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ABSTRACT 

 

Proteins are among the most important constituents of biological systems. Because all proteins 

ultimately evolved from previously non-coding DNA, the properties of these non-coding sequences and 

how they shape the birth of novel proteins are also expected to influence the organization of biological 

networks. When trying to explain and predict the properties of novel proteins, it is of particular 

importance to distinguish the contributions of natural selection and other evolutionary forces. Studies in 

the field typically use non-coding DNA and GC-content-based random-sequence models to generate 

random expectations for the properties of novel functional proteins. Deviations from these expectations 

have been interpreted as the result of natural selection. However, interpreting such deviations requires a 

yet-unattained understanding of the raw material of de novo gene birth and its relation to novel 

functional proteins. We mathematically show how the importance of the “junk” polypeptides that make 

up this raw material goes beyond their average properties and their filtering by natural selection. We 

find that the mean of any property among novel functional proteins also depends on its variance among 

junk polypeptides and its correlation with their rate of evolutionary turnover. In order to exemplify the 

use of our general theoretical results, we combine them with a simple model that predicts the means 

and variances of the properties of junk polypeptides from the genomic GC content alone. Under this 

model, we predict the effect of GC content on the mean length and mean intrinsic disorder of novel 

functional proteins as a function of evolutionary parameters. We use these predictions to formulate new 

evolutionary interpretations of published data on the length and intrinsic disorder of novel functional 

proteins. This work provides a theoretical framework that can serve as a guide for the prediction and 

interpretation of past and future results in the study of novel proteins and their properties under various 

evolutionary models. Our results provide the foundation for a better understanding of the properties of 

cellular networks through the evolutionary origin of their components. 
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1. Introduction 

 

Theoretical and empirical studies of how species acquire new proteins have described several 

mechanisms with distinct impacts on genomes. Most of these mechanisms, such as gene duplication 

(Innan and Kondrashov, 2010), horizontal gene transfer (Soucy et al., 2015) and gene fusion (Di 

Roberto and Peisajovich, 2014), produce novelty by tweaking and rearranging pre-existing gene 

sequences. However, the phenomenon of de novo gene birth departs from this principle, since it 

consists in the emergence of new genes from sequences that were ancestrally non-genic, or ancestrally 

non-coding in the case of novel coding genes (McLysaght and Hurst, 2016). Although de novo gene 

birth was once thought to be highly improbable (Jacob, 1977), lineage-specific genes and proteins are 

observed in a variety of eukaryotes (McLysaght and Guerzoni, 2015), bacteria (Neuhaus et al., 2016) 

and endosymbiotic organelles (Breton et al., 2011), which suggests that the contribution of de novo 

gene birth to proteomic evolution is not negligible. The biological activities of these novel sequences 

are often obscured by their lack of homology to other genes, but some of them have been shown to play 

important and even vital biological roles (Chen et al., 2010; Heinen et al., 2009; Reinhardt et al., 2013). 

Since de novo gene birth is the only source of novel protein families and thus the only way to bring 

totally novel elements to protein-based cellular networks, it may have significantly influenced the 

diversity of existing protein structures. For instance, it may be one of the reasons why known proteins 

seem to form independent homology superfamilies whose estimated times of origination are scattered 

across the whole history of life (Edwards et al., 2013). 

 

The definition of a functional sequence is important in the study of de novo genes, as it distinguishes 

them from the raw material of de novo gene birth, i.e. the “spurious” transcription and translation of 

non-genic sequences (Wilson and Masel, 2011). Within an organism, a given structure (e.g., a DNA 

sequence) can have various effects on the phenotype, some of which may be beneficial (i.e. increase 

organismal fitness). Among these beneficial effects, some may have played a role in the conservation 

of the structure by natural selection up to the present. That is to say, those effects made the structure 

much more likely to persist. In evolutionary biology, such beneficial effects that contributed to the 

conservation of a structure are called the functions of this structure (Doolittle et al., 2014). This is the 

definition of “function” that we use in this work, and it should not be confused with definitions used in 

genetics and biochemistry, which are closer to the notion of effect (Kellis et al., 2014). Since the effect 
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of a structure must already have impacted its evolution to qualify as a functional effect, a new function 

must necessarily have previously existed as a non-functional effect. We use the term 

“functionalization” to refer to the acquisition of the status of function by a pre-existing effect via its 

contribution to the conservation of the associated structure. With these definitions, a polypeptide can be 

seen as an effect of the open reading frame (ORF) that encodes it, and the de novo emergence of a 

polypeptide-coding gene corresponds to the functionalization of a polypeptide. We use the term 

“polypeptide” to refer to a chain of amino acids of any length, since the terms “peptide” and “protein” 

carry connotations in this regard. The process of polypeptide functionalization requires the existence of 

non-functional polypeptides, or junk polypeptides (JPs), since only pre-existing non-functional effects 

can undergo functionalization. JPs are non-functional because selection for their expression and their 

structure did not yet contribute to the conservation of their ORFs, but this does not mean that they are 

not beneficial. A positive impact on fitness is in fact necessary, but not sufficient, for a JP to 

functionalize, because this positive impact could be too weak to cause the conservation of the JP in the 

face of genetic drift and mutation (Ohta, 1992) . Although the expression of a single JP is presumably 

unlikely to be strongly beneficial, the “testing” of a large diversity of JPs during evolution increases the 

chance that some will functionalize. 

 

The conceptual distinction between JPs and functional polypeptides is relevant in evolutionary 

proteomics, since JPs have not been shaped by positive selection for any activity and are the raw 

material from which natural selection can draw. As a result, evolutionary models that explain their 

structural and regulatory properties will likely not apply to functional polypeptides, and vice versa. For 

similar purposes, functional polypeptides can be meaningfully divided into novel functional 

polypeptides (novFPs), which recently functionalized and are identical to their non-functional ancestral 

forms, and ancestral functional polypeptides (ancFPs), which have been altered by evolutionary forces 

since their functionalization. As most of the canonical coding genes (ORFs annotated by genome 

databases) have divergent homologs in multiple species, it is safe to assume that they largely meet the 

definition of ancFPs. The distinction between novFPs and JPs is more difficult to make and remains the 

most important one to investigate. 

 

This classification of the whole proteome into three groups of polypeptides leads to the division of 

proteomic evolution into three phases: the turnover of JPs, which is devoid of effective positive 
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selection for polypeptide activities; functionalization, which produces novFPs by filtering JPs without 

modifying them; and the subsequent modification, loss, duplication and fusion of novFPs and ancFPs 

(fig. 1). Since well-studied polypeptides are mostly ancFPs, the last two phases have been the objects 

of most research in evolutionary proteomics . Studying the evolutionary turnover of JPs and their 

functionalization should thus be complementary to our current understanding of proteome evolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Conceptual classification of polypeptides and their phases of evolution with respect to 

functionalization. The curves describe the distribution of a hypothetical unidimensional property of 

polypeptides within each class. A JP is a polypeptide that did not yet contribute to the evolutionary 

conservation of the ORF that encodes it (i.e. it has not functionalized). A novFP is the immediate 

product of functionalization: a functional polypeptide that is identical to its ancestral JP. An ancFP is a 

functional polypeptide that is no longer identical to its ancestral JP. All aspects of the distributions 

shown are intended as arbitrary examples. For instance, novFPs may not be intermediate between JPs 

and ancFPs in some regards, and their relative contributions to the proteome-wide distribution may 

vary. 
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Although many authors agree that conservation by natural selection should be part of the definition of 

de novo genes (McLysaght and Hurst, 2016; Schlotterer, 2015), the exact moment in the existence of a 

polypeptide at which de novo gene birth happens has not been agreed upon, which makes “de novo 

gene birth” and related terms confusing in practice. For clarity, we hereinafter avoid these terms and 

instead use the above-defined concepts of JP, novFP, ancFP and functionalization to describe the 

evolution of proteomes. However, it is worth noting that polypeptides which are called “de novo” or 

“novel” often correspond to novFPs and relatively young ancFPs (McLysaght and Hurst, 2016) but 

sometimes include JPs (Lu et al., 2017), while the term “protogene” seems to encompass ORFs 

encoding JPs, novFPs and young ancFPs (Carvunis et al., 2012). 

 

The set of all JPs expressed by a population, which we call the junk proteome, can be seen as a 

collection of fixed or segregating alleles across a set of loci. There is direct evidence for the existence 

of this proteome: experimental studies have shown that in a variety of organisms, a large part of 

intergenic DNA is transcribed into 5’-capped and polyadenylated transcripts (Jensen et al., 2013) which 

can be translated (Ingolia et al., 2014; Ruiz-Orera et al., 2014). Contrary to canonical genes, these 

transcripts show signs of suboptimal translation (Guttman et al., 2013) and rapid evolution (Neme and 

Tautz, 2016). Additionally, the so-called untranslated regions (UTRs) of canonical transcripts and the 

alternative reading frames within canonical ORFs are sometimes translated into polypeptides that lack 

known functions (Ingolia et al., 2014; Landry et al., 2015; Mouilleron et al., 2016; Vanderperre et al., 

2013) and may thus be JPs. In mice, many translated ORFs in protein-coding genes and long non-

coding RNAs were shown to evolve without any detectable selective constraints on the polypeptides 

that they encode (Ruiz-Orera et al., 2018). Experiments have shown that the fitness effect of the 

expression of random DNA sequences in bacteria is often slightly beneficial  (Neme et al., 2017), 

although sequences explored in such studies may not reflect those explored by the natural evolution of 

JPs. 

 

Several studies have inferred lineage-specific functional polypeptides (i.e. novFPs and young ancFPs) 

and compared them with ancient ancFPs, in silico translations of non-coding DNA and randomly 

generated polypeptides. Assuming that the young ancFPs inferred by those studies are largely similar to 

novFPs, their results suggest that novFPs typically differ from ancient ancFPs by their short length, 
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weak expression (Schlotterer, 2015), peripheral position in cellular networks and random-sequence-like 

secondary structure (Abrusán, 2013). It has been proposed that JPs and novFPs may be largely shaped 

by the genomic GC content through its effects on the properties of ORFs occurring in non-coding DNA 

sequences (Ángyán et al., 2012). Correlations supporting this role of GC content were observed for 

many quantities computed from the sequences of ORFs encoding inferred novFPs, although the 

averages of these quantities often depart from random expectations based on GC content (Basile et al., 

2017). Such discrepancies were previously interpreted as the result of natural selection (Wilson et al., 

2017), which is in line with the intuition that the probability of functionalization of a beneficial JP 

increases with its positive effect on fitness. However, several aspects of polypeptide functionalization 

require clarification before we can confidently interpret the average properties of observed novFPs and 

their differences from random or non-coding sequences. 

 

In this article, we derive general mathematical results that link the average properties of novFPs to 

those of JPs. We find that the absolute difference in the mean of a polypeptide property between JPs 

and novFPs is proportional to its standard deviation among JPs. Furthermore, we show that the average 

of a property among JPs may not be an appropriate neutral expectation for the corresponding average 

among novFPs, since a difference between these two values can result from the correlation of the 

property with the rate of evolutionary turnover of JPs, their selection coefficient, or both. To illustrate 

how our general equations can be used to study particular polypeptide properties under particular 

models, we combine them with a GC-content-based random-sequence model of JPs to predict how the 

genomic GC content and evolutionary parameters interact to determine the mean length and mean 

intrinsic structural disorder of novFPs. 

 

 

2. RESULTS 

 

2.1 The difference in the average of a property between JPs and novFPs is proportional to the 

standard deviation of this property among JPs 

 

We consider the evolution of the proteome in a single species over an arbitrary time period (e.g., a 

single branch in a phylogenetic tree). We compare two distributions on the space of possible 
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polypeptides: the average of the junk proteome over this time period (where the relative frequency of 

each possible category of polypeptides is an average over time) and all novFPs that emerge by 

functionalization during the same time period. We simply refer to these two distributions as JPs and 

novFPs, respectively. To compare JPs and novFPs, we use the general concept of quantitative 

polypeptide property, which we define as a numeric variable that takes a single value in each possible 

polypeptide-expressing allele. Such properties include, for instance, the length of the polypeptide, the 

prevalence of some amino acid in its sequence and its expression level. In a group of polypeptides, 

quantitative polypeptide properties have distributions whose summary statistics can be used to compare 

JPs and novFPs. Based on the fact that any novFP must first exist as a JP before functionalizing, we 

find that the difference in the mean of any quantitative polypeptide property 𝑞 between novFPs and JPs 

is given by the following equation: 

𝐸! 𝑞 − 𝐸 𝑞  =  𝑐𝑜𝑣 𝑞, 𝑟 [1] 

where 𝐸 𝑥  is the expected value (the mean) of a variable, 𝑐𝑜𝑣 𝑥,𝑦  is the covariance of two variables, 

the subscript 𝐹 specifies that a statistic describes novFPs rather than JPs, and 𝑟 is a quantitative 

polypeptide property representing the factor by which the relative frequency of each polypeptide 

changes from JPs to novFPs (see Supplementary Information for details). This equation is analogous to 

the Robertson-Price identity from quantitative genetics (Lynch and Walsh, 1998; Price, 1970; 

Robertson, 1966), which states that during a round of natural selection in a population, the mean of a 

quantitative phenotypic trait changes by an amount equal to the initial covariance of this trait with 

relative fitness. This analogy between functionalization and natural selection is due to the fact that they 

both involve the comparison of the relative abundances of types between two populations, where the 

first population (e.g., JPs or pre-selection individuals) features all the types that are present in the 

second one (e.g., novFPs or post-selection individuals) and possibly more. This is because both 

functionalization and natural selection act on pre-existing material but cannot produce novelty on their 

own. For any process that meets this requirement, the Radon-Nikodým theorem (Yeh, 2006) implies 

that the difference in the mean of a type-specific quantity (e.g., a quantitative polypeptide property or a 

quantitative trait) between the second population and the first is equal to the covariance, in the first 

population, of this quantity with the factor by which the relative abundance of a type changes between 

the populations (e.g., 𝑟 or relative fitness). 

 

To better illustrate the influence of the properties of JPs on those of novFPs, equation 1 can be 
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transformed into: 

𝐸! 𝑞  =  𝐸 𝑞  +  𝜎 𝑞 ×𝛿[2] 

with 𝛿 =  𝐶𝑉 𝑟 ×𝜌 𝑞, 𝑟  

where 𝜎 𝑥  is the standard deviation of a variable, 𝐶𝑉 𝑥  is its coefficient of variation (the ratio of the 

standard deviation to the mean) and 𝜌 𝑥,𝑦  is the Pearson correlation coefficient of two variables. 

Because of the mathematical properties of 𝜌, the value of 𝛿 does not depend on the mean and variance 

of 𝑞 among JPs, but rather on its relation with functionalization as symbolized by 𝑟. 

 

Equation 2 has implications for the use of random and non-coding controls in the study of novFPs. 

Such controls were often used to compute expected means and other measures of central tendency for 

polypeptide properties (Abrusán, 2013; Ángyán et al., 2012; Basile et al., 2017; Wilson et al., 2017). 

According to equation 2, the standard deviations of the properties of control sequences could be just as 

useful as their means for predicting the properties of novFPs, provided that the control is representative 

of real JPs. When comparing the mean of a polypeptide property in such a representative control with 

the corresponding mean among inferred novFPs, these two means can be used in equation 2 along with 

the standard deviation in the control to estimate the 𝛿 of this property. 𝛿 captures the strength of biases 

of de novo gene birth in favour of certain polypeptide properties without being defined by their 

distribution among JPs. Thus, in order to interpret average differences between JPs and novFPs given 

the distributions of the properties of JPs, we need to decompose 𝛿 into contributions from different 

evolutionary forces. 

 

2.2 Neutral evolutionary forces can cause discrepancies between JPs and novFPs through the 

rate of evolutionary turnover of JPs 

 

We sought to transform the definition of 𝛿 from equation 2 into readily interpretable equations. Once 

we make the additional assumption that JPs are at evolutionary equilibrium, i.e. each JP is gained by 

mutation as often as it exits the junk proteome by loss or functionalization, then 𝛿 becomes: 

𝛿 =  𝐶𝑉 𝜆𝑓 ×𝜌 𝑞, 𝜆𝑓 [3] 

where 𝜆 is the polypeptide-specific rate of evolutionary turnover (the inverse of the expected time from 

the appearance of a specific JP by mutation to either its loss or its functionalization) and 𝑓 is the 

polypeptide-specific probability that a new JP will functionalize before it disappears from the 
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population. Because of the mathematical properties of 𝐶𝑉 and 𝜌, 𝛿 is insensitive to the scales of 𝑞, 𝜆 

and 𝑓. As a result, each of them can be replaced with a directly proportional quantity without changing 

the value of 𝛿, which may help to model this value and to estimate it from the observed properties of 

JPs. For instance, if a model of the evolution of JPs assumed that the turnover rate of a JP is directly 

proportional to the GC content of its ORF, 𝜆 could be simply replaced by this variable in equation 3. 

 

While equation 3 could be used to compute 𝛿 given enough data or assumptions about the junk 

proteome and its evolution, it does not highlight intuitive possible explanations for the discrepancies 

between novFPs and JPs, i.e. cases where 𝛿 is not zero. In order to do this, and without adding any 

assumption to those behind equation 3, we obtained the following expression of 𝛿 using equivalence 

properties of covariance. 

𝛿 =  !" ! ×! !,!  ! !" ! ×! !,!  ! !" ! ×!" ! ×!"#$ !,!,!
! ! !" ! ×!" ! ×! !,!

[4] 

where 𝑐𝑜𝑠𝑘 𝑥,𝑦, 𝑧  =  
! !!! ! !!! ! !!! !

! ! ! ! ! !
 is the coskewness of three variables. 

 

The second term of the numerator in equation 4 confirms previous intuitions about the probability of 

functionalization: all else being equal, an increase in its correlation with a given polypeptide property 

results in an increase of this property’s 𝛿 and thus of its mean among novFPs. More surprisingly, the 

first term of the numerator indicates that the same relation exists between 𝛿 and the rate of evolutionary 

turnover. This entails that the mean of a polypeptide property that has no selective effect on the 

probability of functionalization can still be different between JPs and novFPs if this property correlates 

with the rate of evolutionary turnover of JPs. For example, if the turnover of long JPs is especially fast 

because they mutate at a frequency proportional to their length, this could contribute to their over-

representation among novFPs relative to the junk proteome, even without their selection coefficients 

being larger than those of shorter JPs. In other words, the frequency of successes (events of 

functionalization) depends as much on the frequency of trials (the turnover rate) as on the probability of 

success for a single trial (the probability of functionalization). As a result, observed differences 

between the average properties of novFPs and those of random sequences should be either shown or 

explicitly assumed not to be caused by neutral biases in turnover rate before they are interpreted as the 

results of natural selection. 
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The coskewness that appears in the third term of the numerator in equation 4 is a measure of how any 

of three variables linearly affects the linear relation between the two others (see Supplemental 

Information). Like 𝐶𝑉 and 𝜌, it is insensitive to the replacement of a variable by a directly proportional 

quantity. Despite the diffuculty of its interpretation, it could be estimated from data on the turnover rate 

and functionalization probability of JPs, or predicted from a model of their evolution. 

 

The denominator of equation 4 is strictly positive and indicates that the overall correlation between the 

turnover rate and the probability of functionalization negatively affects the magnitude of 𝛿. 

Interestingly, this term does not involve 𝑞, which means that its value is the same for every polypeptide 

property in a given species. It can be thought of as a measure of the overall tendency of the junk 

proteome to preferentially explore polypeptides that are likely to functionalize. It constitutes a baseline 

to which each source of evolutionary bias represented in the numerator must compare favourably in 

order to have a strong effect on the average properties of novFPs. 

 

Beginning of Box 1 

 

Length and secondary structure are biologically relevant aspects of polypeptides that can be studied in 

silico in arbitrary sequences, which makes them ideal targets for the modelling of JPs and novFPs. In 

particular, the ISD of novel polypeptides has been a recurrent topic in previous studies (Ángyán et al., 

2012; Basile et al., 2017; Wilson et al., 2017). To exemplify the usefulness of our general results, we 

used them to model the mean length and mean ISD of novFPs given a simple model of the sequences 

of JPs. This model assumes that all the nucleotides that encode the junk proteome have independently 

evolved to equilibrium under uniform and strand-symmetric evolutionary pressures, and that a random 

subset of the ORFs appearing in the resulting sequences are translated into JPs. By combining these 

assumptions, the mean and standard deviation of any sequence property among JPs can be predicted 

from a single parameter: the GC content of DNA. 

 

We predicted the means and standard deviations of length and ISD among JPs as functions of the GC 

content. In the case of length, these predictions were made analytically, while in the case of ISD, we 

used the model to simulate 100 000 polypeptide sequences for each GC content in a large range of 

values and we estimated their individual ISD levels with the sequence-wide average of IUPred “long” 
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disorder (Dosztányi et al., 2005). We then applied equation 2 to the resulting means and standard 

deviations to compute the expected means of length and ISD among novFPs as functions of 𝛿 and the 

GC content (fig. 2). 

 

 

 

 

 

 

 

 

 

 

Fig 2. Contour plots of predicted means for the length and intrinsic structural disorder of novel 

functional polypeptides as functions of 𝛿 and the GC content. (A) Polypeptide length in amino acid 

residues. (B) Sequence-wide mean of the IUPred “long” prediction of intrinsic structural disorder 

(Dosztányi et al., 2005). Intensity values associated with contour lines are equidistant. As in any 

contour plot, the vertical distance between contour lines is inversely proportional to the vertical rate of 

change in intensity. In these specific contour plots, this vertical rate is the standard deviation of the 

considered property among JPs (equation 2). Since this standard deviation is constant for a given GC 

content, the contour lines are vertically equidistant. Hatched areas indicate impossible scenarios, that is, 

negative polypeptide lengths and percentages outside the 0%-100% interval. 

 

In both landscapes of figure 2, the curve obtained by taking an horizontal “slice” at 𝛿 = 0 corresponds 

to the relation between the mean properties of JPs and the GC content under the GC-content-based 

random-sequence model. These horizontal slices at 𝛿 = 0 are consistent with known effects of an 

increase in GC content on random polypeptides, namely an increase in their length and their ISD 

(Basile et al., 2017), even though this is not clearly visible in (fig. 2A). However, figure 2 also shows 

that for a polypeptide property whose 𝛿 is non-zero, the effect of GC content on novFPs (the change in 
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tone associated with a horizontal shift) can differ from its effect on random sequences (the result of the 

same shift at 𝛿 = 0), since contour lines are curved. It is theoretically possible for these effects to differ 

in sign as well as magnitude (the same contour line could be decreasing for some GC contents and 

increasing for others), although this is not the case for the two properties presented here. As implied by 

equation 2, such inconsistencies of the effect of GC content between JPs and novFPs would be due to 

the fact that the GC content affects both the standard deviations and the means of the properties of JPs, 

possibly in opposite directions. In contour plots such as those of figure 2, the standard deviation among 

JPs corresponds to the vertical slope of the landscapes and is thus inversely proportional to the vertical 

distance between contour lines. For example, in the case of polypeptide length (fig. 2A), the tightening 

of contour lines from left to right indicates that the standard deviation of the length of JPs increases 

with GC content, making the mean length of novFPs especially sensitive to the associated 𝛿 in GC-rich 

genomes. 

 

Even though inferred novFPs tend to be shorter than ancFPs, their average length is usually at least 100 

residues (Basile et al., 2017; Neme and Tautz, 2013), which is larger than the expected mean length of 

JPs for common GC contents (fig. 2A, 𝛿 = 0). Thus, if polypeptides that were detected and classified 

as novel are representative of novFPs, the value of 𝛿 associated with polypeptide length is likely to be 

greater than zero in many species. As explained in our interpretation of equation 4, this would not 

necessarily mean that a long polypeptide is typically more likely to functionalize than a shorter one. 

The fact that ancFPs tend to be larger than novFPs is also not conclusive evidence for such a selective 

advantage of length among JPs, since the evolution of ancFPs may be channelled towards long 

polypeptides that are very different from JPs of the same length. One intuitive alternative explanation 

for novFPs being longer than JPs is that since the rate of neutral loss of an ORF is proportional to its 

length, the length of JPs is positively correlated with their rate of turnover, which increases the 𝛿 of 

polypeptide length as shown in equation 4. However, the strength of this correlation depends on how 

much variation in the rate of turnover is caused by factors other than ORF length (such as the turnover 

of promoter sequences), and its contribution to 𝛿 also depends on the overall correlation between the 

rate of turnover and the probability of functionalization, as shown by the denominator of equation 4. It 

is therefore currently hard to tell if this effect is strong enough to fully explain the observed shift in 

mean length between random ORFs and those expressing novFPs, although this point could be clarified 

by modelling or estimating the turnover rate and probability of functionalization of JPs. Despite the 
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ambiguity as to the causes of the apparent length difference between JPs and novFPs, this difference 

should increase with the standard deviation of the length of JPs, and thus with GC content, unless this 

effect cancels out with a decrease of 𝛿 in GC-rich genomes (fig. 2A). For instance, the mutation 

spectrum of an organism affects both its genomic GC content and the relation between the sequence of 

an ORF and its rate of mutation, which could lead to an inter-specific correlation between GC content 

and 𝛿 for various polypeptide properties. Implications of the length of JPs for the properties of novFPs 

have been largely ignored since studies of de novo gene birth usually use random or non-coding 

controls that are intentionally biased against short ORFs (Abrusán, 2013; Ángyán et al., 2012; Basile et 

al., 2017; Lu et al., 2017; Neme et al., 2017; Wilson et al., 2017). Such practices may be partly 

justifiable if very short JPs turn out to contribute negligibly to de novo gene birth because of slow 

turnover or low probability of functionalization, but this remains to be shown. 

 

In the house mouse, in silico predictions suggest that novFPs have higher ISD than potential 

polypeptides encoded by intergenic DNA, which was interpreted as a result of natural selection in 

favour of high ISD during de novo gene birth (Wilson et al., 2017). Other results suggest that this trend 

may be specific to certain organisms and certain values of genomic GC content (30). As the average 

GC content of house mouse DNA is 42% (Elhaik and Graur, 2014) and the average IUPred long 

disorder of its novFPs is close to 55% (Wilson et al., 2017), our model predicts that the 𝛿 of this 

specific measure of ISD should be above 1 in house mouse (fig. 2B), more precisely 1.23. This value 

being larger than zero is consistent with the conclusion of (Wilson et al., 2017) that novFPs appear 

more disordered than the raw material of de novo gene birth, assuming that the non-coding control 

sequences they used are well summarized by a single GC content that is close to 42%. By a similar 

reasoning, given the 38% GC content observed in yeast DNA (Engel et al., 2014) and the 32% average 

IUPred long disorder of yeast novFPs reported by (Wilson et al., 2017), the associated value of 𝛿 

should be between 0 and 1 (fig. 2B), more precisely 0.47. Under our GC-content-based model, this 

suggests that given the GC contents of mouse and yeast genomes, the biases of turnover and 

functionalization in favour of disordered polypeptides are stronger in mouse than in yeast. 

 

Our positive estimates of 𝛿 for the sequence-wide average of IUPred long disorder in mouse and yeast 

may reflect positive correlations of this polypeptide property with the turnover rate and/or the 

functionalization probability (see equation 4). However, IUPred “long” disorder is an estimator of ISD 
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and we can only assume that the landscape of the actual average proportion of disordered amino acid 

residues in novFPs is similar to (fig. 2B) under the GC-content-based model. As a warning against this 

assumption, the corresponding landscape computed from  IUPred “short” disorder (supplementary fig. 

S1) is different from (fig. 2B) in terms of the magnitude of 𝛿 because the means and standard 

deviations of “long” and “short” predictors of ISD among JPs have different relations to the GC 

content, even though they are both meant to estimate the proportion of disordered residues. 

Nevertheless, the difference between mouse and yeast in the estimated 𝛿 for the same measure of ISD 

suggests that the difference in average ISD between their novFPs is not solely driven by the mean and 

standard deviation of ISD among JPs, but also by a difference in the relation of ISD with the turnover 

rate and the probability of functionalization of JPs. Future studies may reveal that some components of 

𝛿 can be predicted from the GC content, which would make the latter even more useful than figure 2 

suggests for the prediction of inter-specific differences in the average properties of novFPs. 

 

End of box 1 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary fig. S1. Contour plot of the predicted mean IUPred short disorder of novel functional 

polypeptides as a function of 𝛿 and the GC content. Intensity values associated with contour lines are 
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equidistant. As in any contour plot, the vertical distance between contour lines is inversely proportional 

to the vertical slope of the landscape. In this contour plots, the vertical slope is the standard deviation of 

the considered property among JPs (equation 2). Since this standard deviation is constant for a given 

GC content, the contour lines are vertically equidistant. Hatched areas indicate impossible percentages, 

i.e. outside the 0%-100% interval. 

 

3. Discussion and conclusions 

 

When making inferences such as those presented in figure 2, the use of equation 2 is inherently valid, 

since this equation stems from the definitions of JPs and novFPs. However, the means and standard 

deviations of the properties of JPs, which are needed to apply equation 2, are model-dependent. 

Therefore, the type of predictions that we made as to the value of 𝛿 under a GC-content-based model 

may not apply to organisms where JPs are not well described by such a model. For instance, 

mammalian genomes are known to be organized into compositional domains with various GC contents 

(Elhaik and Graur, 2014). In a study in yeast, candidate de novo genes had a significant tendency to be 

located in GC-riched regions of the genome (Vakirlis et al., 2017). If several different GC contents 

contribute to a single junk proteome, the means and standard deviations of the properties of JPs may be 

different from those expected under our random-sequence model given the average GC content. It is 

however possible that such a model will apply to each compositional domain separately, in which case 

the junk proteome would be readily modelled by drawing values of GC content from an appropriate 

distribution and using each value to generate a random polypeptide. From there, equations 1, 2, 3 and 

4 would apply just as they did for the simpler case of a single GC content. 

 

Although the predictions that we made using a random-sequence model of JPs only involve their 

sequence and structure, intrinsic aspects of their expression may also be understood as quantitative 

polypeptide properties and analyzed using equations presented here. Transcription and translation 

levels of JP-encoding ORFs seem especially relevant since, as they approach zero, the probability that a 

JP functionalizes also goes towards zero and its other properties become irrelevant. Since transcription 

and translation are controlled by local sequence elements, knowledge of these elements may eventually 

be combined with a random-sequence model to predict the regulatory properties of JPs, like we did for 

their sequence properties. Studies of the transcriptional activity of synthetic random DNA in 
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Escherichia coli (Yona et al., 2017) and yeast (Boer et al., 2018) show that such sequences frequently 

contain the patterns required for the initiation and regulation of transcription. Factors that are external 

to intergenic regions also seem to play a role in the expression of JPs and their functionalization, such 

as bidirectional promoters (Vakirlis et al., 2017), translated UTRs and translated alternative ORFs 

within canonical ORFs (Vanderperre et al., 2013). Although understanding the importance of these 

factors may require more than a simple random-sequence model, their impacts on JPs will be 

“inherited” by novFPs in accordance with the general equations that we developed. 

 

The determinants of the properties of polypeptides resulting from de novo gene birth were previously 

studied empirically by comparing them to random and non-coding sequences (Abrusán, 2013; Ángyán 

et al., 2012; Basile et al., 2017; Lu et al., 2017; Wilson et al., 2017), but the field lacked the theoretical 

tools to interpret observations in terms of evolutionary forces. We have defined a classification of 

polypeptides and their evolutionary history (fig. 1) that clarifies the process of de novo gene birth 

sufficiently to link the properties of its raw material to those of its products through broadly applicable 

equations. These equations show how the mean of a quantitative polypeptide property among the 

products of de novo gene birth depends on its mean, its standard deviation and its relation to both the 

probability of functionalization and the turnover rate, which suggests potential roles for both natural 

selection and neutral forces. We also showed how a simple GC-content-based model of non-functional 

polypeptides can be combined with our general theoretical framework to infer evolutionary parameters 

of de novo gene birth from the properties of its products, or vice versa. Although our results specify 

how knowledge of the structure, expression and evolution of the non-functional proteome can be used 

to explain and predict the properties of novel functional polypeptides, much of this knowledge remains 

to be uncovered by further empirical, experimental and theoretical investigation. 

 

4. MATERIALS AND METHODS 

 

4.1 A general model of the link between the properties of JPs and those of novFPs 

 

The details of all formal reasonings can be found in Supplemental Information. We defined an average 

of the junk proteome over time (a probability measure on the space of possible polypeptides), such that 

any category of polypeptides that has a frequency of zero in this average statistical population also has 
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a frequency of zero among novFPs. We then used established theorems from measure theory and 

probability theory to compare the mean of an arbitrary polypeptide property between JPs and novFPs, 

which led to equations 1 and 2. We then made the additional assumption the JPs are at evolutionary 

equilibrium, and thus the rate of appearance of any JP by mutation is equal to its rate of loss. This 

assumption implies that the intrinsic rate of loss of JPs from a given category can be used as an 

indicator of the rate at which evolution explores this category. By combining the assumption of 

evolutionary equilibrium with our definition of 𝛿 from equation 2, we obtained equations 3 and 4. 

 

4.2 A random-sequence model of the properties of JPs 

 

Mathematical developments and results that parallel this section are presented in Supplemental 

Information. To quantitatively model the properties of JPs, we made five assumptions about the DNA 

encoding them: 1) all sites evolve independently, 2) the transition probability matrix is constant across 

sites, 3) the transition probability matrix is the same on both strands, 4) each site has reached 

evolutionary equilibrium, and 5) a random subset of ATG codons define ORFs that are translated into 

JPs. Assumptions 1 and 2 allow us to focus on a single site and generalize our findings to the whole 

sequence. Assumptions 3 and 4 entail that if two nucleotides are Watson-Crick complements, then a 

given site is equally likely to display either of them. As a result, complementary nucleotides are equally 

frequent within and between strands, and the frequency of each of the four nucleotides is a function of 

GC content. Since sites are independent, GC content is the only parameter needed to predict probability 

distributions for the properties of randomly occurring ORFs under this model. Assumption 5 allows us 

to extend our predictions to the properties of JPs expressed from those ORFs. 

 

Predicting the length distribution of JPs is equivalent to predicting the distribution of the number of in-

frame sense codons separating each ATG codon from the closest downstream in-frame stop codon. 

Since, in our model, consecutive non-overlapping DNA 3-mers are statistically independent and have 

the same probability of being stop codons, the number of sense codons in an ORF follows a geometric 

distribution. The only parameter of this distribution is the frequency of stop codons, which is a function 

of GC content under our model. We thus predicted the exact shape of the length distribution of JPs as a 

function of GC content. 
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4.3 Predicting the mean length and mean ISD of novFPs from the GC content and 𝛿 

 

We combined equation 2 with the properties of geometric distributions to compute the landscape of 

the average length of novFPs as a function of GC content and 𝛿 (fig. 2A). In order to obtain the 

landscapes of average IUPred long (fig. 2B) and short (supplementary fig. S1) disorders among 

novFPs, we randomly generated the sequences of 100 000 JPs for each value of GC content from 20% 

to 80% with steps of 2.5%. We then computed the per-amino-acid “long” and “short” disorder scores 

using IUPred (Dosztányi et al., 2005), averaged the two types of scores separately within each 

sequence, computed the mean and standard deviation of the sequence-wide average of each score for 

each GC content, and applied equation 2 to those means and standard deviations to compute the 

landscapes. 
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SUPPLEMENTARY METHODS 

 

1. A general model of the link between the properties of JPs and those of novFPs 

 

This section is a detailed reasoning leading to equations 1, 2, 3 and 4. Let 𝛺be the space of all possible 

polypeptides (or polypeptide-expressing alleles). Over a given period of time, the average proportions 

of the junk proteome belonging to each possible category of polypeptides form a probability measure 𝑃 

on 𝛺. In other words, for each subset 𝑆 of 𝛺, 𝑃 𝑆 is the time-averaged proportion of JPs that fall in the 

polypeptide category 𝑆, which implies that 𝑃 𝛺 = 1. Similarly, the polypeptides that functionalize in 

the same period of time form a probability measure 𝑃! on 𝛺. For any quantitative polypeptide property 

𝑞, i.e. any function that assigns a number to each possible polypeptide in 𝛺, statistics like the mean and 

variance of 𝑞are defined separately for each probability measure. Hereinafter, we use the subscript 𝐹 to 

distinguish between statistics defined for 𝑃 and those defined for 𝑃!. For example, the mean (expected 

value) of a property 𝑞 among JPs will be denoted by 𝐸 𝑞 , while its mean among novFPs will be 

denoted by 𝐸! 𝑞 . 

 

Because JPs are not modified by their functionalization, the probability measures 𝑃 and 𝑃! have a 

special relationship: for any subset 𝑆 of 𝛺 such that 𝑃 𝑆 = 0, it is also true that 𝑃! 𝑆 = 0. In other 

words, any category of polypeptides that occurs in novFPs necessarily occurred in the junk proteome at 

some point. Because of this relationship between the two measures (𝑃! is “absolutely continuous” with 

respect to 𝑃), the Radon-Nikodým theorem (Yeh, 2006) implies that there exists a quantitative 

polypeptide property 𝑟 such that, for any subset 𝑆 of 𝛺 with 𝑃 𝑆 ≠ 0, the average of𝑟among JPs that 

belong to 𝑆 is given by 𝐸 𝑟 𝑆  =  !! !
! !

. The property 𝑟 is thus the factor by which the relative 

frequency of a polypeptide changes from JPs to novFPs, and 𝐸 𝑟  =  1. If we define 𝑅 as the total rate 

of functionalization events over time, 𝐿 as the total number of loci expressing JPs and 𝑟 as the 

polypeptide-specific ratio of the rate of functionalization events to the time-averaged number of loci 

expressing this polypeptide, then we have 𝑟 =  !
!
×𝑟, 𝐸 𝑟  =  𝐸 !

!
×𝑟  =  !

!
×𝐸 𝑟  =  !

!
 and thus 

𝑟 =  !
! !

. 

 

Given a quantitative polypeptide property, representing its mean among novFPs as a function of its 
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mean among JPs would be useful in the study of de novo gene birth. Because of the way we defined 𝑟 

from 𝑃 and 𝑃! (𝑟 is the Radon-Nikodým derivative of 𝑃! with respect to 𝑃), it follows (Yeh, 2006) that 

for any quantitative polypeptide property 𝑞, we have: 

𝑞 𝑑𝑃!  =  𝑞 𝑟𝑑𝑃 

where 𝑥 𝑑µ is the Lebesgue integral of the function 𝑥 with respect to the measure µ . 

The expected value of a random variable (a function) is defined as its Lebesgue integral with respect to 

a probability measure such as 𝑃 or 𝑃!. Therefore, the above equation is equivalent to: 

𝐸! 𝑞  =  𝐸 𝑞𝑟  

By applying the property of covariance 𝐸 𝑥𝑦  =  𝐸 𝑥 𝐸 𝑦  +  𝑐𝑜𝑣 𝑥,𝑦 , we obtain: 

𝐸! 𝑞  =  𝐸 𝑞 𝐸 𝑟  +  𝑐𝑜𝑣 𝑞, 𝑟  

Since 𝐸 𝑟  =  1, we obtain equation 1: 

𝐸! 𝑞  =  𝐸 𝑞  +  𝑐𝑜𝑣 𝑞, 𝑟  

𝐸! 𝑞  −  𝐸 𝑞  =  𝑐𝑜𝑣 𝑞, 𝑟 [1] 

By applying the definition of the Pearson correlation coefficient 𝜌 𝑥,𝑦  =  !"# !,!
! ! ! !

, the fact that 

𝐸 𝑟 = 1 and the definition of the coefficient of variation 𝐶𝑉 𝑥  =  ! !
! !

, the role of 𝑟 in equation 1 

can be concentrated in a single parameter𝛿that is insensitive to the multiplication of 𝑟 by any positive 

constant: 

𝐸! 𝑞 − 𝐸 𝑞  =  𝑐𝑜𝑣 𝑞, 𝑟  =  𝜎 𝑞 𝜎 𝑟 𝜌 𝑞, 𝑟  =  𝜎 𝑞
𝜎 𝑟
𝐸 𝑟

𝜌 𝑞, 𝑟  =  𝜎 𝑞 𝐶𝑉 𝑟 𝜌 𝑞, 𝑟  

For any 𝑘 > 0: 

𝛿 =  
𝐸! 𝑞 − 𝐸 𝑞

𝜎 𝑞  =  𝐶𝑉 𝑟 𝜌 𝑞, 𝑟  =  𝐶𝑉 𝑘𝑟 𝜌 𝑞, 𝑘𝑟  =  𝐶𝑉 𝑟 𝜌 𝑞, 𝑟  

We thus obtain equation 2: 

𝐸! 𝑞  =  𝐸 𝑞  +  𝜎 𝑞 ×𝛿[2] 

 

Since the quantitative polypeptide property 𝑟 is the polypeptide-specific ratio of the rate of 

functionalization of a polypeptide to the average number of non-functional instances of this 

polypeptide expressed in the species, it can be understood as the product𝑟 = 𝛾𝑓, where 𝛾 is the ratio of 

the frequency of allele gain (appearance by mutation) to the average number of non-functional loci 

expressing the polypeptide, and 𝑓 is the probability that such a gain leads to the functionalization of the 
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polypeptide (the probability of functionalization). If we make the additional assumption that the junk 

proteome is at evolutionary equilibrium, i.e. JPs from any category are gained as often as they are lost 

or functionalized, then the rate of appearance of each JP is equal to its rate of loss/functionalization. 

We thus have 𝑟 = 𝜆𝑓, where 𝜆 is the ratio of the combined frequency of functionalization and complete 

loss of a polypeptide (an allele) to the average number of non-functional loci expressing this 

polypeptide. 𝜆 can also be interpreted as the rate at which a single JP exits the junk proteome by loss or 

functionalization (the inverse of its expected lifetime as a JP). Then, from the definition of 𝛿, we obtain 

equation 3: 

𝛿 =  𝐶𝑉 𝜆𝑓 𝜌 𝑞, 𝜆𝑓 [3] 

By the definitions of the Pearson correlation coefficient and the coefficient of variation: 

𝛿 =  
𝜎 𝜆𝑓
𝐸 𝜆𝑓 ×

𝑐𝑜𝑣 𝑞, 𝜆𝑓
𝜎 𝑞 𝜎 𝜆𝑓  =  

𝑐𝑜𝑣 𝑞, 𝜆𝑓
𝜎 𝑞 𝐸 𝜆𝑓  

By transforming 𝐸 𝜆𝑓  using the properties of covariance: 

𝛿 =  
𝑐𝑜𝑣 𝑞, 𝜆𝑓

𝜎 𝑞 𝐸 𝜆 𝐸 𝑓 + 𝑐𝑜𝑣 𝜆, 𝑓
 =  

𝑐𝑜𝑣 𝑞, 𝜆𝑓
𝜎 𝑞 𝐸 𝜆 𝐸 𝑓  +  𝜎 𝑞 𝑐𝑜𝑣 𝜆, 𝑓  

By decomposing the numerator as the covariance of a product of random variables according to  

(Bohrnstedt and Goldberger, 1969): 

𝛿 =  
𝐸 𝑓 𝑐𝑜𝑣 𝑞, 𝜆  +  𝐸 𝜆 𝑐𝑜𝑣 𝑞, 𝑓  +  𝐸 𝛥𝑞𝛥𝜆𝛥𝑓

𝜎 𝑞 𝐸 𝜆 𝐸 𝑓  +  𝜎 𝑞 𝑐𝑜𝑣 𝜆, 𝑓  

where 𝛥𝑥 =  𝑥 − 𝐸 𝑥 . By dividing the numerator and the denominator with 𝜎 𝑞 𝐸 𝜆 𝐸 𝑓  : 

𝛿 =  

𝑐𝑜𝑣 𝑞, 𝜆
𝜎 𝑞 𝐸 𝜆  +  𝑐𝑜𝑣 𝑞, 𝑓

𝜎 𝑞 𝐸 𝑓  +  𝐸 𝛥𝑞𝛥𝜆𝛥𝑓
𝜎 𝑞 𝐸 𝜆 𝐸 𝑓

1 +  𝑐𝑜𝑣 𝜆, 𝑓
𝐸 𝜆 𝐸 𝑓

 

By taking the factor 𝜎 𝜆 𝜎 𝑓  out of the rightmost term of the numerator: 

𝛿 =  

𝑐𝑜𝑣 𝑞, 𝜆
𝜎 𝑞 𝐸 𝜆  +  𝑐𝑜𝑣 𝑞, 𝑓

𝜎 𝑞 𝐸 𝑓  +  𝜎 𝜆 𝜎 𝑓
𝐸 𝜆 𝐸 𝑓 × 𝐸 𝛥𝑞𝛥𝜆𝛥𝑓

𝜎 𝑞 𝜎 𝜆 𝜎 𝑓

1 +  𝑐𝑜𝑣 𝜆, 𝑓
𝐸 𝜆 𝐸 𝑓

 

By applying the definition of the Pearson correlation coefficient three times: 

𝛿 =  

𝜎 𝑞 𝜎 𝜆 𝜌 𝑞, 𝜆
𝜎 𝑞 𝐸 𝜆  +  𝜎 𝑞 𝜎 𝑓 𝜌 𝑞, 𝑓

𝜎 𝑞 𝐸 𝑓  +  𝜎 𝜆 𝜎 𝑓
𝐸 𝜆 𝐸 𝑓 × 𝐸 𝛥𝑞𝛥𝜆𝛥𝑓

𝜎 𝑞 𝜎 𝜆 𝜎 𝑓

1 +  𝜎 𝜆 𝜎 𝑓 𝜌 𝜆, 𝑓
𝐸 𝜆 𝐸 𝑓
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By cancelling and rearranging factors within terms: 

𝛿 =  

𝜎 𝜆
𝐸 𝜆 ×𝜌 𝑞, 𝜆  +  𝜎 𝑓

𝐸 𝑓 ×𝜌 𝑞, 𝑓  +  𝜎 𝜆 𝜎 𝑓
𝐸 𝜆 𝐸 𝑓 × 𝐸 𝛥𝑞𝛥𝜆𝛥𝑓

𝜎 𝑞 𝜎 𝜆 𝜎 𝑓

1 +  𝜎 𝜆 𝜎 𝑓
𝐸 𝜆 𝐸 𝑓 ×𝜌 𝜆, 𝑓

 

By applying the definition of the coefficient of variation six times: 

𝛿 =  
𝐶𝑉 𝜆 𝜌 𝑞, 𝜆  +  𝐶𝑉 𝑓 𝜌 𝑞, 𝑓  +  𝐶𝑉 𝜆 𝐶𝑉 𝑓 × 𝐸 𝛥𝑞𝛥𝜆𝛥𝑓

𝜎 𝑞 𝜎 𝜆 𝜎 𝑓
1 +  𝐶𝑉 𝜆 𝐶𝑉 𝑓 𝜌 𝜆, 𝑓  

 By the definition of the coskewness of three variables 𝑐𝑜𝑠𝑘 𝑥,𝑦, 𝑧  =  ! !"!#!$
! ! ! ! ! !

, we obtain 

equation 4: 

𝛿 =  !" ! ! !,!  ! !" ! ! !,!  ! !" ! !" ! !"#$ !,!,!
! ! !" ! !" ! ! !,!

[4] 

 

To facilitate the interpretation of coskewness, consider the standard score 𝑍 𝑥 = !"
! !

 which as a mean 

of 0 and a variance of 1. 

 

𝑐𝑜𝑠𝑘 𝑞, 𝜆, 𝑓  =  𝐸 𝑍 𝑞 𝑍 𝜆 𝑍 𝑓  

𝑐𝑜𝑠𝑘 𝑞, 𝜆, 𝑓  =  𝐸 𝑍 𝑞 ×𝐸 𝑍 𝜆 𝑍 𝑓  +  𝑐𝑜𝑣 𝑍 𝑞 ,𝑍 𝜆 𝑍 𝑓  

𝑐𝑜𝑠𝑘 𝑞, 𝜆, 𝑓  =  𝑐𝑜𝑣 𝑍 𝑞 ,𝑍 𝜆 𝑍 𝑓  =  𝑐𝑜𝑣 𝑍 𝜆 ,𝑍 𝑞 𝑍 𝑓  =  𝑐𝑜𝑣 𝑍 𝑓 ,𝑍 𝜆 𝑍 𝑞  

 

Also consider the fact that 𝐸 𝑍 𝑥 𝑍 𝑦 = 𝑐𝑜𝑣 𝑍 𝑥 ,𝑍 𝑦 = 𝜌 𝑥,𝑦 . 

 

While the Pearson correlation coefficient is the mean of the product of the standard scores of two 

variables, coskewness is the covariance of this same product with the standard score of a third variable. 

Roughly speaking, coskewness is a measure of how any of the three variables linearly affect the linear 

relation between the two others. 

 

The denominator in equation 4 is strictly positive, since, by the definition of the coefficient of 

variation and the properties of covariance: 

1 +  𝐶𝑉 𝜆 𝐶𝑉 𝑓 𝜌 𝜆, 𝑓  =  1 +  
𝑐𝑜𝑣 𝜆, 𝑓
𝐸 𝜆 𝐸 𝑓  =  

𝐸 𝜆 𝐸 𝑓  +  𝑐𝑜𝑣 𝜆, 𝑓
𝐸 𝜆 𝐸 𝑓  =  

𝐸 𝜆𝑓
𝐸 𝜆 𝐸 𝑓  
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and both 𝐸 𝜆𝑓  and 𝐸 𝜆 𝐸 𝑓  are positive. 

 

 

 

 

2. Modelling the length distribution of JPs under a GC-content-based random-sequence model 

 

Under our random-sequence model, the frequency 𝑝! of each nucleotide 𝑁 is a function of the GC 

content, which we denote by 𝑝! !  =  𝑝! + 𝑝! . The frequencies of the four nucleotides are given by: 

𝑝!  =  𝑝!  =  !! !

!
       𝑝! =  𝑝!  =  !!!! !

!
 

Since, in this model, consecutive non-overlapping DNA 3-mers are statistically independent and have 

the same probability of being stop codons, the number of sense codons in an ORF follows a geometric 

distribution with the following probability mass function: 

𝑃𝑟𝑜𝑏 length = 𝑛  =  1− 𝑝! !!!×𝑝! 

where 𝑛 is any positive integer and 𝑝! is the probability that a DNA 3-mer is a stop codon. Under our 

assumptions, the frequency of a DNA word is equal to the product of the frequencies of the nucleotides 

composing it. Using this principle to calculate 𝑝! , we get: 

𝑝! =  𝑝!𝑝!𝑝! +  𝑝!𝑝!𝑝!  +  𝑝!𝑝!𝑝! 

𝑝! =  
1− 𝑝! !

2

!

 +  
1− 𝑝! !

2

! 𝑝! !

2  +  
1− 𝑝! !

2

! 𝑝! !

2
 

𝑝! =  
1− 𝑝! !

2

!

 +  2
1− 𝑝! !

2

! 𝑝! !

2
 

𝑝! =  
1− 𝑝! !

2

! 1− 𝑝! !

2  +  
2𝑝! !

2
 

𝑝! =  
1− 𝑝! !

2

! 1+ 𝑝! !

2
 

𝑝! =  
1
8 1− 𝑝! !

!
1+ 𝑝! !  
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Using the properties of geometric distributions, we obtained the mean and standard deviation of the 

length of JPs as functions of the frequency of stop codons, which is itself determined by the GC 

content: 

𝐸 𝑙𝑒𝑛𝑔𝑡ℎ  =  
1
𝑝!

 =  
8

1− 𝑝! !
! 1+ 𝑝! !

 

𝜎 𝑙𝑒𝑛𝑔𝑡ℎ  =  
1− 𝑝!
𝑝!

 =  
1− 18 1− 𝑝! !

! 1+ 𝑝! !

1
8 1− 𝑝! !

!
1+ 𝑝! !

 

Using these equations in combination with equation 2, we computed the landscape of the mean length 

of novFPs as a function of the GC content and 𝛿, which is shown in figure 2A. 
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