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Abstract 

The dynamics of microbial communities is driven by a range of interactions from symbiosis 

to predator-prey relationships, the majority of which are poorly understood. With the 

increasing availability of high-throughput metagenome profiling data, it is now conceivable 

to directly learn ecological models that explicitly define microbial interactions and explain 

community dynamics. The applicability of these approaches is severely limited by the lack of 

accurate biomass and absolute density measurements. We present a new computational 

approach that resolves this key limitation in the inference of generalised Lotka-Volterra 

models (gLVMs) by coupling biomass estimation and model inference in an expectation-

maximization-like algorithm (BEEM). Surprisingly, BEEM outperforms state-of-the-art 

methods for inferring gLVMs, while simultaneously eliminating the need for additional 

experimental biomass data as input. BEEM's application to previously inaccessible public 
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datasets (due to the lack of biomass data) allowed us for the first time to construct ecological 

models of microbial communities in the human gut on a per individual basis, revealing 

personalised dynamics and keystone species. 

1. Introduction 

A growing body of literature points to the important roles that different microbial 

communities play in diverse natural environments1,2 and the human body3. This has 

particularly been aided by advances in next-generation sequencing technology, allowing for 

rapid, cost-effective taxonomic and functional profiling, combined with computational 

analysis that has helped associate the state of the microbiome with various environmental 

conditions1,4 and human diseases5–8. Microbiomes are also constantly evolving and there is 

now a growing appreciation that complex interactions between community members9,10 shape 

community dynamics11,12 as well as overall function13,14. A systems view of the microbiome 

is thus essential for understanding and rationally manipulating it15.  

Because of its importance, there have been many approaches proposed to study microbial 

interactions and dynamics. Experimental approaches have ranged from simple two species 

co-culture experiments16–18, all the way to complex, multi-stage reactor models19. Analytical 

approaches20 frequently use simple correlations between the abundances of various taxa in 

cross-sectional datasets to infer microbial interactions21–23. There are several challenges that 

need to be addressed in such analysis including the compositionality of sequencing data21–24, 

low sensitivity and specificity of such methods25,26, and the inability to infer directionality of 

interactions or dynamics of the system20.  

The most commonly used approach for modeling microbial ecology is based on classical 

predator-prey systems, also referred to as generalized Lotka-Volterra models (gLVMs). 

gLVMs are based on ordinary differential equations (ODE) that model the logistic growth of 

species, naturally capture predator-prey, amensalistic and competitive interactions, and have 

been applied to study dynamics of microbial ecosystems ranging from simple communities 

on cheese27,28 to the human microbiome15,26,29–32. More importantly, from a practical 

perspective, gLVMs have been used for a range of applications including identifying 

potential probiotics against pathogens15,29,30, forecasting changes in microbial density, 

characterizing important community members (e.g. keystone species26) and to analyze 

community stability30,32,33.  
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Despite this, a key limitation of gLVMs that restricts applicability and wider use is the 

requirement for microbial abundance data on an absolute scale. Microbiome analysis using 

high-throughput sequencing naturally provides relative abundance estimates with what is 

often referred to as “compositionality bias”21,22,24, and cannot be directly used to estimate 

gLVM parameters31. Scaling relative abundances to an absolute scale typically requires 

additional experimental data that is either not readily available (as is true for the vast 

proportion of publicly available datasets), is technically challenging to directly quantitate for 

different sample matrices and complex communities (e.g. using flow cytometry34,35), or can 

suffer from significant technical36–38 and biological noise39 (e.g. using 16S rRNA 

qPCR15,29,30).  

In the face of these technical challenges, gLVM inference can seem daunting, especially 

because relative abundances do not seem to carry any information related to absolute scale. 

Remarkably, we show that suitable scaling factors can be directly inferred from metagenome 

sequencing data, through an algorithm that also imposes constraints based on gLVM 

inference (BEEM). This is achieved based on an expectation-maximization-like approach40 

that alternates between learning scaling factors and gLVM parameters, and thus obviates the 

need for experimental scaling factors which otherwise limit the use of many existing datasets. 

Based on synthetic data where biomass is precisely known, we show that BEEM estimated 

gLVM parameters are as accurate as those estimated with true biomass values, and 

significantly more accurate than what could be expected with commonly used (16S rRNA 

based) experimentally determined biomass estimates. Using data from a freshwater microbial 

community with flow cytometry based gold-standard cell counts, we show that biomass 

estimated using BEEM has good concordance with the gold-standard and improves 

significantly over existing techniques to normalize data. Leveraging BEEM’s unique ability 

to learn gLVMs from relative abundance data, we analyzed publicly available datasets that 

represent the longest human gut microbiome time-series data available to-date41–43. This 

analysis highlighted the personalized dynamics of gut microbial biomass in different 

individuals, with communities driven by distinct interaction networks and hub species. Our 

analysis suggests an emergent model for gut microbial dynamics where relatively low 

abundance species may play key roles in maintaining gut homeostasis.  
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2. Results 

2.1 Experimentally obtained biomass estimates can lead to inaccurate gLVMs  

The gLV equations model the growth rate (!"#(%)
!%

) of each microbial species 𝑖 as a function of 

absolute densities (𝑥)(𝑡)) of all the 𝑝 species in a community: 

𝑑𝑥)(𝑡)
𝑑𝑡 = 𝜇)𝑥)(𝑡) +0𝛽)2𝑥)(𝑡)𝑥2(𝑡)

3

245

 (1). 

In the above model, the intrinsic growth rate parameter (𝜇)) and self-interaction parameters 

(𝛽))) define the logistic growth behavior of species 𝑖. In addition, the model also captures the 

impact of the absolute density of species 𝑗 on the growth rate of species 𝑖 through additional 

parameters (𝛽)2, 𝑖 ≠ 𝑗), assuming a linear and additive effects model. As high-throughput 

sequencing based approaches to analyze microbiomes only provide relative abundance 

estimates, scaling factors related to the total biomass for each sample are then needed to 

accurately fit gLVMs in practice.  

The predominantly used approach to estimate total biomass is to quantify copy number of the 

16S rRNA gene using quantitative PCR (qPCR)15,29,30. However, 16S qPCR estimates have 

been reported to have high technical noise, with a coefficient of variation (CV) ranging from 

11% to 75%36–38. To reconfirm this, we reanalyzed 16S qPCR data from a recent microbiome 

modeling study on C. difficile infections30 and observed low concordance across technical 

replicates (Spearman 𝜌<0.22; Figure 1A and Supplementary Figure 1A), as well as high 

coefficient of variation (mean CV=51%). Another critical source of error with 16S qPCR 

based biomass estimates is biological, and arises due to the fact that bacteria can have widely 

varying number of copies of the 16S rRNA gene, even within the same ecological niche. For 

example, the 16S gene copy number of the four major gut bacterial phyla cover a broad 

spectrum (Figure 1B), ranging from a single copy to 15 copies39. Correspondingly, 16S 

qPCR estimated biomass of a community dominated by Firmicutes can be twice as much as 

that of a community dominated by Bacteriodetes, even if both communities have exactly the 

same cell density. Such large relative errors (~100%) can then have a significant impact on 

the accuracy of gLVMs estimated from the data, as we show below. 

To test the impact of biomass estimation errors on model inference, we generated synthetic 

datasets (10 species community) based on parameters inferred from real datasets, similar to 
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the approach in Bucci et al29 (see Materials and Methods). This framework allows us to 

carefully evaluate the impact of different levels of noise in a setting where model parameters 

are known. We noted that, given error-free biomass data, a state-of-the-art method 

(MDSINE29) was able to infer model parameters with median relative error <20% and with 

~90% median AUC-ROC (area under the sensitive-specificity tradeoff curve) for interaction 

terms (𝜷; Figure 1C, True). However, as expected31, directly using relative abundance 

estimates without scaling them increased median relative error for parameter estimates to >60% 

(Figure 1C, RA), with AUC-ROC for interaction terms being comparable to randomly 

generated parameters from the prior model for the simulation (Figure 1C, Random). Similar 

performance was obtained using another model fitting algorithm that works with relative 

abundance data and assumes small fluctuations in biomass values (LIMITS26,44; 

Supplementary Figure 1B). Using biomass estimates with error profile similar to real qPCR 

data (CV=51%; without systematic errors due to varying copy number of the 16S rRNA 

gene), surprisingly, did not improve performance substantially when one technical replicate 

was provided (Figure 1C, qPCR_rep1), and even with three technical replicates, growth rate 

parameter estimates (median relative error >70%) were comparable to random (Figure 1C, 

qPCR_rep3). These results highlight that experimental errors in biomass estimates can 

significantly impact gLVM parameter estimation even in a relatively well-controlled setting 

where model assumptions are strictly applied.  

2.2 Joint estimation of biomass and model parameters with BEEM 

In order to address the challenges of noisy experimental biomass data and, in general, to 

make gLVM modeling more widely applicable where biomass estimates are not available, we 

explored the idea of learning gLVM parameters directly from relative abundance data. To 

achieve this, we first note that model equation 1 can be expressed in terms of relative growth 

rates by dividing both sides of the equation by 𝑥)(𝑡): 
!"#(%)
!%

/𝑥)(𝑡) =
! ;<"#(%)

!%
= 𝜇) + ∑ 𝛽)2𝑥2(𝑡)

3
245 .  

By explicitly introducing relative abundances (𝑥>)(𝑡)) and total biomass (𝑚(𝑡), where 𝑥)(𝑡) =

𝑚(𝑡)𝑥>)(𝑡)), we get: 

!(;<@(%)A;< ">#(%))
!%

= 𝜇) + 𝑚(𝑡)∑ 𝛽)2𝑥>2(𝑡)
3
245 .  
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The biomass terms on the left-hand-side of the equation can be eliminated by subtracting the 

equation of a selected species 𝑟 from the equations for all other species, resulting in a new 

system: 

!C#(%)
!%

= 𝑎) + 𝑚(𝑡)∑ 𝑏)2𝑥>2(𝑡)
3
245 , 𝑖 ≠ 𝑟  ,  

where 𝑦)(𝑡) = ln(𝑥>)(𝑡)/𝑥>J(𝑡)) and the equations are re-parameterized by 𝑎) and 𝑏)2 , which 

are related to the original parameters (𝑎) = 𝜇) − 𝜇J  and 𝑏)2 = 𝛽)2 − 𝛽J2). This new system 

has the advantage that all unknowns are on the right-hand-side of the equation and the 

gradient term on the left-hand-side can be estimated directly from relative abundance data 

through spline smoothing and numerical differentiation15,26,29,30.  

We then made the observation that the above equations can be re-written as two regression 

problems across two dimensions of the data matrix (𝑥>)(𝑡), ∀𝑖, 𝑡): 

(1) For each species 𝑖, the corresponding parameters 𝑎) and 𝑏)2  can be solved through 

gradient matching15,26,29,30, given the biomass at each time point 𝑡 (𝑚(𝑡)). 

(2) For each time point 𝑡, the biomass can be solved for via regression given the model 

parameters 𝒂 and 𝒃 for all the species. 

The interlock of the above two problems provides the basis for an expectation-maximization-

like algorithm that alternates between estimating model parameters and biomass iteratively 

and forms the core of BEEM (see Materials and Methods for details). Note that estimates 

provided by BEEM for the biomass act as scaling factors to bring abundances across species 

and time points to the same scale for learning gLVMs.  

On the synthetic datasets used in section 1, we noted that despite not having any biomass data 

to work with, BEEM was a significant improvement over naïve analysis based on relative 

abundance data, as well as results based on scaled relative abundances with noisy biomass 

data (~3´ reduction in relative error; Figure 1C, BEEM). In fact, BEEM estimated 

parameters were nearly as accurate as those obtained using noise-free biomass data (relative 

error for growth rate and interaction terms), except for a slight decrease in AUC-ROC for 

interaction terms (primarily due to rounding errors that provide non-zero estimates for zero 

terms). In comparison, other competing approaches (RA, qPCR, CSS) provided AUC-ROC 

performance similar to what is expected at random. Normalization approaches such as CSS45 
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and TMM46  (Figure 1C, CSS; Supplementary Figure 1B; Materials and Methods) were 

tested here as control analytical methods, but are not expected to work in general as they are 

designed to identify scaling factors that do not change across samples. We noted that 

BEEM’s significant improvement over other experimental and computational approaches, 

and its ability to closely approximate analysis using true biomass estimates is a robust feature 

that remains valid even when experimental biomass estimates are significantly better 

(CV=5%, as expected from flow-cytometry data) and while using different parameter 

estimation approaches (Supplementary Figure 1B). 

2.3 BEEM accurately estimates gLVM parameters and biomass in diverse model 
settings 

As in any situation where parameters have to be estimated, a sufficient number of data points 

(multiple biological replicates) are needed to get accurate gLVM models and this in turn 

impacts BEEM’s biomass estimates. In order to further study BEEM’s performance 

characteristics, we generated synthetic datasets with varying number of species and data 

points, comparing BEEM’s results to those obtained with noise-free biomass data and the 

same gradient matching algorithm (BLASSO, see Materials and Methods) as used 

internally in BEEM. As expected, when the number of species increases but the number of 

data points remains constant (60 replicates with 30 timepoints), gLVM parameter estimation 

becomes harder (Figure 2A). However, despite the quadratic increase in the number of 

parameters, performance for both BLASSO (with true biomass) and BEEM seems to only 

degrade linearly (Figure 2A). In addition, even when the model has 25 species (650 model 

parameters) and can thus capture over 90% of the human gut microbiome47 (Supplementary 

Figure 2), interaction parameters estimated by BEEM were nearly as accurate as those with 

true biomass (Figure 2A), though growth rate parameters were more affected. We also noted 

that median relative error for biomass estimates from BEEM was generally well controlled 

(<10%; Figure 2B). 

Increasing the number of data points available for model fitting for a fixed number of species 

(10) improved performance for both BLASSO with true biomass and BEEM, as expected. 

Performance improvements were most notable when going from 10 to 20 replicates and 

plateaued out after that (30 timepoints; Figure 2C). In general, after 20 replicates, differences 

between BLASSO and BEEM were small, especially in terms of estimating interaction 

parameters. Similarly, biomass estimates from BEEM had median relative error <5% when 
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20 replicates were available (Figure 2D). In general, our analysis suggests that inherent 

limitations in gradient matching based on estimated gradients from data were a greater source 

of error for gLVM parameter estimation in many of our experiments than errors in BEEM 

estimated biomass values. 

To assess BEEM’s performance for biomass inference in real-world datasets we analyzed 

data from a recently published study on freshwater microbial communities34,35, which to our 

knowledge is the only one to have longitudinal metagenome sequencing data as well as flow-

cytometry based gold-standard biomass estimation. Notably, the flow cytometry data in this 

study was reported to have high reproducibility (CV<5%)34, and therefore was suitable for 

use as the ground truth for total biomass. Surprisingly, with only 57 time points in total 

across two replicate experiments, BEEM was able to infer the total biomass for a 26-species 

community accurately solely based on 16S sequencing based relative abundances. BEEM 

estimated biomass values showed strong correlation with flow cytometry data (BEEM: 

Spearman’s r=0.72; Figure 3A) and its trajectories closely tracked measured fluctuations 

(Figure 3B). In contrast and as expected, normalization approaches provided estimates that 

had either weak correlation (CSS: Spearman’s r=0.36) or negative correlation with 

experimentally determined values (TMM: Spearman’s r=-0.11; Figure 3A).  

2.4 Personalized gut microbial dynamics and keystone species 

The development of BEEM allows us to analyze previously generated datasets in a gLVM 

framework, even when biomass measurements were not made in the original study. To 

showcase this capability, we applied BEEM to the longest (over one year) and most densely 

(almost daily) sampled human gut microbiome time-series datasets available to date (four 

individuals: DA, DB from David et al42 and M3, F4 from Caporaso et al41). BEEM estimated 

models exhibited a good fit to the data, with predicted relative abundances for a day based on 

numerical integration from the previous day being in high concordance with observed data 

(median Spearman’s r = 0.83). As BEEM directly infers daily biomass values, we plotted 

these and observed distinct individual-specific patterns: while subject DA’s biomass was 

found to vary relatively smoothly, following an approximately cyclic pattern with a period of 

about three months (Figure 4A), subject M3’s biomass fluctuated to a greater extent on a day 

to day basis with no clear trend (Figure 4B). Similar patterns were observed in parts for 

subjects DB and F4, which had a greater resemblance to DA overall (Supplementary Figure 

3A, B). The fluctuations predicted in M3’s biomass were also found to be accompanied by 
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frequent blooms of rare taxa that were otherwise not detected at other time points43 and may 

be a consequence of this instability in the community. In contrast, the smoother progression 

of DA’s biomass may be a reflection of the relative stability of the gut community in this 

individual, though the source of the observed cyclic patterns deserves to be explored further. 

As an initial hint, we noted that the strongest association between DA’s biomass and reported 

metadata was a negative correlation with calcium intake (Supplementary Figure 4). 

Concordant with their distinct biomass dynamics, DA and M3 also exhibited microbial 

interaction networks that were unique to them (Figure 4C, D). DA’s network was defined by 

hub nodes for Feacalibacterium prausnitzii and Bacteroides uniformis, two species with 

many beneficial roles and frequent associations with a healthy gut48,49. The hubs were found 

to negatively affect the growth of Enterobacteriaceae species, consistent with previous 

reports for B. uniformis50 and F. prausnitzii51–53. In comparison, the major hub nodes in M3’s 

network were a Blautia and an Oscillospira species that were connected by a positive feed-

forward loop. Additionally, we found that abundances of the Blautia and Oscillospira species 

were significantly negatively correlated with total biomass in M3’s gut microbiome 

(Supplementary Figure 5). Feed-forward loops have been implicated in destabilizing effects 

on ecosystems32 and so these observations may explain the unstable behavior of M3’s 

biomass as well as the corresponding susceptibility to invasive blooms of rare taxa43. 

Oscillospira’s protective role in M3’s gut flora is further indicated by its parasitic 

relationship (negative-positive loop) with another hub species B. fragilis, an opportunistic 

pathogen that has been associated with diarrhea54. Interestingly, several of the transient 

species in M3’s gut microbiome were observed to be at the periphery of the network, with a 

single incoming edge indicating that their abundances were being influenced by a hub species. 

For example, this was observed for several Streptococcus species that are primarily oral 

commensals and could be transient colonizers of the gut55,56. 

Despite differences in the identity of species in their interaction networks, the various 

individual-specific networks shared some common features, including the presence of a few 

hub nodes that negatively influenced many other species, and were generally not the most 

abundant species in the community (Figure 4C, D and Supplementary Figure 3C, D). 

Overall, we also found that the ratio between out- and in- degree of species in the networks 

were negatively correlated with their median relative abundances (Supplementary Figure 6), 

suggesting that the hub species in the interaction network, that are often considered as 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2018. ; https://doi.org/10.1101/288803doi: bioRxiv preprint 

https://doi.org/10.1101/288803
http://creativecommons.org/licenses/by-nc/4.0/


keystone species for the community26,57, are typically not the abundant species in the gut 

microbiome. We further confirmed this observation by analyzing a large collection (840 

healthy individuals) of gut microbiome datasets47, to find that the core species in the gut 

microbiome were also frequently not the most abundant species (Supplementary Figure 7). 

Together, these observations suggest a model for the gut microbiome where relatively less 

abundant species in the community are more stable colonizers of the host, and by virtue of 

their impact on the growth of other species in the community, play an important role in 

defining its dynamics in different individuals.  

3. Discussion 

A major limitation of most microbiome profiling datasets available to date is the restriction to 

relative abundances and the ‘compositionality’ of this data has led to significant challenges 

even when performing common statistical tests for correlated abundances58. These issues are 

amplified when considering systems models such as gLVMs, and our analysis here confirms 

that model parameter estimates can be severely distorted if relative abundances are not 

correctly scaled. In ecological models such as gLVMs, interactions between species are 

naturally a function of the absolute density of species in a community rather than their 

relative abundances. Correspondingly, while autoregression based methods such as sVar43 

and ARIMA59 provide an alternative for model fitting with relative abundance data, their 

models and parameters are not ecologically interpretable. In addition, experimental 

approaches to measure scaling factors are generally seen as a laborious and occasionally 

feasible way to work with absolute abundances, but as we show here, this may not be the case 

if care is not taken to ensure that experimental noise is minimized and sufficient number of 

replicates are analyzed. By eliminating the need for additional experimental data, BEEM 

greatly expands the applicability of gLVMs to microbiome datasets, and its robustness could 

simultaneously improve the quality of models and scaling factor estimates, as observed in our 

synthetic and real datasets. Explicitly modelling microbial interactions through gLVMs has 

proven to be a powerful framework for studying microbial community dynamics15,26–32, and 

the approach used in BEEM could also be extended (with minimal modifications) to time-

series with external perturbations (e.g. antibiotics usage)15,29,30, as well as systems models for 

gene expression regulation based on RNA-seq data60.  

Due to limited availability of absolute abundance data, gLVMs have generally been 

constructed by aggregating information across experiments and individuals15,29,30. We 
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exploited the availability of year-long time series datasets and BEEM’s facility with relative 

abundances to construct individual specific gut microbiome gLVMs for the first time. 

Intriguingly, we observed that our inferred scaling factors suggest that gut microbial biomass 

has distinct dynamics across different individuals. Consistent with a recent study on 20 

individuals where human gut microbial biomass (measured via flow-cytometry) was found to 

have high variation (CV» 53% within a week)58, we also noted high variability over time 

across the four individuals we analyzed (CV ranging from 49% to 76% over a year). 

Additionally, we observed cyclic behavior of biomass trajectories in multiple individuals, 

similar to the seasonal patterns reported in hunter-gatherers of western Tanzania61, and the 

conserved patterns observed in other mammals across evolutionary timescales62. Similar 

patterns have not been reported before for western city dwellers, perhaps due to the 

confounding effects of aggregate analysis across individuals and the impact of highly diverse 

diets. BEEM analysis, however, suggests that the underlying patterns may still be conserved 

in urban subjects and may be more general than previously believed.  

Our inference of gLVM models for each individual allows us to identify specific microbial 

species and the kinds of interactions that they have, to account for the distinct dynamics that 

were observed. For example, the positive feed forward loop observed between the hubs in 

M3’s gut microbiome provides a specific, plausible and testable hypothesis to explain the 

instability observed there, and this capability can be valuable in future studies where targeted 

interventions are feasible. Despite differences in the microbial interaction networks observed 

for different individuals, a shared feature seems to be the presence of relatively lowly 

abundant species that act as hub nodes in the network. A similar pattern was seen in cross-

sectional data as well where frequently shared “core” gut microbiome species tend to not be 

the most abundant species in the community. These observations point to a model where 

species at low relative abundances stably colonize the gut (e.g. mucosa-associated ones) 

compared to abundant but transient (lumen-associated) bacteria, and play an important role in 

defining gut microbiome dynamics. In particular, hub species were frequently found to 

negatively regulate more transient species in the community, in agreement with the known 

role of mucosa-associated species in providing colonization resistance against invasive 

pathogenic species63. 

An important point that we noted in the gut microbiome datasets that were analyzed here is 

the limited number of stable species (prevalent in most time points for an individual) that are 
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shared across individuals. This feature makes it infeasible to learn gLVM models by merging 

short time-series datasets across different individuals. Similar constraints might be present in 

other microbial communities as well, including specific challenges in measuring total 

biomass in complex matrices58, and thus the development of BEEM makes it more feasible to 

generate the long and densely sampled datasets that are needed for such models. In addition, 

the analysis in BEEM can potentially be directly extended to cross-sectional datasets if the 

corresponding communities are believed to be at equilibrium (i.e. !"#(%)
!%

= 0, for all species). 

This extension would significantly expand the amount of data that could be used and thus 

allow us to learn even more complex models in the future. As is the case for any modelling 

approach, no model is expected to be perfect, but as they capture more and more features of 

real systems, we can expect that their predictions become increasingly useful. BEEM’s 

development therefore serves as an important step in expanding the use of modelling 

approaches to study microbial community dynamics and rationally identify appropriate 

perturbations.  
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4. Materials and Methods 

4.1 BEEM’s core algorithm  

As introduced in Section 2.2, the gLVM model in equation 1 can be first simplified by 

dividing 𝑥)(𝑡) on each side, and then re-written in terms of total biomass 𝑚(𝑡) (i.e. 𝑚(𝑡) =

∑ 𝑥)(𝑡)
3
)45 ) and relative abundances 𝑥>)(𝑡) (i.e. 𝑥>)(𝑡) = 𝑥)(𝑡)/𝑚(𝑡)) as shown below: 

 ! ;<@(%)A;< ">#(%)
!%

= 𝜇) + 𝑚(𝑡)∑ 𝛽)2𝑥>2(𝑡)
3
245  . (2) 

To eliminate the biomass related term in the left-hand-side of the equation, we subtract the 

corresponding equation for a reference species 𝑟 (species with lowest CV, by default) from 

both sides of the system, resulting in additive log ratio (ALR) transformed64 relative 

abundances (𝑦)(𝑡) = ln(𝑥>)(𝑡)/𝑥>J(𝑡))) on the left-hand-side and a re-parameterized right-

hand-side: 

!C#(%)
!%

= 𝑎) + 𝑚(𝑡)∑ 𝑏)2𝑥>2(𝑡)
3
245 , 𝑖 ≠ 𝑟  ,  

where 𝑎) = 𝜇) − 𝜇J  and 𝑏)2 = 𝛽)2 − 𝛽J2 .  

An estimate for	𝑑𝑦)(𝑡)/𝑑𝑡, denoted as 𝑌)%, can be calculated as the derivative of a piece-wise 

polynomial spline fitted to the ALR transformed relative abundances (𝑦)(𝑡), see Section 4.2 

for details). BEEM then estimates the model parameters 𝒂, 𝒃	and the biomass 𝒎 using an 

EM-like algorithm with the following sum of squared error objective function: 

Θ(𝒂, 𝒃,𝒎) = ∑ T𝑌)% − U𝑎) + 𝑚% ∑ 𝑏)2𝑋W2%
3
245 XY

Z
),% ,  

where  𝑋W)% = 𝑥>)(𝑡) and 𝑚% = 𝑚(𝑡) are the variables written in their matrix representations.  

The EM-like algorithm in BEEM works by iterating two steps, an E-step and an M-step, to 

convergence as detailed below: 

Model parameter estimation with Bayesian lasso (E-step): In iteration 𝑇, with estimated 

biomass from the previous iteration 𝑚\%
(]^5), BEEM estimates 𝑎_)

(]) and �̀�)2
(]) for each 𝑖 (𝑖 ≠ 𝑟) 

based on the following regression problem (also known as gradient matching): 
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𝑌)%	~	𝑎)
(]) + 𝑚\%

(]^5) ∑ 𝑏)2
(])𝑋W2%

3
245 .  

Solving the above system is often limited by the amount of data available in practice. For 

microbial communities, it is usually assumed that the interaction vector (𝛽)2) is sparse (i.e. a 

species is only directly affected by a small number of other species). Consequently, the 

transformed matrix 𝑏)2  is also sparse and BEEM estimates it using a sparse regression 

technique based on a Bayesian approach (Bayesian lasso - BLASSO30; R package “monomvn” 

version 1.9-7; default parameters)65. 

Biomass estimation with linear regression (M-step): With 𝑎_)
(]) and �̀�)2

(]) from the E-step, 

the biomass 𝑚\%
(])	for each 𝑇 can be computed as the coefficient of the following linear 

regression: 

𝑈%)
(])~	𝑚%

(])𝑉%)
(]), 𝑖 ≠ 𝑟 ,  

where  𝑈%)
(]) = 𝑌)% − 𝑎_)

(]) and 𝑉%)
(]) = ∑ �̀�)2

(])𝑋W2%
3
245 .  

Initialization: For the initialization step in its EM-like algorithm, BEEM assumes that 

scaling factors inferred from a commonly used normalization approach for metagenomic data 

(Cumulative Sum Scaling - CSS66) provides a reasonable starting point for the algorithm to 

then learn better scaling factors. Note that, as expected, scaling factors from CSS 

normalization and BEEM cannot recapitulate the absolute scale corresponding to 

experimental measurements (e.g. by qPCR or flow cytometry), and so their estimates were 

scaled to the same median value across the time series as experimental measurements for 

subsequent comparisons. 

Termination and parameter estimation: The E- and M-step in BEEM are run until 

convergence or a user specified maximal number of iterations. The search was assumed to 

have reached convergence (to a local optimum) when the mean squared error (MSE) for the 

M-step starts to increase by more than 10% compared to the minimal MSE observed. In 

practice, on the datasets analyzed in this study, convergence takes a few hours using 4 CPUs. 

Estimates for 𝑎_), �̀�)2  and 𝑚\% were calculated as the median of the values from all iterations 

whose MSE was within 10% of the minimal MSE.  
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4.2 Robust parameter estimation with BEEM 

In our experiments with synthetic and real data, we noted that gLVM modelling can be 

sensitive to noise and outliers in the data, and this in turn could affect estimation of scaling 

factors with BEEM. To address this, we refined the core algorithm in BEEM with additional 

pre-processing steps that further enable robust parameter estimation. 

Outliers in relative abundance data: We observed in our numerical analysis that outliers in 

the abundance data could notably affect the spline fitting procedure and lead to spurious 

gradient estimates. To obtain more robust spline fitting, an over-smoothed spline was first 

fitted to 𝑦)(𝑡) (function “smooth.Pspline” from R package “pspline”67 with maximal degree 

of five and a large smoothing parameter “spar=1e10”) to calculate the absolute error in fitted 

values (𝑒)% = |𝑦)(𝑡) − 𝑦)(𝑡)fghhijkl|), and points with absolute error larger than expected 

((𝑒)% − median2
(𝑒)2))/MAD2 (𝑒)2) > 𝜏, 𝜏 = 5 by default) were then filtered out. The final 

smoothing spline was fitted (degree of five and smoothing parameter selected using cross 

validation) to the remaining data to calculate the estimated gradients 𝑌)%. In addition, outliers 

in biomass estimated from the previous iteration (𝑚\%
(]^5)) were identified in the same way 

and replaced with interpolated values from the spline. 

Outliers in estimated gradients: In practice, gradient matching based methods (including 

the various algorithms implemented in MDSINE) were found to be sensitive to outliers in the 

estimated gradients (i.e. 𝑌)%). To identify outliers in a time series (𝑌)%, for all 𝑡) a local 

regression (LOESS) smoother was fitted to de-trend 𝑌)%, and the outliers were filtered out as 

described above. 

Estimating constrained biomass values: For each time point, biomass was estimated as the 

slope of a linear regression (𝑈%x
(]) against 𝑉%x

(])) where outliers in both 𝑈%x
(]) and 𝑉%x

(]) were 

identified and removed following a standard boxplot approach i.e. as deviations from the 

median by more than 1.5´ inter-quartile range. In addition, the biomass was constrained to be 

positive by removing points where 𝑈%)
(]) and 𝑉%)

(]) had different signs.  

4.3 Recovering gLVM parameters 

Based on the previously stated assumption that the interaction matrix 𝜷 is sparse, most 

entries in each column are expected to be zero and thus the median value for the 𝑗th column in 
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𝒃 would be expected to be −𝛽J2, allowing us to infer back all the other rows of 𝜷 (𝛽)2 =

	𝑏)2 + 𝛽J2). BEEM then assigns a Z-score like confidence value (𝑠)2) to each entry of 𝜷, by 

dividing the estimated interaction strength by the column standard deviation (𝑠)2 = |𝛽z)2/𝜎2|). 

The growth rate vector 𝝁 is not expected to be sparse but can be recovered by directly solving 

the original gLVM system (equation 2), using the already derived estimates for scaling 

factors and 𝜷. For robustness, BEEM estimates the growth rate for each species as the 

median of positive estimates across all time points. 

4.4 Datasets and evaluation metrics 

Simulated datasets: MDSINE’s Bayesian variable selection (BVS) algorithm (with spline 

smoothing option and minor bug fixes: https://bitbucket.org/chenhao_li/mdsine) was used to 

estimate parameters from the C. difficile infection dataset provided with the package30. 

Simulated datasets were then generated based on these estimated parameters following the 

procedure described in Bucci et al30 (excluding perturbations). Noisy abundances were 

obtained by sampling from Poisson distributions68 with means based on scaled abundances at 

each time point (sum = 5´104). Simulated qPCR and flow cytometry based values for total 

biomass were generated from log normal distributions with coefficients of variation (CV) that 

matched those seen in real datasets (qPCR=51%30, flow cytometry=5%34,35).  

Dataset from Props et al: The original OTU table was obtained from the authors35. Samples 

for the “operation” stage, where the environment had roughly constant temperature were 

selected for BEEM analysis. OTUs with low mean relative abundances (<0.1%) were 

excluded, resulting in 26 OTUs across 58 time points from two replicates.  

Dataset from Gibbons et al: This dataset included four long time series collected by David 

et al42 and Caporaso et al41. The original OTU tables43 were filtered to keep only top OTUs 

based on prevalence (>10 reads in most of the samples). In total, 26 and 22 OTUs were left 

for samples from David et al and Caporaso et al, respectively. In order to assess the 

robustness of the inferred network, BEEM was run with 30 different seeds and edges with 

confidence score 𝑠)2 ≤ 1 in more than 50% of the networks were kept. The final biomass was 

obtained by taking the geometric mean across all 30 runs (Supplementary File 1). 

Metrics for evaluation: The following metrics were used for evaluating inference algorithms:  
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1. Median relative error (MRE) for estimates 𝜽�  when the true values are 𝜽 : 

median
�#��

��
�#^�#
�#
�.  

2. Area under receiver operating characteristic curve (AUC-ROC) for the inferred 

microbial interactions: Absolute values of parameters was used to rank predicted 

edges for BLASSO and LIMITS (implemented in R package seqtime_0.1.144, default 

parameters), while confidence scores were used for Bayesian Variable Selection 

(BVS) in MDSINE and for BEEM. 

4.5 Software and reproducibility of results 

BEEM is available under the MIT license and can be downloaded from 

https://github.com/csb5/BEEM. Scripts to reproduce the results presented in this work are 

also available at this website. 
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Figure Legends 

Figure 1. Noise in experimentally determined biomass severely distorts gLVM 
parameter estimation. (A) Scatter plot with fitted linear regression line for two 16S qPCR 
technical replicates from Bucci et al. (B) Copy number variation for 16S rRNA genes in 
members of four major phyla of human gut bacteria. (C) Relative impact of different 
experimental (qPCR_rep1 – 1 qPCR replicate, qPCR_rep3 – mean of 3 qPCR replicates) and 
computational (RA – relative abundance, CSS – CSS normalization) data scaling approaches 
on gLVM parameter estimation (BVS algorithm for MDSINE), in comparison to using true 
biomass or using BEEM. Boxplots represent the summary of 15 simulations (10 species, 30 
replicates with 30 time points each) and three different metrics are shown here including 
median relative error for growth rate (𝝁) and interaction (𝜷) parameters, and AUC-ROC for 
the interaction network. Dashed horizontal lines represent the performance of randomly 
generated parameters from the simulation model. 

Figure 2. Robustness of parameter estimation with BEEM. (A) Results with increasing 
number of species but fixed number of replicates (50).  As expected, parameter estimation 
gets harder but BEEM’s performance tracks the ideal case using BLASSO with true biomass 
values, especially for interaction parameters. (B) Median relative error in biomass estimates 
remains less than 10%. (C) Results with increasing number of replicates and fixed number of 
species (15). BEEM’s performance converges to that of BLASSO with true biomass as the 
number of replicates increases. (D) Median relative error in biomass estimates reduces 
noticeably as the number of replicates increases.  

Figure 3. Concordance of BEEM estimated biomass with gold standard experimental 
measurements. (A) Scatter plots with fitted linear regression line highlighting that BEEM’s 
biomass estimates are notably more concordant with flow cytometry based values compared 
to CSS and TMM normalization based estimates. (B) BEEM estimated biomass values 
(orange) compared to gold standard measurements using flow cytometry (black).  

Figure 4. BEEM analysis of year long gut microbial time-series datasets. (A, B) BEEM 
estimated biomass values for two individuals (DA and M3) with daily sampled, year long gut 
microbial time-series datasets from David et al42 and Caporaso et al41. Interestingly, while 
M3’s biomass fluctuates rapidly, DA’s biomass seems to vary in a more defined fashion with 
a periodicity of around 3 months. (C, D) Graphs representing non-zero interaction terms in 
gLVM models learnt individually for DA and M3 using BEEM. Dashed and solid edges 
represent positive and negative interactions respectively. Edge widths are proportional to the 
interaction strength and node sizes are proportional to the log-transformed mean relative 
abundance of the corresponding species. Nodes are labeled with GreenGenes IDs and colored 
according to order level taxonomic annotations. 
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