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ABSTRACT 

The largely incomplete and tissue-independent nature of cancer pathways represents a key 

limitation to the ability to elucidate mechanistic determinants of cancer phenotypes and to 

predict adaptive response to targeted therapy.  To address these challenges, we propose 

replacing canonical cancer pathways with a more accurate, comprehensive, and context-

specific architecture – dubbed a Protein-Centric molecular interaction Map (PC-Map) – 

representing modulators, effectors, and cognate binding-partners of any oncoprotein of interest. 

To reconstruct these complex molecular architectures de novo, we introduce a novel OncoSig 

algorithm. Validation of a lung adenocarcinoma specific (LUAD) KRAS-centric PC-Map 

recapitulated known KRAS biology and, more critically, identified a novel repertoire of proteins 

eliciting synthetic lethality in KRASG12D LUAD organoid cultures. Showing the generalizable 

nature of the algorithm, we elucidated PC-Maps for ten recurrently mutated oncoproteins, 

including KRAS, in distinct tumor contexts. This revealed a highly context-specific nature of 

cancer’s regulatory and signaling architectures to an unprecedented degree of resolution.  
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INTRODUCTION 

The idea that individual gene products may work in concert within highly conserved, mechanistic 

pathways, leading to coordinated activity of multiple gene products and metabolites, has long 

been a paradigm of molecular biology, especially in cancer research1-3. Recent results from the 

systematic reverse engineering of molecular interactions, however, challenge this view by 

highlighting critical limitations of canonical pathway representations4. In contrast to literature 

diagrams that depict pathways as relatively universal and mostly linear chains of events, actual 

molecular events in the cell are processed by a machinery that is neither universal nor linear but 

rather, exquisitely tissue-specific, feedback-loop rich, and too complex to be visually 

represented.  

More importantly, key molecular interactions that mediate pathologic activity of recurrently 

mutated proteins and adaptive response to targeted inhibitors, within specific tumor contexts, 

are generally poorly represented in pathway databases, such as KEGG5, Gene Ontology6, 

BioCarta7, Reactome8, SPIKE9, Pathway Commons10, and Ingenuity11. Indeed, the interactions 

represented in these databases are generally supported by orthologous relationships in model 

organisms, noisy high-throughput assays in non-physiological contexts, or literature curation. As 

a result, most context-specific differences are lost, such as the differential activity of associated 

inhibitors in BRAF signaling between colon cancer and melanoma, leading to incorrect 

hypotheses about clinical utility12. Similarly, auto-regulatory loops and tissue-specific 

interactions that were not represented in canonical PI3K and MAPK pathways, were shown to 

be responsible for inducing adaptive responses that ultimately led to failure of otherwise 

promising targeted inhibitors13,14.  
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To address such issues, we propose an integrative framework (OncoSig) for the accurate and 

systematic de novo reconstruction of context-specific, Protein-Centric molecular interaction 

Maps (PC-Maps). These represent the comprehensive molecular architecture necessary to 

support the function of a specific protein, including key oncoproteins, as implemented by three 

molecular interaction layers (Figure 1a): (a) the repertoire of upstream modulators of the 

Protein’s activity, such as genes harboring genetic and epigenetic variants that may contribute 

to its dysregulation (orange), (b) the Protein’s cognate binding partners with whom if forms 

stable or transient complexes (thick lines), and (c) the repertoire of downstream effectors that 

mediate the Protein’s pathophysiologic function (blue). Cognate binding partners may include 

both modulator and effector proteins. In addition, some proteins may be involved in auto-

regulatory loops and thus simultaneously function as both upstream modulators and 

downstream effectors effectively providing a fourth functionally important interaction layer (gray 

lines). PC-Maps further prioritize predictions for potential synthetic lethal interactors (purple). 

Notably, while there has been significant focus on the reconstruction of individual transcriptional, 

post-transcriptional, and post-translational molecular interaction networks, development of 

technologies for the reconstruction of such a multi-layer, integrative logic is still elusive. This is 

critical because cellular phenotypes are not the results of these layers working in isolation but 

rather of their complex interplay.  

To support a realistic validation effort, we first focused specifically on assembling and validating 

a KRAS-centric PC-Map. KRAS is a member of the RAS family of small GTPases 15. KRAS is 

frequently mutated in cancer, especially in lung (LUAD) and colon (COAD) adenocarcinoma, 

where it induces a highly aggressive form of the disease, less likely to respond to targeted 

therapy16-18. We implemented the evidence-integration core of the OncoSig algorithm using 

either a Naïve Bayes19 or a Random Forest20 machine learning, algorithm, supporting the 
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integration of evidence for KRAS-specific functional and physical interactions from multiple 

validated reverse engineering algorithms, interactomes, and databases. We found that most 

novel predicted KRAS PC-Map members (18 of 22) elicited synthetic lethality in 3D spheroid 

assays and were highly tumor-specific, while 18 additional ones were already established 

KRAS-related proteins. Further, PC-Maps for recurrently mutated oncoproteins and 

oncopathways recapitulated known interactions, as well as novel interactions, a subset of which 

is consistent with synthetic lethality studies by pooled RNAi-mediated silencing.  

 

RESULTS 

In the following sections, we describe OncoSig, a novel computational technology designed to 

integrate multiple individual sources of evidence (henceforth clues), generated from both 

computational and experimental assays, for the inference of PC-Map proteins. To perform 

evidence integration, we use two machine learning algorithms supporting either direct tracing of 

evidence sources used to infer each interaction (Naïve-Bayes Classifier19) or higher-

performance but lower traceability (Random Forest20). For the sake of clarity and without 

restricting the generality of the approach, we demonstrate the analytical framework by 

reconstructing a LUAD-specific, KRAS-centric map, assessing both established and newly 

predicted functional members. To show that the approach is fully generalizable to arbitrary 

proteins and tumor contexts, we then infer and benchmarking PC-Maps for nine additional 

recurrently mutated oncoproteins/oncopathways in distinct tumor contexts.  
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Clues for characterization of KRAS upstream modulators, cognate binding partners, and 

downstream effector proteins.  

We used established reverse engineering algorithms to analyze the sample-matched gene 

expression and mutational profiles of 488 LUAD samples from The Cancer Genome Atlas 

(TCGA)21. This LUAD set comprises 326 samples with KRASWT, 134 with KRASmut, and 28 with 

no information on KRAS mutational state. VIPER, DEMAND, and MINDy analyses include 

transcriptional changes, under various conditions, for 1,813 proteins annotated as transcription 

factors (TFs), 969 proteins annotated as transcriptional cofactors (CoFs), and 3,370 proteins 

annotated as signaling proteins (SPs), guided by Gene Ontology (GO) classification6. The 

VIPER, DeMAND, and MINDy algorithms described below rely, in part, on ARACNe inference of 

regulons for KRAS and other proteins from the LUAD gene expression data22. Scores from the 

following computational and experimental sources were integrated with Naïve Bayes 

classification to predict members of the KRAS PC-Map, allowing easy integration of additional 

evidence sources, depending only on data availability, see Methods for further detail. Notably, 

systematic use of mutational information helps disambiguate interaction directionality, as 

proposed by23. 

1. VIPER24: VIPER is used to compute the enrichment of the transcriptional targets (regulon) of 

the oncoprotein of interest (KRAS in this case) in differentially expressed genes, with positive 

and negative enrichment indicating increase and decrease in KRAS activity, respectively. 

Statistically significant co-segregation of KRAS activity and other genes’ mutations identifies 

candidate KRAS upstream modulators. Candidate downstream KRAS effectors are identified as 

proteins whose VIPER-inferred activity co-segregates with KRAS mutations. Thus, VIPER 

produces clues for (a) upstream KRAS modulators as proteins harboring missense mutations 

that co-segregate with differential KRAS activity, and (b) downstream KRAS effectors as 
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proteins with differential activity in KRASmut versus KRASWT samples (Figure 1b-a). The final 

VIPER scores correspond to the p-values associated with either clue.  

2. DEMAND25: This algorithm identifies candidate effector proteins whose molecular interactions 

are dysregulated in KRASmut vs. KRASWT tumor samples. Tested molecular interactions are 

based on an integrative reverse engineering algorithm for the reconstruction of mixed (protein-

protein and transcriptional interaction) networks25,26, using LUAD-specific data from TCGA. 

DeMAND scores are the p-values for differential dysregulation between the two groups of tumor 

samples (KRASmut versus KRASWT) (Figure 1b-b). 

3. MINDy27: This clue is based on the assumption that SPs in the same pathway will modulate 

overlapping TF sets. The algorithm determines whether a SP is an upstream regulator or 

downstream effector of KRAS by evaluating the statistical significance of the overlap of the 

regulons of the SP and KRAS versus the overlap of regulons of the SP and other SPs. The 

associated score is the p-value of this analysis (Figure 1b-c). 

4. PrePPI28: This algorithm predicts KRAS binding partners among proteins in the UniProt 

human proteome, by combining the evaluation of structural models for the KRAS-partner 

interaction with other structural and non-structural clues. The associated score is the likelihood 

ratio (LR) representing the odds above random of a specific KRAS-protein interaction (Figure 

1b-d). 

5. LINCS29: This perturbational database provides an exhaustive repository of cellular 

responses to drug-, shRNA-, and cDNA-mediated perturbations, as monitored by the expression 

of a set of 1,000 landmark genes profiled using Luminex bead assays (L1000). We used the 

L1000 gene expression profiles obtained from A549 KRASMut LUAD cells with shRNA-mediated 
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KRAS silencing to assess TFs, coFs, and SPs as potential KRAS effectors. LINCS scores 

represent the log fold change of expression for each gene (Figure 1b-e).  

6. Affinity-purification/mass-spec assays (AP-MS)30: These assays were used to 

characterize candidate protein-protein interactions for four established KRAS effectors─TBK1, 

RALGDS, RALA, and RALB─in the KRASMut LUAD cell line A549. AP-MS scores correspond to 

the protein peptide count for each effector (Figure 1b-f). While this evidence is not systematic, it 

illustrates how available evidence sources, including both systematic and ad hoc ones, can be 

integrated by the methodology.  

 

OncoSigNB: Naïve Bayes classifier implementation and performance analysis 

Naïve Bayes19 is a well-established machine learning approach for multi-class classification 

problems and is robust to incomplete or missing sources of data. To use this approach, raw 

scores for each clue (-Log p-values for VIPER, DeMAND, and MINDy; LR for PrePPI; log fold-

change for LINCS; and peptide count for AP-MS) were first binned; then clue-specific LRs for 

each bin were computed as the normalized ratio of positive and negative control KRAS-

interactor-proteins in a training set with the same bin value for that clue (for instance, with the 

same -Log p-value range in the MINDy analysis). For this purpose, a training set comprising a 

positive gold standard set (PGSS) and negative gold standard set (NGSS) must be assembled. 

Specifically, given a protein P, the PGSSP should include established modulators, effectors, and 

binding partners of P, while the NGSSP should include proteins that do not physically of 

functionally interact with it. To assemble a PGSSKRAS we selected 350 proteins annotated as 

KRAS-pathway related in the Ingenuity Pathway Analysis Database11,31 (Supplemental File 1). 

All other UniProt proteins were included in the NGSSKRAS (Figure 1b-g), based on the 
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assumption that the dilution resulting from inclusion of yet-unknown true positives in this set 

would be minimal. For each protein, then, a global posterior Likelihood Ratio (LRPost, see Figure 

1b-i) could be calculated as the product of all individual clue-specific LRs (Figure 1b-h), with LR 

= 1 if the clue-specific score could not be computed. The normalized LRPost represents the 

global posterior probability (i.e. the odds ratio) that a protein is a member of the KRAS PC-Map, 

with the normalization accounting for the size of the PGSS and NGSS and the expected vs. 

potential number of KRAS interactors.  Because there are 350 and 18,901 proteins in the 

PGSSKRAS and NGSSKRAS respectively, LRPost = 1 corresponds to a baseline probability of 1.8% 

(350/19251=0.018). Higher LRPost odds ratios were normalized to this baseline LRPost to discover 

the increased probability of a protein being a member of the KRAS PC-Map. LRpost and 

probabilities are provided in Supplemental File 2.  

Training and testing of the classifier was first performed by 2-fold cross-validation and a receiver 

operating characteristic (ROC) curve was used to assess its performance (Figure 1C, blue). In 

this curve, the True Positive Rate (TPR = TP/NPGSS) – also called sensitivity – is plotted as a 

function of the False Positive Rate (FPR = FP/NNGSS) – also called specificity, – where each 

point corresponds to a particular LRPost (i.e., the red arrow denotes LRPost = 250), and TP and 

FP represent the numbers of predictions in the portion of the PGSS (of size NPGSS) and NGSS 

(of size NNGSS) not used to train the classifier, respectively. As shown in Figure 1c, OncoSigNB 

achieved a TPR = 31% at FPR = 10% for LRPost ≥ 56 (see also the black dotted vertical line in 

Figure S1a). A virtually identical performance was also achieved with Monte Carlo cross-

validation (Figure S1b). As a comparison reference, using Pearson’s correlation between the 

mRNA expression of KRAS and of other proteins (gray curve) recovers only 8% of the PGSS at 

FPR = 10%, which is not significantly greater than random selection (black curve) (p = 0.178).  
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It is important to note that TPR and FPR in Figures 1c and S1 only reflect established 

members of the KRAS pathway in the PGSS. Thus, false positives with high LRPost values are 

likely to be bona fide novel KRAS pathway members. Indeed, experimental validation (next 

section) established that the vast majority of the highest ranking false positive predictions in 

Figure 1c were indeed novel, bona fide KRAS effectors and modulators. Thus, FPR as 

computed from prior knowledge is highly misleading and only provides a lower bound on the 

method’s specificity.  

We chose novel predictions (included in Supplemental File 2) at a stringent cutoff of 

LRPost ≥ 230 for further assessment and validation (red arrowhead in Figure 1c and red dotted 

vertical line in Figure S1). Figure 1d lists the top 40 predictions: 18 of the 40 predictions 

(orange and blue boxes) were previously established as KRAS modulators32-34 or KRAS 

effectors 35-45. Green text identifies proteins that were observed to physically interact with 

KRAS46,47. Finally, the purple box highlights the remaining 22 proteins as high-confidence novel 

KRAS PC-Map predictions, with asterisks denoting those that were experimentally validated, as 

discussed in the next section.  

 

Experimental validation by targeted RNAi screen in primary tumor derived organoids 

We expected top novel proteins in the KRAS PC-Map (N = 22) to be enriched for KRASMut 

synthetic lethal partners and KRAS modulators. We thus performed a shRNA-based dropout 

screen in 3D organoid cultures derived from a LUAD KRASG12D/+/p53fl/fl mouse model (Figure 

2a). Organoids in 3D cultures represent more realistic cancer models than two-dimensional 

monolayer cultures and provide a better representation of the in vivo signaling environment 48-53. 

As depicted in Figure 2a, primary tumor cells were infected with pools of lentiviral shRNAs and 
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grown in 3D culture conditions for six days until organoids formed; individual cells were then 

dissociated and re-seeded on Day 7 to form secondary organoids 52. Hairpin depletion was then 

quantified by differential analysis of deep sequencing data from organoids at Day 6 and again at 

Day 12 and used to determine which hairpins inhibited organoid growth. Positive controls 

included TBK1 54 and NUP205 55, both established KRASMut synthetic lethal partners, and the 

established KRAS effectors MAPK1, AKT1, RALGDS15, and RASA156. As a negative control 

and to estimate the background rate of dependencies in such screens, 25 shRNAs libraries, 

targeting 515 genes not expected to participate in KRAS signaling, were used as a global 

background pooled screen (BPS). RNAi sequences are provided in Supplemental File 3. 

Figure 2b shows the ranked log2 fold change (FC) of the individual shRNA hairpins between the 

two time points. Consistent with previous studies54, growth was significantly inhibited in 

organoids incorporating hairpins targeting known synthetic lethal and known KRAS signaling 

genes (green and purple dots). Strikingly, however, a majority of hairpins targeting predicted 

KRAS PC-Map proteins (red dots) also inhibited organoid growth, confirming their enrichment in 

KRAS dependencies. In contrast, only a very small fraction of the negative control BPS hairpins 

(black dots) affected organoid viability. Figure S2a shows the log2 FC for the set of three to five 

shRNAs targeting each OncoSigNB prediction. 

As shown in Figure 2c, the average distribution of log2 FC values for the BPS is centered near 

zero and most shRNAs show less than a two-fold change (black curve; mean= ‒0.067, sd= 

0.539). In contrast, the distribution for the novel predictions is highly skewed toward lower log2 

FC values and more than a third of predicted KRAS PC-Map proteins show a decrease of four-

fold or greater (red curve; mean µ = -0.852, σ = 1.952). The difference between the two 

distributions is highly statistically significant (p ≤ 2.2*10-16, Kolmogrov-Smirnoff test), suggesting 

that KRAS signaling partners predicted by OncoSigNB are indeed highly enriched in synthetic 
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lethal interactions compared to genes in the BPS negative control. Figure S2b shows the 

distributions of log2 FC values for each of the BPS genes. Fisher’s Method57 was used to 

integrate the one-tailed p-values for each shRNA hairpin targeting the same gene, and the 

Benjamini-Hochberg procedure for multiple hypothesis testing correction was performed58. As 

shown in Figure 2d, at an integrated p-value threshold of 0.05 (dotted black line in the inset 

plot), statistically significant inhibition of spheroid growth was observed following silencing of 18 

of 22 candidate KRAS PC-Map genes (82%). In stark contrast, statistically significant inhibition 

of spheroid growth was observed for only 3/515 (0.58%) of BPS tested genes (p = 4.4×10-16, by 

Fisher’s-Exact Test, FET). Interestingly, one NB candidate RPS6KA5 (MSK1) increased 

spheroid growth when silenced, consistent with the discovery of generic KRAS modulators or 

effector (Supplemental Figure S2c).  

We performed gene enrichment analysis of GO Biological Processes for statistically significant 

synthetic lethal predictions (p ≤ 0.05, by FET) using the human proteome as a null model and 

the Benjamini-Hochberg procedure for multiple hypothesis testing correction58. Consistent with 

expected KRAS-mediated functions, enriched GO terms fall into two main inter-related groups 

(Supplemental Table 1): GTPase-mediated signal transduction and intracellular transport. 

Supplement Note 1 describes biological insight into KRAS signaling obtained from this 

analysis.  

 

Extending Naïve Bayes with a Random Forest classifier 

An advantage of the NB classifier is that it supports tracing inference results to the specific clues 

that provide the greatest contribution to their posterior probability (LRPost, Figure 1i). This is 

useful in dissecting the biological mechanisms supporting a protein’s role in an PC-Map, 
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including distinguishing downstream effectors vs. upstream modulators. Interpretability, 

however, comes at a cost because NB classifiers assume clues to be statistically independent, 

thus potentially under-estimating p-values when this requirement is violated. For example, the 

interactors of TBK1, RALGDS, RALA, and RALB, determined by AP/MS likely overlap with each 

other and with PrePPI-predicted KRAS interactors. Similarly, since RAB5A, for instance, is 

known to be regulated by RAS oncogenes44, proteins predicted by PrePPI to interact with KRAS 

are more likely to also interact with RAB5A (ρ = 0.47). While only PrePPI predictions for KRAS-

specific protein-protein interactions were included to avoid this potential issue, other similar 

subtle dependencies may be harder to identify and address.  

The Random Forest (RF) classifier20, an ensemble-based decision-tree method, is an 

alternative machine learning approach for integrating large-scale genomic and network 

interaction data. It generally outperforms the NB classifier in a wide range of problems59. RF 

classifiers are less affected by correlated clues and better at learning from a large number of 

relatively weak clues, thus allowing incorporation of additional information. However, they are 

less effective in terms of supporting the ability to trace their inferences to the specific 

contributing evidence sources. We thus also tested PC-Map inference using a RF classifier 

(OncoSigRF), with the additional advantage that this methodology can dissect PC-Maps seeded 

on one or more oncoproteins, including on a handful of key proteins in an established pathway, 

such as HIPPO or WNT60,61. We call the proteins used to “seed” the PC-Map Core Proteins. 

 

OncoSigRF: Random Forest classifier implementation and performance analysis 

As shown in Figure 3a, the RF classifier incorporates clues similar to those discussed above 

(Figure 1a) with the following differences: (a) We eliminated the AP-MS, LINCS, and DEMAND 
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components because they were not available for all tested proteins/pathways; (b) We included 

ARACNe 22 (Figure 3a-a) to assess context-specific transcriptional targets of TFs, CoFs and 

SPs; (c) MINDy was replaced by CINDy62, a more recent version of the algorithm with improved 

sensitivity; and (d) an updated version of the PrePPI63 database with higher recall was used, 

including ~16,000 PPIs, rather than only KRAS-specific interactions. As before, 1,813 TFs, 969 

CoFs, and 3,370 (SPs) were analyzed by the regulatory network components (Figure 3a, a-c).  

We used OncoSigRF to infer PC-Maps centered on eight of the most recurrently mutated 

oncogenes/tumor-suppressors (BRAF, CDKN2A, EGFR, KRAS, NTRK3, PI3KCA, STK11, and 

TP53 )64 and two cancer-related pathways (HIPPO and WNT) (Harvey et al., 2013; Duchartre et 

al., 2016). To standardize the process, independent PGSSs for each protein/pathway were 

derived from the mSigDB C2 curated gene set65 and supplemented by KEGG5 (Supplemental 

File 1, columns 2-11). In each case, the NGSS comprised the UniProt human proteome with the 

appropriate PGSS removed. 

Taken together, the clues used by OncoSigRF include 2,504,215 computationally and, in many 

cases, experimentally supported candidate functional and physical interactions between 19,548 

proteins (Figure 3a). These clues are encoded as a single matrix with 19,548 rows (the UniProt 

human proteome) and 48,931 columns (all genes products whose functional or physical 

interaction with a protein is supported by at least one clue). Figure 3b, for instance, provides 

quantitative feature values for the interactions between CRAF and three other gene products 

(UBP1, RAB5A, and BRPF1): (a) mutual information for ARACNe (orange), (b) the number of 

SP-CoTF/TF-gene triplets sharing statistically significant CINDy conditional mutual information 

(pink), (c) -log(p-value) for VIPER (blue), and (d) likelihood ratio for PrePPI (green), where 

LRPrePPI was taken from the PrePPI algorithm after removing GO contributions. The gold-

standard column designates which proteins belong to a PGSS (“1”) or to a NGSS (“0”).  
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The classifier was evaluated by Monte Carlo cross-validation, using the full feature matrix to 

produce the ten PC-Maps. Monte-Carlo cross validation ensures that predictions for each 

protein are generated only with forests that exclude core proteins from the training sets. An 

OncoSigRF score (SRF) of 0.5 means that 50% of the trees supported a protein’s association with 

PC-Map core proteins (see Methods). Proteins with SRF ≥ 0.5 are thus considered reliable 

candidate PC-Map members.  

 

Performance analysis of oncogene-centric pathway reconstruction 

The ROC curves in Figure 3c assess OncoSigRF’s performance on the 

oncoproteins/oncopathways (Supplemental File 1). Performance improvement over random 

classification (black line) and gene expression correlation (not shown) is highly statistically 

significant (p <10-10 in all cases). As shown, classifier performance varies widely: For instance, 

at FDR = 1%, 35%-37% of established PI3K-, TP53-, and CDKN2A-pathway members were 

recovered (purple, pink, and orange curves), whereas 12%-20% of established STK11-, HIPPO-

, and NTRK3-pathway members were recovered (salmon, green, and blue curves). Predictions 

for each of the ten PC-Maps are provided in Supplemental File 4.  

 

Random Forest and Naïve Bayes classifiers produce consistent predictions 

The bold red ROC curve in Figure 3d represents the KRAS-specific OncoSigNB performance. 

While OncoSigRF significantly outperformed OncoSigNB, their predictions were highly consistent 

based on Gene Set Enrichment Analysis (GSEA)66 using either the top 22 OncoSigNB 

predictions that were experimentally tested (NES = 5.4, p = 5.6 x 10-8) and the top 100 
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OncoSigNB predictions overall (NES = 9, p = 1.7 x 10-19) (Figures 3d and 3e, respectively). 

Figure S3 shows that the OncoSigRF and OncoSigNB-inferred PC-Maps are similarly highly 

consistent when OncoSigRF is trained with the Ingenuity PGSS (see Supplemental File 1, 

columns A and F). 

 

Performance of the KRAS-specific OncoSigRF analysis 

KRAS-specific OncoSigRF analysis (bold red line; Figure 3c) recovered 61/250 (24%) and 

140/250 (56%) of PGSSKRAS at a FPR = 1% and 5%, respectively. Since predictions were 

LUAD-specific, whereas the PGSSKRAS is essentially context-free, these represent high recall 

rates. Further, at FPR of 1% and 5%, OncoSigRF makes 193 and 965 novel predictions. 

However, as discussed above, the ROC analysis aims only to assess the ability of the classifier 

to recover the PGSS, and FPR cutoffs correspond to upper bounds and result in lower apparent 

performance. We consider novel predictions as proteins that do not appear in the PGSS and 

have SRF ≥ 0.5 (See Supplemental File 4 for a list of all predictions.) 

A few potential sources of performance bias are considered. First, proteins with high 

connectivity (i.e. hub proteins) may be favored by the analysis due to their potentially greater 

influence in the PC-Map of interest. However, as shown in Figure S4, ranking by node degree 

(brown curve) and training on a randomly permuted network (tan curve) recover 5-fold fewer 

PGSS proteins than OncoSigRF (red curve). Second, several established KRAS modulators and 

effectors in the PGSS have high sequence similarity (e.g. members of the MAPK family), which 

may bias predictions towards sequence-similar neighbors. We generated a sequence non-

redundant PGSS with CD-HIT 67 to cluster PGSS proteins with sequence identity ≥80%. As 

shown in Figure S4b, ROC curves using the full (red curve) or non-redundant (green curve) 
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PGSS are similar, i.e. same recovery at FPR = 0.5% and < 1.5-fold greater recovery for the 

non-redundant PGSS at FRP = 1%, indicating that OncoSigRF predictions are minimally affected 

by PGSS sequence redundancy. Finally, OncoSigRF predictions are biologically relevant: They 

recapitulate 14% of KRAS pathways members from STRING68 and/or HumanNet69, which are 

widely used, curated resources for protein functional interactions (Figure S5). In addition, the 

algorithm provides many unique predictions, thus expanding the repertoire of possible KRAS 

signaling partners. 

 

The KRAS PC-Map is highly enriched in proteins eliciting synthetic lethality in KRASMut 

cells  

Several studies have identified synthetic lethal dependencies in oncogenic KRASMut cells54,70,71. 

To check the enrichment of the KRAS PC-Map in experimentally identified synthetic-lethal 

proteins, the analysis was performed by removing the proteins identified by the corresponding 

synthetic-lethal screen from the training set. 204 genes from 19 cancer cell lines were identified 

as KRASMut but not KRASWT essential based on silencing by at least one shRNA hairpin 54. 

According to stricter criteria, 45 of these genes qualified as high-confidence KRASMut synthetic 

lethal partners 54. As shown in Figure 4a, OncoSigRF predictions are highly enriched in the set of 

204 genes (NES = 7.73, p = 2.4×10-14). There is also high enrichment in the set of 45 strict 

synthetic-lethals (NES = 4.2, p = 1×10-5; Figure S6a). These results, along with the high rate of 

experimental validation for OncoSigNB predictions (Figure 3b) and their strong enrichment in 

OncoSigRF predictions (Figure 3d and e), strongly support the algorithm’s ability to identify 

effector proteins eliciting synthetic lethality with KRASMut. 
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Predictions were also enriched in gene sets from a variety of additional KRAS-related studies, 

including: (a) genes eliciting synthetic lethality in KRASMut cells treated with a MEK inhibitor 70 

(Figure S6b); (b) genes contributing to ERK inhibitor resistance in KRASMut cells 71 (Figure 

S6c); and (c) genes inducing oxidative stress proteins lethal to KRASMut cells 6,72 (Figure S6d).  

To extend this type of validation to other oncogenes, we tested the algorithm’s ability to 

recapitulate EGFR pathway members73. As shown in Figure 4c, Predictions were highly 

enriched in 58 genes whose knockdown sensitized cells to EGFR-targeted inhibitors (NES = 

6.0, p-value = 1.4 x 10-9). As shown in Figure S7a, Predictions were also highly enriched in the 

full set of ~600 curated EGFR pathway members targeted by 73 (NES = 14.3, p = 2.3 x 10-43) 

and further  differentiated genes that sensitize cells to EGFR-targeting drugs versus genes that 

do not (p = 2.0 x 10-4, Welch’s two sample t-test; Figure S7b).  

 

Cancer context specificity 

Thus far, the evidence that was integrated by OncoSigRF  (Figure 3) was produced from TCGA 

LUAD cohort specific data. To assess context specificity of the predictions, we compared the 

LUAD-specific analysis, with equivalent analyses based on 434 TCGA colon adenocarcinoma 

(COAD) samples and 482 TCGA lung squamous cell carcinoma (LUSC) – the latter 

representing a cancer histologically more similar to LUAD than COAD. These data were used 

for ARACNe (Figure 3a-a), CINDy (Figure 3a-b), and VIPER (Figure 3a-c) analyses. The 

PrePPI network is independent of cancer type.  

OncoSigRF was bootstrapped 100 times to produce LUAD-, LUSC-, and COAD-specific KRAS-

centric PC-Map predictons, using the PGSSKRAS. Figures 5a-5c are scatterplots of scores (SRF) 
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for two LUAD (5a), one LUAD and one LUSC (5B), and one LUAD and one COAD bootstraps 

(5c). Only predictions with SRF ≥ 0.5 in at least one contexts were considered, to eliminate 

irrelevant low-confidence predictions (gray dots in Figures 5a-5c). For LUAD-LUAD (5a), there 

are essentially no “off-diagonal” points and R2 = 0.99. As expected, the spread of off-diagonal 

predictions in the scatterplots suggests that KRAS-specific PC-Map conservation is much more 

significant in LUAD vs. LUSC (5B; R2 = 0.35, p = 2 x10-267) than in LUAD versus COAD (7C; R2 

= 0.10, p = 6 x10-165). This shows that context-specific PC-Map differences cannot be 

discounted as the effect of distinct dataset analyses.  

Figure 5d summarizes the mean R2 values (dots, with standard deviations denoted by bars), 

calculated as the average R2 for all 100x100 bootstraps, for the three comparisons. As 

expected, R2 = 0.99 (σ = 0.0005) for LUAD-LUAD (blue). R2 for LUAD-LUSC (green) and LUAD-

COAD (red) are significantly lower: R2 = 0.35 (σ = 0.011) and R2 = 0.10 (σ = 0.006), 

respectively. Thus, LUAD OncoSigRF predictions account for 35% of the variation of LUSC 

predictions and only 10% of the variation of COAD predictions, consistent with the decrease in 

histological similarity in LUSC vs. COAD.   

As seen in the LUAD-COAD comparison (Figure 5c), many predictions have a high OncoSigRF 

score in one context and a low OncoSig score in the other. For instance, IFITM1 (magenta) and 

CABYR (cyan) Overall, the KRAS-specific PC-Maps in LUAD and COAD (e.g. gray and black 

dots in Figure 5c) share 1,829 predicted interactions of which 164 are predicted to be physical, 

while 411 and 752 predictions are unique to LUAD and COAD, respectively (Supplemental File 

4).  
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DISCUSSION 

The term “pathway” is one of the most loosely defined biological concepts. And yet, it is also 

one of the most frequently used in the literature. Here, we propose to replace the traditional but 

largely qualitative concept of “pathway” with that of the regulatory machinery (i.e., the set of 

gene-products and associated regulatory topology) that is necessary for a specific protein to 

perform its physiologic function, as well as to induce pathologic behavior when dysregulated by 

deleterious endogenous or exogenous perturbations. We use the term Protein-Centric 

molecular interactions Map (PC-Map) to model the resulting architecture. Key differences 

between PC-Maps and traditional pathways include (a) their systematic and principled 

construction (Figure 3), (b) their tissue-specific nature (Figure 5), (c) the depiction of gene-

products representing upstream modulators, downstream effectors, binding partners, and 

members of autoregulatory loops (Figure 6), (d) the specific metrics associated with these roles 

(Figure 6 and Supplemental File 5), (e) their prioritization of synthetic-lethal and drug-

sensitizing partners (Figure 4), and (f) the ability of the algorithm to seamlessly integrate many 

types of data and interactomes beyond those described in Figure 3. As such, PC-Maps provide 

more powerful unbiased representations than most network approaches and a more meaningful 

description of the regulatory networks that determine the function of a given protein. 

PC-Maps thus encapsulate the complex biology of signal transduction as evidenced by the high 

rate of experimental validation of novel predictions (18/22, 82%) (Figures 1 and 2). Strikingly, 

36 of the top 40 predicted KRAS functional partners (90%) were validated as bona fide 

members of the KRAS PC-Map based on literature and experimental validation assays. Further, 

as illustrated in Figure 6, The analysis successfully identifies EGFR and NTRK3 as upstream 

KRAS modulators15,74 and RAF1 and CDC42 as downstream effectors37,75. However, it fails to 

recapitulate the specific directionality of some KRAS interactions such as those with RASA1 and 
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NF1. Similarly, a number of established direct physical KRAS interactors are successfully 

predicted by the analysis, such as RASA1, yet some are missed, such as RAF1. The latter may 

depend on critical clues not included and it is possible that the interactions may not be germane 

to the lung cancer context in which the analysis was performed, It is also possible that  

prediction efficacy is limited by the reliance on a positive gold standard set (PGSS) that is 

context-free, even though the KRAS PC-Map exhibits significant tumor-context specificity 

(Figure 5).  

Although PC-Maps allow for the discovery of novel gene proteins in oncogenic signaling, a key 

limitation is that most gold standards are context-free, thus hampering the ability to generate 

tissue-specific predictions. The choice of classification methodology is also significant. Naïve 

Bayes generally underperforms in classification performance and is not feasible when many 

features are available or correlated features are used. However, they allow direct tracing of the 

evidence leading to the inference of specific PC-Map interactions. Decision trees are weak 

learners that can produce irregular patterns by overfitting. Random Forest and other ensemble 

methods, such as Boosting, correct for this, but bias may ensue, especially if a feature contains 

a few large values whose effects dominate most trees in a forest. Thus, proteins that are not 

bona fide members of a KRAS PC-Map may be predicted because they are incorrectly learned 

by the Random Forest classifier due to the use of context-independent PGSSs and/or 

overfitting. These issues can be mitigated by the use or construction of cancer related PGSSs, 

normalizing scores within a feature, and investigating different combinations of networks, 

including experimentally determined ones. 

The algorithms presented here produce a single score representing the probability that a protein 

is a functional member of a specific PC-Map. PrePPI is instrumental for dissecting the layer of 

physical protein-protein interactions in the KRAS-centric PC-Map whereas ARACNe, VIPER 
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and CINDy provide critical tumor-specificity and discriminate KRAS modulators versus effectors. 

These individual clues can thus be leveraged to assign proteins to the particular molecular-

interaction layers schematically depicted in Figure 1A. Specifically, as depicted in Figure 6 and 

delineated in Supplemental Files 4 and 5, many top scoring KRAS PC-Map proteins can be 

characterized as upstream modulators (orange), physical binding partners (bold), and 

downstream effectors (blue), thus producing a highly informative topology. Positive and negative 

differential activity of candidate effector proteins in the presence of KRAS activating mutations 

are represented with “+” and “–” symbols, respectively, as determined by VIPER NES values. It 

is important to note that Figure 6 shows only the most significant of the KRAS PC-Map 

interactions to avoid cluttering the image, but there are many similar events uncovered by the 

analysis. Supplemental File 5 provides the component feature scores underlying these events. 

In addition, similarly informative PC-Maps can be constructed for the other oncogenes and 

oncogenic pathway proteins considered as well as essentially any protein. 

An additional critical aspect of PC-Maps represents a fourth functionally important interaction 

layer (gray lines, Figure 1A). Proteins identified as both upstream modulators (CINDy) and 

downstream effectors (VIPER) of KRAS activity are likely to participate in autoregulatory loops. 

Indeed, CINDy-inferred upstream modulators can be further assessed as downstream 

transcriptional targets, for instance, by using the ARACNe algorithm22. This can help elucidate 

the complex autoregulatory circuitry, which is necessary to ensure the stability of cellular 

phenotypes and may be responsible for complex adaptive behavior, such as in response to 

pharmacological perturbations. 

Two examples of the power of PC-Maps to identify potential autoregulatory networks are 

described here. HDAC1, a chromatin remodeling enzyme and transcriptional regulator (Figure 

6, pink oval), is predicted by CINDy as a modulator of two predicted upstream KRAS regulators 
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(JAK2 and ROCK2) and two predicted KRAS effectors (RAPGEF2, RAB8B), denoted by dotted 

pink lines. Indeed, HDAC1 is overexpressed in lung and other cancers 76, and upregulation of 

HDAC1 affects MYC27 and STAT3 protein interactions77. Since JAK2-STAT3 signaling regulates 

many aspects of cancer development and progression78,79 and aberrant MYC activity is induced 

in KRAS mutant tumors, these functional interactions may pinpoint candidate mechanisms for 

KRAS-mediated JAK2 activation of STAT3 and direct activation of MYC.  

As depicted in Figure 6, the dual specificity tyrosine phosphorylated kinase DYRK1B (gray oval) 

is predicted to aberrantly regulate KRAS. The connection between DYRK1B and KRAS 

signaling is established54 but poorly understood80-83. A number of studies have identified 

DYRK1B as a downstream effector of oncogenic KRAS80,81. However, in support of our 

prediction, other studies have reported that DYRK1B may function as an upstream regulator of 

KRAS through its modulation of the mTOR/AKT and MAPK pathways83. Oncogenic KRAS 

promotes hedgehog (HH) signaling 84, and HH signaling induces DYRK1B expression, which 

results in the activation of mTOR/AKT signaling 83. Thus, DYRK1B may be subject to complex 

feedback loops. 

As illustrated by the dotted gray lines in Figure 6, DYRK1B is predicted to be a modulator of 

both upstream regulators (IQGAP3) and downstream effectors (e.g. RAP1A and RACGAP1) of 

KRAS. In support of these predictions, IQGAP3 binds RAS in proliferating cells, and its 

knockdown decreases RAS activity85, while RAP1A antagonistically competes with RAS 

proteins for binding partners86. RACGAP1 activates RAC1, which has been shown to activate 

the MAPK pathway in a RAS-dependant manner. This suggests that DYRK1B is a partner with 

KRAS in the regulation of well-established RAS-related pathways, as indicated above. Our 

predictions, thus, provide testable hypotheses of the possible roles for DYRK1B in mediating 

these interactions. 
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Targeting KRAS synthetic lethal (SL) interaction partners is an approach for discovering novel 

therapeutics in activated KRASMut dependent cancers87. Predictions of KRAS PC-Map members 

were highly enriched for KRAS SL interactors, indicating that an appreciable number of KRAS 

SL partners participate in KRAS signaling (Figures 2, 3 and 6). Thus, OncoSig may provide an 

additional set of pharmacologically accessible targets to target KRAS-mutated tumors. For 

example, ABL1, validated as a KRAS partner in our assay, is targeted by Imatinib 88. Although 

the role of ABL1 is not well understood in carcinomas such as lung cancer89, it may participate 

in lung cancer metastasis independent of the BCR-ABL1 genomic alteration90. ABL1 is activated 

by RIN1, a RAS interaction partner91 with a predicted score of 0.75. Thus, RIN1 may represent 

a potential alternate target for combination therapy. Among the highest ranked novel predictions 

(within the top 0.2%, Supplemental File 4) are druggable targets discovered in other contexts: 

1) LIMK1/Dabrafenib, 2) ITK/Pazopanib, and 3) FYN/Dasatinib, all of which have completed 

Stage II clinical trials92.  

However, SL partners depend significantly on tumor type. For example, both Wang et al.93 and 

Barbie et al.54 identify CRAF as SL with KRASMut. Yet, the combination of rigosertib, a RAS 

mimetic that disrupts CRAF binding to RAS, and gemcitabine, a widely used anti-cancer drug, 

failed to increase median survival beyond treatment with gemcitabine alone in phase II/III 

clinical trials for metastatic pancreatic adenocarcinoma KRAS-mutant patients31. Indeed, CRAF 

does not participate in KRAS-driven signaling in pancreatic adenocarcinomas94. It is possible 

that these KRAS-driven tumors acquire resistance to rigosertib by relying on alternative KRAS 

signaling partners, as depicted in Figure 6. A number of previous studies54,55,93,95,96 used high-

throughput screens to discover KRASmut SL interactions, although the overlap of KRASMut SL 

genes reported in these manuscripts is poor 54,87 and do not overlap with the OncoSigNB 

candidates validated in our assay. However, the enrichment of OncoSigRF predictions in 
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KRASMut synthetic lethal proteins identified by other studies (Figure 4) and the high validation 

rate achieved here (Figure 2) suggest that many additional bona fide modulators and effectors 

of KRAS function may be identified even among predictions with lower scores (Supplemental 

File 4), thus further increasing the repertoire of druggable KRAS signaling partners. Our results 

constitute a valuable resource for guiding high-throughput computational and experimental 

chemical screens.  

OncoSig predicted highly distinct LUAD and COAD-specific KRAS-centric PC-Maps. Although 

1,829 high confidence KRAS PC-Map members (SRF ≥ 0.5) were predicted across both 

contexts, most of them (1,163) of them were uniquely predicted in only one of the two (Figure 5) 

and were thus expected to affect KRAS signaling in context-specific fashion. For example: 1) 

CABYR (Figure 5C, magenta dot), the calcium-binding tyrosine phosphorylation-regulated 

protein, is overexpressed in lung cancer tumor samples and lung cancer cell-lines97, and its 

knockdown increases sensitivity to drug-induced apoptosis98. It is transcriptionally repressed in 

colon cancer cell lines, and knockdown of its repressor increases its expression 99, elevates 

apoptosis, and suppresses proliferation100. 2) While the function of IFITM1 (Figure 5C, cyan 

dot), the interferon-induced transmembrane protein 1, is not known to be associated with KRAS 

signaling, its locus is deleted in lung cancers101, and overexpressed in colorectal cancers where 

it is associated with poor prognosis102. Although the expression levels of these proteins is 

inherent in the appropriate tumor-specific gene expression profiles, their detection as context-

dependent members of the KRAS PC-Map is a distinctive strength of the proposed 

methodology.  

Taken together, the results presented here show that both Naïve Bayes and Random Forest 

based OncoSig may provide valuable and complementary information to elucidate the complex 
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regulatory machinery that supports the pathophysiologic function of a specific protein or of a set 

of related proteins in a given cellular context.  
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METHODS SUMMARY: 

Lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and colon 

adenocarcinoma (COAD) gene expression datasets (Nsamples=488, 482 and 434 respectively) 

were retrieved from The Cancer Genome Atlas (TCGA) and normalized as previously 

described24. We collated 1,813 transcription factors and transcriptional regulators (TFs), 969 

transcriptional cofactors (coTFs), and 3,370 signaling proteins (SPs) as described24.  

Naive Bayes Classification 

To ascertain upstream regulators of KRAS, we inferred the activity of KRAS in LUAD 

samples using VIPER24 and computed two-tailed Normalized Enrichment Score of the KRAS 

activity. aREA24 was used to assess the statistical significance of the co-segregation between 

nonsynonymous (missense) Single Nucleotide Polymorphisms in other genes and KRAS 

activity. To identify downstream effectors of aberrant KRAS signaling, we used VIPER to infer 

the differential activity of TFs, CoTFs, and SPs in KRASmut samples and closest (based on 

Spearman correlation) matched KRASWT samples. A differential gene expression signature ΔEi 

was computed for each matched KRASmut/KRASWT pair and the activity change for each 

TF/CoTF/SP was calculated. Bonferroni-corrected p-values were integrated, using Stouffer’s 

method producing a p-value for the co-segregation of KRASmut and the activity of other proteins. 

The DeMAND algorithm25 was used to discover proteins with dysregulated interactions 

in KRASWT versus KRASmut LUAD samples using a context-specific LUAD molecular interaction 

network that we previously developed25,26. For each protein, DeMAND predicts which of its 

interactions are disrupted in KRASmut versus KRASWT samples.  

MINDy was used to predict post-translational modifications of TFs by SPs, as previously 
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described27,62. A Fisher Exact Test was performed between TFs predicted to be regulated by 

KRAS and TFs predicted to be regulated by SPs. Each SP was thus assigned a p-value 

representing the statistical significance of the overlap between the TFs KRAS is predicted to 

regulate and the TFs other signaling molecules are predicted to regulate. 

Predictions of KRAS protein-protein interactions were retrieved from the PrePPI 

database28. Each prediction has an associated Likelihood Ratio (LR) representing the odds 

above random of the protein-protein interaction occurring. 

75 samples with KRAS knockdowns (KDs) in A549 cell lines were retrieved from The 

Library of Network-Based Cellular Signatures (LINCS) project29 (http://www.lincsproject.org/). 

Averaging over all 75 samples, a single gene expression profile was obtained for each gene.  

 The NB classifier was trained on a set of 350 proteins annotated as participating in 

KRAS signaling pathways by the Ingenuity Pathway Analysis. Each clue was split into bins, 

which were populated by the raw evidence values such that an equal number of members of the 

positive gold standard set (PGSS) was distributed across bins as possible.	 Training	 was	

performed	using	two-fold	cross	validation	with	holdout,	which	creates	an	independent	training	

and	 testing	 set	and	produces	a	 final	 LR	 for	every	protein	 that	 is	parameterized	on	 the	 set	 to	

which	it	does	not	belong.		

Random Forest Classification 

The ARACNe, VIPER and CINDY algorithms were applied to LUAD, LUSC and COAD 

gene expression profiles with the same parameters and p-value thresholds as previously 

described24,62. Protein-protein interactions from the PrePPI database were retrieved. The LRGO 
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and LRExp components were removed from LRPrePPI, and interactions with modified LRPrePPI 

scores ≥ 600 were used. 

The PGSSs for the 10 pathways used in RF classification were compiled as the union of 

the KEGG, Biocarta, and Reactome databases from the MSigDB C2 category65 and further 

pathway members from the KEGG website5 KRAS synthetic lethality and drug-dependency data 

were compiled from Barbie et al.54, Corcoran et al.70, Hayes et al.71, Astsaturov et al.73 and 

GO:0000302: “Response to Reactive Oxygen Species”6. Protein domain data was obtained 

from PFAM version 31103. CD-HIT104 was used to generate a Non-Redundant KRAS PGSS. The 

KRAS PGSS was clustered at an 80% sequence identity threshold and, for each cluster, the 

representative with the longest sequence was selected as per CD-HIT protocol.  

The features derived from the networks were as follows: Mutual information for 

ARACNe, number of statistically significant triplets for CINDy, negative log p-value for VIPER, 

and LR for PrePPI. We coded each feature symmetrically, so that interactions between protein 

A and protein B were input into the matrix twice, once in the feature vector for A and once in the 

feature vector for B; all other elements in the in the Random Forest feature matrix were set to 

zero. For each of the 10 oncogene-centric interactomes, proteins that are part of the PGSS 

were assigned a “1” within the PGSS vector, while all other proteins were assigned a “0” to 

represent membership in the NGSS. Training and testing of the Random Forest classifier then 

proceeded using each pathway’s PGSS and NGSS using Monte Carlo cross-validation105, 

creating 50 forests each with 50 trees . We performed 100 OncoSig runs each with the 

LUAD,COAD and LUSC KRAS PGSS networks and distribution of Pearson correlation 

coefficients were estimated by calculating all pairwise Pearson correlation coefficients. 

Tandem Affinity Purification 
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5 mL packed cell volume of RPE-hTERT cells expressing LAP-tagged proteins were 

resuspended with 20 mL of LAP-resuspension buffer, lysed, and then incubated on ice for 10 

min. The lysate was first centrifuged at 14,000 rpm (27,000 g) at 4°C for 10 min, and the 

resulting supernatant was centrifuged at 43,000 rpm (100,000 g) for 1 hr at 4°C to further clarify 

the lysate. High speed supernatant was mixed with 500 µL of GFP-coupled beads30 and rotated 

for 1 hr at 4°C to capture GFP-tagged proteins, and washed five times with 1 mL LAP200N. 

After re-suspending the beads with 1 mL LAP200N buffer lacking DTT and protease inhibitors, 

the GFP-tag was cleaved by adding 5 µg of TEV protease and rotating tubes at 4°C overnight. 

TEV-eluted supernatant was added to 100 µL of S-protein agarose to capture S-tagged protein. 

After washing three times with LAP200N buffer lacking DTT and twice with LAP100 buffer, 

purified protein complexes were eluted with 50 µL of 2X LDS buffer and boiled at 95°C for 3 

min. Samples were then run on Bolt® Bis-Tris Plus Gels  in Bolt® MES SDS Running Buffer. 

Gels were fixed in 100 mL of fixing solution at room temperature, and stained with Colloidal Blue 

Staining Kit. After the buffer was replaced with Optima™ water, the bands were cut into eight 

pieces, followed by washing twice with 500 µL of 50% acetonitrile in Optima™ water. The gel 

slices were then reduced and alkylated followed by destaining and in-gel digestion using 125 ng 

Trypsin/LysC as previously described106. Tryptic peptides were extracted from the gel bands 

and dried in a speed vac. Prior to LC-MS, each sample was reconstituted in 0.1% formic acid, 

2% acetonitrile, and water. NanoAcquity (Waters) LC instrument was set at a flow rate of either 

300 nL/min or 450 nL/min where mobile phase A was 0.2% formic acid in water and mobile 

phase B was 0.2% formic acid in acetonitrile. The analytical column was in-house pulled and 

packed using C18 Reprosil Pur 2.4 uM where the I.D. was 100 uM and the column length was 

20-25 cm. Peptide pools were directly injected onto the analytical column in which linear 

gradients (4-40% B) were of either 80 or 120 min eluting peptides into the mass spectrometer. 

MS/MS was acquired using CID with a collisional energy of 32-35. In a typical analysis, RAW 
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files were processed using Byonic (Protein Metrics) using 12 ppm mass accuracy limits for 

precursors and 0.4 Da mass accuracy limits for MS/MS spectra. MS/MS data was compared to 

an NCBI Genbank FASTA database containing all human proteomic isoforms with the exception 

of the tandem affinity bait construct sequence and common contaminant proteins. Spectral 

counts were assumed to have undergone fully specific proteolysis and allowing up to two 

missed cleavages per peptide.  

Primary Tumor Propagating Cell Culture and Screening Methodology 

Primary lung tumor cells from KRASG12D/+; p53fl/fl mice were cultured in Matrigel as 

described previously52. Prior to seeding, primary cells were infected with a pool of 100-150 

lentiviral pLKO shRNAs composed of 3-5 shRNAs per gene at a Multiplicity of Infection <0.5 to 

ensure single shRNA integration and selected with 1ug/ml puromycin 24 hours after seeding. 

We screened the top 22 predicted genes from the NB classifier in two pools.  Pools also 

included other candidate vulnerabilities identified by literature review and other methods. 25 

pools consisting of 2,286 shRNAs targeting 515 genes not anticipated to be involved in KRAS-

regulated signaling were used as a background comparison.  After 7 days of spheroid growth, 

spheroids were dissociated with trypsin into single cells, and half of the 3D culture was re-

seeded. The remaining half of each sample was retained for gDNA isolation (T0) until 

secondary spheroids fully formed 7 days later (T1). The integrated pLKO shRNA was PCR 

amplified using ExTaq (Clontech), barcoded, multiplexed, and sequenced on an Illumina GAIIx 

(primer sequences available on request). Sequencing reads were processed into count files in R 

(v. 3.1.1) using the edgeR package (v. 3.6.8) and analyzed using generalized linear models with 

edgeR using a time-course design to compare the initial (T0) and final (T1) timepoints and 

perform a likelihood ratio test107.  
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To calculate the statistical significance of the fold change in growth induced by each 

individual shRNA, we fit a density plot of all the background screens. For each shRNA, we 

integrated from the minimum log2FC of the entire BPS to the log2FC observed for that shRNA, 

producing a one-tailed p-value for the observed log2FC. We used Fisher’s method to integrate 

the p-values of all shRNAs that mapped to the same protein.  

Gene Enrichment Analysis 

Gene enrichment analysis was done by extracting all GO Biological Process terms from 

the PANTHER database108, and, for each GO term, testing for overrepresentation between the 

Naïve Bayes candidates with an integrated p-value<=.05 and 468 members of BPS that were 

represented in the human Uniprot proteome.  

Multiple Hypothesis Correction 

All p-values reported for all analyses (except where noted otherwise) were corrected 

using the Benjamini & Hochberg False Discovery Rate58. 

Data and Code Availability 

The Online Methods and accompanying codebook contain a further description of the 

analyses performed. Code for running Oncosig-NB, Oncosig-RF and perform statistical analysis 

of the pooled shRNA results are provided in the accompanying codebook. 
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Figure legends 

 

Figure 1. OncoSig Naïve Bayes classifier: Overview, performance, and predictions 

(a): A schematic of an interaction network surrounding a gene product or metabolite (green). 

Upstream modulators (orange) and downstream effectors (blue) interact with the gene product 
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or other modulators via direct physical interactions (darker lines) and indirectly via 

transcriptional regulation or signaling cascades (lighter lines) resulting in the induction of a 

cellular response. Modulators and effectors may regulate other proteins in the interaction 

network via transcriptional regulation (pink and gray dotted lines).  A subset of modulators and 

effectors may also be synthetic lethal (purple) with the gene product. 

(b): (a) The VIPER algorithm elucidates upstream regulators (orange) that cause a change in 

KRAS activity when mutated (black dots), and downstream KRAS effectors (blue) that change 

activity when KRAS (green) is mutated (black dot). (b) The DeMAND algorithm predicts 

dysregulated edges within a molecular interaction network. Red edges are dysregulated 

interactions between a protein node (black), and its partners (grey) when KRAS is mutated. (c) 

The MINDy algorithm predicts signaling molecules (orange) that co-regulate TFs (blue) with 

KRAS (green), leading to a change in expression of a TF’s targets (blue diamonds). (d) The 

PrePPI algorithm predicts novel KRAS (green) protein-protein interaction partners (grey). (e) 

LINCS perturbation data provides information on whether the mRNA expression levels of genes 

decrease (blue) or increase (red) when KRAS is knocked down. (f) AP-MS provides peptide 

counts of putative partners of the KRAS effectors RALGDS, RALA, RALB and TBK1. Blue and 

red indicate low and high peptide counts, respectively. (g) A positive gold standard set (PGSS) 

of proteins involved in KRAS signaling (yellow) was used to train a Naïve Bayes Classifier (h) 

that integrates the pieces of evidence a through f. (i) Every protein is assigned a final Likelihood 

Ratio (LRPost) which represents the odds (above random) of participating in KRAS-regulated 

signaling.  

(c): ROC curves show the performance of the Naïve Bayes classifier (blue curve), Pearson’s 

correlation between mRNA expression of KRAS and mRNA expression of other proteins in 

LUAD (grey curve), and random performance (black curve) below a False Positive Rate 
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threshold of 5%. The inset shows the full ROC Curve. The red arrow corresponds to a LRPost 

threshold of 230. Figure 1SA provides the fraction of PGSS proteins recovers as a function of 

LRpost. 

(d): The top 40 predictions and KRAS (green box) discovered by the Naïve Bayes OncoSig 

Classifier. Orange and blue boxes contain, respectively, known upstream regulators and 

downstream effectors that are successfully recovered by the classifier. Green text indicates 

proteins known to interact with KRAS via a physical protein-protein interaction. The purple box 

shows novel NB classifier predictions tested with the RNAi negative screen; those that were 

experimentally found to affect cell growth in a KRAS dependent context are marked with 

asterisks (see Figure 2 for experimental details).  
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Figure 2: Experimental validation of OncoSig Naïve Bayes predicted KRAS functional 

partners 

(a): Schematic of the pooled shRNA negative screen experiments performed. An average of 

four shRNAs target each gene in the protocol implemented. KRASG12D/+/p53fl/fl primary tumor 

cells (green patches) are isolated from the mouse and placed in a semi-solid 3D matrix 

(cylinder). A pooled shRNA knockdown is performed (Day 1), and each cell stochastically 

integrates one shRNA into its DNA. Cells that integrate different shRNAs are shown as, red 

(representing shRNAs for novel predictions), green and purple (for positive controls, and black 

(for the background pool).  Some cells and their daughter cells form spheroids (Day 6). The 
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spheroids are dissociated, reseeded in a new matrix, and reform (Day 12). Fold Change (FC) of 

shRNA abundance is measured by deep sequencing the shRNAs at days 6 and 12.  

(b): Plot of Log2FC of shRNAs targeting predicted KRAS functional partners (red), known 

members of the  KRAS signaling pathways (RALGDS, MAPK1, RASA1 and AKT1) (purple) and 

two synthetic lethal positive controls (NUP205 and TBK1) (green). The black dots show Log2FC 

of shRNAs targeting 515 genes within the Background Pooled Screens (BPS) not expected to 

be involved in KRAS regulated signaling. The X axis is the normalized rank, calculated by 

ranking log2FC of each set of shRNAs and dividing by the number of shRNAs in that set. Each 

gene is represented by several dots, which correspond to different shRNAs. See Figure S2A for 

more details. 

(c): Density plots of Log2FC for predicted KRAS functional partners (red) and an average of all 

BPS (black). See Figure S2B for more details. 

(d): An empirical cumulative distribution function (eCDF) plot of the integrated p-values for the 

predicted KRAS functional partners, the 515 proteins in the BPS, the known members of the 

KRAS signaling pathways, and the synthetic lethal positive controls. The colors are the same as 

in panel C. The four predicted KRAS functional partners that inhibited spheroid growth to the 

greatest extent are labeled. The dashed vertical line in the inset indicates the p=0.05 threshold. 
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Figure 3: OncoSig Random Forest classifier: Overview, performance, and prediction 

(a): Networks used to train the OncoSig Random Forest classifier: (a) The ARACNe algorithm 

predicts transcription factors or signaling molecules (green) that transcriptionally regulate target 

genes (blue). (b) CINDy predicts signaling molecules (orange/green) that post-translationally 

modify transcription factors (blue boxes), which in turn leads to differential expression of a 

transcription factor’s targets (blue or gray diamonds). (c) The VIPER algorithm infers 

downstream effectors (blue) and upstream regulators (orange) for a given protein (green). 
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VIPER associates 1) the protein (green) with a missense mutation (black dot) with the activity 

change of transcription factors (blue) and 2) signaling molecules (orange) with missense 

mutations (black dots) with activity of the protein (green). (d) PrePPI predicts interactions 

between a protein (green), and its functional interactors (gray). 

(b): The networks are encoded as a matrix of feature vectors and colored as: ARACNe 

(orange), CINDy (pink), VIPER (blue), and PrePPI (green). The gold column corresponds to 

whether a protein is a member of a particular pathway’s PGSS (1) or NGSS (0). An example of 

a feature vector for one protein is shown for CRAF with its corresponding values.  

(c): ROC curves depict OncoSig performance for the 10 pathways in the key below FPR = 0.05. 

The inset shows the full ROC curves. The thick red line represents performance for the KRAS 

PC-Map. 

(d): Gene Set Enrichment Analysis (GSEA) of the 22 OncoSig Naïve Bayes predicted KRAS 

functional partners tested in the knockdown experiments (blue lines) and OncoSig Random 

Forest results for KRAS, where the ranking is based on OncoSig RF score. 

(e): GSEA of the top 100 NB predictions (blue lines) and RF results for KRAS, where the 

ranking is based on OncoSig RF score.  
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Figure 4: OncoSig Predictions are enriched for KRAS and EGFR synthetic lethal 

interactions 

(a): GSEA of KRAS synthetic lethal partners54(blue lines) and the top 500 KRAS OncoSig 

predictions obtained by training on a modified PGSS for which the intersection with the Barbie et 

al. set was removed. Inset is the GSEA using all OncoSig predictions obtained in this way, 

where the ranking is OncoSig score. GSEA plots for additional literature-derived sets are 

provided in Figure S6. 

(b): Enrichment of EGFR synthetic lethal partners in the presence of an EGFR inhibitor72 with 

OncoSig predictions obtained by training on a modified PGSS for which the intersection with the 

Astsaturov et al. set was removed. GSEA plots for additional literature-derived sets are provided 

in Figure S7. 
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Figure 5: OncoSig predictions based on LUAD-, LUSC-, and COAD-derived networks  

(a): Plot of OncoSig scores for two OncoSig LUAD replicates. Each dot represents the scores 

for one protein. The light gray dots are predictions that are below 0.5 in both LUAD replicates. 

The light and dark R2 are, respectively, the squared Pearson correlation coefficient for all points, 

and just for the dark points. 

(b): Plot of OncoSig scores for one OncoSig LUAD run (X axis) versus one OngoSig LUSC run 

(Y axis). Each dot represents the scores for one protein. The color scheme is the same as A.  
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(c): Plot of OncoSig scores for one OncoSig LUAD run (X axis) versus one OngoSig COAD run 

(Y axis). Each dot represents the scores for one protein. The color scheme is the same as A. 

The magenta and cyan points are scores for CABYR and IFITM1, respectively).  

(d): Box plot of LUAD-LUAD (blue), LUAD-COAD (red) and LUAD-LUSC (green) squared 

correlation coefficients (R2) based on 100 OncoSig runs. Mean R2 (points) were calculated by 

taking the average R2 for all 100x100 runs. The bars show the standard deviation. Only 

predictions with a score of 0.5 or greater (e.g. corresponding to dark points in A and B) were 

used to calculate R2. 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2018. ; https://doi.org/10.1101/289538doi: bioRxiv preprint 

https://doi.org/10.1101/289538


 

 

 54 

 

Figure 6: An Integrated view of KRAS LUAD PC-Map  

Proteins that have  an OncoSig KRAS pathway score ≥ 0.85 and a statistically significant VIPER 

mutation-activity interaction with KRAS in LUAD TCGA tumor samples are shown. Orange 

nodes indicate proteins that when mutated change KRAS activity (orange arrows, upstream 

regulators). Blue nodes indicate proteins that change activity when KRAS is mutated (blue 

arrows, downstream effectors), and + and – signs indicate whether the activity of these proteins 

increases or decreases, respectively. Darkened text and arrows indicate proteins predicted by 

PrePPI to bind KRAS in a physical PPI. Purple boxes denote experimentally tested  predictions 

supported in the synthetic lethality assay at a p-value threshold of ≤ 0.05.  Grey and rose ovals 

and dotted arrows indicate CINDy predicted transcription factor modulation by signaling 

molecules. The threshold for VIPER and CINDy interactions are the same as those used to 

generate OncoSig predictions, but the PrePPI predictions must have a final score LRPrePPI ≥ 600 
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as well as a structural modeling score LRSM ≥ 100, indicating further evidence of physical PPI. 

Note that the proteins depicted here do not correspond to the very maximum proteins predicted 

by OncoSig (Supplemental File 3) because, to avoid cluttering the image, only those predictions 

that are predicted by OncoSig and VIPER as well are shown. 
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