compute the full set of stable states (or fixed points) of a logical model,

relying on different data-structures and different algorithms.

The software bioLQM implements the computation of stable states for Boolean and multi-value logical

model using a Java implementation of decision diagrams. In contrast, the software Pint implements

the computation of stable states of Automata networks (a generalisation of logical networks) using

Boolean satisfaction constraints. As bioLQM provides a conversion of Boolean/multi-valued network

into equivalent Automata networks, it is possible to compute the stable states of a model with both

software tools.

Both biolqm and pypint Python modules provide a fixpoint function which take as input the model

instance of the corresponding tool, and both returns a list of Python dictionaries describing the states

being fixpoints. Provided lqm is a bioLQM model, the following Python code compute its stable states

with both tools:

fps_biolqm = biolqm.fixpoints(lqm)

fps_pint = pypint.fixpoints(biolqm.to_pint(lqm))

The supplementary file “Notebooks/demo-reproducibility-fixpoints”23 shows a complete example of

reproduction of stable state computation using BioLQM and Pint.

4.3.2 Temporal property verification (model-checking)

Both GINsim and Pint allow to export their respective model into NuSMV format, where temporal

properties can be specified using LTL or CTL (see Section 2.2). However, as the input formalism for these

tool relies on different paradigms (logical rule-centred specification in the case of Boolean/multi-valued

networks in GINsim; transition-centred specification (à la Petri nets) in the case of Automata networks

in Pint), the generated NuSMV models have different features. Nevertheless, in the appropriate settings,

the verification of an equivalent CTL or LTL property should give the same result.

22The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/bioLQM/Fixpoints%20(interactive).ipynb
23The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20fixpoints.ipynb

13

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/Fixpoints%20(interactive).ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/bioLQM/Fixpoints%20(interactive).ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20fixpoints.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20fixpoints.ipynb
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hence, the functions ginsim.to nusmv and pypint.to nusmv are implemented in such ways that,

when using their default options, the resulting NuSMV models, albeit different, should produce identical

results for identical temporal logic properties. Note, however, that each tool provides specific options for

the NuSMV export, which can lead to incomparable results.

The following Python code uses operators defined in the Python module colomoto.temporal logics

to specify a property p meaning that from any state, there always exists a trajectory leading to a cyclic

attractor where the level of node a can always oscillate. Then, assuming lrg is a GINsim model, the

code uses GINsim and Pint conversions to NuSMV to perform model verification.

p = EF (AG (EF (S(a=0)) & EF (S(a=1))))

nusmv_ginsim = ginsim.to_nusmv(lrg)

nusmv_ginsim.add_ctl(p)

nusmv_ginsim.verify()

nusmv_pint = pypint.to_nusmv(ginsim.to_pint(lrg))

nusmv_pint.add_ctl(p)

nusmv_pint.verify()

Note that the Python object p represents the CTL property to be tested, whatever the origin of the

model (GINsim or Pint).

The supplementary file “Notebooks/demo-reproducibility-modelchecking”24 provides a more detailed

example of the reproduction of model-checking results using GINsim and Pint.

5 Quick-usage guide

On GNU/Linux, macOS, or Microsoft Windows, provided that Docker and Python are installed, a helper

script to run the CoLoMoTo Docker image and the embedded Jupyter notebook can be installed and

upgraded from a terminal using the following command25:

pip install -U colomoto-docker

The Docker image and the Jupyter notebook interface can be started by executing the following command

in a terminal26:

colomoto-docker

Without any argument, the command will use the most recent CoLoMoTo Docker image. To use the

image at a specific tag, append the -V option (e.g., colomoto-docker -V 2018-03-31).

The execution of this command will open a web page with the Jupyter notebook interface, enabling

loading and execution of notebooks. A new notebook can be created by using the “New/Python3” menu.

In this environment, the user has access to all CoLoMoTo Python modules. A code cell is executed by

typing “Shift+Enter”. The menu and toolbar allow quick access to main Jupyter functionalities.

Warning: by default, the files within the Docker container are isolated from the running host computer,

and are deleted when stopping the container. To have access to the files of the current directory of the

host computer, the option --bind can be used:

24The notebook can be previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/

colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20model%20checking.ipynb
25you may have to use pip3 instead of pip depending on your configuration
26If using Docker Toolbox, the command should be executed within the Docker Terminal

14

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20model%20checking.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/tutorials/Reproducibility%20-%20model%20checking.ipynb
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

colomoto-docker --bind .

The container can later be stopped by pressing Ctrl+C keys in the terminal. See colomoto-docker

--help for other options. Additional documentation for running the CoLoMoto Docker image can be

found at https://github.com/colomoto/colomoto-docker.

6 Discussion

Academic use cases

The prime aim of the CoLoMoTo Interactive Notebook is to assist with the production of accessible and

reproducible computational analysis of biological models, with a focus on qualitative models, including

Boolean and multi-valued networks. As demonstrated in supplementary file “SnakeMake”, the CoLoMoTo

Docker image can also be used in standard workflow systems, such as SnakeMake, to lighten the burden

of installing the different software tools and make them accessible on different operating systems.

A notebook issued from the CoLoMoTo Docker image gives some guarantees of repeatibility, as it

will contain references to the persistent Docker image to re-execute it in the same software environment.

Therefore, the notebook file (with .ipynb extension) can be distributed as a supplementary file of the

related scientific article with instruction to run the Docker image. The Jupyter interface allows to export

the notebook in a static HTML file, which could also be joined to the supplementary file to provide a

quick way to visualize it.

A notebook can also be distributed independently, for instance by publishing it on Gist27 or myEx-

periment28 [20], which allow to visualise download, and follow potential updates of the notebook. For

instance, the tutorial notebook presented by Levy et al. [28] is hosted at https://gist.github.com/

pauleve/a86717b0ae8750440dd589f778db428f. Services like Zenodo29 also allow creating persistent

DOI links to a specific version of a notebook file.

The CoLoMoTo Interactive Notebook is also relevant for teaching purposes. With Jupyter, students

can straightforwardly execute, modify, and extend a template notebook to learn methods for analysing

models of biological networks. Docker is a standard technology very often supported by local cloud

infrastructures, which can therefore provide dedicated resources to execute remotely and privately the

CoLoMoTo Jupyter web interface.

Extending the CoLoMoTo Interactive Notebook

The CoLoMoTo Docker image can be easily extended to include additional tools. The Docker architecture

allows inheriting from an existing container, adding a new layer with additional executables. Contributions

are welcome through GitHub30. The software tool must be usable from the Jupyter interface and should

be able to connect with at least one other tool already included. Furthermore, a demonstration notebook

should be provided to illustrate the tool usage and how it can be combined with other tools.

Currently, all the embedded tools require an already defined model. Nevertheless, once loaded, a

model can be subsequently modified from the Python interface (see tool feature matrix in Figure 1). We

are currently considering the development of a programmatic interface for model definition ab initio.

One of the main challenge is to provide a decent visualisation of the programmatically-created model.

27https://gist.github.com
28https://www.myexperiment.org
29https://zenodo.org
30Guidelines available at https://github.com/colomoto/colomoto-docker/blob/master/CONTRIBUTING.md

15

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://github.com/colomoto/colomoto-docker
https://gist.github.com/pauleve/a86717b0ae8750440dd589f778db428f
https://gist.github.com/pauleve/a86717b0ae8750440dd589f778db428f
https://gist.github.com
https://www.myexperiment.org
https://zenodo.org
https://github.com/colomoto/colomoto-docker/blob/master/CONTRIBUTING.md
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

A potential direction is to include a visual edition module in the Jupyter interface, which represents a

substantial development effort.

The support for standard exchange formats is key to enable reproducibility of analyses with different

tools. In that sense, bioLQM plays an important role for the CoLoMoTo Interactive Notebook as it

provides bridges between SBML-qual standard specifications and numerous software tools (Figure 2). The

Tellurium Notebook system by [42] offers support for SED-ML to help reproduce quantitative simulation

of biological networks. Future work should consider bringing this feature for qualitative models as well, in

order to better meet FAIR (Findability, Accessibility, Interoperability, and Reusability) recommendations

[53].

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of interest.

Author Contributions

AN, CH, DT and LP designed the main principles of the CoLoMoTo Interactive notebook and its

distribution. AN, CH, NL and LP implemented the necessary Python modules, their integration in the

Jupyter interface, and the Docker image. AN and LP edited the notebook tutorials, while CH edited the

SnakeMake workflow example. All authors contribute to the writing of the article under the supervision

of DT and LP. All authors reviewed the content of this article and agreed to endorse it.

Funding

DT and CH acknowledge support from the French Plan Cancer (2014–2017), in the context of the projects

CoMET and SYSTAIM. DT and AN acknowledge support from the French Agence Nationale pour

la Recherche (ANR), in the context of the project SCAPIN [ANR-15-CE15-0006-01]. CC and PTM

acknowledge support from the Fundação para a Ciência e a Tecnologia, through grants PTDC/BEX-

BCB/0772/2014 and PTDC/EEI-CTP/2914/2014. TH acknowledges support from the National Institutes

of Health (#5R35GM119770-02). SCB acknowledges support from CNRS (défi Mastodons). AZ, and

LC acknowledge support from COLOSYS project in EU ERACoSysMed programme. AZ, LC, and LP

acknowledge support from ANR in the context of the project ANR-FNR project AlgoReCell [ANR-16-

CE12-0034]. LP and SCB acknowledge support from Paris Ile-de-France Region (DIM RFSI) and Labex

DigiCosme [ANR-11-LABEX-0045-DIGICOSME] operated by ANR as part of the program “Investissement

d’Avenir” Idex Paris-Saclay [ANR-11-IDEX-0003-02].

Acknowledgments

The authors would like to thank the attendees of the fourth CoLoMoTo meeting in Paris, July 17-19, for

the insightful discussions which led to designing the CoLoMoTo Interactive notebook.

16

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

Notebook file name Software tools involved
demo-cellcollective CellCollective, bioLQM
demo-ginsim GINsim, bioLQM
demo-biolqm bioLQM
demo-interactive-fixpoints bioLQM
demo-pint Pint
demo-nusmv GINsim, NuSMV
demo-maboss MaBoSS
demo-pint+maboss CellCollective, bioLQM, Pint, MaBoSS
demo-reproducibility-fixpoints GINsim, bioLQM, Pint
demo-reproducibility-modelchecking GINsim, Pint

Table 2: List of notebook files in supplemental data “Notebooks” demonstrating some features of the
CoLoMoTo Interactive Notebook

Supplemental Data

The supplemental data “SnakeMake” contains an example of SnakeMake workflow which uses the

CoLoMoTo Docker image to execute the different analyses.

The supplemental data “Notebooks” contains several short Jupyter notebooks which demonstrate

different usage of the CoLoMoTo interactive notebook, listed in Table 2. The .ipynb files can be

imported and executed within the Jupyter interface of the CoLoMoTo notebook, using the Docker image

colomoto/colomoto-docker:2018-03-31. For each notebook file is included a static HTML file to quickly

preview the Jupyter rendering of the notebook, without any requirement. These notebooks can also be

previewed and downloaded at https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/

tree/2018-03-31/tutorials.

References

[1] Abou-Jaoudé, W., Monteiro, P. T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C.,

et al. (2015). Model checking to assess t-helper cell plasticity. Front. Bioeng. Biotechnol. 2, 86.

doi:10.3389/fbioe.2014.00086

[2] Abou-Jaoudé, W., Traynard, P., Monteiro, P. T., Saez-Rodriguez, J., Helikar, T., Thieffry, D.,

et al. (2016). Logical Modeling and Dynamical Analysis of Cellular Networks. Front. Genet. 7, 94.

doi:10.3389/fgene.2016.00094

[3] Albert, I., Thakar, J., Li, S., Zhang, R., and Albert, R. (2008). Boolean network simulations for life

scientists. Source Code Biol. Med. 3, 16. doi:10.1186/1751-0473-3-16

[4] Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature News 533, 452. doi:

10.1038/533452a

[5] Bartocci, E. and Lió, P. (2016). Computational modeling, formal analysis, and tools for systems

biology. PLOS Computational Biology 12, 1–22. doi:10.1371/journal.pcbi.1004591

[6] Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., et al. (2005). Validation

of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional

stress response in escherichia coli. Bioinformatics 21, i19–i28. doi:10.1093/bioinformatics/bti1048

17

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/tree/2018-03-31/tutorials
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/tree/2018-03-31/tutorials
https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

[7] Begley, C. G. and Ellis, L. M. (2012). Drug development: Raise standards for preclinical cancer

research. Nature 483, 531–533. doi:10.1038/483531a

[8] Begley, C. G. and Ioannidis, J. P. (2015). Reproducibility in science improving the standard for

basic and preclinical research. Circ. Res. 116, 116–126. doi:10.1161/CIRCRESAHA.114.303819

[9] Chaouiya, C., Bérenguier, D., Keating, S. M., Naldi, A., van Iersel, M. P., Rodriguez, N., et al.

(2013). SBML qualitative models: a model representation format and infrastructure to foster

interactions between qualitative modelling formalisms and tools. BMC Syst. Biol. 7, 135. doi:

10.1186/1752-0509-7-135

[10] Chaouiya, C., Keating, S. M., Berenguier, D., Naldi, A., Thieffry, D., van Iersel, M. P., et al. (2015).

The Systems Biology Markup Language (SBML) level 3 package: Qualitative models, version 1,

release 1. J. Integr. Bioinform. 12, 270. doi:10.2390/biecoll-jib-2015-270

[11] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., et al. (2002).

NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In Proc. International

Conference on Computer-Aided Verification (CAV 2002) (Springer), vol. 2404 of LNCS. doi:10.1007/

3-540-45657-0 29

[12] Cohen-Boulakia, S., Belhajjame, K., Collin, O., Chopard, J., Froidevaux, C., Gaignard, A., et al.

(2017). Scientific workflows for computational reproducibility in the life sciences: Status, challenges

and opportunities. Future Gener. Comput. Syst. 75, 284–298. doi:10.1016/J.FUTURE.2017.01.012

[13] Collombet, S., van Oevelen, C., Sardina Ortega, J. L., Abou-Jaoudé, W., Di Stefano, B., Thomas-

Chollier, M., et al. (2017). Logical modeling of lymphoid and myeloid cell specification and

transdifferentiation. Proc. Natl. Acad. Sci. 114, 5792–5799. doi:10.1073/pnas.1610622114

[14] Drummond, C. (2009). Replicability is not reproducibility: nor is it good science. In Proc. of the

Evaluation Methods for Machine Learning Workshop at the 26th ICML

[15] Errington, T. M., Iorns, E., Gunn, W., Tan, F. E., Lomax, J., and Nosek, B. A. (2014). An open

investigation of the reproducibility of cancer biology research. Elife 3, e04333. doi:10.7554/eLife.04333

[16] Fauré, A., Naldi, A., Chaouiya, C., and Thieffry, D. (2006). Dynamical analysis of a generic

boolean model for the control of the mammalian cell cycle. Bioinformatics 22, 124–31. doi:

10.1093/bioinformatics/btl210

[17] Freire, J., Bonnet, P., and Shasha, D. (2012). Computational reproducibility: state-of-the-art, chal-

lenges, and database research opportunities. In Proceedings of the 2012 ACM SIGMOD international

conference on management of data (ACM), 593–596. doi:10.1145/2213836.2213908

[18] Freire, J., Fuhr, N., and Rauber, A. (2016). Reproducibility of data-oriented experiments in e-science.

In Dagstuhl Seminar 16041. 108–159. doi:10.4230/DagRep.6.1.108

[19] Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., and De Micheli, G. (2008). Synchronous

versus asynchronous modeling of gene regulatory networks. Bioinformatics 24, 1917–1925. doi:

10.1093/bioinformatics/btn336

[20] Goble, C. A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D., et al. (2010).

myExperiment: a repository and social network for the sharing of bioinformatics workflows. Nucleic

acids research 38, W677–W682

18

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

[21] Goodman, S. N., Fanelli, D., and Ioannidis, J. P. (2016). What does research reproducibility mean?

Sci. Transl. Med. 8, 341ps12. doi:10.1126/scitranslmed.aaf5027

[22] Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov, A., et al. (2012).

The Cell Collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol.

6, 96. doi:10.1186/1752-0509-6-96

[23] Hucka, M., , Finney, A., , Sauro, H. M., , et al. (2003). The Systems Biology Markup Language

(SBML): a medium for representation and exchange of biochemical network models. Bioinformatics

19, 524–531. doi:10.1093/bioinformatics/btg015

[24] Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. J.

Theor. Biol. 22, 437–467. doi:10.1016/0022-5193(69)90015-0

[25] Klarner, H., Streck, A., and Siebert, H. (2017). PyBoolNet: a python package for the gen-

eration, analysis and visualization of Boolean networks. Bioinformatics 33, 770–772. doi:

10.1093/bioinformatics/btw682

[26] Köster, J. and Rahmann, S. (2012). Snakemake - a scalable bioinformatics workflow engine. Bioin-

formatics 28, 2520–2522. doi:10.1093/bioinformatics/bts480

[27] Le Novère, N., Finney, A., Hucka, M., Bhalla, U. S., Campagne, F., Collado-Vides, J., et al. (2005).

Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol.

23, 1509–15. doi:10.1038/nbt1156

[28] Levy, N., Naldi, A., Hernandez, C., Stoll, G., Thieffry, D., Zinovyev, A., et al. (submitted). Prediction

of Mutations to Control Pathways Enabling Tumour Cell Invasion with the CoLoMoTo Interactive

Notebook (Tutorial)

[29] Lewis, J., Breeze, C. E., Charlesworth, J., Maclaren, O. J., and Cooper, J. (2016). Where next for

the reproducibility agenda in computational biology? BMC Systems Biology 10, 52

[30] Müssel, C., Hopfensitz, M., and Kestler, H. (2010). BoolNet–an R package for generation, reconstruc-

tion and analysis of Boolean networks. Bioinformatics 26, 1378–1380. doi:10.1093/bioinformatics/

btq124

[31] Naldi, A. (2018). bioLQM: a java library for the manipulation and conversion of Logical Qualitative

Models of biological networks. bioRxiv Not peer-reviewed

[32] Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P. T., Chaouiya, C., and Thieffry, D.

(2018). Logical modelling and analysis of cellular regulatory networks with GINsim 3.0. bioRxiv

doi:10.1101/289298. Not peer-reviewed

[33] Naldi, A., Monteiro, P. T., Müssel, C., Consortium for Logical Models and Tools, Kestler, H. A.,

Thieffry, D., et al. (2015). Cooperative development of logical modelling standards and tools with

CoLoMoTo. Bioinformatics 31, 1154–9. doi:10.1093/bioinformatics/btv013

[34] Naldi, A., Remy, E., Thieffry, D., and Chaouiya, C. (2011). Dynamically consistent reduction of

logical regulatory graphs. Theor. Comput. Sci. 412, 2207–2218. doi:10.1016/j.tcs.2010.10.021

19

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

[35] Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., and Guziolowski, C. (2016). Boolean network iden-

tification from perturbation time series data combining dynamics abstraction and logic programming.

Biosystems 149, 139 – 153. doi:10.1016/j.biosystems.2016.07.009

[36] Paulevé, L. (2017). Pint: A Static Analyzer for Transient Dynamics of Qualitative Networks

with IPython Interface. In CMSB 2017 - 15th conference on Computational Methods for Systems

Biology (Springer), vol. 10545 of Lecture Notes in Computer Science, 370 – 316. doi:10.1007/

978-3-319-67471-1 20

[37] Paulevé, L. (2017). Reduction of Qualitative Models of Biological Networks for Transient Dynamics

Analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. doi:10.1109/TCBB.2017.2749225. In press

[38] Peng, R. D. (2009). Reproducible research and biostatistics. Biostatistics 10, 405–408. doi:

10.1093/biostatistics/kxp014

[39] Ragan-Kelley, M., Perez, F., Granger, B., Kluyver, T., Ivanov, P., Frederic, J., et al. (2014). The

Jupyter/IPython architecture: a unified view of computational research, from interactive exploration

to communication and publication. In AGU Fall Meeting Abstracts. vol. 1, 07

[40] Richter, S. H., Garner, J. P., Auer, C., Kunert, J., and Würbel, H. (2010). Systematic variation im-

proves reproducibility of animal experiments. Nat. Methods 7, 167–168. doi:10.1038/nmeth0310-167

[41] Santori, G. (2016). Journals should drive data reproducibility. Nature 535, 355–355. doi:10.1038/

535355b

[42] Sauro, H. M., Medley, K., Choi, K., Konig, M., Smith, L., Hellerstein, J., et al. (2017). Tellurium

notebooks - an environment for dynamical model development, reproducibility, and reuse. bioRxiv

doi:10.1101/239004. Not peer-reviewed

[43] Smith, M. A. and Houghton, P. (2013). A proposal regarding reporting of in vitro testing results.

Clin. Cancer Res. 19, 2828–2833. doi:10.1158/1078-0432.CCR-13-0043

[44] Stodden, V., Guo, P., and Ma, Z. (2013). Toward reproducible computational research: an empirical

analysis of data and code policy adoption by journals. PLOS ONE 8, e67111. doi:10.1371/journal.

pone.0067111

[45] Stodden, V., Leisch, F., and Peng, R. D. (2014). Implementing reproducible research (CRC Press)

[46] Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A., et al. (2017). MaBoSS

2.0: an environment for stochastic Boolean modeling. Bioinformatics 33, 2226–2228. doi:10.1093/

bioinformatics/btx123

[47] Stoll, G., Viara, E., Barillot, E., and Calzone, L. (2012). Continuous time boolean modeling

for biological signaling: application of gillespie algorithm. BMC Systems Biology 6, 116. doi:

10.1186/1752-0509-6-116

[48] Terfve, C., Cokelaer, T., Henriques, D., MacNamara, A., Goncalves, E., Morris, M. K., et al.

(2012). CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic

formalisms. BMC Syst. Biol. 6, 133. doi:10.1186/1752-0509-6-133

[49] Thomas, R. (1973). Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563 – 585.

doi:10.1016/0022-5193(73)90247-6

20

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

[50] Todd, R. G. and Helikar, T. (2012). Ergodic sets as cell phenotype of budding yeast cell cycle. PLOS

ONE 7, 1–10. doi:10.1371/journal.pone.0045780

[51] Waltemath, D., Adams, R., Beard, D. A., Bergmann, F. T., Bhalla, U. S., Britten, R., et al. (2011).

Minimum Information About a Simulation Experiment (MIASE). PLOS Comput. Biol. 7, e1001122.

doi:10.1371/journal.pcbi.1001122

[52] Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F., Miller, A. K., et al.

(2011). Reproducible computational biology experiments with SED-ML – the Simulation Experiment

Description Markup Language. BMC Syst. Biol. 5, 198. doi:10.1186/1752-0509-5-198

[53] Wittig, U., Rey, M., Weidemann, A., and Müller, W. (2017). Data management and data enrichment

for systems biology projects. J. Biotechnol. 261, 229 – 237. doi:10.1016/j.jbiotec.2017.06.007

[54] Yaffe, M. B. (2015). Reproducibility in science. Sci. Signal. 8, eg5. doi:10.1126/scisignal.aaa5764

21

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/290411doi: bioRxiv preprint

https://doi.org/10.1101/290411
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Qualitative Dynamical Models of Biological Networks
	Qualitative modelling
	Dynamical analysis

	Accessibility of CoLoMoTo software tools
	The CoLoMoTo Docker image
	A unified interface for calling and chaining tools with Python
	CoLoMoTo Jupyter interactive notebook

	Reproducibility of computational analyses
	From repeatability to reproducibility
	Repeat analysis in the same software environment
	Reproduce analysis with a different method
	Stable states
	Temporal property verification (model-checking)

	Quick-usage guide
	Discussion

